51
|
Zhao M, Zhang J, Li H, Luo Z, Ye J, Xu Y, Wang Z, Ye D, Liu J, Li D, Wang M, Wan J. Recent progress of antiviral therapy for coronavirus disease 2019. Eur J Pharmacol 2021; 890:173646. [PMID: 33190802 PMCID: PMC7584884 DOI: 10.1016/j.ejphar.2020.173646] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become a global public health crisis, for which antiviral treatments are considered mainstream therapeutic approaches. With the development of this pandemic, the number of clinical studies on antiviral therapy, including remdesivir, chloroquine and hydroxychloroquine, lopinavir/ritonavir, ribavirin, arbidol, interferon, favipiravir, oseltamivir, nitazoxanide, nelfinavir, and camostat mesylate, has been increasing. However, the efficacy of these antiviral drugs for COVID-19 remains controversial. In this review, we summarize the recent progress and findings on antiviral therapies, aiming to provide clinical support for the management of COVID-19. In addition, we analyze the causes of controversy in antiviral drug research and discuss the quality of current studies on antiviral treatments. High-quality randomized clinical trials are required to demonstrate the efficacy and safety of antiviral drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hanli Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, China
| | - Zhen Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dan Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
52
|
Kelleni MT. Early use of non-steroidal anti-inflammatory drugs in COVID-19 might reverse pathogenesis, prevent complications and improve clinical outcomes. Biomed Pharmacother 2021; 133:110982. [PMID: 33197762 PMCID: PMC7640889 DOI: 10.1016/j.biopha.2020.110982] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/25/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of Coronavirus disease 2019 is still obscure and the need for exploration of possible mechanisms to suggest drugs based on knowledge should never be delayed. In this manuscript, we present a novel theory to explain the pathogenesis of COVID-19; lymphocyte distraction theory upon which the author has used, in a preprinted protocol, non-steroidal anti-inflammatory drugs (NSAIDs); diclofenac potassium, ibuprofen and ketoprofen, successfully to treat COVID-19 patients. Furthermore, we agree with a recommendation that glucocorticoids should not be used routinely for COVID-19 patients and suggested to be beneficial only for patients with late acute respiratory distress syndrome. A clinical proof of ibuprofen safety in COVID-19 has been published by other researchers and we suggest that early administration of NSAIDs, including ibuprofen, in COVID-19 is not only safe but it might also prevent COVID-19 complications and this manuscript explains some of the suggested associated protective mechanisms.
Collapse
Affiliation(s)
- Mina T Kelleni
- Pharmacology Department, College of Medicine, Minia University, Egypt.
| |
Collapse
|
53
|
Hossain MJ, Rahman SMA. Repurposing therapeutic agents against SARS-CoV-2 infection: most promising and neoteric progress. Expert Rev Anti Infect Ther 2020; 19:1009-1027. [PMID: 33355520 DOI: 10.1080/14787210.2021.1864327] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The pathogenic and highly transmissible etiological agent, SARS-CoV-2, has caused a serious threat COVID-19 pandemic. WHO has declared the epidemic a public health emergency of international concern owing to its high contagiosity, mortality rate, and morbidity. Till now, there is no approved vaccine or drug to combat the COVID-19 and avert this global crisis. AREAS COVERED In this narrative review, we summarized the updated results (January to August 2020) of the most promising repurposing therapeutic candidates to treat the SARS-CoV-2 viral infection. The repurposed drugs classified under four headlines like antivirals, anti-parasitic, immune-modulating, and miscellaneous drugs were discussed with their in vitro efficacy to recent clinical advancements against COVID-19. EXPERT OPINION Currently, palliative care, ranging from outpatient management to intensive care, including oxygen administration, ventilator support, intravenous fluids therapy, with some repurposed drugs, are the primary weapons to fight against COVID-19. Until a safe and effective vaccine is developed, an evidence-based drug repurposing strategy might be the wisest option to save people from this catastrophe. Several existing drugs are now under clinical trials, and some of them are approved in different places of the world for emergency use or as adjuvant therapy in COVID-19 with standard of care.
Collapse
Affiliation(s)
- Md Jamal Hossain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - S M Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
54
|
Long Y, Wu M, Kwoh CK, Luo J, Li X. Predicting human microbe-drug associations via graph convolutional network with conditional random field. Bioinformatics 2020; 36:4918-4927. [PMID: 32597948 PMCID: PMC7559035 DOI: 10.1093/bioinformatics/btaa598] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/31/2020] [Accepted: 06/20/2020] [Indexed: 12/23/2022] Open
Abstract
Motivation Human microbes play critical roles in drug development and precision medicine. How to systematically understand the complex interaction mechanism between human microbes and drugs remains a challenge nowadays. Identifying microbe-drug associations can not only provide great insights into understanding the mechanism, but also boost the development of drug discovery and repurposing. Considering the high cost and risk of biological experiments, the computational approach is an alternative choice. However, at present, few computational approaches have been developed to tackle this task. Results In this work, we leveraged rich biological information to construct a heterogeneous network for drugs and microbes, including a microbe similarity network, a drug similarity network, and a microbe-drug interaction network. We then proposed a novel Graph Convolutional Network (GCN) based framework for predicting human Microbe-Drug Associations, named GCNMDA. In the hidden layer of GCN, we further exploited the Conditional Random Field (CRF), which can ensure that similar nodes (i.e., microbes or drugs) have similar representations. To more accurately aggregate representations of neighborhoods, an attention mechanism was designed in the CRF layer. Moreover, we performed a random walk with restart (RWR) based scheme on both drug and microbe similarity networks to learn valuable features for drugs and microbes respectively. Experimental results on three different datasets showed that our GCNMDA model consistently achieved better performance than seven state-of-the-art methods. Case studies for three microbes including SARS-CoV-2 and two antimicrobial drugs (i.e., Ciprofloxacin and Moxifloxacin) further confirmed the effectiveness of GCNMDA in identifying potential microbe-drug associations. Availability Python codes and dataset are available at: https://github.com/longyahui/GCNMDA. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yahui Long
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410000, China.,School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Min Wu
- Machine Intellection Department, Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410000, China
| | - Xiaoli Li
- Machine Intellection Department, Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| |
Collapse
|
55
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appeared in 2019 and is the causative agent of the new pandemic viral disease COVID-19. The outbreak of COVID-19 infection is affecting the entire world, thus many researchers and scientists are desperately looking for suitable vaccines and treatment options. Indeed, researches to find potential inhibitors of SARS-CoV-2 are mainly focussed on targeting virus-host interactions or inhibiting viral assembly. Additionally, drugs and other therapeutic agents that modulate broad-spectrum host innate immune responses or interfere with signalling pathways involved in viral replication are important. These drugs may be capable of engaging host receptors or proteases utilised for viral entry or may impact the endocytosis pathway. 3CLpro (3-chymotrypsin-like protease), PLpro (papain-like protease), RdRp (RNA-dependent RNA polymerase), S protein (viral spike glycoprotein), TMPRSS2 (transmembrane protease serine 2), ACE2 (angiotensin-converting enzyme 2), and AT2 (angiotensin AT2 receptor) are important targets. With no approved therapies, this pandemic illustrates the urgent need for safe and broad-spectrum antiviral agents and strategies against SARS-CoV-2 and future pathogenic viruses. In this review, we discussed about the recent trends and important challenges regarding the potential inhibitors, antiviral drugs and nanomaterials screened against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
56
|
Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep 2020; 72:1479-1508. [PMID: 32889701 PMCID: PMC7474498 DOI: 10.1007/s43440-020-00155-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Currently, there are no treatment options available for the deadly contagious disease, coronavirus disease 2019 (COVID-19). Drug repurposing is a process of identifying new uses for approved or investigational drugs and it is considered as a very effective strategy for drug discovery as it involves less time and cost to find a therapeutic agent in comparison to the de novo drug discovery process. The present review will focus on the repurposing efficacy of the currently used drugs against COVID-19 and their mechanisms of action, pharmacokinetics, dosing, safety, and their future perspective. Relevant articles with experimental studies conducted in-silico, in-vitro, in-vivo, clinical trials in humans, case reports, and news archives were selected for the review. Number of drugs such as remdesivir, favipiravir, ribavirin, lopinavir, ritonavir, darunavir, arbidol, chloroquine, hydroxychloroquine, tocilizumab and interferons have shown inhibitory effects against the SARS-CoV2 in-vitro as well as in clinical conditions. These drugs either act through virus-related targets such as RNA genome, polypeptide packing and uptake pathways or target host-related pathways involving angiotensin-converting enzyme-2 (ACE2) receptors and inflammatory pathways. Using the basic knowledge of viral pathogenesis and pharmacodynamics of drugs as well as using computational tools, many drugs are currently in pipeline to be repurposed. In the current scenario, repositioning of the drugs could be considered the new avenue for the treatment of COVID-19.
Collapse
Affiliation(s)
- Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Madhu Cholenahalli Lingaraju
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Manickam Kesavan
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| |
Collapse
|
57
|
Bagheri A, Moezzi SMI, Mosaddeghi P, Nadimi Parashkouhi S, Fazel Hoseini SM, Badakhshan F, Negahdaripour M. Interferon-inducer antivirals: Potential candidates to combat COVID-19. Int Immunopharmacol 2020; 91:107245. [PMID: 33348292 PMCID: PMC7705326 DOI: 10.1016/j.intimp.2020.107245] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infective disease generated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given the pandemic urgency and lack of an effective cure for this disease, drug repurposing could open the way for finding a solution. Lots of investigations are ongoing to test the compounds already identified as antivirals. On the other hand, induction of type I interferons are found to play an important role in the generation of immune responses against SARS-CoV-2. Therefore, it was opined that the antivirals capable of triggering the interferons and their signaling pathway, could rationally be beneficial for treating COVID-19. On this basis, using a database of antivirals, called drugvirus, some antiviral agents were derived, followed by searches on their relevance to interferon induction. The examined list included drugs from different categories such as antibiotics, immunosuppressants, anti-cancers, non-steroidal anti-inflammatory drugs (NSAID), calcium channel blocker compounds, and some others. The results as briefed here, could help in finding potential drug candidates for COVID-19 treatment. However, their advantages and risks should be taken into account through precise studies, considering a systemic approach. Even though the adverse effects of some of these drugs may overweight their benefits, considering their mechanisms and structures may give a clue for designing novel drugs in the future. Furthermore, the antiviral effect and IFN-modifying mechanisms possessed by some of these drugs might lead to a synergistic effect against SARS-CoV-2, which deserve to be evaluated in further investigations.
Collapse
Affiliation(s)
- Ashkan Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouria Mosaddeghi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadra Nadimi Parashkouhi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mostafa Fazel Hoseini
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Badakhshan
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
58
|
de Almeida SMV, Santos Soares JC, Dos Santos KL, Alves JEF, Ribeiro AG, Jacob ÍTT, da Silva Ferreira CJ, Dos Santos JC, de Oliveira JF, de Carvalho Junior LB, de Lima MDCA. COVID-19 therapy: What weapons do we bring into battle? Bioorg Med Chem 2020; 28:115757. [PMID: 32992245 PMCID: PMC7481143 DOI: 10.1016/j.bmc.2020.115757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.
Collapse
Affiliation(s)
- Sinara Mônica Vitalino de Almeida
- Laboratório de Biologia Molecular, Universidade de Pernambuco, Garanhuns, PE, Brazil; Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - José Cleberson Santos Soares
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Keriolaine Lima Dos Santos
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Amélia Galdino Ribeiro
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Íris Trindade Tenório Jacob
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Jamerson Ferreira de Oliveira
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
59
|
Jakhmola S, Indari O, Kashyap D, Varshney N, Rani A, Sonkar C, Baral B, Chatterjee S, Das A, Kumar R, Jha HC. Recent updates on COVID-19: A holistic review. Heliyon 2020; 6:e05706. [PMID: 33324769 PMCID: PMC7729279 DOI: 10.1016/j.heliyon.2020.e05706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are large positive-sense RNA viruses with spike-like peplomers on their surface. The Coronaviridae family's strains infect different animals and are popularly associated with several outbreaks, namely SARS and MERS epidemic. COVID-19 is one such recent outbreak caused by SARS-CoV-2 identified first in Wuhan, China. COVID-19 was declared a pandemic by WHO on 11th March 2020. Our review provides information covering various facets of the disease starting from its origin, transmission, mutations in the virus to pathophysiological changes in the host upon infection followed by diagnostics and possible therapeutics available to tackle the situation. We have highlighted the zoonotic origin of SARS-CoV-2, known to share 96.2% nucleotide similarity with bat coronavirus. Notably, several mutations in SARS-CoV-2 spike protein, nucleocapsid protein, PLpro, and ORF3a are reported across the globe. These mutations could alter the usual receptor binding function, fusion process with the host cell, virus replication, and the virus's assembly. Therefore, studying these mutations could help understand the virus's virulence properties and design suitable therapeutics. Moreover, the aggravated immune response to COVID-19 can be fatal. Hypertension, diabetes, and cardiovascular diseases are comorbidities substantially associated with SARS-CoV-2 infection. The review article discusses these aspects, stating the importance of various comorbidities in disease outcomes. Furthermore, medications' unavailability compels the clinicians to opt for atypical drugs like remdesivir, chloroquine, etc. The current diagnostics of COVID-19 include qRT-PCR, CT scan, serological tests, etc. We have described these aspects to expose the information to the scientific community and to accelerate the research.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Omkar Indari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Dharmendra Kashyap
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Nidhi Varshney
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Annu Rani
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Charu Sonkar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Budhadev Baral
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Sayantani Chatterjee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Ayan Das
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Rajesh Kumar
- Discipline of Physics, Indian Institute of Technology, Indore, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
60
|
Pinto EG, Barbosa LRS, Mortara RA, Tempone AG. Targeting intracellular Leishmania (L.) infantum with nitazoxanide entrapped into phosphatidylserine-nanoliposomes: An experimental study. Chem Biol Interact 2020; 332:109296. [PMID: 33096056 PMCID: PMC7573672 DOI: 10.1016/j.cbi.2020.109296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022]
Abstract
Leishmaniasis is a parasitic neglected tropical disease and result in a broad spectrum of clinical manifestations, ranging from a single ulceration to a progressive and fatal visceral disease. Comprising a limited and highly toxic therapeutic arsenal, new treatments are urgently needed. Targeting delivery of drugs has been a promising approach for visceral leishmaniasis (VL). Phosphatidylserine-liposomes have demonstrated superior efficacy in VL, targeting intracellular parasites in host cells through macrophage scavenger receptors. In this work, we investigated the in vitro and in vivo efficacy of the antihelminthic drug nitazoxanide in a nanoliposomal formulation against Leishmania (L.) infantum. Physicochemical parameters of liposomes containing nitazoxanide (NTZ-LP) were determined by dynamic light scattering and small angle X-ray scattering. The efficacy of the formulation was verified in an intracellular amastigote model and in an experimental hamster model. Our findings showed that NTZ-LP was able to eliminate the amastigotes inside the host cell with an IC50 value of 16 μM. NTZ-LP was labelled a fluorescent probe and by spectrofluorimetry, we observed that the infected macrophages internalized similar levels of the drug to the uninfected cells. The confocal microscopy images confirmed the uptake and demonstrated a diffuse distribution of the NTZ-LP in the cytoplasm of Leishmania-infected macrophages, with the vesicles in a closer proximity to the parasites. For the in vivo efficacy, the liposomal NTZ-LP was administrated intraperitoneally to Leishmania-infected hamsters for 10 consecutive days at 2 mg/kg/day. By qPCR we demonstrated a reduction of the parasite burden by 82% and 50% in the liver (p < 0.05) and spleen (p < 0.05), respectively. NTZ (non-liposomal) was administered at 100 mg/kg/day per oral (p.o.) for the same period, but demonstrated no efficacy. This liposomal formulation ensured a targeting delivery of NTZ to the intracellular parasites, resulting in an good efficacy at a low dose in animals, and it may represent a new candidate therapy for VL. Nanoliposomal nitazoxanide (NTZ-LP) eliminates amastigotes of Leishmania. The uptake of NTZ-LP by infected macrophages is similar to uninfected cells. NTZ-LP localizes in a closer proximity to the amastigotes inside the macrophages. NTZ-LP reduces the parasite burden by 82% (liver) and 50% (spleen) of hamsters.
Collapse
Affiliation(s)
- Erika Gracielle Pinto
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee DD1 5EH, UK
| | - Leandro R S Barbosa
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1, 05508-090, São Paulo, SP, Brazil
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu 862, 6◦ andar, 04039-02, São Paulo, SP, Brazil
| | - Andre Gustavo Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, 8(o) andar, 01246-000, São Paulo, SP, Brazil.
| |
Collapse
|
61
|
Kotta S, Aldawsari HM, Badr-Eldin SM, Alhakamy NA, Md S, Nair AB, Deb PK. Combating the Pandemic COVID-19: Clinical Trials, Therapies and Perspectives. Front Mol Biosci 2020; 7:606393. [PMID: 33282914 PMCID: PMC7705351 DOI: 10.3389/fmolb.2020.606393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) is caused due to the infection by a unique single stranded enveloped RNA virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The COVID-19 has claimed many lives around the globe, and a promising solution to end this pandemic is still awaited. Till date neither an exact antiviral drug nor a vaccine is available in the market for public use to cure or control this pandemic. Repurposed drugs and supportive measures are the only available treatment options. This systematic review focuses on different treatment strategies based on various clinical studies. The review discusses all the current treatment plans and probable future strategies obtained as a result of a systematic search in PubMed and Science Direct database. All the possible options for the treatment as well as prophylaxis of COVID-19 are discussed. Apart from this, the article provides details on the clinical trials related to COVID-19, which are registered under ClinicalTrials.gov. Potential of drugs based on the previous researches on SARS-CoV, MERS-CoV, Ebola, influenza, etc. which fall under the same category of coronavirus are also emphasized. Information on cell-based and immunology-based approaches is also provided. In addition, miscellaneous therapeutic approaches and adjunctive therapies are discussed. The drug repurposing options, as evidenced from various in vitro and in silico models, are also covered including the possible future solutions to this pandemic.
Collapse
Affiliation(s)
- Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | | | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| |
Collapse
|
62
|
Gelincik A, Brockow K, Çelik GE, Doña I, Mayorga C, Romano A, Soyer Ö, Atanaskovic‐Markovic M, Barbaud A, Torres MJ. Diagnosis and management of the drug hypersensitivity reactions in Coronavirus disease 19: An EAACI Position Paper. Allergy 2020; 75:2775-2793. [PMID: 32511784 PMCID: PMC7300843 DOI: 10.1111/all.14439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19), a respiratory tract infection caused by a novel human coronavirus, the severe acute respiratory syndrome coronavirus 2, leads to a wide spectrum of clinical manifestations ranging from asymptomatic cases to patients with mild and severe symptoms, with or without pneumonia. Given the huge influence caused by the overwhelming COVID-19 pandemic affecting over three million people worldwide, a wide spectrum of drugs is considered for the treatment in the concept of repurposing and off-label use. There is no knowledge about the diagnosis and clinical management of the drug hypersensitivity reactions that can potentially occur during the disease. This review brings together all the published information about the diagnosis and management of drug hypersensitivity reactions due to current and candidate off-label drugs and highlights relevant recommendations. Furthermore, it gathers all the dermatologic manifestations reported during the disease for guiding the clinicians to establish a better differential diagnosis of drug hypersensitivity reactions in the course of the disease.
Collapse
Affiliation(s)
- Aslı Gelincik
- Department of Internal Medicine Division of Immunology and Allergic Diseases Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein Faculty of Medicine Technical University of Munich Munich Germany
| | - Gülfem E. Çelik
- Department of Chest Diseases Division of Immunology and Allergy Ankara University School of Medicine Ankara Turkey
| | - Inmaculada Doña
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Cristobalina Mayorga
- Research Laboratory IBIMA‐Regional University Hospital of Malaga‐UMA‐ARADyAL Malaga Spain
| | - Antonino Romano
- IRCCS Oasi Maria S.S. Troina Italy
- Fondazione Mediterranea G.B. Morgagni Catania Italy
| | - Özge Soyer
- Pediatric Allergy Department Hacettepe University School of Medicine Ankara Turkey
| | | | - Annick Barbaud
- Department of Dermatology and Allergology, Tenon Hospital (AP‐HP) Sorbonne Universities, Pierre et Marie Curie University Paris France
- Institut Pierre Louis d’Epidémiologie et de Santé Publique AP‐HP Sorbonne Université Paris France
| | - Maria Jose Torres
- Allergy Unit Regional University Hospital of Malaga‐IBIMA‐UMA‐BIONAND‐ARADyAL Malaga Spain
| |
Collapse
|
63
|
Lisi L, Lacal PM, Barbaccia ML, Graziani G. Approaching coronavirus disease 2019: Mechanisms of action of repurposed drugs with potential activity against SARS-CoV-2. Biochem Pharmacol 2020; 180:114169. [PMID: 32710969 PMCID: PMC7375972 DOI: 10.1016/j.bcp.2020.114169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
On March 11, 2020, the World Health Organization (WHO) declared the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) a global pandemic. As of July 2020, SARS-CoV-2 has infected more than 14 million people and provoked more than 590,000 deaths, worldwide. From the beginning, a variety of pharmacological treatments has been empirically used to cope with the life-threatening complications associated with Corona Virus Disease 2019 (COVID-19). Thus far, only a couple of them and not consistently across reports have been shown to further decrease mortality, respect to what can be achieved with supportive care. In most cases, and due to the urgency imposed by the number and severity of the patients' clinical conditions, the choice of treatment has been limited to repurposed drugs, approved for other indications, or investigational agents used for other viral infections often rendered available on a compassionate-use basis. The rationale for drug selection was mainly, though not exclusively, based either i) on the activity against other coronaviruses or RNA viruses in order to potentially hamper viral entry and replication in the epithelial cells of the airways, and/or ii) on the ability to modulate the excessive inflammatory reaction deriving from dysregulated host immune responses against the SARS-CoV-2. In several months, an exceptionally large number of clinical trials have been designed to evaluate the safety and efficacy of anti-COVID-19 therapies in different clinical settings (treatment or pre- and post-exposure prophylaxis) and levels of disease severity, but only few of them have been completed so far. This review focuses on the molecular mechanisms of action that have provided the scientific rationale for the empirical use and evaluation in clinical trials of structurally different and often functionally unrelated drugs during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Lucia Lisi
- Dipartimento di Bioetica e Sicurezza, Sezione di Farmacologia, Catholic University Medical School, 00168 Rome, Italy
| | | | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
64
|
Alag S. Analysis of COVID-19 clinical trials: A data-driven, ontology-based, and natural language processing approach. PLoS One 2020; 15:e0239694. [PMID: 32997699 PMCID: PMC7526926 DOI: 10.1371/journal.pone.0239694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/13/2020] [Indexed: 12/03/2022] Open
Abstract
With the novel COVID-19 pandemic disrupting and threatening the lives of millions, researchers and clinicians have been recently conducting clinical trials at an unprecedented rate to learn more about the virus and potential drugs/treatments/vaccines to treat its infection. As a result of the influx of clinical trials, researchers, clinicians, and the lay public, now more than ever, face a significant challenge in keeping up-to-date with the rapid rate of discoveries and advances. To remedy this problem, this research mined the ClinicalTrials.gov corpus to extract COVID-19 related clinical trials, produce unique reports to summarize findings and make the meta-data available via Application Programming Interfaces (APIs). Unique reports were created for each drug/intervention, Medical Subject Heading (MeSH) term, and Human Phenotype Ontology (HPO) term. These reports, which have been run over multiple time points, along with APIs to access meta-data, are freely available at http://covidresearchtrials.com. The pipeline, reports, association of COVID-19 clinical trials with MeSH and HPO terms, insights, public repository, APIs, and correlations produced are all novel in this work. The freely available, novel resources present up-to-date relevant biological information and insights in a robust, accessible manner, illustrating their invaluable potential to aid researchers overcome COVID-19 and save hundreds of thousands of lives.
Collapse
Affiliation(s)
- Shray Alag
- The Harker School, San Jose, CA, United States of America
| |
Collapse
|
65
|
Dos Santos WG. Natural history of COVID-19 and current knowledge on treatment therapeutic options. Biomed Pharmacother 2020; 129:110493. [PMID: 32768971 PMCID: PMC7332915 DOI: 10.1016/j.biopha.2020.110493] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Despite intense research there is currently no effective vaccine available against the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in the later 2019 and responsible for the COVID-19 pandemic. This infectious and communicable disease has become one of the major public health challenges in the world. The clinical management of COVID-19 has been limited to infection prevention and control measures associated with supportive care such as supplemental oxygen and mechanical ventilation. Meanwhile efforts to find an effective treatment to inhibit virus replication, mitigate the symptoms, increase survival and decrease mortality rate are ongoing. Several classes of drugs, many of them already in use for other diseases, are being evaluated based on the body of clinical knowledge obtained from infected patients regarding to the natural history and evolution of the infection. Herein we will provide an updated overview of the natural history and current knowledge on drugs and therapeutic agents being tested for the prevention and treatment of COVID-19. These include different classes of drugs such as antiviral agents (chloroquine, ivermectin, nitazoxanide, hydroxychloroquine, lopinavir, remdesivir, tocilizumab), supporting agents (Vitamin C, Vitamin D, azithromycin, corticosteroids) and promising investigational vaccines. Considering the controversies and excessive number of compounds being tested and reported in the literature we hope that this review can provide useful and updated consolidated information on potential drugs used to prevent, control and treat COVID-19 patients worldwide.
Collapse
Affiliation(s)
- Wagner Gouvea Dos Santos
- Laboratory of Genetics and Molecular Biology, Department of Biomedicine, Graduate Program in Applied Health Sciences, Special Academic Unit of Health Sciences, Federal University of Jataí-UFJ, BR 364, Km 195, Nº 3800, CEP 75801-615, Jataí, Goiás, Brazil.
| |
Collapse
|
66
|
Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta 2020; 508:254-266. [PMID: 32474009 PMCID: PMC7256510 DOI: 10.1016/j.cca.2020.05.044] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
The novel coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global challenge. Despite intense research efforts worldwide, an effective vaccine and viable treatment options have eluded investigators. Therefore, infection prevention, early viral detection and identification of successful treatment protocols provide the best approach in controlling disease spread. In this review, current therapeutic options, preventive methods and transmission routes of COVID-19 are discussed.
Collapse
Affiliation(s)
- Melika Lotfi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Zanjan, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
67
|
Dixit SB, Zirpe KG, Kulkarni AP, Chaudhry D, Govil D, Mehta Y, Jog SA, Khatib KI, Pandit RA, Samavedam S, Rangappa P, Bandopadhyay S, Shrivastav O, Mhatre U. Current Approaches to COVID-19: Therapy and Prevention. Indian J Crit Care Med 2020; 24:838-846. [PMID: 33132570 PMCID: PMC7584839 DOI: 10.5005/jp-journals-10071-23470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has affected millions of people worldwide. As our understanding of the disease is evolving, our approach to the patient management is also changing swiftly. Available new evidence is helping us take radical decisions in COVID-19 management. We searched for inclusion of the published literature on treatment of COVID-19 from around the globe. All relevant evidences available till the time of submission of this article were briefly discussed. Once advised as blanket therapy for all patients, recent reports of hydroxychloroquine with or without azithromycin indicated no potential benefit and use of such combination may increase the risk of arrhythmias. Clinical evidence with newer antivirals such as remdesivir and favipiravir is promising that can hasten the patient recovery and reduce the mortality. With steroids, evidence is much clear in that it should be used in low dose and for short period not extending beyond 7 days in moderate to severe hospitalized patients. Low-molecular-weight heparin should be initiated in all hospitalized COVID-19 patients and dose should be based on the coagulation profile and risk of thromboembolism. Immunomodulatory drugs such tocilizumab may be considered for severe and critically ill patients to improve the outcomes. Though ulinastatin can be a potential alternative immunomodulator, there is lack of clinical evidence on its usage in COVID-19. Convalescent plasma therapy can be potentially lifesaving in critically ill patients. However, there is need to generate further evidence with various such therapies. Though availability of a potent vaccine is awaited, current treatment of COVID-19 is based on available therapies, which is guided by the evidence. In this review, we discuss the potential treatments available around the globe with current evidence on each of such treatments. How to cite this article: Dixit SB, Zirpe KG, Kulkarni AP, Chaudhry D, Govil D, Mehta Y, et al. Current Approaches to COVID-19: Therapy and Prevention. Indian J Crit Care Med 2020;24(9):838-846.
Collapse
Affiliation(s)
| | - Kapil G Zirpe
- Neuro Trauma Unit, Grant Medical Foundation, Pune, Maharashtra, India
| | - Atul P Kulkarni
- Division of Critical Care Medicine, Department of Anesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care, Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Deepak Govil
- Institute of Critical Care and Anesthesia, Medanta: The Medicty, Gurugram, Haryana, India
| | - Yatin Mehta
- Department of Critical Care and Anesthesiology, Medanta: The Medicity, Gurugram, Haryana, India
| | - Sameer A Jog
- Department of Critical Care and Emergency Medicine, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India
| | - Khalid I Khatib
- Department of Medicine, SKN Medical College, Pune, Maharashtra, India
| | - Rahul A Pandit
- Intensive Care Unit, Fortis Hospital, Mumbai, Maharashtra, India
| | - Srinivas Samavedam
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| | | | - Susruta Bandopadhyay
- Department of Critical Care, AMRI Hospital, Salt Lake, Kolkata, West Bengal, India
| | | | - Ujwala Mhatre
- Department of Critical Care, Nanavati Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
68
|
K. Konstantinidou S, P. Papanastasiou I. Repurposing current therapeutic regimens against SARS-CoV-2 (Review). Exp Ther Med 2020; 20:1845-1855. [PMID: 32782493 PMCID: PMC7401312 DOI: 10.3892/etm.2020.8905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
The recent coronavirus outbreak has spread worldwide, with the exception of Antarctica, causing serious social and economic disruption. All disciplines of the science community are driven to confront the impact of the COVID-19 pandemic, as currently, there is neither prophylactic nor therapeutic treatments available. Due to the urgency of the situation, various research strategies are ongoing, in order to evaluate the therapeutic efficacy of repurposed and experimental drugs. The present review presents the most promising repurposed regimens, which may be used for the treatment of COVID-19. The drugs/bioactive substances presented herein belong to diverse therapeutic classes, including antimalarial, cardioprotective, angiotensin-converting enzyme 2 inhibitors, antiviral, anti-inflammatory and antiparasitic drugs. Therapeutic perspectives of vaccination and passive immunization are also reviewed.
Collapse
Affiliation(s)
- Sofia K. Konstantinidou
- Oncology Unit, The Third Department of Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis P. Papanastasiou
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
69
|
Monari C, Gentile V, Camaioni C, Marino G, Coppola N, Vanvitelli COVID-19 group. A Focus on the Nowadays Potential Antiviral Strategies in Early Phase of Coronavirus Disease 2019 (Covid-19): A Narrative Review. Life (Basel) 2020; 10:E146. [PMID: 32784922 PMCID: PMC7459784 DOI: 10.3390/life10080146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Background: The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the related disease (COVID-19) has rapidly spread to a pandemic proportion, increasing the demands on health systems for the containment and management of COVID-19. Nowadays, one of the critical issues still to be pointed out regards COVID-19 treatment regimens and timing: which drug, in which phase, for how long? Methods: Our narrative review, developed using MEDLINE and EMBASE, summarizes the main evidences in favor or against the current proposed treatment regimens for COVID-19, with a particular focus on antiviral agents. Results: Although many agents have been proposed as possible treatment, to date, any of the potential drugs against SARS-CoV-2 has shown to be safe and effective for treating COVID-19. Despite the lack of definitive evidence, remdesivir remains the only antiviral with encouraging effects in hospitalized patients with COVID-19. Conclusions: In such a complex moment of global health emergency, it is hard to demand scientific evidence. Nevertheless, randomized clinical trials aiming to identify effective and safe drugs against SARS-CoV-2 infection are urgently needed in order to confirm or reject the currently available evidence.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Coppola
- Department of Mental Health and Public Medicine—Infectious Diseases Unit, University of Campania Luigi Vanvitelli, 81100 Naples, Italy; (C.M.); (V.G.); (C.C.); (G.M.)
| | | |
Collapse
|
70
|
Mahmoud DB, Shitu Z, Mostafa A. Drug repurposing of nitazoxanide: can it be an effective therapy for COVID-19? J Genet Eng Biotechnol 2020; 18:35. [PMID: 32725286 PMCID: PMC7385476 DOI: 10.1186/s43141-020-00055-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Background The current outbreak of pandemic coronavirus disease 2019 (COVID-19) aggravates serious need for effective therapeutics. Over recent years, drug repurposing has been accomplished as an important opportunity in drug development as it shortens the time consumed for development, besides sparing the cost and the efforts exerted in the research and development process. Main body of the abstract The FDA-approved antiparasitic drug, nitazoxanide (NTZ), has been found to have antiviral activity against different viral infections such as coronaviruses, influenza, hepatitis C virus (HCV), hepatitis B virus (HBV), and other viruses signifying its potential as a broad spectrum antiviral drug. Moreover, it has been recently reported that NTZ exhibited in vitro inhibition of SARS-CoV-2 at a small micromolar concentration. Additionally, NTZ suppresses the production of cytokines emphasizing its potential to manage COVID-19-induced cytokine storm. Furthermore, the reported efficacy of NTZ to bronchodilate the extremely contracted airways can be beneficial in alleviating COVID-19-associated symptoms. Short conclusion All these findings, along with the high safety record of the drug, have gained our interest to urge conductance of clinical trials to assess the potential benefits of using it in COVID-19 patients. Thus, in this summarized article, we review the antiviral activities of NTZ and highlight its promising therapeutic actions that make the drug worth clinical trials.
Collapse
Affiliation(s)
- Dina B Mahmoud
- Pharmaceutics Department, National Organization for Drug Control and Research, Giza, Egypt.
| | - Zayyanu Shitu
- Hospital Services, Management Board, Ministry of Health, Zamfara State, Gusau, Nigeria
| | - Ahmed Mostafa
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Cairo, Egypt
| |
Collapse
|
71
|
Trindade GG, Caxito SMC, Xavier AREO, Xavier MAS, BrandÃo F. COVID-19: therapeutic approaches description and discussion. AN ACAD BRAS CIENC 2020; 92:e20200466. [PMID: 32556054 DOI: 10.1590/0001-3765202020200466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
COVID-19 emerged in December 2019 in China, and since then, has disrupted global public health and changed economic paradigms. In dealing with the new Coronavirus, SARS-CoV-2, the world has not faced such extreme global fragility since the "Spanish flu" pandemic in 1918. Researchers globally are dedicating efforts to the search for an effective treatment for COVID-19. Drugs already used in a clinical setting for other pathologies have been tested as a new therapeutic approach against SARS-CoV-2, setting off a frenzy over the preliminary data of different studies. This work aims to compile and discuss the data published thus far. Despite the potential effects of some antivirals and antiparasitic against COVID-19, clinical studies must confirm real effectiveness. However, non-pharmacological approaches have proven to be the most efficient strategy to date.
Collapse
Affiliation(s)
- Guilherme G Trindade
- University of Brasília, Laboratory of Clinical Microbiology and Immunology, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Samyra M C Caxito
- AMIL/United Health Group (UHG), 6580, SMAS Trecho 1, Guará, 70211-970 Brasília, DF, Brazil.,Institute of Management and Health of the Federal District (IGES-DF), Department of Nursing, Quadra 400-600, s/n, Área Especial, Recanto das Emas, 72630-250 Brasília, DF, Brazil
| | - Alessandra Rejane E O Xavier
- State University of Montes Claros, Center of Biological and Health Sciences, Microbiology Laboratory, Av. Prof. Rui Braga, 39401-089 Montes Claros, MG, Brazil
| | - Mauro A S Xavier
- State University of Montes Claros, Center of Biological and Health Sciences, Microbiology Laboratory, Av. Prof. Rui Braga, 39401-089 Montes Claros, MG, Brazil
| | - Fabiana BrandÃo
- University of Brasília, Department of Pharmacy, Laboratory of Clinical Microbiology and Immunology. Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil.,University of Brasília, Nucleus of Tropical Medicine, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
72
|
Falavigna M, Colpani V, Stein C, Azevedo LCP, Bagattini AM, de Brito GV, Chatkin JM, Cimerman S, Corradi MDFDB, da Cunha CA, de Medeiros FC, de Oliveira Junior HA, Fritscher LG, Gazzana MB, Gräf DD, Marra LP, Matuoka JY, Nunes MS, Pachito DV, Pagano CGM, Parreira PDCS, Riera R, Silva Júnior A, Tavares BDM, Zavascki AP, Rosa RG, Dal-Pizzol F. Guidelines for the pharmacological treatment of COVID-19. The task-force/consensus guideline of the Brazilian Association of Intensive Care Medicine, the Brazilian Society of Infectious Diseases and the Brazilian Society of Pulmonology and Tisiology. Rev Bras Ter Intensiva 2020; 32:166-196. [PMID: 32667444 PMCID: PMC7405746 DOI: 10.5935/0103-507x.20200039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Different therapies are currently used, considered, or proposed for the treatment of COVID-19; for many of those therapies, no appropriate assessment of effectiveness and safety was performed. This document aims to provide scientifically available evidence-based information in a transparent interpretation, to subsidize decisions related to the pharmacological therapy of COVID-19 in Brazil. METHODS A group of 27 experts and methodologists integrated a task-force formed by professionals from the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB), the Brazilian Society of Infectious Diseases (Sociedad Brasileira de Infectologia - SBI) and the Brazilian Society of Pulmonology and Tisiology (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT). Rapid systematic reviews, updated on April 28, 2020, were conducted. The assessment of the quality of evidence and the development of recommendations followed the GRADE system. The recommendations were written on May 5, 8, and 13, 2020. RESULTS Eleven recommendations were issued based on low or very-low level evidence. We do not recommend the routine use of hydroxychloroquine, chloroquine, azithromycin, lopinavir/ritonavir, corticosteroids, or tocilizumab for the treatment of COVID-19. Prophylactic heparin should be used in hospitalized patients, however, no anticoagulation should be provided for patients without a specific clinical indication. Antibiotics and oseltamivir should only be considered for patients with suspected bacterial or influenza coinfection, respectively. CONCLUSION So far no pharmacological intervention was proven effective and safe to warrant its use in the routine treatment of COVID-19 patients; therefore such patients should ideally be treated in the context of clinical trials. The recommendations herein provided will be revised continuously aiming to capture newly generated evidence.
Collapse
Affiliation(s)
- Maicon Falavigna
- Hospital Moinhos de Vento - Porto Alegre (RS), Brasil
- Instituto para Avaliação de Tecnologia em Saúde, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brasil
- Department of Health Research Methods, Evidence, and Impact, McMaster University - Hamilton, Canadá
| | - Verônica Colpani
- Hospital Moinhos de Vento - Porto Alegre (RS), Brasil
- Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brasil
| | - Cinara Stein
- Hospital Moinhos de Vento - Porto Alegre (RS), Brasil
| | - Luciano Cesar Pontes Azevedo
- Hospital Sírio-Libanês - São Paulo (SP), Brasil
- Disciplina de Emergências Clínicas, Universidade de São Paulo - São Paulo (SP), Brasil
| | - Angela Maria Bagattini
- Hospital Sírio-Libanês - São Paulo (SP), Brasil
- Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás - Goiânia (GO), Brasil
| | | | - José Miguel Chatkin
- Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre (RS), Brasil
- Sociedade Brasileira de Pneumologia e Tisiologia - Brasília (DF), Brasil
| | - Sergio Cimerman
- Instituto de Infectologia Emílio Ribas - São Paulo (SP), Brasil
- Sociedade Brasileira de Infectologia - São Paulo (SP), Brasil
| | | | - Clovis Arns da Cunha
- Sociedade Brasileira de Infectologia - São Paulo (SP), Brasil
- Universidade Federal do Paraná - Curitiba (PR), Brasil
| | | | | | - Leandro Genehr Fritscher
- Hospital Moinhos de Vento - Porto Alegre (RS), Brasil
- Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre (RS), Brasil
| | - Marcelo Basso Gazzana
- Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brasil
- Serviço de Pneumologia e Cirurgia Torácica, Hospital Moinhos de Vento - Porto Alegre (RS), Brasil
| | | | - Lays Pires Marra
- Centro Internacional de Pesquisa, Hospital Alemão Oswaldo Cruz - São Paulo (SP), Brasil
| | - Jessica Yumi Matuoka
- Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre (RS), Brasil
| | | | - Daniela Vianna Pachito
- Hospital Sírio-Libanês - São Paulo (SP), Brasil
- Fundação Getúlio Vargas - São Paulo (SP), Brasil
| | | | | | - Rachel Riera
- Hospital Sírio-Libanês - São Paulo (SP), Brasil
- Escola Paulista de Medicina, Universidade Federal de São Paulo - São Paulo (SP), Brasil
| | | | | | - Alexandre Prehn Zavascki
- Serviço de Infectologia e Controle de Infecção, Hospital Moinhos de Vento - Porto Alegre (RS), Brasil
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brasil
| | | | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brasil
- Serviço de Medicina Intensiva, Hospital São José - Criciúma (SC), Brasil
| |
Collapse
|
73
|
Biţă A, Scorei IR, Mogoantă L, Bejenaru C, Mogoşanu GD, Bejenaru LE. Natural and semisynthetic candidate molecules for COVID-19 prophylaxis and treatment. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:321-334. [PMID: 33544784 PMCID: PMC7864303 DOI: 10.47162/rjme.61.2.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Coronaviruses (CoVs) represent a family of viruses that have numerous animal hosts, and they cause severe respiratory, as well as systemic and enteric infections, in humans. Currently, there are limited antiviral strategies for treating patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The lack of specific antiviral medicines and SARS-CoV-2 vaccines continues to aggravate the situation. Natural product-based antiviral drugs have been used in the two previous CoV outbreaks: Middle East respiratory syndrome coronavirus (MERS-CoV) and the first SARS-CoV. This review emphasizes the role of natural and semisynthetic candidate molecules for coronavirus disease 2019 (COVID-19) prophylaxis and treatment. The experimental evidence suggests that nature could offer huge possibilities for treatment of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Andrei Biţă
- BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania;
| | | | | | | | | | | |
Collapse
|