51
|
Akiguchi I, Pallàs M, Budka H, Akiyama H, Ueno M, Han J, Yagi H, Nishikawa T, Chiba Y, Sugiyama H, Takahashi R, Unno K, Higuchi K, Hosokawa M. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions. Neuropathology 2017; 37:293-305. [PMID: 28261874 DOI: 10.1111/neup.12373] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Senescence accelerated mice P8 (SAMP8) show significant age-related deteriorations in memory and learning ability in accordance with early onset and rapid advancement of senescence. Brains of SAMP8 mice reveal an age-associated increase of PAS-positive granular structures in the hippocampal formation and astrogliosis in the brain stem and hippocampus. A spongy degeneration in the brain stem appears at 1 month of age and reaches a maximum at 4-8 months. In addition, clusters of activated microglia also appear around the vacuoles in the brain stem. β/A4(Aβ) protein-like immunoreactive granular structures are observed in various regions and increase in number markedly with age. Other age-associated histological changes include cortical atrophy, neuronal cell loss in locus coeruleus and lateral tegmental nuclei, intraneuronal accumulation of lipopigments in Purkinje cells and eosinophilic inclusion bodies in thalamic neurons. A blood-brain barrier dysfunction and astrogliosis are also prominent with advancing age in the hippocampus. These changes are generally similar to the pathomorphology of aging human brains and characterized by their association with some specific glioneuronal reactions. As for the hallmarks of Alzheimer brains, tau morphology has not yet been confirmed regardless of the age-related increase in phosphorylated tau in SAMP8 mice brains, but early age-related Aβ deposition in the hippocampus has recently been published. SAMP8 mice are, therefore, not only a senescence-accelerated model but also a promising model for Alzheimer's disease and other cognitive disorders.
Collapse
Affiliation(s)
- Ichiro Akiguchi
- Center of Neurological and Cerebrovascular Diseases, Koseikai Takeda Hospital, Kyoto, Japan.,Department of Health Science, Kyoto Koka Women's University, Kyoto, Japan
| | - Mercè Pallàs
- Pharmacology Section and Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Herbert Budka
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Haruhiko Akiyama
- Department of Clinical Research, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defence, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Jingxian Han
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hideo Yagi
- Center of Neurological and Cerebrovascular Diseases, Koseikai Takeda Hospital, Kyoto, Japan
| | - Tomohumi Nishikawa
- Department of Health Science, Kyoto Koka Women's University, Kyoto, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defence, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | | | - Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Keiko Unno
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Masanori Hosokawa
- Institute for Developmental Research, Aichi Human Service Center, Nagoya, Japan
| |
Collapse
|
52
|
Morales-Gómez JA, Garza-Oyervides VV, Arenas-Ruiz JA, Mercado-Flores M, Elizondo-Riojas CG, Boop FA, de León ÁMP. Hydrocephalus in a patient with an unruptured pial arteriovenous fistula: hydrodynamic considerations, endovascular treatment, and clinical course. J Neurosurg Pediatr 2017; 19:307-311. [PMID: 28059677 DOI: 10.3171/2016.9.peds16458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intracranial pial arteriovenous fistulas, also known as nongalenic fistulas, are rare vascular malformations affecting predominantly the pediatric population. Hydrocephalus is an unusual presentation in which the exact pathophysiology is not fully understood. The aim of treatment in these cases is occlusion of the fistula prior to considering ventricular shunting. Here, the authors describe the hydrodynamic considerations of the paravascular pathway and the resolution of hydrocephalus with endovascular treatment of the fistula.
Collapse
Affiliation(s)
| | | | | | - Mariana Mercado-Flores
- Centro Universitario de Imagen Diagnóstica, Hospital Universitario "Dr. José Eleuterio González," Monterrey, Nuevo León, México; and
| | - C Guillermo Elizondo-Riojas
- Centro Universitario de Imagen Diagnóstica, Hospital Universitario "Dr. José Eleuterio González," Monterrey, Nuevo León, México; and
| | - Frederick A Boop
- Department of Neurosurgery, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | | |
Collapse
|
53
|
Nikić I, Radoš M, Frobe A, Vukić M, Orešković D, Klarica M. The effects of lumboperitoneal and ventriculoperitoneal shunts on the cranial and spinal cerebrospinal fluid volume in a patient with idiopathic intracranial hypertension. Croat Med J 2017; 57:293-7. [PMID: 27374831 PMCID: PMC4937228 DOI: 10.3325/cmj.2016.57.293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lumboperitoneal (LP) and ventriculoperitoneal (VP) shunts are a frequent treatment modality for idiopathic intracranial hypertension (IIH). Although these shunts have been used for a long time, it is still not clear how they change the total craniospinal CSF volume and what portions of cranial and spinal CSF are affected. This report for the first time presents the results of a volumetric analysis of the total cranial and spinal CSF space in a patient with IIH. We performed an automated segmentation of the cranial and a manual segmentation of the spinal CSF space first with an LP shunt installed and again after the LP shunt was replaced by a VP shunt. When the LP shunt was in place, the total CSF volume was smaller than when the VP shunt was in place (222.4 cm(3) vs 279.2 cm(3)). The difference was almost completely the result of the spinal CSF volume reduction (49.3 cm(3) and 104.9 cm(3) for LP and VP, respectively), while the cranial CSF volume was not considerably altered (173.2 cm(3) and 174.2 cm(3) for LP and VP, respectively). This report indicates that LP and VP shunts in IIH do not considerably change the cranial CSF volume, while the reduction of CSF volume after LP shunt placement affects almost exclusively the spinal part of the CSF system. Our results suggest that an analysis of both the cranial and the spinal part of the CSF space is necessary for therapeutic procedures planning and for an early recognition of numerous side effects that often arise after shunts placement in IIH patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Marijan Klarica
- Marijan Klarica, School of Medicine University of Zagreb, Department of Pharmacology and Croatian Institute for Brain Research, Šalata 11, 10 000 Zagreb, Croatia,
| |
Collapse
|
54
|
Feng Z, Tan Q, Tang J, Li L, Tao Y, Chen Y, Yang Y, Luo C, Feng H, Zhu G, Chen Q, Chen Z. Intraventricular administration of urokinase as a novel therapeutic approach for communicating hydrocephalus. Transl Res 2017; 180:77-90.e2. [PMID: 27614013 DOI: 10.1016/j.trsl.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/18/2016] [Accepted: 08/13/2016] [Indexed: 01/10/2023]
Abstract
Fibrosis of the subarachnoid space (SAS) after infection, inflammation, or hemorrhage can impair cerebrospinal fluid absorption and circulation, causing diffuse ventricular dilatation. In the present study, we tested the hypothesis that urokinase (also known as urokinase-type plasminogen activator [uPA]), a fibrinolytic agent, attenuates fibrosis and ventriculomegaly in a rat model of kaolin-induced communicating hydrocephalus and thus may have potential as a therapy for these conditions. Thirty microliters of sterile 25% kaolin suspension was injected into the basal cisterns of adult Sprague-Dawley rats to induce hydrocephalus, and 2 intraventricular injections of either uPA or vehicle (saline) were administered immediately and 3 days thereafter. Ventricular volumes were measured by magnetic resonance imaging (MRI) on days 3, 14, and 28 after kaolin injection. Fibrosis and reactive astrogliosis were evaluated on day 28 by immunofluorescence and Western blotting. Neurocognitive features were tested using the Morris water maze from days 23 to 28. MRI analysis demonstrated that kaolin administration successfully induced hydrocephalus in rats and that uPA treatment significantly attenuated ventricular enlargement. In addition, uPA inhibited the deposition of laminin and fibronectin, extracellular matrix molecules, in the SAS, attenuated gliosis, and improved learning and memory in kaolin-treated rats. Therefore, we concluded that uPA prevents the development of kaolin-induced communicating hydrocephalus by preventing the development of subarachnoid fibrosis and by eliciting improvements in neurocognition. The results of this study indicate that uPA may be a novel clinical therapy for communicating hydrocephalus.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Lin Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yunfeng Yang
- Department of Neurosurgery, Sichuan Provincial Corps Hospital, Chinese People's Armed Police Forces, Leshan, People's Republic of China
| | - Chunxia Luo
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
55
|
Chen Q, Feng Z, Tan Q, Guo J, Tang J, Tan L, Feng H, Chen Z. Post-hemorrhagic hydrocephalus: Recent advances and new therapeutic insights. J Neurol Sci 2017; 375:220-230. [PMID: 28320134 DOI: 10.1016/j.jns.2017.01.072] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Post-hemorrhagic hydrocephalus (PHH), also referred to as progressive ventricular dilatation, is caused by disturbances in cerebrospinal fluid (CSF) flow or absorption following hemorrhage in the brain. As one of the most serious complications of neonatal/adult intraventricular hemorrhage (IVH), subarachnoid hemorrhage (SAH), and traumatic brain injury (TBI), PHH is associated with increased morbidity and disability of these events. Common sequelae of PHH include neurocognitive impairment, motor dysfunction, and growth impairment. Non-surgical measures to reduce increased intracranial pressure (ICP) in PHH have shown little success and most patients will ultimately require surgical management, such as external ventricular drainage and shunting which mostly by inserting a CSF drainage shunt. Unfortunately, shunt complications are common and the optimum time for intervention is unclear. To date, there remains no comprehensive strategy for PHH management and it becomes imperative that to explore new therapeutic targets and methods for PHH. Over past decades, increasing evidence have indicated that hemorrhage-derived blood and subsequent metabolic products may play a key role in the development of IVH-, SAH- and TBI-associated PHH. Several intervention strategies have recently been evaluated and cross-referenced. In this review, we summarized and discussed the common aspects of hydrocephalus following IVH, SAH and TBI, relevant experimental animal models, clinical translation of in vivo experiments, and potential preventive and therapeutic targets for PHH.
Collapse
Affiliation(s)
- Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jing Guo
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Department of Neurosurgery, The 211st Hospital of PLA, Harbin 150086, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
56
|
Hou K, Zhu X, Sun Y, Gao X, Zhao J, Zhang Y, Li G. Transient Acute Hydrocephalus After Spontaneous Intracranial Bleeding in Adults. World Neurosurg 2016; 100:38-43. [PMID: 28049036 DOI: 10.1016/j.wneu.2016.12.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Acute hydrocephalus (AH) is commonly encountered after spontaneous or traumatic intracranial bleeding in adults. In the setting of AH, external ventricular drainage is usually proposed as the urgent management. But in rare occasions, AH could be transient and resolve spontaneously without invasive management. Although its actual incidence might be higher, only a few case reports on transient AH (TAH) after spontaneous intracranial bleeding in adults have been reported. METHODS A retrospective review of the medical records of the patients admitted for spontaneous intracranial bleeding was performed at the neurosurgical department of our institution. We also performed a systematic PubMed search of the published studies written in English for patients developing TAH after spontaneous intracranial bleeding. RESULTS In all there were 10 patients (5 women) including 5 cases in our case series. The time interval from hemorrhagic ictus to AH ranged from 7 hours to 9 days; although the time interval from AH to evident resolution ranged from 50 minutes to 9 days. No patient experienced recurrence of AH or shunt-dependent hydrocephalus in the long term. CONCLUSIONS The osmotic and hydrostatic state in the microvessels, lymphatic pathways for the drainage of the interstitial fluid and cerebrospinal fluid, and aquaporins on the astrocytes of the patients might have important roles in the genesis and resolution of TAH. The difficulty at present is to differentiate the patients who would experience TAH from those needing surgical interventions. If surgical intervention could not be carried out temporarily, vigilant monitoring and osmotic diuretics are proposed.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiaobo Zhu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yang Sun
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xianfeng Gao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinchuan Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
57
|
Klarica M, Jukić T, Miše B, Kudelić N, Radoš M, Orešković D. Experimental Spinal Stenosis in Cats: New Insight in Mechanisms of Hydrocephalus Development. Brain Pathol 2016; 26:701-712. [PMID: 26549012 PMCID: PMC8029224 DOI: 10.1111/bpa.12337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022] Open
Abstract
In our new experimental model of cervical stenosis without inflammation we have tested hypothesis that cranio-spinal communication impairment could lead to hydrocephalus development. Spinal and cranial cerebrospinal fluid (CSF) space separation was obtained with positioning of plastic semiring in epidural space at C2 level in cats. Brain ventricles planimetry, and CSF pressure recording in lateral ventricle (LV) and lumbar subarachnoid space (LSS) were performed in acute and subchronic experiments. In all experiments opening CSF pressures were normal. However, in acute experiments, an infusion of artificial CSF into the LV led to increase of CSF pressure and significant gradient pressure development between LV and LSS due to limited pressure transmission. After 3 or 6 weeks spinal cord atrophy was observed at the site of cervical stenosis, and pressure transmission from LV to LSS was improved as a consequence of spinal tissue atrophy. Planimetry of both the coronal brain slices and the ventricles' surface showed that control ventricular surface was 0.6 ± 0.1% (n = 5), and 1.6 ± 0.2% (n = 4) in animals with subchronic cervical stenosis (P < 0.002). These results support the mentioned hypothesis claiming that CSF volume cranio-spinal displacement impairment could start pathophysiological processes leading to development of hydrocephalus.
Collapse
Affiliation(s)
- Marijan Klarica
- Department of Pharmacology and Croatian Institute for Brain ResearchSchool of Medicine University of ZagrebZagrebCroatia
| | - Tomislav Jukić
- Department of OphthalmologyClinical Hospital Center Zagreb, School of Medicine, University of Zagreb
| | - Branko Miše
- University of Zagreb, School of Medicine, University Hospital for Infectious Diseases
| | - Nenad Kudelić
- Department of Pharmacology and Croatian Institute for Brain ResearchSchool of Medicine University of ZagrebZagrebCroatia
| | - Milan Radoš
- Croatian Institute for Brain Research, School of Medicine University of Zagreb
| | | |
Collapse
|
58
|
Hao X, Junwen W, Jiaqing L, Ran L, Zhuo Z, Yimin H, Wei J, Wei S, Ting L. High fibrosis indices in cerebrospinal fluid of patients with shunt-dependent post-traumatic chronic hydrocephalus. Transl Neurosci 2016; 7:92-97. [PMID: 28123828 PMCID: PMC5234510 DOI: 10.1515/tnsci-2016-0015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 01/10/2023] Open
Abstract
Objective A possible relationship between fibrosis along the route of cerebrospinal fluid (CSF) flow and the subsequent development of hydrocephalus has been indicated in previous studies. These changes in the fibrosis index may reflect the severity of hydrocephalus and could potentially become a diagnostic tool. The object of this study was to analyze the levels of procollagen type I C-terminal propeptide (PICP), procollagen type III N-terminal propeptide (PIIINP), hyaluronic acid (HA), and laminin (LN) in the CSF of patients with post-traumatic hydrocephalus and determine the significance of their presence. Subjects and methods Forty-four patients were included in the study: 24 patients with shunt-dependent post-traumatic hydrocephalus (group A - hydrocephalus group); ten brain trauma patients without any sign of hydrocephalus (group B - trauma group); ten patients without brain trauma and hydrocephalus (group C - normal control group). CSF levels of PICP, PIIINP, HA, LN and transforming growth factor-β1(TGF-β1) were detected using enzyme-linked immunosorbent assay (ELISA). Results Levels of PICP, PIIINP, HA, and LN in the group of hydrocephalus patients were significantly higher than those in the post-trauma patients without hydrocephalus (p < 0.05) and normal control patients (p < 0.05). Moreover, the increased levels of PICP, PIIINP, HA, and LN were positively correlated with the level of TGF-β1 (p < 0.05). Conclusion We demonstrated an increase of fibrosis factors including PICP, PIIINP, HA, and LN, that was positively correlated with TGF-β1 levels. This indicates an important role for the process of fibrosis in the development of post-traumatic chronic hydrocephalus and shows the potential utility of PICP, PIIINP, HA, and LN as a diagnostic index in shunt-dependent post-traumatic chronic hydrocephalus.
Collapse
Affiliation(s)
- Xu Hao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Department of Neurosurgery, Anhui Provincial Hospital, Hefei, P. R. China
| | - Wang Junwen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Li Jiaqing
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Li Ran
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhang Zhuo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Huang Yimin
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jiao Wei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Sun Wei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Lei Ting
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
59
|
Liao F, Li G, Yuan W, Chen Y, Zuo Y, Rashid K, Zhang JH, Feng H, Liu F. LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF-β1 signaling activity following subarachnoid hemorrhage in rats. Exp Ther Med 2016; 12:2537-2543. [PMID: 27698755 PMCID: PMC5038515 DOI: 10.3892/etm.2016.3640] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/19/2022] Open
Abstract
Hydrocephalus has been demonstrated to be an independent risk factor for poor outcomes in patients with subarachnoid hemorrhage (SAH). Blockage of cerebrospinal fluid (CSF) flow and drainage is widely considered to play a vital role in communicating hydrocephalus, possibly due to subarachnoid fibrosis. A previous study indicated that transforming growth factor-β1 (TGF-β1), a key fibrogenic factor, is significantly increased in the CSF following SAH, implying a pivotal role in the development of chronic hydrocephalus. To investigate whether LSKL peptide, a small molecular peptide and competitive antagonist for TGF-β1, protects against subarachnoid fibrosis and hydrocephalus after SAH, a two-hemorrhage injection model of SAH was created in Sprague-Dawley rats. LSKL (1 mg/kg) was administered intraperitoneally immediately following the first intravenous injection of blood in the SAH model, with repeated injections of LSKL every 12 h until sacrifice. Thrombospondin-1 (TSP1), TGF-β1, p-Smad2/3, collagen I and pro-collagen I c-terminal propeptide levels were assessed via western blotting and ELISA. Lateral ventricular index, Masson staining and Morris water maze tests were employed to evaluate subarachnoid fibrosis, hydrocephalus and long-term neurological function following SAH. It was found that the LKSL peptide readily crossed the blood brain barrier, was protective against subarachnoid fibrosis, attenuated ventriculomegaly and effectively suppressed hydrocephalus. In addition, the results indicated that the protective effects of the LSKL peptide were achieved via the inhibition of TGF-β1 activity and subsequent Smad2/3 signaling. Importantly, the LSKL peptide may improve long-term neurocognitive deficits after SAH. In conclusion, the LSKL peptide suppresses subarachnoid fibrosis via inhibition of TSP1-mediated TGF-β1 activity, prevents the development of chronic hydrocephalus and improves long-term neurocognitive defects following SAH.
Collapse
Affiliation(s)
- Fan Liao
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Gaofeng Li
- Department of Oncology, Zhuzhou Central Hospital, Zhuzhou, Hunan 412007, P.R. China
| | - Wen Yuan
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412007, P.R. China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuchun Zuo
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Kauthar Rashid
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
60
|
Xu H. New concept of the pathogenesis and therapeutic orientation of acquired communicating hydrocephalus. Neurol Sci 2016; 37:1387-91. [DOI: 10.1007/s10072-016-2589-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/19/2016] [Indexed: 12/12/2022]
|
61
|
Endoscopic third ventriculostomy in the treatment of idiopathic normal pressure hydrocephalus: a review study. Neurosurg Rev 2015; 39:557-63. [DOI: 10.1007/s10143-015-0685-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 10/22/2022]
|
62
|
The Role of the Craniocervical Junction in Craniospinal Hydrodynamics and Neurodegenerative Conditions. Neurol Res Int 2015; 2015:794829. [PMID: 26770824 PMCID: PMC4681798 DOI: 10.1155/2015/794829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/07/2015] [Accepted: 09/17/2015] [Indexed: 02/07/2023] Open
Abstract
The craniocervical junction (CCJ) is a potential choke point for craniospinal hydrodynamics and may play a causative or contributory role in the pathogenesis and progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, MS, and ALS, as well as many other neurological conditions including hydrocephalus, idiopathic intracranial hypertension, migraines, seizures, silent-strokes, affective disorders, schizophrenia, and psychosis. The purpose of this paper is to provide an overview of the critical role of the CCJ in craniospinal hydrodynamics and to stimulate further research that may lead to new approaches for the prevention and treatment of the above neurodegenerative and neurological conditions.
Collapse
|
63
|
Yan H, Chen Y, Li L, Jiang J, Wu G, Zuo Y, Zhang JH, Feng H, Yan X, Liu F. Decorin alleviated chronic hydrocephalus via inhibiting TGF-β1/Smad/CTGF pathway after subarachnoid hemorrhage in rats. Brain Res 2015; 1630:241-53. [PMID: 26556770 DOI: 10.1016/j.brainres.2015.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/08/2015] [Accepted: 11/02/2015] [Indexed: 01/01/2023]
Abstract
Chronic hydrocephalus is one of the severe complications after subarachnoid hemorrhage (SAH). However, there is no efficient treatment for the prevention of chronic hydrocephalus, partially due to poor understanding of underlying pathogenesis, subarachnoid fibrosis. Transforming growth factor-β1(TGF-β1) is a potent fibrogenic factor implicated in wide range of fibrotic diseases. To investigate whether decorin, a natural antagonist for TGF-β1, protects against subarachnoid fibrosis and chronic hydrocephalus after SAH, two-hemorrhage-injection SAH model was conducted in 6-week-old rats. Recombinant human decorin(rhDecorin) (30ug/2ul) was administered before blood injection and on the 10th day after SAH. TGF-β1, p-Smad2/3, connective tissue growth factor (CTGF), collagen I and pro-collagen I c-terminal propeptide were assessed via western blotting, enzyme-linked immunosorbent assay, radioimmunoassay and immunofluorescence. And neurobehavioral tests and Morris water maze were employed to evaluate long-term neurological functions after SAH. We found that SAH induced heightened activation of TGF-β1/Smad/CTGF axis, presenting as a two peak response of TGF-β1 in cerebrospinal fluid, elevation of TGF-β1, p-Smad2/3, CTGF, collagen I in brain parenchyma and pro-collagen I c-terminal propeptide in cerebrospinal fluid, and increased lateral ventricle index. rhDecorin treatment effectively inhibited up-regulation of TGF-β1, p-Smad2/3, CTGF, collagen I and pro-collagen I c-terminal propeptide after SAH. Moreover, rhDecorin treatment significantly reduced lateral ventricular index and incidence of chronic hydrocephalus after SAH. Importantly, rhDecorin improved neurocognitive deficits after SAH. In conclusion, rhDecorin suppresses extracellular matrix accumulation and following subarachnoid fibrosis via inhibiting TGF-β1/Smad/CTGF pathway, preventing development of hydrocephalus and attenuating long-term neurocognitive defects after SAH.
Collapse
Affiliation(s)
- Hui Yan
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lingyong Li
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaode Jiang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangyong Wu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuchun Zuo
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
64
|
Orešković D. The controversy on choroid plexus function in cerebrospinal fluid production in humans: how long different views could be neglected? Croat Med J 2015; 56:306-10. [PMID: 26088856 PMCID: PMC4500964 DOI: 10.3325/cmj.2015.56.306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Darko Orešković
- Darko Orešković, Ruđer Bošković Institute, Department of Molecular Biology, Zagreb, Croatia,
| |
Collapse
|
65
|
Kim H, Jeong EJ, Park DH, Czosnyka Z, Yoon BC, Kim K, Czosnyka M, Kim DJ. Finite element analysis of periventricular lucency in hydrocephalus: extravasation or transependymal CSF absorption? J Neurosurg 2015; 124:334-41. [PMID: 26274984 DOI: 10.3171/2014.11.jns141382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Periventricular lucency (PVL) is often observed in the hydrocephalic brain on CT or MRI. Earlier studies have proposed the extravasation of ventricular CSF into the periventricular white matter or transependymal CSF absorption as possible causes of PVL in hydrocephalus. However, there is insufficient evidence for either theory to be conclusive. METHODS A finite element (FE) model of the hydrocephalic brain with detailed anatomical geometry was constructed to investigate the possible mechanism of PVL in hydrocephalus. The initiation of hydrocephalus was modeled by applying a transmantle pressure gradient (TPG). The model was exposed to varying TPGs to investigate the effects of different geometrical characteristics on the distribution of PVL. The edema map was derived based on the interstitial pore pressure. RESULTS The model simulated the main radiological features of hydrocephalus, i.e., ventriculomegaly and PVL. The degree of PVL, assessed by the pore pressure, was prominent in mild to moderate ventriculomegaly. As the degree of ventriculomegaly exceeded certain values, the pore pressure across the cerebrum became positive, thus inducing the disappearance of PVL. CONCLUSIONS The results are in accordance with common clinical findings of PVL. The degree of ventriculomegaly significantly influences the development of PVL, but two factors were not linearly correlated. The results are indicative of the transependymal CSF absorption as a possible cause of PVL, but the extravasation theory cannot be formally rejected.
Collapse
Affiliation(s)
- Hakseung Kim
- Departments of 1 Brain and Cognitive Engineering, and
| | - Eun-Jin Jeong
- Biomedical Engineering, Korea University, Seoul, South Korea
| | | | - Zofia Czosnyka
- Department of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Byung C Yoon
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California
| | - Keewon Kim
- Department of Rehabilitation, Seoul National University Hospital, College of Medicine, Seoul, South Korea; and
| | - Marek Czosnyka
- Department of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Dong-Joo Kim
- Departments of 1 Brain and Cognitive Engineering, and
| |
Collapse
|
66
|
Mehrabian A, Abousleiman YN, Mapstone TB, El-Amm CA. Dual-porosity poroviscoelasticity and quantitative hydromechanical characterization of the brain tissue with experimental hydrocephalus data. J Theor Biol 2015; 384:19-32. [PMID: 26277735 DOI: 10.1016/j.jtbi.2015.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022]
Abstract
Hydromechanical brain models often involve constitutive relations which must account for soft tissue deformation and creep, together with the interstitial fluid movement and exchange through capillaries. The interaction of rather unknown mechanisms which produce, absorb, and circulate the cerebrospinal fluid within the central nervous system can further add to their complexity. Once proper models for these phenomena or processes are selected, estimation of the associated parameters could be even more challenging. This paper presents the results of a consistent, coupled poroviscoelastic modeling and characterization of the brain tissue as a dual-porosity system. The model draws from Biot's theory of poroviscoelasticity, and adopts the generalized Kelvin's rheological description of the viscoelastic tissue behavior. While the interstitial space serves as the primary porosity through which the bulk flow of the interstitial fluid occurs, a secondary porosity network comprising the capillaries and venous system allows for its partial absorption into the blood. The correspondence principle is used in deriving a time-dependent analytical solution to the proposed model. It allows for identical poroelastic formulation of the original poroviscoelastic problem in the Laplace transform space. Hydrocephalus generally refers to a class of medical conditions which share the ventricles enlargement as a common feature. A set of published data from induced hydrocephalus and follow-up perfusion of cats' brains is used for quantitative characterization of the proposed model. A selected portion of these data including the ventricular volume and rate of fluid absorption from the perfused brain, together with the forward model solution, is utilized via an inverse problem technique to find proper estimations of the model parameters. Results show significant improvement in model predictions of the experimental data. The convoluted and coupled solution results are presented through the time-dependent plots of the ventricular volume undergoing the perfusion experiment. The plots demonstrate the intricate interplay of viscous and poroelastic diffusive time scales, and their competition in reaching the steady state response of the system.
Collapse
Affiliation(s)
- Amin Mehrabian
- PoroMechanics Institute, Mewbourne School of Petroleum and Geological Engineering, University of Oklahoma, Norman, OK 73019
| | - Younane N Abousleiman
- Mewbourne School of Petroleum and Geological Engineering, School of Geology and Geophysics, School of Civil Engineering and Environmental Science, PoroMechanics Institute, University of Oklahoma, Norman, OK 73019.
| | - Timothy B Mapstone
- School of Medicine and Department of Neurosurgery, University of Oklahoma, Oklahoma City, OK 73104
| | - Christian A El-Amm
- Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
67
|
Ishikawa M, Yamada S, Yamamoto K. Three-dimensional observation of Virchow-Robin spaces in the basal ganglia and white matter and their relevance to idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2015; 12:15. [PMID: 26113079 PMCID: PMC4482202 DOI: 10.1186/s12987-015-0010-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/08/2015] [Indexed: 11/12/2022] Open
Abstract
Background Virchow–Robin spaces (VRS) are brain perivascular spaces containing perforating arteries. Although enlarged VRS are associated with various disorders such as Alzheimer’s disease, cerebrovascular disease, and head trauma, their functional role remains unclear. Using highly fluid-sensitive magnetic resonance imaging (MRI) sequences, fine morphological features of VRS and their relevance to idiopathic normal pressure hydrocephalus (iNPH) were investigated. Methods Three-dimensional constructive interference in steady state (3D-CISS) on 3 Tesla MRI was applied to 29 individuals. The morphology and number of VRS in the basal ganglia and white matter were compared between 20 patients with iNPH and nine age-matched controls. The VRS number per hemisphere was classified into three grades: few, moderate, and abundant. Results Virchow–Robin spaces in the basal ganglia were curved, irregularly sized and shaped, and communicated with the cerebrospinal fluid in the subarachnoid space; they contained perforating arteries. VRS in the white matter were straight, smooth, homogeneously sized and shaped, and did not penetrate the cortex. Arteries were not seen in VRS of the white matter. White matter VRS were sparse in patients with iNPH. In contrast, basal ganglia VRS positively correlated with age. Postoperatively after shunt surgery, VRS in the white matter were mildly decreased in diameter, but not in number. No significant changes were noted in basal ganglia VRS. Conclusions The present study revealed different morphological features of VRS in the basal ganglia and white matter. VRS in the basal ganglia were seen as genuine perivascular spaces; while neither communication with subarachnoid spaces nor arteries were seen in white matter VRS, even by 3D-CISS sequences and high-resolution magnetic resonance angiography on 3T-MRI. White matter VRS were sparse in patients with iNPH and they were mildly decreased in diameter, but did not change in number after surgery. At present, it remains unclear whether the white matter VRS are dilated interstitial fluid spaces or cerebral amyloid angiopathy, or both. Further studies are necessary to elucidate the functional role of VRS in normal subjects and patients with iNPH.
Collapse
Affiliation(s)
- Masatsune Ishikawa
- Department of Neurosurgery, Rakuwakai Otowa Hospital, 2 Chinji-cho, Otowa, Yamashina-ku, Kyoto, 607-8062, Japan. .,Department of Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, 2 Chinji-cho, Otowa, Yamashina-ku, Kyoto, 607-8062, Japan.
| | - Shigeki Yamada
- Department of Neurosurgery, Rakuwakai Otowa Hospital, 2 Chinji-cho, Otowa, Yamashina-ku, Kyoto, 607-8062, Japan. .,Department of Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, 2 Chinji-cho, Otowa, Yamashina-ku, Kyoto, 607-8062, Japan.
| | - Kazuo Yamamoto
- Department of Neurosurgery, Rakuwakai Otowa Hospital, 2 Chinji-cho, Otowa, Yamashina-ku, Kyoto, 607-8062, Japan.
| |
Collapse
|
68
|
Blood-brain barrier, bulk flow, and interstitial clearance in epilepsy. J Neurosci Methods 2015; 260:118-24. [PMID: 26093166 DOI: 10.1016/j.jneumeth.2015.06.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/21/2022]
Abstract
Understanding the pathophysiology of epilepsy implies elucidating the neurovascular modifications occurring before or at time of seizures. Cerebrovascular dysfunction provokes or sustains seizures and loss of selective blood-brain barrier (BBB) permeability is a modulator of seizure threshold. However, cerebrovascular pathology in epilepsy extends beyond BBB "leakage" to encompass vascular and parenchymal events. Whenever abnormal accumulation of protein is observed surrounding brain blood vessels, BBB disruption (BBBD) was invoked. Recent clinical and laboratory findings challenged an exclusive role of BBBD in perivascular accumulation of serum-derived products. The circulation of interstitial fluid (ISF) and its bulk flow have emerged as candidate mechanisms which play a role in clearance of CNS waste. Although controversy exists, changes of ISF flow may contribute to CNS disorders through a mechanism encompassing incomplete parenchymal clearance and accompanying accumulation of toxic byproducts. We summarize the evidence in favor and against ISF bulk flow and propose a scenario where abnormal ISF in the epileptic brain allows accumulation of brain protein, sustaining pathophysiology and altering the pharmacology of antiepileptic drugs. We also describe the methods routinely used to dissect out the contribution of BBB-dependent, vascular or paracellular mechanisms to altered neuronal excitability.
Collapse
|
69
|
Affiliation(s)
- Marijan Klarica
- Marijan Klarica, Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,
| | | |
Collapse
|
70
|
Krishnamurthy S, Tichenor MD, Satish AG, Lehmann DB. A proposed role for efflux transporters in the pathogenesis of hydrocephalus. Croat Med J 2015; 55:366-76. [PMID: 25165050 PMCID: PMC4157374 DOI: 10.3325/cmj.2014.55.366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hydrocephalus is a common brain disorder that is treated only with surgery. The basis for surgical treatment rests on the circulation theory. However, clinical and experimental data to substantiate circulation theory have remained inconclusive. In brain tissue and in the ventricles, we see that osmotic gradients drive water diffusion in water-permeable tissue. As the osmolarity of ventricular CSF increases within the cerebral ventricles, water movement into the ventricles increases and causes hydrocephalus. Macromolecular clearance from the ventricles is a mechanism to establish the normal CSF osmolarity, and therefore ventricular volume. Efflux transporters, (p-glycoprotein), are located along the blood brain barrier and play an important role in the clearance of macromolecules (endobiotics and xenobiotics) from the brain to the blood. There is clinical and experimental data to show that macromolecules are cleared out of the brain in normal and hydrocephalic brains. This article summarizes the existing evidence to support the role of efflux transporters in the pathogenesis of hydrocephalus. The location of p-gp along the pathways of macromolecular clearance and the broad substrate specificity of this abundant transporter to a variety of different macromolecules are reviewed. Involvement of p-gp in the transport of amyloid beta in Alzheimer disease and its relation to normal pressure hydrocephalus is reviewed. Finally, individual variability of p-gp expression might explain the variability in the development of hydrocephalus following intraventricular hemorrhage.
Collapse
|
71
|
Radoš M, Klarica M, Mučić-Pucić B, Nikić I, Raguž M, Galkowski V, Mandić D, Orešković D. Volumetric analysis of cerebrospinal fluid and brain parenchyma in a patient with hydranencephaly and macrocephaly--case report. Croat Med J 2015; 55:388-93. [PMID: 25165052 PMCID: PMC4157378 DOI: 10.3325/cmj.2014.55.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to perform for the first time the intracranial volumetric analysis of cerebrospinal fluid (CSF) and brain parenchyma in the supratentorial and infratentorial space in a 30-year-old female patient with hydranencephaly and macrocephaly. A head scan performed using a 3T magnetic resonance was followed by manual segmentation of the brain parenchyma and CSF on T2 coronal brain sections. The volume of CSF and brain parenchyma was measured separately for the supratentorial and infratentorial space. The total volume of the intracranial space was 3645.5 cm3. In the supratentorial space, the volume of CSF was 3375.2 cm3 and the volume of brain parenchyma was 80.3 cm3. In the infratentorial space, the volume of CSF was 101.3 cm3 and the volume of the brain parenchyma was 88.7 cm3. In the supratentorial space, there was severe malacia of almost all brain parenchyma with no visible remnants of the choroid plexuses. Infratentorial structures of the brainstem and cerebellum were hypoplastic but completely developed. Since our patient had no choroid plexuses in the supratentorial space and no obstruction between dural sinuses and CSF, development of hydrocephalus and macrocephaly cannot be explained by the classic hypothesis of CSF physiology with secretion, unidirectional circulation, and absorption as its basic postulates. However, the origin and turnover of the enormous amount of intracranial CSF volume, at least 10-fold larger than normal, and the mechanisms of macroencephaly development could be elucidated by the new hypothesis of CSF physiology recently published by our research team.
Collapse
Affiliation(s)
| | - Marijan Klarica
- Marijan Klarica, University of Zagreb, School of Medicine, Department of Pharmacology and Croatian Institute for Brain Research, Šalata 11, 10 000 Zagreb, Croatia,
| | | | | | | | | | | | | |
Collapse
|
72
|
Radoš M, Orešković D, Radoš M, Jurjević I, Klarica M. Long lasting near-obstruction stenosis of mesencephalic aqueduct without development of hydrocephalus--case report. Croat Med J 2015; 55:394-8. [PMID: 25165053 PMCID: PMC4157388 DOI: 10.3325/cmj.2014.55.394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The aim of this study is to present the five-year longitudinal magnetic resonance imaging (MRI) follow up of a patient with incidental finding of near-obstruction stenosis of the aqueduct of Sylvius due to a large pineal cyst. The patient was scanned 3 times on a 3T MR device using a set of standard structural sequences supplemented with high-resolution constructive interference of steady state (CISS) T2 sequence for precise delineation of the aqueduct of Sylvius and cardiac-gated phase-contrast sequences for the analysis of cerebrospinal fluid (CSF) movement. On all MR scans, the size of the pineal cyst and severity of near-obstruction aqueductal stenosis did not show any morphological changes. There was no significant ventricular enlargement although structural CISS sequence showed a near-obstruction stenosis and cardiac-gated phase-contrast sequences did not detect CSF movement through the aqueduct of Sylvius. Our findings are contradictory to the classic hypothesis of CSF physiology based on secretion, circulation, and absorption of CSF, which states that the impairment of CSF circulation through the aqueduct of Sylvius inevitably leads to a hypertensive hydrocephalus development involving the third and the lateral ventricle. Our research group previously proposed a new hypothesis of CSF physiology, which offers more suitable explanation for such clinical cases.
Collapse
Affiliation(s)
| | - Darko Orešković
- Darko Orešković, Rudjer Bošković Institute, Department of Molecular Biology, Bijenička 54, 10 000 Zagreb, Croatia,
| | | | | | | |
Collapse
|
73
|
CNS wide simulation of flow resistance and drug transport due to spinal microanatomy. J Biomech 2015; 48:2144-54. [PMID: 25888012 DOI: 10.1016/j.jbiomech.2015.02.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 02/04/2015] [Accepted: 02/15/2015] [Indexed: 11/21/2022]
Abstract
Spinal microstructures are known to substantially affect cerebrospinal fluid patterns, yet their actual impact on flow resistance has not been quantified. Because the length scale of microanatomical aspects is below medical image resolution, their effect on flow is difficult to observe experimentally. Using a computational fluid mechanics approach, we were able to quantify the contribution of micro-anatomical aspects on cerebrospinal fluid (CSF) flow patterns and flow resistance within the entire central nervous system (CNS). Cranial and spinal CSF filled compartments were reconstructed from human imaging data; microscopic trabeculae below the image detection threshold were added artificially. Nerve roots and trabeculae were found to induce regions of microcirculation, whose location, size and vorticity along the spine were characterized. Our CFD simulations based on volumetric flow rates acquired with Cine Phase Contrast MRI in a normal human subject suggest a 2-2.5 fold increase in pressure drop mainly due to arachnoid trabeculae. The timing and phase lag of the CSF pressure and velocity waves along the spinal canal were also computed, and a complete spatio-temporal map encoding CSF volumetric flow rates and pressure was created. Micro-anatomy induced fluid patterns were found responsible for the rapid caudo-cranial spread of an intrathecally administered drug. The speed of rostral drug dispersion is drastically accelerated through pulsatile flow around microanatomy induced vortices. Exploring massive parallelization on a supercomputer, the feasibility of computational drug transport studies was demonstrated. CNS-wide simulations of intrathecal drugs administration can become a practical tool for in silico design, interspecies scaling and optimization of experimental drug trials.
Collapse
|
74
|
Neuroimaging for the nonradiologist. Int Anesthesiol Clin 2015; 53:123-45. [PMID: 25551746 DOI: 10.1097/aia.0000000000000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
75
|
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014; 11:26. [PMID: 25678956 PMCID: PMC4326185 DOI: 10.1186/2045-8118-11-26] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/21/2014] [Indexed: 01/08/2023] Open
Abstract
Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
76
|
Orešković D, Klarica M. Measurement of cerebrospinal fluid formation and absorption by ventriculo-cisternal perfusion: what is really measured? Croat Med J 2014; 55:317-27. [PMID: 25165046 PMCID: PMC4157383 DOI: 10.3325/cmj.2014.55.317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/22/2014] [Indexed: 11/05/2022] Open
Abstract
The generally accepted hypothesis on cerebrospinal fluid (CSF) hydrodynamics suggests that CSF is actively formed mainly by the choroid plexuses, circulates unidirectionally along the brain ventricles and subarachnoid space, and is passively absorbed mainly into the dural venous sinuses. CSF formation rate (Vf) has been extensively studied using the ventriculo-cisternal perfusion technique and the results have been used as the key evidence confirming the mentioned hypothesis. This technique and the equation for Vf calculation are based on the assumption that the dilution of the indicator substance is a consequence of the newly formed CSF, ie, that a higher CSF formation rate will result in a higher degree of dilution. However, it has been experimentally shown that the indicator substance dilution inside the CSF system does not occur because of a "newly formed" CSF, but as consequence of a number of other factors (departure of substances into the surrounding tissue, flowing around the collecting cannula into the cortical and spinal subarachnoid space, departure into the contralateral ventricle, etc). This technique allows "calculation" of the CSF formation even in dead animals, in an in vitro model, and in any other part of the CSF system outside the ventricles that is being perfused. Therefore, this method is indirect and any dilution of the indicator substance in the perfusate caused by other reasons would result in questionable and often contradictory conclusions regarding CSF formation rates.
Collapse
Affiliation(s)
- Darko Orešković
- Ruđer Bošković Institute, Department of Molecular Biology, Zagreb, Croatia
| | - Marijan Klarica
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
77
|
Hu Q, Vakhmjanin A, Li B, Tang J, Zhang JH. Hyperbaric oxygen therapy fails to reduce hydrocephalus formation following subarachnoid hemorrhage in rats. Med Gas Res 2014; 4:12. [PMID: 25132956 PMCID: PMC4134116 DOI: 10.1186/2045-9912-4-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/27/2014] [Indexed: 11/11/2022] Open
Abstract
Background & purpose Approximately 40% of hemorrhagic stroke survivors develop hydrocephalus. Hyperbaric oxygen (HBO) has been shown to be anti-inflammation following experimental stroke; however, its effect upon post-hemorrhagic hydrocephalus formation is not known. The objective of this study is to investigate whether HBO therapy can effectively reduce hydrocephalus formation and improve neurobehavioral functions in a rat model of subarachnoid hemorrhage (SAH). Method Thirty-eight male Sprague–Dawley rats (300-320 g) rats survived for 21 days from SAH by endovascular perforation or sham surgery were used. At 24 hours after SAH, HBO (3 atmospheres absolute) or normobaric oxygen (NBO) administrated for 1 hour once daily for a total of 7 days. Wire hanging and rotarod testing were conducted at 14 days after SAH, and cognitive functions were evaluated via the Morris water maze, between day 17 to day 21 after surgery. At day 21, rats were sacrificed and cerebroventricular volumes were measured histologically. Results Hydrocephalus exacerbated neurological deficits after SAH, and HBO multiple treatment tendentially improved the neurobehavioral functions. Spatial learning and memory deficits were noticed after SAH, and rats with hydrocephalus showed worse learning and memory abilities and HBO treatment showed a minor improvement. In the SAH group (room air) 4 rats showed an increased ventricular volume at day 21 after SAH-induction (n = 10). HBO or NBO therapy did not alter the occurrence of hydrocephalus after SAH, as 4 rats in each of these groups showed an increased ventricular volume (n = 10 per group). Conclusion Multiple HBO therapy does not ameliorate hydrocephalus formation in a rat model of SAH; however, HBO tendentially improved the neurological functions and spatial learning and memory abilities in rats with hydrocephalus.
Collapse
Affiliation(s)
- Qin Hu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda CA 92354, USA
| | - Alexander Vakhmjanin
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda CA 92354, USA
| | - Bo Li
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda CA 92354, USA ; Department of Neurosurgery, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda CA 92354, USA
| |
Collapse
|
78
|
Krishnamurthy S, Li J. New concepts in the pathogenesis of hydrocephalus. Transl Pediatr 2014; 3:185-94. [PMID: 26835336 PMCID: PMC4729848 DOI: 10.3978/j.issn.2224-4336.2014.07.02] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/20/2014] [Indexed: 12/28/2022] Open
Abstract
Hydrocephalus is a central nervous system disorder characterized by excessive accumulation of cerebrospinal fluid (CSF) in the ventricles of the brain. Cognitive and physical handicap can occur as a result of hydrocephalus. The disorder can present at any age as a result of a wide variety of different diseases. The pathophysiology of hydrocephalus is unclear. While circulation theory is widely accepted as a hypothesis for the development of hydrocephalus, there is a lack of adequate proof in clinical situations and in experimental settings. However, there is growing evidence that osmotic gradients are responsible for the water content of the ventricles of the brain, similar to their presence in other water permeable organs in the body. Therefore, brain disorders that results in excess macromolecules in the ventricular CSF will change the osmotic gradient and result in hydrocephalus. This review encompasses several key findings that have been noted to be important in the genesis of hydrocephalus, including but not limited to the drainage of CSF through the olfactory pathways and cervical lymphatics, the paravascular pathways and the role of venous system. We propose that as osmotic gradients play an important role in the water transport into the ventricles, the transport of osmotically active macromolecules play a critical role in the genesis of hydrocephalus. Therefore, we can view hydrocephalus as a disorder of macromolecular clearance, rather than circulation. Current evidence points to a paravascular and/or lymphatic clearance of these macromolecules out of the ventricles and the brain into the venous system. There is substantial evidence to support this theory, and further studies may help solidify the merit of this hypothesis.
Collapse
Affiliation(s)
- Satish Krishnamurthy
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jie Li
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
79
|
Campos-Ordoñez T, Herranz-Pérez V, Chaichana KL, Rincon-Torroella J, Rigamonti D, García-Verdugo JM, Quiñones-Hinojosa A, Gonzalez-Perez O. Long-term hydrocephalus alters the cytoarchitecture of the adult subventricular zone. Exp Neurol 2014; 261:236-44. [PMID: 24858805 DOI: 10.1016/j.expneurol.2014.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 05/10/2014] [Indexed: 12/15/2022]
Abstract
Hydrocephalus can develop secondarily to a disturbance in production, flow and/or absorption of cerebrospinal fluid. Experimental models of hydrocephalus, especially subacute and chronic hydrocephalus, are few and limited, and the effects of hydrocephalus on the subventricular zone are unclear. The aim of this study was to analyze the effects of long-term obstructive hydrocephalus on the subventricular zone, which is the neurogenic niche lining the lateral ventricles. We developed a new method to induce hydrocephalus by obstructing the aqueduct of Sylvius in the mouse brain, thus simulating aqueductal stenosis in humans. In 120-day-old rodents (n=18 per group), the degree of ventricular dilatation and cellular composition of the subventricular zone were studied by immunofluorescence and transmission electron microscopy. In adult patients (age>18years), the sizes of the subventricular zone, corpus callosum, and internal capsule were analyzed by magnetic resonance images obtained from patients with and without aqueductal stenosis (n=25 per group). Mice with 60-day hydrocephalus had a reduced number of Ki67+ and doublecortin+cells on immunofluorescence, as well as decreased number of neural progenitors and neuroblasts in the subventricular zone on electron microscopy analysis as compared to non-hydrocephalic mice. Remarkably, a number of extracellular matrix structures (fractones) contacting the ventricular lumen and blood vessels were also observed around the subventricular zone in mice with hydrocephalus. In humans, the widths of the subventricular zone, corpus callosum, and internal capsule in patients with aqueductal stenosis were significantly smaller than age and gender-matched patients without aqueductal stenosis. In summary, supratentorial hydrocephalus reduces the proliferation rate of neural progenitors and modifies the cytoarchitecture and extracellular matrix compounds of the subventricular zone. In humans, this similar process reduces the subventricular niche as well as the width of corpus callosum and internal capsule.
Collapse
Affiliation(s)
- Tania Campos-Ordoñez
- Laboratory of Neuroscience, Facultad de Psicologia, University of Colima, Colima, COL, 28040, Mexico
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, Valencia 46980, CIBERNED, Spain; Unidad mixta de Esclerosis múltiple y neurorregeneración, IIS Hospital La Fe-UVEG, Valencia 46013, Spain
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21201, USA
| | | | - Daniele Rigamonti
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21201, USA
| | - Jose M García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, Valencia 46980, CIBERNED, Spain; Unidad mixta de Esclerosis múltiple y neurorregeneración, IIS Hospital La Fe-UVEG, Valencia 46013, Spain
| | | | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, Facultad de Psicologia, University of Colima, Colima, COL, 28040, Mexico.
| |
Collapse
|
80
|
Klarica M, Radoš M, Erceg G, Petošić A, Jurjević I, Orešković D. The influence of body position on cerebrospinal fluid pressure gradient and movement in cats with normal and impaired craniospinal communication. PLoS One 2014; 9:e95229. [PMID: 24748150 PMCID: PMC3991613 DOI: 10.1371/journal.pone.0095229] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/20/2014] [Indexed: 01/07/2023] Open
Abstract
Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.
Collapse
Affiliation(s)
- Marijan Klarica
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Milan Radoš
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Gorislav Erceg
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Antonio Petošić
- Department of Electroacoustics, Faculty of Electrical Engineering and Computing University of Zagreb, Zagreb, Croatia
| | - Ivana Jurjević
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Darko Orešković
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
81
|
Vrselja Z, Brkic H, Mrdenovic S, Radic R, Curic G. Function of circle of Willis. J Cereb Blood Flow Metab 2014; 34:578-84. [PMID: 24473483 PMCID: PMC3982101 DOI: 10.1038/jcbfm.2014.7] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022]
Abstract
Nearly 400 years ago, Thomas Willis described the arterial ring at the base of the brain (the circle of Willis, CW) and recognized it as a compensatory system in the case of arterial occlusion. This theory is still accepted. We present several arguments that via negativa should discard the compensatory theory. (1) Current theory is anthropocentric; it ignores other species and their analog structures. (2) Arterial pathologies are diseases of old age, appearing after gene propagation. (3) According to the current theory, evolution has foresight. (4) Its commonness among animals indicates that it is probably a convergent evolutionary structure. (5) It was observed that communicating arteries are too small for effective blood flow, and (6) missing or hypoplastic in the majority of the population. We infer that CW, under physiologic conditions, serves as a passive pressure dissipating system; without considerable blood flow, pressure is transferred from the high to low pressure end, the latter being another arterial component of CW. Pressure gradient exists because pulse wave and blood flow arrive into the skull through different cerebral arteries asynchronously, due to arterial tree asymmetry. Therefore, CW and its communicating arteries protect cerebral artery and blood-brain barrier from hemodynamic stress.
Collapse
Affiliation(s)
- Zvonimir Vrselja
- 1] Department of Anatomy and Neuroscience, Medical School of J. J. Strossmayer University in Osijek, Osijek, Croatia [2] Department of Radiology, Osijek University Medical Center, Osijek, Croatia
| | - Hrvoje Brkic
- Department of Biophysics, Medical Statistics and Medical Informatics, Medical School of J. J. Strossmayer University in Osijek, Osijek, Croatia
| | - Stefan Mrdenovic
- Department of Hematology, Osijek University Medical Center, Osijek, Croatia
| | - Radivoje Radic
- Department of Anatomy and Neuroscience, Medical School of J. J. Strossmayer University in Osijek, Osijek, Croatia
| | - Goran Curic
- 1] Department of Chemistry and Biochemistry, Laboratory for DNA Analysis, Medical School of J. J. Strossmayer University in Osijek, Osijek, Croatia [2] Department of Pathology and Legal Medicine, Osijek University Medical Center, Osijek, Croatia
| |
Collapse
|
82
|
Jain N, Lim LW, Tan WT, George B, Makeyev E, Thanabalu T. Conditional N-WASP knockout in mouse brain implicates actin cytoskeleton regulation in hydrocephalus pathology. Exp Neurol 2014; 254:29-40. [DOI: 10.1016/j.expneurol.2014.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 01/09/2023]
|
83
|
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014. [PMID: 25678956 DOI: 10.1186/10.1186/2045-8118-11-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
84
|
Klarica M, Miše B, Vladić A, Radoš M, Orešković D. "Compensated hyperosmolarity" of cerebrospinal fluid and the development of hydrocephalus. Neuroscience 2013; 248:278-89. [PMID: 23806710 DOI: 10.1016/j.neuroscience.2013.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/10/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Acute osmolar loading of cerebrospinal fluid within one lateral ventricle of dogs was examined as a cause of water extraction from the bloodstream and an increase in intracranial pressure. We have shown that a certain amount of (3)H₂O from the bloodstream enters osmotically loaded cerebrospinal fluid significantly faster, hence causing a significant increase in intracranial pressure. The noted phenomenon in which intracranial pressure still significantly increases, but in which the hyperosmolarity of the cerebrospinal fluid is no longer present, was named "compensated hyperosmolarity". In the case of the sub-chronic application of hyperosmolar solutions into cat ventricles, we observed an increase in cerebrospinal fluid volume and a more pronounced development of hydrocephalus in the area of application, but without significant increase in intracranial pressure and without blockage of cerebrospinal fluid pathways. These results support the newly proposed hypothesis of cerebrospinal fluid hydrodynamics and the ability to develop new strategies for the treatment of cerebrospinal fluid-related diseases.
Collapse
Affiliation(s)
- M Klarica
- University of Zagreb, School of Medicine, Department of Pharmacology and Croatian Institute for Brain Research, Zagreb, Croatia
| | - B Miše
- University of Zagreb, School of Medicine, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - A Vladić
- Clinical Hospital Sveti Duh, Department of Neurology, Zagreb, Croatia
| | - M Radoš
- University of Zagreb, School of Medicine, Department of Pharmacology and Croatian Institute for Brain Research, Zagreb, Croatia
| | - D Orešković
- Ruđer Bošković Institute, Department of Molecular Biology, Zagreb, Croatia.
| |
Collapse
|
85
|
A patient-specific, finite element model for noncommunicating hydrocephalus capable of large deformation. J Biomech 2013; 46:1447-53. [PMID: 23561703 DOI: 10.1016/j.jbiomech.2013.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/14/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
Abstract
A biphasic model for noncommunicating hydrocephalus in patient-specific geometry is proposed. The model can take into account the nonlinear behavior of brain tissue under large deformation, the nonlinear variation of hydraulic conductivity with deformation, and contact with a rigid, impermeable skull using a recently developed algorithm. The model was capable of achieving over a 700 percent ventricular enlargement, which is much greater than in previous studies, primarily due to the use of an anatomically realistic skull recreated from magnetic resonance imaging rather than an artificial skull created by offsetting the outer surface of the cerebrum. The choice of softening or stiffening behavior of brain tissue, both having been demonstrated in previous experimental studies, was found to have a significant effect on the volume and shape of the deformed ventricle, and the consideration of the variation of the hydraulic conductivity with deformation had a modest effect on the deformed ventricle. The model predicts that noncommunicating hydrocephalus occurs for ventricular fluid pressure on the order of 1300 Pa.
Collapse
|
86
|
Papisov MI, Belov VV, Gannon KS. Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol Pharm 2013; 10:1522-32. [PMID: 23316936 PMCID: PMC3646927 DOI: 10.1021/mp300474m] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Presently, there are no effective treatments for several diseases involving the CNS, which is protected by the blood-brain, blood-CSF, and blood-arachnoid barriers. Traversing any of these barriers is difficult, especially for macromolecular drugs and particulates. However, there is significant experimental evidence that large molecules can be delivered to the CNS through the cerebrospinal fluid (CSF). The flux of the interstitial fluid in the CNS parenchyma, as well as the macro flux of CSF in the leptomeningeal space, are believed to be generally opposite to the desirable direction of CNS-targeted drug delivery. On the other hand, the available data suggest that the layer of pia mater lining the CNS surface is not continuous, and the continuity of the leptomeningeal space (LMS) with the perivascular spaces penetrating into the parenchyma provides an unexplored avenue for drug transport deep into the brain via CSF. The published data generally do not support the view that macromolecule transport from the LMS to CNS is hindered by the interstitial and CSF fluxes. The data strongly suggest that leptomeningeal transport depends on the location and volume of the administered bolus and consists of four processes: (i) pulsation-assisted convectional transport of the solutes with CSF, (ii) active "pumping" of CSF into the periarterial spaces, (iii) solute transport from the latter to and within the parenchyma, and (iv) neuronal uptake and axonal transport. The final outcome will depend on the drug molecule behavior in each of these processes, which have not been studied systematically. The data available to date suggest that many macromolecules and nanoparticles can be delivered to CNS in biologically significant amounts (>1% of the administered dose); mechanistic investigation of macromolecule and particle behavior in CSF may result in a significantly more efficient leptomeningeal drug delivery than previously thought.
Collapse
Affiliation(s)
- Mikhail I. Papisov
- Massachusetts General Hospital, Shriners Hospitals for Children – Boston, and Harvard Medical School, 51 Blossom St, Boston, MA 02114 USA
| | - Vasily V. Belov
- Massachusetts General Hospital, Shriners Hospitals for Children – Boston, and Harvard Medical School, 51 Blossom St, Boston, MA 02114 USA
| | - Kimberley S. Gannon
- NeuroPhage Pharmaceuticals, Inc. 3222 Third Street, Suite 31203 Cambridge, MA 02142 USA
| |
Collapse
|
87
|
Chikly B, Quaghebeur J. Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther 2013; 17:344-54. [PMID: 23768280 DOI: 10.1016/j.jbmt.2013.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/27/2012] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
The traditional model of cerebrospinal fluid (CSF) hydrodynamics is being increasingly challenged in view of recent scientific evidences. The established model presumes that CSF is primarily produced in the choroid plexuses (CP), then flows from the ventricles to the subarachnoid spaces, and is mainly reabsorbed into arachnoid villi (AV). This model is seemingly based on faulty research and misinterpretations. This literature review presents numerous evidence for a new hypothesis of CSF physiology, namely, CSF is produced and reabsorbed throughout the entire CSF-Interstitial fluid (IF) functional unit. IF and CSF are mainly formed and reabsorbed across the walls of CNS blood capillaries. CP, AV and lymphatics become minor sites for CSF hydrodynamics. The lymphatics may play a more significant role in CSF absorption when CSF-IF pressure increases. The consequences of this complete reformulation of CSF hydrodynamics may influence applications in research, publications, including osteopathic manual treatments.
Collapse
|
88
|
Pomschar A, Koerte I, Peraud A, Heinen F, Herber-Jonat S, Reiser M, Ertl-Wagner B. [Hydrocephalus in childhood : causes and imaging patterns]. Radiologe 2013; 52:813-20. [PMID: 22986626 DOI: 10.1007/s00117-012-2334-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
CLINICAL ISSUE Causes and imaging patterns of hydrocephalus differ depending on the age of the patient. Traditionally, hydrocephalus was classified into non-communicating and communicating hydrocephalus but more recent classifications also take the site of occlusion and the etiology into account. DIAGNOSTICS For the diagnostic work-up computed tomography (CT), sonography and magnetic resonance imaging (MRI) are available and MRI is the method of choice for children and adolescents as it allows determination of the cause and location of a possible obstruction. In the first 12-18 months sonography allows evaluation of the lateral ventricles and the third ventricle and CT is usually only chosen in children in emergency situations and/or if no other modality is available. PERFORMANCE We retrospectively evaluated a population of 785 children and adolescents (426 males aged 0-17 years) referred for MRI between April 2009 and March 2012 due to headaches, somnolence, concentration difficulties or developmental delay. Among these 80 (49 male) met the MRI criteria for hydrocephalus, 75 (46 male) had non-communicating hydrocephalus and 5 (3 male) communicating hydrocephalus. Of the patients 24 (15 male) had posthemorrhagic aqueductal stenosis, 16 (8 male) intracranial tumors, 9 (6 male) Chiari II malformations, 5 (4 male) other congenital malformations including malformations of the Dandy Walker spectrum, 9 (3 male) idiopathic aqueductal stenosis, 7 (5 male) arachnoidal cysts and 10 (8 male) other disorders, such as post-infections, macrocephaly cutis marmorata telangiectatica congenita (M-CMTC) syndrome, mesencephalic arteriovenous malformation (AVM), Langerhans cell histiocystosis. PRACTICAL RECOMMENDATIONS It is important to take the age of the patient and the imaging pattern into account and to exclude tumors when reporting MR images of children with hydrocephalus.
Collapse
Affiliation(s)
- A Pomschar
- Institut für Klinische Radiologie, Ludwig-Maximilians-Universität München, München, Deutschland
| | | | | | | | | | | | | |
Collapse
|
89
|
Zhu X, Di Rocco C. Choroid plexus coagulation for hydrocephalus not due to CSF overproduction: a review. Childs Nerv Syst 2013; 29:35-42. [PMID: 23151740 DOI: 10.1007/s00381-012-1960-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/25/2012] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This study aims to review the role of choroid plexus coagulation (CPC) for hydrocephalus not due to CSF overproduction. METHODS The literatures covering CPC/cauterization/extirpation and ablation searched through PubMed were reviewed. RESULTS The history of CPC goes back to early 1900s by open surgery. It has evolved to mainly an endoscopic surgery since 1930s. With the development of other treatment methods and the understanding of CSF dynamics, the application of CPC dramatically decreased by 1970s. In late 2000, there was a resurgence of CPC in combination with endoscopic third ventriculostomy (ETV) performed in Africa. CONCLUSIONS CPC remains one of the options for the treatment of hydrocephalus in selected cases. CPC might provide a temporary reduction in CSF production to allow the further development of CSF absorption in infant. Adding CPC to ETV for infants with communicating hydrocephalus may increase the shunt independent rate thus avoiding the consequence of late complication related to the shunt device. This is important for patients who are difficult to be followed up, due to geographical and/or socioeconomic constrains. Adding CPC to ETV for obstructive hydrocephalus in infant may also increase the successful rate. Furthermore, CPC may be an option for cases with high chance of shunt complication such as hydranencephaly. In addition, CPC may act as an adjunct therapeutic measure for complex cases such as multiloculated hydrocephalus. In comparison with the traditional treatment of CSF shunting, the role of CPC needs to be further evaluated in particular concerning the neurocognitive development.
Collapse
Affiliation(s)
- Xianlun Zhu
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong Special Administration Region, PR China.
| | | |
Collapse
|
90
|
Lew SM, Matthews AE, Hartman AL, Haranhalli N. Posthemispherectomy hydrocephalus: results of a comprehensive, multiinstitutional review. Epilepsia 2012; 54:383-9. [PMID: 23106378 DOI: 10.1111/epi.12010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Hemispherectomy surgery for medically intractable epilepsy is known to cause hydrocephalus in a subset of patients. Existing data regarding the incidence of, and risk factors for, developing posthemispherectomy hydrocephalus have been limited by the relatively small number of cases performed by any single center. Our goal was to better understand this phenomenon and to identify risk factors that may predispose patients to developing hydrocephalus after hemispherectomy surgery. METHODS Fifteen pediatric epilepsy centers participated in this study. A retrospective chart review was performed on all available patients who had hemispherectomy surgery. Data collected included surgical techniques, etiology of seizures, prior brain surgery, symptoms and signs of hydrocephalus, timing of shunt placement, and basic demographics. KEY FINDINGS Data were collected from 736 patients who underwent hemispherectomy surgery between 1986 and 2011. Forty-six patients had preexisting shunted hydrocephalus and were excluded from analysis, yielding 690 patients for this study. One hundred sixty-two patients (23%) required hydrocephalus treatment. The timing of hydrocephalus ranged from the immediate postoperative period to 8.5 years after surgery, with 43 patients (27%) receiving shunts >90 days after surgery. Multivariate regression analysis revealed anatomic hemispherectomies (odds ratio [OR] 4.1, p < 0.0001) and previous brain surgery (OR 1.7, p = 0.04) as independent significant risk factors for developing hydrocephalus. There was a trend toward significance for the use of hemostatic agents (OR 2.2, p = 0.07) and the involvement of basal ganglia or thalamus in the resection (OR 2.2, p = 0.08) as risk factors. SIGNIFICANCE Hydrocephalus is a common sequela of hemispherectomy surgery. Surgical technique and prior brain surgery influence the occurrence of posthemispherectomy hydrocephalus. A significant portion of patients develop hydrocephalus on a delayed basis, indicating the need for long-term surveillance.
Collapse
Affiliation(s)
- Sean M Lew
- Department of Neurosurgery, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | |
Collapse
|
91
|
Abstract
Ventricular enlargement due to a imbalance of the production of cerebrospinal fluid and its absorption can be a symptom of a variety of diseases. The causes are increased production or decreased absorption of cerebrospinal fluid and obstructions to cerebrospinal fluid flow. Treatment requires thorough neuroradiological imaging with high-resolution thin-section magnetic resonance imaging (MRI) and cerebrospinal fluid flow measurements. Thus, for instance even small membranes causing aqueductal obstruction can be detected and their influence on cerebrospinal fluid flow can be analyzed. The results of neurosurgical therapy, such as ventriculostomy can also be evaluated. This article provides an overview about imaging features as well as clinical and therapeutic aspects of hydrocephalus.
Collapse
Affiliation(s)
- W Reith
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Homburg/Saar, Deutschland.
| | | |
Collapse
|
92
|
Reactive gliosis and neuroinflammation in rats with communicating hydrocephalus. Neuroscience 2012; 218:317-25. [DOI: 10.1016/j.neuroscience.2012.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/05/2012] [Accepted: 05/03/2012] [Indexed: 02/07/2023]
|
93
|
Krishnamurthy S, Li J, Schultz L, Jenrow KA. Increased CSF osmolarity reversibly induces hydrocephalus in the normal rat brain. Fluids Barriers CNS 2012; 9:13. [PMID: 22784705 PMCID: PMC3493274 DOI: 10.1186/2045-8118-9-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/25/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Hydrocephalus is a central nervous system (CNS) disorder characterized by the abnormal accumulation of cerebrospinal fluid (CSF) in cerebral ventricles, resulting in their dilatation and associated brain tissue injury. The pathogenesis of hydrocephalus remains unclear; however, recent reports suggest the possible involvement of abnormal osmotic gradients. Here we explore the kinetics associated with manipulating CSF osmolarity on ventricle volume (VV) in the normal rat brain. METHODS CSF was made hyper-osmotic by introducing 10KD dextran into the lateral ventricle, either by acute injection at different concentrations or by chronic infusion at a single concentration. The induction and withdrawal kinetics of dextran infusion on VV were explored in both contexts. RESULTS Acute intraventricular injection of dextran caused a rapid increase in VV which completely reversed within 24 hours. These kinetics are seemingly independent of CSF osmolarity across a range spanning an order of magnitude; however, the magnitude of the transient increase in VV was proportional to CSF osmolarity. By contrast, continuous intraventricular infusion of dextran at a relatively low concentration caused a more gradual increase in VV which was very slow to reverse when infusion was suspended after five days. CONCLUSION We conclude that hyperosmolar CSF is sufficient to produce a proportional degree of hydrocephalus in the normal rat brain, and that this phenomenon exhibits hysteresis if CSF hyperosmolarity is persistent. Thus pathologically-induced increases in CSF osmolarity may be similarly associated with certain forms of clinical hydrocephalus. An improved understanding of this phenomenon and its kinetics may facilitate the development of novel therapies for the treatment of clinical hydrocephalus.
Collapse
Affiliation(s)
- Satish Krishnamurthy
- Department of Neurosurgery, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jie Li
- Department of Neurosurgery, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Lonni Schultz
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, 2799, West Grand Blvd, Detroit, MI, 48202, USA
| | - Kenneth A Jenrow
- Department of Neurosurgery, Henry Ford Hospital, 2799, West Grand Blvd, Detroit, MI, 48202, USA
| |
Collapse
|