51
|
Uzdensky AB. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 2020; 24:687-702. [PMID: 31256300 DOI: 10.1007/s10495-019-01556-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is the leading cause of human disability and mortality in the world. The main problem in stroke therapy is the search of efficient neuroprotector capable to rescue neurons in the potentially salvageable transition zone (penumbra), which is expanding after brain damage. The data on molecular mechanisms of penumbra formation and expression of diverse signaling proteins in the penumbra during first 24 h after ischemic stroke are discussed. Two basic features of cell death regulation in the ischemic penumbra were observed: (1) both apoptotic and anti-apoptotic proteins are simultaneously over-expressed in the penumbra, so that the fate of individual cells is determined by the balance between these opposite tendencies. (2) Similtaneous and concerted up-regulation in the ischemic penumbra of proteins that execute apoptosis (caspases 3, 6, 7; Bcl-10, SMAC/DIABLO, AIF, PSR), signaling proteins that regulate different apoptosis pathways (p38, JNK, DYRK1A, neurotrophin receptor p75); transcription factors that control expression of various apoptosis regulation proteins (E2F1, p53, c-Myc, GADD153); and proteins, which are normally involved in diverse cellular functions, but stimulate apoptosis in specific situations (NMDAR2a, Par4, GAD65/67, caspase 11). Hence, diverse apoptosis initiation and regulation pathways are induced simultaneously in penumbra from very different initial positions. Similarly, various anti-apoptotic proteins (Bcl-x, p21/WAF-1, MDM2, p63, PKBα, ERK1, RAF1, ERK5, MAKAPK2, protein phosphatases 1α and MKP-1, estrogen and EGF receptors, calmodulin, CaMKII, CaMKIV) are upregulated. These data provide an integral view of neurodegeneration and neuroprotection in penumbra. Some discussed proteins may serve as potential targets for anti-stroke therapy.
Collapse
Affiliation(s)
- Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Prospect, Rostov-on-Don, Russia, 344090.
| |
Collapse
|
52
|
Wu Q, Mao Z, Liu J, Huang J, Wang N. Ligustilide Attenuates Ischemia Reperfusion-Induced Hippocampal Neuronal Apoptosis via Activating the PI3K/Akt Pathway. Front Pharmacol 2020; 11:979. [PMID: 32676033 PMCID: PMC7333531 DOI: 10.3389/fphar.2020.00979] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Ligustilide (LIG), a main lipophilic component isolated from Cnidii Rhizoma (Cnidium officinale, rhizome) and Angelicae Gigantis Radix (Angelica gigas Nakai, root), has been shown to alleviate cerebral ischemia injury and paly a neuroprotective role. We investigated mechanisms underlying the antiapoptotic effects of LIG in vitro and in vivo, respectively, using cultured primary hippocampal neurons under oxygen-glucose deprivation/reperfusion (OGD/R) and rats under cerebral ischemia reperfusion(I/R) conditions. In vitro studies revealed that the suppressed apoptosis in hippocampal neurons upon LIG treatment was associated with reduced calcium influx and generation of reactive oxygen species. The LIG-treated hippocampal neurons exhibited decreased the ratio of Bax/Bcl-2, and the release of CytC from mitochondria as well as the expression of cleaved caspase-3, which were accompanied with enhanced the phosphorylation of Akt protein, in a PI3K-dependent manner. In vivo studies demonstrated a neuroprotective role of LIG in attenuating cerebral infarction volume, neurological injury and hippocampal neuron injury, suggesting that LIG could reverse ischemia reperfusion(I/R)-induced apoptosis of hippocampal neurons. These results together suggest that LIG may be considered as a neuroprotectant in the treatment of ischemia stroke.
Collapse
Affiliation(s)
- Qian Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Zhiguo Mao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jiao Liu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jinling Huang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
53
|
Corti O, Blomgren K, Poletti A, Beart PM. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem 2020; 154:354-371. [PMID: 32149395 DOI: 10.1111/jnc.15002] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
In autophagy long-lived proteins, protein aggregates or damaged organelles are engulfed by vesicles called autophagosomes prior to lysosomal degradation. Autophagy dysfunction is a hallmark of several neurodegenerative diseases in which misfolded proteins or dysfunctional mitochondria accumulate. Excessive autophagy can also exacerbate brain injury under certain conditions. In this review, we provide specific examples to illustrate the critical role played by autophagy in pathological conditions affecting the brain and discuss potential therapeutic implications. We show how a singular type of autophagy-dependent cell death termed autosis has attracted attention as a promising target for improving outcomes in perinatal asphyxia and hypoxic-ischaemic injury to the immature brain. We provide evidence that autophagy inhibition may be protective against radiotherapy-induced damage to the young brain. We describe a specialized form of macroautophagy of therapeutic relevance for motoneuron and neuromuscular diseases, known as chaperone-assisted selective autophagy, in which heat shock protein B8 is used to deliver aberrant proteins to autophagosomes. We summarize studies pinpointing mitophagy mediated by the serine/threonine kinase PINK1 and the ubiquitin-protein ligase Parkin as a mechanism potentially relevant to Parkinson's disease, despite debate over the physiological conditions in which it is activated in organisms. Finally, with the example of the autophagy-inducing agent rilmenidine and its discrepant effects in cell culture and mouse models of motor neuron disorders, we illustrate the importance of considering aspects such a disease stage and aggressiveness, type of insult and load of damaged or toxic cellular components, when choosing the appropriate drug, timepoint and duration of treatment.
Collapse
Affiliation(s)
- Olga Corti
- Institut National de la Santé et de la Recherche Médicale, Paris, France.,Centre National de la Recherche Scientifique, Paris, France.,Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia.,Department of Pharmacology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
54
|
Farhadi Moghadam B, Fereidoni M. Neuroprotective effect of menaquinone-4 (MK-4) on transient global cerebral ischemia/reperfusion injury in rat. PLoS One 2020; 15:e0229769. [PMID: 32150581 PMCID: PMC7062268 DOI: 10.1371/journal.pone.0229769] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury causes cognitive deficits, excitotoxicity, neuroinflammation, oxidative stress and brain edema. Vitamin K2 (Menaquinone 4, MK-4) as a potent antioxidant can be a good candidate to ameliorate I/R consequences. This study focused on the neuroprotective effects of MK-4 for cerebral I/R insult in rat’s hippocampus. The rat model of cerebral I/R was generated by transient bilateral common carotid artery occlusion for 20 min. Rats were divided into control, I/R, I/R+DMSO (solvent (1% v/v)) and I/R+MK-4 treated (400 mg/kg, i.p.) groups. Twenty-four hours after I/R injury induction, total brain water content, superoxide dismutase (SOD) activity, nitrate/nitrite concentration and neuronal density were evaluated. In addition to quantify the apoptosis processes, TUNEL staining, as well as expression level of Bax and Bcl2, were assessed. To evaluate astrogliosis and induced neurotoxicity by I/R GFAP and GLT-1 mRNA expression level were quantified. Furthermore, pro-inflammatory cytokines including IL-1β, IL-6 and TNF-α were measured. Seven days post I/R, behavioral analysis to quantify cognitive function, as well as Nissl staining for surviving neuronal evaluation, were conducted. The findings indicated that administration of MK-4 following I/R injury improved anxiety-like behavior, short term and spatial learning and memory impairment induced by I/R. Also, MK-4 was able to diminish the increased total brain water content, apoptotic cell density, Bax/ Bcl2 ratio and GFAP mRNA expression following I/R. In addition, the high level of nitrate/nitrite, IL-6, IL-1β and TNF-α induced by I/R was reduced after MK-4 administration. However, MK-4 promotes the level of SOD activity and GLT-1 mRNA expression in I/R rat model. The findings demonstrated that MK-4 can rescue transient global cerebral I/R consequences via its anti-inflammatory and anti-oxidative stress features. MK-4 administration ameliorates neuroinflammation, neurotoxicity and neuronal cell death processes and leads to neuroprotection.
Collapse
Affiliation(s)
| | - Masoud Fereidoni
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- * E-mail:
| |
Collapse
|
55
|
Andrabi SS, Parvez S, Tabassum H. Ischemic stroke and mitochondria: mechanisms and targets. PROTOPLASMA 2020; 257:335-343. [PMID: 31612315 DOI: 10.1007/s00709-019-01439-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/30/2019] [Indexed: 05/05/2023]
Abstract
Stroke is one of the main causes of mortality and disability in most countries of the world. The only way of managing patients with ischemic stroke is the use of intravenous tissue plasminogen activator and endovascular thrombectomy. However, very few patients receive these treatments as the therapeutic time window is narrow after an ischemic stroke. The paucity of stroke management approaches can only be addressed by identifying new possible therapeutic targets. Mitochondria have been a rare target in the clinical management of stroke. Previous studies have only investigated the bioenergetics and apoptotic roles of this organelle; however, the mitochondrion is now considered as a key organelle that participates in many cellular and molecular functions. This review discusses the mitochondrial mechanisms in cerebral ischemia such as its role in reactive oxygen species (ROS) generation, apoptosis, and electron transport chain dysfunction. Understanding the mechanisms of mitochondria in neural cell death during ischemic stroke might help to design new therapeutic targets for ischemic stroke as well as other neurological diseases.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Heena Tabassum
- Division of Biomedical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India
| |
Collapse
|
56
|
Dishevelled-1 regulated apoptosis through NF-κB in cerebral ischemia/reperfusion injury in rats. Neurosci Lett 2020; 722:134862. [PMID: 32105766 DOI: 10.1016/j.neulet.2020.134862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023]
Abstract
Dishevelled-1(DVL-1) has been reported associated with the regulation of cell polarity and neuronal function. However, the effect of DVL-1 in cerebral ischemia-reperfusion injury of rats remains poorly understood. In this study, we give evidence that the level of DVL-1 is increased after a middle cerebral artery occlusion/reperfusion model (MCAO) in rats, with a peak at 12 h. On the side, knockdown of DVL-1 may relieve I/R damage and restrain apoptosis after MCAO model in rats. In the part of mechanism, DVL-1 could regulate apoptosis through NF-κB. These results suggest that DVL-1 may be a potential target in I/R injury in rats.
Collapse
|
57
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
58
|
Hydrogen Gas Attenuates Hypoxic-Ischemic Brain Injury via Regulation of the MAPK/HO-1/PGC-1a Pathway in Neonatal Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6978784. [PMID: 32104537 PMCID: PMC7040418 DOI: 10.1155/2020/6978784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/09/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a leading cause of death in neonates with no effective treatments. Recent advancements in hydrogen (H2) gas offer a promising therapeutic approach for ischemia reperfusion injury; however, the impact of this approach for HIE remains a subject of debate. We assessed the therapeutic effects of H2 gas on HIE and the underlying molecular mechanisms in a rat model of neonatal hypoxic-ischemic brain injury (HIBI). H2 inhalation significantly attenuated neuronal injury and effectively improved early neurological outcomes in neonatal HIBI rats as well as learning and memory in adults. This protective effect was associated with initiation time and duration of sustained H2 inhalation. Furthermore, H2 inhalation reduced the expression of Bcl-2-associated X protein (BAX) and caspase-3 while promoting the expression of Bcl-2, nuclear factor erythroid-2-related factor 2, and heme oxygenase-1 (HO-1). H2 activated extracellular signal-regulated kinase and c-Jun N-terminal protein kinase and dephosphorylated p38 mitogen-activated protein kinase (MAPK) in oxygen-glucose deprivation/reperfusion (OGD/R) nerve growth factor-differentiated PC12 cells. Inhibitors of MAPKs blocked H2-induced HO-1 expression. HO-1 small interfering RNA decreased the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and sirtuin 1 (SIRT1) and reversed the protectivity of H2 against OGD/R-induced cell death. These findings suggest that H2 augments cellular antioxidant defense capacity through activation of MAPK signaling pathways, leading to HO-1 expression and subsequent upregulation of PGC-1α and SIRT-1 expression. Thus, upregulation protects NGF-differentiated PC12 cells from OGD/R-induced oxidative cytotoxicity. In conclusion, H2 inhalation exerted protective effects on neonatal rats with HIBI. Early initiation and prolonged H2 inhalation had better protective effects on HIBI. These effects of H2 may be related to antioxidant, antiapoptotic, and anti-inflammatory responses. HO-1 plays an important role in H2-mediated protection through the MAPK/HO-1/PGC-1α pathway. Our results support further assessment of H2 as a potential therapeutic for neurological conditions in which oxidative stress and apoptosis are implicated.
Collapse
|
59
|
Circ_016719 plays a critical role in neuron cell apoptosis induced by I/R via targeting miR-29c/Map2k6. Mol Cell Probes 2020; 49:101478. [DOI: 10.1016/j.mcp.2019.101478] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 02/04/2023]
|
60
|
Teertam SK, Jha S, Prakash Babu P. Up-regulation of Sirt1/miR-149-5p signaling may play a role in resveratrol induced protection against ischemia via p53 in rat brain. J Clin Neurosci 2020; 72:402-411. [PMID: 31866350 DOI: 10.1016/j.jocn.2019.11.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/30/2019] [Indexed: 12/19/2022]
Abstract
Micro-RNA(miRNA) are well studied small noncoding RNA, which plays a diverse role in the regulation of vital elements in cell survival and apoptosis. However, the functional significance of miRNAs after the pathogenesis of ischemic stroke remains unclear. The present study is designed to investigate the regulatory role of miR-149-5p on Sirtuin-1/p53 axis during ischemic-reperfusion-induced injury. Middle cerebral artery occlusion (MCAO) was performed by nylon monofilament for 60 min. Resveratrol was administered via intraperitoneal (IP) route, 30 min before the MCAO. Our study demonstrated that the miR-149-5p levels were markedly decreased at 24 h after ischemic-reperfusion (I/R) injury. Further, we observed decreased p53 protein expression and increased miR-149-5p activity on sirtuin1 (Sirt1) activation with resveratrol after 24 h following MCAO. Moreover, immunohistochemistry studies found that resveratrol treatment significantly decreased the immunoreactivity of p53 and caspase-3 on activation of Sirt1/miR149-5p axis. In conclusion, our findings suggest that miR-149-5p could play a regulatory role in neuronal cell death via Sirt1/p53 axis, which offers a new target for novel therapeutic interventions during acute ischemic stroke.
Collapse
Affiliation(s)
- Sireesh Kumar Teertam
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046 TS, India
| | - Shekhar Jha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046 TS, India
| | - Phanithi Prakash Babu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046 TS, India.
| |
Collapse
|
61
|
Wang GY, Wang TZ, Zhang YY, Li F, Yu BY, Kou JP. NMMHC IIA Inhibition Ameliorates Cerebral Ischemic/Reperfusion-Induced Neuronal Apoptosis Through Caspase-3/ROCK1/MLC Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:13-25. [PMID: 32021088 PMCID: PMC6954088 DOI: 10.2147/dddt.s230882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Purpose Our previous studies have indicated that non-muscle myosin heavy chain IIA (NMMHC IIA) is involved in H2O2-induced neuronal apoptosis, which is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. However, the neuroprotective effect of NMMHC IIA inhibition with an adeno-associated virus (AAV) vector after transient middle cerebral artery occlusion (MCAO) and its role in caspases-3/ROCK1/MLC pathway remain blurred. Methods Green fluorescent protein (GFP) and a small hairpin RNA targeting Myh9 (encoding NMMHC IIA) were cloned and packaged into the AAV9 vector. AAV-shMyh9 or control vector were injected into C57BL/6J mice four weeks prior to 60 min MCAO. Twenty-four hours after reperfusion, functional and histological analyses of the mice were performed. Results In this study, AAV-shMyh9 was used to down-regulate NMMHC IIA expression in mice. We found that down-regulation of NMMHC IIA could improve neurological scores and histological injury in ischemic mice. Ischemic attack also activated neuronal apoptosis, and this effect was partially attenuated when NMMHC IIA was inhibited by AAV-shMyh9. In addition, AAV-shMyh9 significantly reduced cerebral ischemic/reperfusion (I/R)-induced NMMHC IIA-actin interaction, caspase-3 cleavage, Rho-associated kinase1 (ROCK1) activation and myosin light-chains (MLC) phosphorylation. Conclusion Consequently, we showed that AAV-shMyh9 inhibits I/R-induced neuronal apoptosis linked with caspase-3/ROCK1/MLC/NMMHC IIA-actin cascade, which has also been confirmed to be a positive feedback loop. These findings put some insights into the neuroprotective effect of AAV-shMyh9 associated with the regulation of NMMHC IIA-related pathway under ischemic attack and provide a therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Guang-Yun Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Tie-Zheng Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Fang Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Resource and Development of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jun-Ping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
62
|
|
63
|
Uzdensky AB. Regulation of apoptosis in the ischemic penumbra in the first day post-stroke. Neural Regen Res 2020; 15:253-254. [PMID: 31552891 PMCID: PMC6905348 DOI: 10.4103/1673-5374.265546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
64
|
Song Y, Wang LB, Bei Y, Qin DX, Ai LY, Ma QZ, Lin PY. Carvacryl acetate, a semisynthetic monoterpenic ester obtained from essential oils, provides neuroprotection against cerebral ischemia reperfusion-induced oxidative stress injury via the Nrf2 signalling pathway. Food Funct 2020; 11:1754-1763. [DOI: 10.1039/c9fo02037c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carvacryl acetate (CA) is a semisynthetic monoterpenic ester obtained from essential oils, and it exerts an antioxidation effect.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Li-Bo Wang
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Yun Bei
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
- Department of Pharmacy
| | - Dong-Xu Qin
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Li-Yao Ai
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Qi-Zhuang Ma
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Pei-Yao Lin
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| |
Collapse
|
65
|
Jiang LJ, Xu ZX, Wu MF, Dong GQ, Zhang LL, Gao JY, Feng CX, Feng X. Resatorvid protects against hypoxic-ischemic brain damage in neonatal rats. Neural Regen Res 2020; 15:1316-1325. [PMID: 31960818 PMCID: PMC7047798 DOI: 10.4103/1673-5374.272615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Secondary brain damage caused by hyperactivation of autophagy and inflammatory responses in neurons plays an important role in hypoxic-ischemic brain damage (HIBD). Although previous studies have implicated Toll-like receptor 4 (TLR4) and nuclear factor kappa-B (NF-κB) in the neuroinflammatory response elicited by brain injury, the role and mechanisms of the TLR4-mediated autophagy signaling pathway in neonatal HIBD are still unclear. We hypothesized that this pathway can regulate brain damage by modulating neuron autophagy and neuroinflammation in neonatal rats with HIBD. Hence, we established a neonatal HIBD rat model using the Rice-Vannucci method, and injected 0.75, 1.5, or 3 mg/kg of the TLR4 inhibitor resatorvid (TAK-242) 30 minutes after hypoxic ischemia. Our results indicate that administering TAK-242 to neonatal rats after HIBD could significantly reduce the infarct volume and the extent of cerebral edema, alleviate neuronal damage and neurobehavioral impairment, and decrease the expression levels of TLR4, phospho-NF-κB p65, Beclin-1, microtubule-associated protein l light chain 3, tumor necrosis factor-α, and interleukin-1β in the hippocampus. Thus, TAK-242 appears to exert a neuroprotective effect after HIBD by inhibiting activation of autophagy and the release of inflammatory cytokines via inhibition of the TLR4/NF-κB signaling pathway. This study was approved by the Laboratory Animal Ethics Committee of Affiliated Hospital of Yangzhou University, China (approval No. 20180114-15) on January 14, 2018.
Collapse
Affiliation(s)
- Li-Jun Jiang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou; Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhen-Xing Xu
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Ming-Fu Wu
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Gai-Qin Dong
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Li-Li Zhang
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jun-Yan Gao
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chen-Xi Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
66
|
Lin JP, Wei Y, Fan XJ, Zhang MH, Wu MQ, Li W, Wang P, Xiong W. The mechanisms of pei-yuan-tong-nao capsule as a therapeutic agent against cerebrovascular disease. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_45_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
67
|
KLF2 protects BV2 microglial cells against oxygen and glucose deprivation injury by modulating BDNF/TrkB pathway. Gene 2019; 735:144277. [PMID: 31821872 DOI: 10.1016/j.gene.2019.144277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Cerebral ischemia injury is common in cerebral ischemic disease, and treatment options remain limited. Krueppel-like factor 2 (KLF2) is reported to negatively regulate inflammation in several ischemic diseases. Our study aimed to investigate the effects and underlying mechanism of KLF2 in BV2 microglial cells exposed to oxygen and glucose deprivation (OGD). We first found decreased KLF2 and toll-like receptor 2 (TLR2)/TLR4 in these cells. OGD also led to decrease in cell viability and increase in LDH release, apoptosis, the Bax/Bcl-2 ratio, and caspase3/9 expression, as well as production of inflammatory cytokines (e.g., TNFα, IL-1β and IL-6), reactive oxygen species (ROS), and TLR2/TLR4. To examine KLF2's effects on these OGD effects, we infected BV2 microglial cells with an ad-KLF2 or negative control vector, and we found that KLF2 reversed all of the effects of OGD exposure. Furthermore, KLF2 significantly increased levels of BDNF and TrkB in these cells, but these effects were blocked by K252a, a BDNF/TrkB inhibitor. K252a also decreased cell viability and increased apoptosis, inflammatory factors, ROS production, and TLR2/TLR4 expression in OGD-exposed BV2 cells that were treated with KLF2, were implying that K252a could reverse the effects of KLF2 on these cells. Taken together, our study results indicate that KLF2 may protect BV2 microglial cells against OGD injury by activating the BDNF/TrkB pathway.
Collapse
|
68
|
Zhai M, Liu C, Li Y, Zhang P, Yu Z, Zhu H, Zhang L, Zhang Q, Wang J, Wang J. Dexmedetomidine inhibits neuronal apoptosis by inducing Sigma-1 receptor signaling in cerebral ischemia-reperfusion injury. Aging (Albany NY) 2019; 11:9556-9568. [PMID: 31682592 PMCID: PMC6874446 DOI: 10.18632/aging.102404] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022]
Abstract
Dexmedetomidine is known to alleviate cerebral ischemia-reperfusion injury (CIRI). We established a rat model of CIRI, which exhibited higher neurological deficit scores and a greater number of apoptotic cells in the cerebral ischemic penumbra than controls. Dexmedetomidine reversed the neuronal apoptosis and improved neurological function in this model. We then examined Sigma-1 receptor (Sig-1R) expression on the endoplasmic reticulum (ER) in brain tissues at different reperfusion time points. Sig-1R expression increased with CIRI and decreased with increasing reperfusion times. After 24 hours of reperfusion, dexmedetomidine upregulated Sig-1R expression, and ER stress proteins (GRP78, CHOP, JNK and Caspase-3) were detected in brain tissues with Western blotting. Moreover, GRP78 expression followed a pattern similar to Sig-1R. Dexmedetomidine induced GRP78 expression but inhibited CHOP, Caspase-3 and phosphorylated-JNK expression in brain tissues. A Sig-1R-specific inhibitor reduced GRP78 expression and partially inhibited the upregulation of GRP78 by dexmedetomidine. The inhibitor also increased CHOP and Caspase-3 expression and partially reversed the inhibitory effects of dexmedetomidine on these pro-apoptotic ER stress proteins. These results suggest that dexmedetomidine at least partially inhibits ER stress-induced apoptosis by activating Sig-1R, thereby attenuating brain damage after 24 hours of ischemia-reperfusion.
Collapse
Affiliation(s)
- Meili Zhai
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Chong Liu
- Department of Anesthesiology, Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300140, China
| | - Yuexiang Li
- Department of Anesthesiology, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Peijun Zhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Zhiqiang Yu
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - He Zhu
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Li Zhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Qian Zhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Jianbo Wang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Jinhua Wang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province 318000, China
| |
Collapse
|
69
|
DeGracia DJ, Taha D, Anggraini FT, Huang ZF. Nonautonomous dynamics of acute cell injury. Phys Rev E 2019; 100:052407. [PMID: 31870014 DOI: 10.1103/physreve.100.052407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Indexed: 06/10/2023]
Abstract
Medical conditions due to acute cell injury, such as stroke and heart attack, are of tremendous impact and have attracted huge amounts of research effort. The biomedical research that seeks cures for these conditions has been dominated by a qualitative, inductive mind-set. Although the inductive approach has not been effective in developing medical treatments, it has amassed enough information to allow construction of quantitative, deductive models of acute cell injury. In this work we develop a modeling approach by extending an autonomous nonlinear dynamic theory of acute cell injury that offered new ways to conceptualize cell injury but possessed limitations that decrease its effectiveness. Here we study the global dynamics of the cell injury theory using a nonautonomous formulation. Different from the standard scenario in nonlinear dynamics that is determined by the steady state and fixed points of the model equations, in this nonautonomous model with a trivial fixed point, the system property is dominated by the transient states and the corresponding dynamic processes. The model gives rise to four qualitative types of dynamical patterns that can be mapped to the behavior of cells after clinical acute injuries. The nonautonomous theory predicts the existence of a latent stress response capacity (LSRC) possessed by injured cells. The LSRC provides a theoretical explanation of how therapies, such as hypothermia, can prevent cell death after lethal injuries. The nonautonomous theory of acute cell injury provides an improved quantitative framework for understanding cell death and recovery and lays a foundation for developing effective therapeutics for acute injury.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University, Detroit, Michigan 48201, USA
| | - Doaa Taha
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | - Fika Tri Anggraini
- Department of Physiology, Wayne State University, Detroit, Michigan 48201, USA
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
70
|
Fehér E, Szatmári I, Dudás T, Zalatnai A, Farkas T, Lőrinczi B, Fülöp F, Vécsei L, Toldi J. Structural Evaluation and Electrophysiological Effects of Some Kynurenic Acid Analogs. Molecules 2019; 24:molecules24193502. [PMID: 31561643 PMCID: PMC6803921 DOI: 10.3390/molecules24193502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, as an excitatory amino acid receptor antagonist is an effective neuroprotective agent in case of excitotoxicity, which is the hallmark of brain ischemia and several neurodegenerative processes. Therefore, kynurenine pathway, KYNA itself, and its derivatives came into the focus of research. During the past fifteen years, our research group has developed several neuroactive KYNA derivatives, some of which proved to be neuroprotective in preclinical studies. In this study, the synthesis of these KYNA derivatives and their evaluation with divergent molecular characteristics are presented together with their most typical effects on the monosynaptic transmission in CA1 region of the hippocampus of the rat. Their effects on the basic neuronal activity (on the field excitatory postsynaptic potentials: fEPSP) were studied in in vitro hippocampal slices in 1 and 200 μM concentrations. KYNA and its derivative 4 in both 1 and 200 μM concentrations proved to be inhibitory, while derivative 8 only in 200 μM decreased the amplitudes of fEPSPs. Derivative 5 facilitated the fEPSPs in 200 μM concentration. This is the first comparative study which evaluates the structural and functional differences of formerly and newly developed KYNA analogs. Considerations on possible relations between molecular structures and their physiological effects are presented.
Collapse
Affiliation(s)
- Evelin Fehér
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Tamás Dudás
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Anna Zalatnai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Tamás Farkas
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
71
|
Hermawati E, Arfian N, Mustofa M, Partadiredja G. Chlorogenic acid ameliorates memory loss and hippocampal cell death after transient global ischemia. Eur J Neurosci 2019; 51:651-669. [PMID: 31437868 DOI: 10.1111/ejn.14556] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
Chlorogenic acid (CGA) is known to have antioxidant potentials, yet the effect of CGA on brain ischemia has not been sufficiently understood. Brain ischemia such as transient global ischemia disrupts many areas of the brain of rats, including the hippocampus. Male Wistar rats were randomly assigned into five groups, that is, sham-operated (SO), bilateral common carotid occlusion (BCCO), and BCCO+ 15, 30, and 60 mg/kg bw CGA groups (CGA15, CGA30, and CGA60, respectively). Brain ischemia was induced in Wistar rats with BCCO for 20 min followed by intraperitoneal injection of CGA. The rats were examined for the spatial memory in a Morris water maze test on the 3rd day and were euthanized on the 10th day after BCCO. The total number of pyramidal cells was estimated, and the mRNA expressions of Bcl2, Bax, caspase-3, SOD2, SOD1, GPx, ET-1, eNOS, CD31, and VEGF-A were measured. The BCCO group spent less time and distance in the target quadrant than any other group in the spatial memory retention test. The CA1 pyramidal cell numbers in the BCCO and CGA15 groups were lower than in the CGA30 and CGA60 groups. The mRNA expressions of Bcl2, SOD2, and CD31 in the BCCO group were lower than in the CGA15, CGA30, and CGA60 groups. The ET-1 expression was higher in the BCCO and CGA15 groups than in the SO, CGA30, and CGA60 groups. CGA improves the spatial memory and prevents the CA1 pyramidal cell death after BCCO by increasing Bcl2, SOD2, and CD31 expressions and decreasing ET-1 expression.
Collapse
Affiliation(s)
- Ery Hermawati
- Doctoral Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Department of Physiology, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ginus Partadiredja
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
72
|
Choi EM, Suh KS, Jung WW, Yun S, Park SY, Chin SO, Rhee SY, Chon S. Catalpol protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytotoxicity in osteoblastic MC3T3-E1 cells. J Appl Toxicol 2019; 39:1710-1719. [PMID: 31429101 DOI: 10.1002/jat.3896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a well-known environmental contaminant that produces a wide variety of adverse effects in humans. Catalpol, a major bioactive compound enriched in the dried root of Rehmannia glutinosa, is a major iridoid glycoside that alleviates bone loss. However, the detailed mechanisms underlying the effects of catalpol remain unclear. The present study evaluated the effects of catalpol on TCDD-induced cytotoxicity in osteoblastic MC3T3-E1 cells. Catalpol inhibited TCDD-induced reduction in cell viability and increases in apoptosis and autophagic activity in osteoblastic MC3T3-E1 cells. Additionally, pretreatment with catalpol significantly decreased the nitric oxide and nitrite levels compared with a control in TCDD-treated cells and significantly inhibited TCDD-induced increases in the levels of cytochrome P450 1A1 and extracellular signal-regulated kinase. Pretreatment with catalpol also effectively restored the expression of superoxide dismutase and extracellular signal-regulated kinase 1 and significantly enhanced the expression of glutathione peroxidase 4 and osteoblast differentiation markers, including alkaline phosphatase and osterix. Taken together, these findings demonstrate that catalpol has preventive effects against TCDD-induced damage in MC3T3-E1 osteoblastic cells.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Soojin Yun
- Department of Medicine, Graduate School, Kyung Hee University, Seoule, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - So Young Park
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| |
Collapse
|
73
|
Deng XX, Li SS, Sun FY. Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling. Aging Dis 2019; 10:807-817. [PMID: 31440386 PMCID: PMC6675533 DOI: 10.14336/ad.2018.0728] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022] Open
Abstract
Pharmacological studies have indirectly shown that necroptosis participates in ischemic neuronal death. However, its mechanism has yet to be elucidated in the ischemic brain. TNFα-triggered RIPK1 kinase activation could initiate RIPK3/MLKL-mediated necroptosis under inhibition of caspase-8. In the present study, we performed middle cerebral artery occlusion (MCAO) to induce cerebral ischemia in rats and used immunoblotting and immunostaining combined with pharmacological analysis to study the mechanism of necroptosis in ischemic brains. In the ipsilateral hemisphere, we found that ischemia induced the increase of (i) RIPK1 phosphorylation at the Ser166 residue (p-RIPK1), representing active RIPK1 kinase and (ii) the number of cells that were double stained with P-RIPK1 (Ser166) (p-RIPK1+) and TUNEL, a label of DNA double-strand breaks, indicating cell death. Furthermore, ischemia induced activation of downstream signaling factors of RIPK1, RIPK3 and MLKL, as well as the formation of mature interleukin-1β (IL-1β). Treatment with necrostatin-1 (Nec-1), an inhibitor of necroptosis, significantly decreased ischemia-induced increase of p-RIPK1 expression and p-RIPK1+ neurons, which showed protection from brain damage. Meanwhile, Nec-1 reduced RIPK3, MLKL and p-MLKL expression levels and mature IL-1β formation in Nec-1 treated ischemic brains. Our results clearly demonstrated that phosphorylation of RIPK1 at the Ser166 residue was involved in the pathogenesis of necroptosis in the brains after ischemic injury. Nec-1 treatment protected brains against ischemic necroptosis by reducing the activation of RIPK1 and inhibiting its downstream signaling pathways. These results provide direct in vivo evidence that phosphorylated RIPK1 (Ser 166) plays an important role in the initiation of RIPK3/MLKL-dependent necroptosis in the pathogenesis of ischemic stroke in the rodent brain.
Collapse
Affiliation(s)
- Xu-Xu Deng
- 1Department of Neurobiology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,2Institute for Basic Research on Aging and Medicine, the State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shan-Shan Li
- 1Department of Neurobiology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,2Institute for Basic Research on Aging and Medicine, the State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feng-Yan Sun
- 1Department of Neurobiology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,2Institute for Basic Research on Aging and Medicine, the State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,3Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
74
|
Xiong T, Qu Y, Wang H, Chen H, Zhu J, Zhao F, Zou R, Zhang L, Mu D. GSK-3β/mTORC1 Couples Synaptogenesis and Axonal Repair to Reduce Hypoxia Ischemia-Mediated Brain Injury in Neonatal Rats. J Neuropathol Exp Neurol 2019; 77:383-394. [PMID: 29506051 DOI: 10.1093/jnen/nly015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glycogen synthase kinase 3 beta (GSK-3β) plays an important role in neurological outcomes after brain injury. However, its roles and mechanisms in hypoxia-ischemia (HI) are unclear. Activation of mTOR complex 1 (mTORC1) has been proven to induce the synthesis of proteins associated with regeneration. We hypothesized that GSK-3β inhibition could activate the mTORC1 signaling pathway, which may reduce axonal injury and induce synaptic protein synthesis and functional recovery of synapses after HI. By analyzing a P7 rat model of cerebral HI and an in vitro ischemic (oxygen glucose deprivation) model, we found that GSK-3β inhibitors (GSK-3β siRNA or lithium chloride) activated mTORC1 signaling, leading to increased expression of synaptic proteins, including synapsin 1, PSD95, and GluR1, and the microtubule-associated protein Tau and decreased expression of the axonal injury-associated protein amyloid precursor protein. These changes contributed to attenuated axonal injury (decreased amyloid precursor protein staining and axonal loss by silver staining), improved electrophysiological properties of synapses, and enhanced spatial memory performance in the Morris water maze. However, inhibition of mTORC1 by rapamycin blocked the benefits induced by GSK-3β inhibition, suggesting that GSK-3β inhibition induces synaptogenesis and axonal repair via mTORC1 signaling, which may benefit neonatal rats subjected to HI.
Collapse
Affiliation(s)
- Tao Xiong
- Department of Pediatrics, West China Second University Hospital and Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Sichuan, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital and Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Sichuan, China
| | - Huiqin Wang
- Department of Pediatrics, West China Second University Hospital and Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Sichuan, China
| | - Hongju Chen
- Department of Pediatrics, West China Second University Hospital and Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Sichuan, China
| | - Jianghu Zhu
- Department of Pediatrics, West China Second University Hospital and Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Sichuan, China
| | - Fengyan Zhao
- Department of Pediatrics, West China Second University Hospital and Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Sichuan, China
| | - Rong Zou
- Department of Pediatrics, West China Second University Hospital and Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Sichuan, China
| | - Li Zhang
- Department of Pediatrics, West China Second University Hospital and Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Sichuan, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital and Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Sichuan, China
| |
Collapse
|
75
|
Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK, Chaicumpa W. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019; 8:cells8070674. [PMID: 31277291 PMCID: PMC6678135 DOI: 10.3390/cells8070674] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy (self-eating) is a conserved cellular degradation process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Autophagy dysfunction can have various pathological consequences, including tumor progression, pathogen hyper-virulence, and neurodegeneration. This review describes the mechanisms of autophagy and its associations with other cell death mechanisms, including apoptosis, necrosis, necroptosis, and autosis. Autophagy has both positive and negative roles in infection, cancer, neural development, metabolism, cardiovascular health, immunity, and iron homeostasis. Genetic defects in autophagy can have pathological consequences, such as static childhood encephalopathy with neurodegeneration in adulthood, Crohn's disease, hereditary spastic paraparesis, Danon disease, X-linked myopathy with excessive autophagy, and sporadic inclusion body myositis. Further studies on the process of autophagy in different microbial infections could help to design and develop novel therapeutic strategies against important pathogenic microbes. This review on the progress and prospects of autophagy research describes various activators and suppressors, which could be used to design novel intervention strategies against numerous diseases and develop therapeutic drugs to protect human and animal health.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu 600051, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh 281 001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, FL 33136, USA.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
76
|
Zhang T, Wu C, Yang X, Liu Y, Yang H, Yuan L, Liu Y, Sun S, Yang J. Pseudoginsenoside-F11 Protects against Transient Cerebral Ischemia Injury in Rats Involving Repressing Calcium Overload. Neuroscience 2019; 411:86-104. [DOI: 10.1016/j.neuroscience.2019.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 01/04/2023]
|
77
|
Pharmacodynamics of Five Anthraquinones (Aloe-emodin, Emodin, Rhein, Chysophanol, and Physcion) and Reciprocal Pharmacokinetic Interaction in Rats with Cerebral Ischemia. Molecules 2019; 24:molecules24101898. [PMID: 31108858 PMCID: PMC6571683 DOI: 10.3390/molecules24101898] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Rhubarb anthraquinones—a class of components with neuroprotective function—can be used to alleviate cerebral ischemia reperfusion injury. (2) Methods: The three pharmacodynamic indicators are neurological function score, brain water content, and cerebral infarction area; UPLC-MS/MS was used in pharmacokinetic studies to detect plasma concentrations at different time points, and DAS software was used to calculate pharmacokinetic parameters in a noncompartmental model. (3) Results: The results showed that the pharmacodynamics and pharmacokinetics of one of the five anthraquinone aglycones could be modified by the other four anthraquinones, and the degree of interaction between different anthraquinones was different. The chrysophanol group showed the greatest reduction in pharmacodynamic indicators comparing with other four groups where the rats were administered one of the five anthraquinones, and there was no significant difference between the nimodipine group. While the Aloe-emodin + Physcion group showed the most obvious anti-ischemic effect among the groups where the subjects were administered two of the five anthraquinones simultaneously. Emodin, rhein, chrysophanol, and physcion all increase plasma exposure levels of aloe-emodin, while aloe-emodin lower their plasma exposure levels. (4) Conclusions: This experiment provides a certain preclinical basis for the study of anthraquinone aglycones against cerebral ischemia and a theoretical basis for the study of the mechanism of interaction between anthraquinones.
Collapse
|
78
|
Borlongan CV. Concise Review: Stem Cell Therapy for Stroke Patients: Are We There Yet? Stem Cells Transl Med 2019; 8:983-988. [PMID: 31099181 PMCID: PMC6708064 DOI: 10.1002/sctm.19-0076] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Four decades of preclinical research demonstrating survival, functional integration, and behavioral effects of transplanted stem cells in experimental stroke models have provided ample scientific basis for initiating limited clinical trials of stem cell therapy in stroke patients. Although safety of the grafted cells has been overwhelmingly documented, efficacy has not been forthcoming. Two recently concluded stroke clinical trials on mesenchymal stem cells (MSCs) highlight the importance of strict adherence to the basic science findings of optimal transplant regimen of cell dose, timing, and route of delivery in enhancing the functional outcomes of cell therapy. Echoing the Stem Cell Therapeutics as an Emerging Paradigm for Stroke and Stroke Treatment Academic Industry Roundtable call for an NIH‐guided collaborative consortium of multiple laboratories in testing the safety and efficacy of stem cells and their derivatives, not just as stand‐alone but preferably in combination with approved thrombolytic or thrombectomy, may further increase the likelihood of successful fruition of translating stem cell therapy for stroke clinical application. The laboratory and clinical experience with MSC therapy for stroke may guide the future translational research on stem cell‐based regenerative medicine in neurological disorders. stem cells translational medicine2019;8:983&988
Collapse
Affiliation(s)
- Cesario V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
79
|
Wang H, Wei W, Lan X, Liu N, Li Y, Ma H, Sun T, Peng X, Zhuang C, Yu J. Neuroprotective Effect of Swertiamain on Cerebral Ischemia/Reperfusion Injury by Inducing the Nrf2 Protective Pathway. ACS Chem Neurosci 2019; 10:2276-2286. [PMID: 30753053 DOI: 10.1021/acschemneuro.8b00605] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress plays a vital role in the development of cerebral ischemic/reperfusion (I/R). Targeting oxidative stress is proposed to be an effective strategy to treat cerebral I/R injury. Gentiana macrophylla Pall is reported to have a potential protective effect against stroke. Swertiamarin (Swe), an active secoiridoid glycoside compound isolated from Gentiana macrophylla Pall, has been reported to possess antioxidative potential. This study is to explore whether Swe could prevent brain from I/R injury, and the related mechanisms of oxidative stress are also elucidated using mice middle cerebral artery occlusion (MCAO) model and primary hippocampal neurons oxygen-glucose deprivation/reperfusion (OGD/R) model. Swe (25, 100, or 400 mg/kg) was pretreated intraperitoneally for 7 days until establishment of the MCAO model, while hippocampal neurons were maintained in Swe (0.1, 1, or 10 μM) in the entire process of reoxygenation. The results indicated that Swe pretreatment markedly decreased infarct volume, apoptotic neurons, and oxidative damage and promoted neurologic recovery in vivo. It also decreased reactive oxygen species (ROS) and increased cell viability in vitro. Western blot analyses and immunofluorescence staining demonstrated that Swe pretreatment promoted Nrf2 nuclear translocation from Keap1-Nrf2 complex and enhanced the expressions of NAD(P)H: quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1) both in vivo and in vitro, while the expressions could be reversed by a Nrf2 inhibitor. The binding mode of Keap1 with Swe was also proposed by covalent molecular docking. Collectively, Swe could be considered as a promising protective agent against cerebral I/R injury through suppressing oxidative stress by activation of the Nrf2 protective pathway.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Wei Wei
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yuxiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaodong Peng
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Chunlin Zhuang
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P.R. China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
80
|
Abstract
Stroke remains a leading cause of disability and death worldwide despite significant scientific and therapeutic advances. Therefore, there is a critical need to improve stroke prevention and treatment. In this review, we describe several examples that leverage nucleic acid therapeutics to improve stroke care through prevention, acute treatment, and recovery. Aptamer systems are under development to increase the safety and efficacy of antithrombotic and thrombolytic treatment, which represent the mainstay of medical stroke therapy. Antisense oligonucleotide therapy has shown some promise in treating stroke causes that are genetically determined and resistant to classic prevention approaches such as elevated lipoprotein (a) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Targeting microRNAs may be attractive because they regulate factors involved in neuronal cell death and reperfusion-associated injury, as well as neurorestorative pathways. Lastly, microRNAs may aid reliable etiologic classification of stroke subtypes, which is important for effective secondary stroke prevention.
Collapse
Affiliation(s)
- Nils Henninger
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
- Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
| | - Yunis Mayasi
- Division of Neurocritical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| |
Collapse
|
81
|
Zhang NN, Zhao KT, Zhao ZA, Chen WL, Xu HB, Chen HS. A novel rat model of cerebral artery occlusion complicated with prior venous stagnation. J Neurosci Methods 2019; 318:100-103. [PMID: 30703390 DOI: 10.1016/j.jneumeth.2019.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND To establish a novel rat model of middle cerebral artery occlusion (MCAO) complicated with prior venous stagnation, and to investigate the role of cerebral venous drainage in neural injury after acute cerebral infarction. NEW METHOD Eighteen SD rats were randomly divided into two groups: control group and jugular vein ligation group. The left jugular vein ligation was performed to produce the jugular venous stagnation. In the control group, the jugular vein was exposed but not ligated. Cerebral blood flow (CBF) was measured through laser speckle imaging before and after the surgery. At 1 week after the surgery, CBF was again measured and then a left MCAO was performed in both groups. At 24 h after MCAO, neurological deficit scoring was performed and the infarct volume was measured by 2,3,5-triphenyltetrazolium chloride staining. RESULTS Compared with the control group, a significant decrease in the CBF level was observed immediately after the ligation. A moderate recovery in CBF level was observed at 1 week after the ligation. The neurological deficit scores were significantly higher in the ligation group than in the control group at 24 h after the MCAO. Additionally, the volume of cerebral infarction increased significantly in the ligation group compared with that in the control group at the 24 h after MCAO. COMPARISON WITH EXISTING METHOD(S) AND CONCLUSIONS The novel rat model of cerebral artery occlusion complicated with long-term unilateral venous stagnation indicates cerebral venous drainage impairment may aggravate behavioral impairment and increase infarct volume after cerebral infarction.
Collapse
Affiliation(s)
- Nan-Nan Zhang
- Department of Neurology, General Hospital of Shenyang Military Region, Shenyang, 110840, PR China
| | - Kai-Tao Zhao
- Department of Neurology, General Hospital of Shenyang Military Region, Shenyang, 110840, PR China
| | - Zi-Ai Zhao
- Department of Neurology, General Hospital of Shenyang Military Region, Shenyang, 110840, PR China
| | - Wan-Li Chen
- Department of Neurology, General Hospital of Shenyang Military Region, Shenyang, 110840, PR China
| | - Hai-Bin Xu
- Department of Neurology, General Hospital of Shenyang Military Region, Shenyang, 110840, PR China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Shenyang Military Region, Shenyang, 110840, PR China.
| |
Collapse
|
82
|
Ning K, Liu WW, Huang JL, Lu HT, Sun XJ. Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Med Gas Res 2019; 8:154-159. [PMID: 30713668 PMCID: PMC6352575 DOI: 10.4103/2045-9912.248266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
It has been confirmed that inflammation plays an important role in the pathogenesis of ischemic stroke. The polarization of microglia as an important participant in the inflammation following stroke is also found to be involved in stroke. This study aimed to investigate the effects of hydrogen gas on the polarization of macrophages/microglia in vitro. Raw264.7 cells were treated with lipopolysaccharides and then exposed to hydrogen. The microglia were treated with the supernatant from oxygen and glucose deprivation-treated neurons and then exposed to hydrogen. The phenotypes of Raw 264.7 cells and microglia were determined by flow cytometry, and cell morphology was observed. Results showed lipopolysaccharides significantly increased the M1 macrophages, and the supernatant from oxygen and glucose deprivation-treated neurons dramatically elevated the proportion of M1 microglia, but both treatments had little influence on the M2 cells. In addition, hydrogen treatment significantly inhibited the increase in M1 cells, but had no influence on M2 ones. Our findings suggest that the neuroprotection of hydrogen may be related to its regulation of microglia in the nervous system after stroke.
Collapse
Affiliation(s)
- Ke Ning
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| | - Jun-Long Huang
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| | - Hong-Tao Lu
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| | - Xue-Jun Sun
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| |
Collapse
|
83
|
He HY, Ren L, Guo T, Deng YH. Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke. Neural Regen Res 2019; 14:280-288. [PMID: 30531011 PMCID: PMC6301168 DOI: 10.4103/1673-5374.244793] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke often induces excessive neuronal autophagy, resulting in brain damage; meanwhile, inflammatory responses stimulated by ischemia exacerbate neural injury. However, interactions between neuronal autophagy and microglial inflammation following ischemic stroke are poorly understood. CX3CL1/fractalkine, a membrane-bound chemokine expressed on neurons, can suppress microglial inflammation by binding to its receptor CX3CR1 on microglia. In the present study, to investigate whether autophagy could alter CX3CL1 expression on neurons and consequently change microglial inflammatory activity, middle cerebral artery occlusion (MCAO) was established in Sprague-Dawley rats to model ischemic stroke, and tissues from the ischemic penumbra were obtained to evaluate autophagy level and microglial inflammatory activity. MCAO rats were administered 3-methyladenine (autophagy inhibitor) or Tat-Beclin 1 (autophagy inducer). Western blot assays were conducted to quantify expression of Beclin-1, nuclear factor kappa B p65 (NF-κB), light chain 3B (LC3B), and CX3CL1 in ischemic penumbra. Moreover, immunofluorescence staining was performed to quantify numbers of LC3B-, CX3CL1-, and Iba-1-positive cells in ischemic penumbra. In addition, enzyme linked immunosorbent assays were utilized to analyze concentrations of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and prostaglandin E2 (PGE2). A dry/wet weight method was used to detect brain water content, while 2,3,5,-triphenyltetrazolium chloride staining was utilized to measure infarct volume. The results demonstrated that autophagy signaling (Beclin-1 and LC3B expression) in penumbra was prominently activated by MCAO, while CX3CL1 expression on autophagic neurons was significantly reduced and microglial inflammation was markedly activated. However, after inhibition of autophagy signaling with 3-methyladenine, CX3CL1 expression on neurons was obviously increased, whereas Iba-1 and NF-κB expression was downregulated; TNF-α, IL-6, IL-1β, and PGE2 levels were decreased; and cerebral edema was obviously mitigated. In contrast, after treatment with the autophagy inducer Tat-Beclin 1, CX3CL1 expression on neurons was further reduced; Iba-1 and NF-κB expression was increased; TNF-α, IL-6, IL-1β, and PGE2 levels were enhanced; and cerebral edema was aggravated. Our study suggests that ischemia-induced neuronal autophagy facilitates microglial inflammatory injury after ischemic stroke, and the efficacy of this process may be associated with downregulated CX3CL1 expression on autophagic neurons.
Collapse
Affiliation(s)
- Hong-Yun He
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Lu Ren
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Tao Guo
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Yi-Hao Deng
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
84
|
Bossi S, Helleringer R, Galante M, Monlleó E, Trapero A, Rovira X, Daniel H, Llebaria A, McLean H. A Light-Controlled Allosteric Modulator Unveils a Role for mGlu 4 Receptors During Early Stages of Ischemia in the Rodent Cerebellar Cortex. Front Cell Neurosci 2018; 12:449. [PMID: 30542267 PMCID: PMC6277836 DOI: 10.3389/fncel.2018.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Metabotropic glutamate receptors (mGlus) are G Protein coupled-receptors that modulate synaptic transmission and plasticity in the central nervous system. Some act as autoreceptors to control neurotransmitter release at excitatory synapses and have become attractive targets for drug therapy to treat certain neurological disorders. However, the high degree of sequence conservation around the glutamate binding site makes the development of subtype-specific orthosteric ligands difficult to achieve. This problem can be circumvented by designing molecules that target specific less well conserved allosteric sites. One such allosteric drug, the photo-switchable compound OptoGluNAM4.1, has been recently employed to reversibly inhibit the activity of metabotropic glutamate 4 (mGlu4) receptors in cell cultures and in vivo. We studied OptoGluNAM4.1 as a negative modulator of neurotransmission in rodent cerebellar slices at the parallel fiber – Purkinje cell synapse. Our data show that OptoGluNAM4.1 antagonizes pharmacological activation of mGlu4 receptors in a fully reversible and photo-controllable manner. In addition, for the first time, this new allosteric modulator allowed us to demonstrate that, in brain slices from the rodent cerebellar cortex, mGlu4 receptors are endogenously activated in excitotoxic conditions, such as the early phases of simulated cerebellar ischemia, which is associated with elevated levels of extracellular glutamate. These findings support OptoGluNAM4.1 as a promising new tool for unraveling the role of mGlu4 receptors in the central nervous system in physio-pathological conditions.
Collapse
Affiliation(s)
- Simon Bossi
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Romain Helleringer
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Micaela Galante
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Ester Monlleó
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Ana Trapero
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Xavier Rovira
- Molecular Photopharmacology Research Group, The Tissue Repair and Regeneration Laboratory, University of Vic - Central University of Catalonia, Vic, Spain
| | - Hervé Daniel
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Heather McLean
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| |
Collapse
|
85
|
Jun-Long H, Yi L, Bao-Lian Z, Jia-Si L, Ning Z, Zhou-Heng Y, Xue-Jun S, Wen-Wu L. Necroptosis Signaling Pathways in Stroke: From Mechanisms to Therapies. Curr Neuropharmacol 2018; 16:1327-1339. [PMID: 29663889 PMCID: PMC6251040 DOI: 10.2174/1570159x16666180416152243] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/20/2017] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
It has been confirmed that apoptosis, autophagy and necrosis are the three major modes of cell death. For a long time, necrosis is regarded as a deranged or accidental cell demise. In recent years, there is evidence showing that necrotic cell death can be a well regulated and orchestrated event, which is also known as programmed cell death or “necroptosis”. Necroptosis can be triggered by a variety of external stimuli and regulated by a caspase-independent pathway. It plays a key role in the pathogenesis of some diseases including neurological diseases. In the past two decades, a variety of studies have revealed that the necroptosis related pathway is activated in stroke, and plays a crucial role in the pathogenesis of stroke. Moreover, necroptosis may serve as a potential target in the therapy of stroke because genetic or pharmacological inhibition of necroptosis has been shown to be neuroprotective in stroke in vitro and in vivo. In this review, we briefly summarize re-cent advances in necroptosis, introduce the mechanism and strategies targeting necroptosis in stroke, and finally propose some issues in the treatment of stroke by targeting necroptosis
Collapse
Affiliation(s)
- Huang Jun-Long
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Li Yi
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Zhao Bao-Lian
- Department of Naval Clinical Medicine, Second Military Medical University, Shanghai 200433, China
| | - Li Jia-Si
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhang Ning
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Ye Zhou-Heng
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Sun Xue-Jun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Liu Wen-Wu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
86
|
Sevoflurane Postconditioning Inhibits Autophagy Through Activation of the Extracellular Signal-Regulated Kinase Cascade, Alleviating Hypoxic-Ischemic Brain Injury in Neonatal Rats. Neurochem Res 2018; 44:347-356. [PMID: 30460641 DOI: 10.1007/s11064-018-2682-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 01/04/2023]
Abstract
Hypoxic-ischemic brain injury (HIBI) in neonates is one of the major contributors of newborn death and cognitive impairment. Numerous animal studies have demonstrated that autophagy is substantially increased in HIBI and that sevoflurane postconditioning (SPC) can attenuate HIBI. However, if SPC-induced neuroprotection inhibits autophagy in HIBI remains unknown. To investigate if cerebral protection induced by SPC is related to decreased autophagy in the setting of HIBI. Postnatal rats at day 7 (P7) were randomly assigned to 7 different groups: Sham, HIBI, SPC-HIBI, HIBI + rapamycin, SPC-HIBI + rapamycin, HIBI + p-extracellular signal-regulated kinase (p-ERK) inhibitor, and SPC-HIBI + p-ERK inhibitor. To induce HIBI, neonatal rats underwent left common carotid artery ligation, followed by 2 h of hypoxia (8% O2). Rats in the SPC groups were treated with 1 minimum alveolar concentration ([MAC], 2.4%) SPC for 30 min after HIBI induction. Markers of autophagy and expression of ERK cascade components were measured in the rat brains after 24 h. Spatial learning and memory function were examined 29-34 days after administration of an autophagy agonist or a p-ERK inhibitor. The expression of microtubule-associated proteins 1A/1B, light chain 3B II (LC3-II) and tuberous sclerosis complex 2 (TSC2) were decreased in the SPC-HIBI group compared to the HIBI group. Expression of the p62 sequestosome 1 (P62/SQSTM1) protein, p-ERK/ERK, phospho-mammalian target of rapamycin (p-mTOR) and phospho-p70S6 were increased in SPC-HIBI group. Rats within the SPC-HIBI groups that also received the p-ERK inhibitor or autophagy inhibitor demonstrated reduced cross platform times and increased escape latency. Approximately 30 min of 2.4% SPC treatment in the P7 rat HIBI model attenuated excessive autophagy in the brain by elevating the ERK cascade. This finding provides additional insight into HIBI and identifies new targets for therapeutic approaches to treat HIBI.
Collapse
|
87
|
Descloux C, Ginet V, Rummel C, Truttmann AC, Puyal J. Enhanced autophagy contributes to excitotoxic lesions in a rat model of preterm brain injury. Cell Death Dis 2018; 9:853. [PMID: 30154458 PMCID: PMC6113308 DOI: 10.1038/s41419-018-0916-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/16/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023]
Abstract
Cystic periventricular leukomalacia is commonly diagnosed in premature infants, resulting from severe hypoxic-ischemic white matter injury, and also involving some grey matter damage. Very few is known concerning the cell death pathways involved in these types of premature cerebral lesions. Excitotoxicity is a predominant mechanism of hypoxic-ischemic injury in the developing brain. Concomitantly, it has been recently shown that autophagy could be enhanced in excitotoxic conditions switching this physiological intracellular degradation system to a deleterious process. We here investigated the role of autophagy in a validated rodent model of preterm excitotoxic brain damage mimicking in some aspects cystic periventricular leukomalacia. An excitotoxic lesion affecting periventricular white and grey matter was induced by injecting ibotenate, a glutamate analogue, in the subcortical white matter (subcingulum area) of five-day old rat pups. Ibotenate enhanced autophagy in rat brain dying neurons at 24 h as shown by increased presence of autophagosomes (increased LC3-II and LC3-positive dots) and enhanced autophagic degradation (SQSTM1 reduction and increased number and size of lysosomes (LAMP1- and CATHEPSIN B-positive vesicles)). Co-injection of the pharmacological autophagy inhibitor 3-methyladenine prevented not only autophagy induction but also CASPASE-3 activation and calpain-dependent cleavage of SPECTRIN 24 h after the insult, thus providing a strong reduction of the long term brain injury (16 days after ibotenate injection) including lateral ventricle dilatation, decreases in cerebral tissue volume and in subcortical white matter thickness. The autophagy-dependent neuroprotective effect of 3-methyladenine was confirmed in primary cortical neuronal cultures using not only pharmacological but also genetic autophagy inhibition of the ibotenate-induced autophagy. Strategies inhibiting autophagy could then represent a promising neuroprotective approach in the context of severe preterm brain injuries.
Collapse
Affiliation(s)
- Céline Descloux
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Coralie Rummel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
88
|
Anthonymuthu TS, Kenny EM, Lamade AM, Kagan VE, Bayır H. Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 2018; 124:493-503. [PMID: 29964171 PMCID: PMC6098726 DOI: 10.1016/j.freeradbiomed.2018.06.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Oxidative stress is a major contributor to secondary injury signaling cascades following traumatic brain injury (TBI). The role of lipid peroxidation in the pathophysiology of a traumatic insult to neural tissue is increasingly recognized. As the methods to quantify lipid peroxidation have gradually improved, so has the understanding of mechanistic details of lipid peroxidation and related signaling events in the injury pathogenesis. While free-radical mediated, non-enzymatic lipid peroxidation has long been studied, recent advances in redox lipidomics have demonstrated the significant contribution of enzymatic lipid peroxidation to TBI pathogenesis. Complex interactions between inflammation, phospholipid peroxidation, and hydrolysis define the engagement of different cell death programs and the severity of injury and outcome. This review focuses on enzymatic phospholipid peroxidation after TBI, including the mechanism of production, signaling roles in secondary injury pathology, and temporal course of production with respect to inflammatory response. In light of the newly identified phospholipid oxidation mechanisms, we also discuss possible therapeutic targets to improve neurocognitive outcome after TBI. Finally, we discuss current limitations in identifying oxidized phospholipids and possible methodologic improvements that can offer a deeper insight into the region-specific distribution and subcellular localization of phospholipid oxidation after TBI.
Collapse
Affiliation(s)
- Tamil S Anthonymuthu
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Elizabeth M Kenny
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Andrew M Lamade
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States; Laboratory of Navigational Redox Lipidomics in Biomedicine, Department of Human Pathology, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, United States.
| |
Collapse
|
89
|
Li C, Cao X, Ma Z, Sun X, Hu F, Wang L. Effect of pre-surgery assessments on the prognosis of patients received extracranial-intracranial bypass surgery. Restor Neurol Neurosci 2018; 36:593-604. [PMID: 30010157 DOI: 10.3233/rnn-180848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Extracranial-intracranial (EC-IC) bypass surgery has been used to improve the conditions of cerebral ischemia symptoms for selected patients resulting from diverse complications such as stroke and atherosclerotic disease. However, several clinical trials showed EC-IC bypass surgery failed to prevent recurrent ischemic stroke in certain patients. OBJECTIVE Our clinical trial aimed to investigate whether there is a correlation between pre-surgery assessments and prognosis of patients received EC-IC bypass operation. METHODS We divided all patients into 4 groups according to their compensatory stages of cerebral ischemia. The values of cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP), and oxygen extraction fraction (OEF) were obtained by computed tomography perfusion (CTP), single photon emission computed tomography (SPECT), and positron emission tomography (PET) at different time points before and after EC-IC bypass surgery. We assessed the correlations between the compensatory stage with modified Rankin scale (mRS) scores, survival rates, stroke and TIA incidences over the 12 months after surgery. RESULTS Patients with normal CBF, normal or increased CBV, and normal OEF tended to have a better prognosis after the EI-CI bypass operation than patients with abnormal CBF, CBV and OEF. However, patients with abnormal CBF and CBV, and increased OEF showed elevated mRS, less survival rates, and higher stroke and TIA incidences over the 12 months after surgery, compared to the groups with normal CBF, CBV and OEF. CONCLUSIONS Our results suggest that a defined compensatory stage of cerebral ischemia might be useful for the prognosis of patients receiving EI-CI bypass surgery.
Collapse
Affiliation(s)
- Chen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Xuhua Cao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Zhizhao Ma
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Xiaofeng Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Fuguang Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Liqun Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
90
|
Neuroprotection of Cytisine Against Cerebral Ischemia–Reperfusion Injury in Mice by Regulating NR2B-ERK/CREB Signal Pathway. Neurochem Res 2018; 43:1575-1586. [DOI: 10.1007/s11064-018-2572-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
|
91
|
Domin H, Przykaza Ł, Kozniewska E, Boguszewski PM, Śmiałowska M. Neuroprotective effect of the group III mGlu receptor agonist ACPT-I after ischemic stroke in rats with essential hypertension. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:93-101. [PMID: 29438731 DOI: 10.1016/j.pnpbp.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/22/2018] [Accepted: 02/08/2018] [Indexed: 12/26/2022]
Abstract
Our previous studies have shown that ACPT-I [(1S, 3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid], a blood-brain barrier permeable agonist of group III metabotropic glutamate (mGlu) receptors, was neuroprotective against middle cerebral artery occlusion/reperfusion (MCAO/R) in normotensive rats. Preclinical studies are typically performed on healthy animals, whereas stroke patients predominately exhibit comorbidities, such as hypertension; therefore, in the present study, we investigated the effect of ACPT-I in spontaneously hypertensive rats (SHR) after MCAO/R. We examined the potential neuroprotective action of ACPT-I (30 mg/kg) when administered during occlusion or reperfusion via the assessment of not only the brain infarction volume but also motor (CatWalk gait analysis and open field test) and sensorimotor (vibrissae-evoked forelimb-placing test) functions following MCAO/R. We determined that ACPT-I not only reduced the cortico-striatal infarction but also improved several gait parameters (run speed, run and stand durations, swing speed and stride length) and mobility when administered 30 min after the start of the occlusion or 30 min after the start of reperfusion. Moreover, the sensorimotor function was improved in hypertensive rats treated with ACPT-I during occlusion. In conclusion, the current findings provide further evidence for the neuroprotective effects of ACPT-I against ischemic damage. These findings may have clinical implications because hypertension is an important risk factor for ischemic stroke.
Collapse
Affiliation(s)
- Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland.
| | - Łukasz Przykaza
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Department of Neurosurgery, Laboratory of Experimental Neurosurgery, A. Pawińskiego Street 5, 02-106 Warsaw, Poland.
| | - Ewa Kozniewska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Department of Neurosurgery, Laboratory of Experimental Neurosurgery, A. Pawińskiego Street 5, 02-106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Maria Śmiałowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland
| |
Collapse
|
92
|
Zhang H, Zhong K, Lu M, Mei Y, Tan E, Sun X, Tan W. Neuroprotective effects of isosteviol sodium through increasing CYLD by the downregulation of miRNA-181b. Brain Res Bull 2018; 140:392-401. [DOI: 10.1016/j.brainresbull.2018.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/29/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
|
93
|
Xu N, Zhang Y, Doycheva DM, Ding Y, Zhang Y, Tang J, Guo H, Zhang JH. Adiponectin attenuates neuronal apoptosis induced by hypoxia-ischemia via the activation of AdipoR1/APPL1/LKB1/AMPK pathway in neonatal rats. Neuropharmacology 2018; 133:415-428. [PMID: 29486166 DOI: 10.1016/j.neuropharm.2018.02.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/15/2018] [Accepted: 02/23/2018] [Indexed: 02/03/2023]
Abstract
Adiponectin is an important adipocyte-derived plasma protein that has beneficial effects on cardio- and cerebrovascular diseases. A low level of plasma Adiponectin is associated with increased mortality post ischemic stroke; however, little is known about the causal role of Adiponectin as well as its molecular mechanisms in neonatal hypoxia ischemia (HI). In the present study, ten-day-old rat pups were subjected to right common carotid artery ligation followed by 2.5 h hypoxia. Recombinant human Adiponectin (rh-Adiponectin) was administered intranasally 1 h post HI. Adiponectin Receptor 1 (AdipoR1) siRNA, APPL1 siRNA, LKB1 siRNA were administered through intracerebroventricular injection 48 h before HI. Brain infarct area measurement, neurological function test, western blot, Fluoro Jade C (FJC), TUNEL, and immunofluorescence staining were conducted. Results revealed that endogenous Adiponectin, AdipoR1 and APPL1 were increased in a time dependent manner after HI. Administration of rh-Adiponectin reduced brain infarct area, neuronal apoptosis, brain atrophy and improved neurological function at 24 h and 4 weeks post HI. Furthermore, rh-Adiponectin treatment increased Adiponectin, AdipoR1, APPL1, cytosolic LKB1, p-AMPK expression levels and thereby attenuated apoptosis as shown by the decreased expression of the pro-apoptotic marker, Cleaved Caspase 3 (C-Cas3), as well as the number of FJC and TUNEL positively stained neurons. AdipoR1, APPL1 and LKB1 siRNAs abolished the anti-apoptotic effects of rh-Adiponectin at 24 h after HI. Collectively, the data provided evidence that intranasal administration of rh-Adiponectin attenuated neuronal apoptosis at least in part via activating AdipoR1/APPL1/LKB1/AMPK signaling pathway. Adiponectin could represent a therapeutic target for treatment of neonatal hypoxic ischemic encephalopathy.
Collapse
MESH Headings
- AMP-Activated Protein Kinase Kinases
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adiponectin/therapeutic use
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Body Weight/drug effects
- Brain Infarction/drug therapy
- Brain Infarction/etiology
- Caspase 3/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Escape Reaction/drug effects
- Female
- Fluoresceins/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/pathology
- In Situ Nick-End Labeling
- Male
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurologic Examination
- Neurons/drug effects
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Reflex/drug effects
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Statistics, Nonparametric
- Swimming/physiology
- Time Factors
Collapse
Affiliation(s)
- Ningbo Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yixin Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yiting Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hongbo Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
94
|
DeGracia DJ, Taha D, Tri Anggraini F, Sutariya S, Rababeh G, Huang ZF. Abstraction and Idealization in Biomedicine: The Nonautonomous Theory of Acute Cell Injury. Brain Sci 2018; 8:E39. [PMID: 29495539 PMCID: PMC5870357 DOI: 10.3390/brainsci8030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/15/2023] Open
Abstract
Neuroprotection seeks to halt cell death after brain ischemia and has been shown to be possible in laboratory studies. However, neuroprotection has not been successfully translated into clinical practice, despite voluminous research and controlled clinical trials. We suggested these failures may be due, at least in part, to the lack of a general theory of cell injury to guide research into specific injuries. The nonlinear dynamical theory of acute cell injury was introduced to ameliorate this situation. Here we present a revised nonautonomous nonlinear theory of acute cell injury and show how to interpret its solutions in terms of acute biomedical injuries. The theory solutions demonstrate the complexity of possible outcomes following an idealized acute injury and indicate that a "one size fits all" therapy is unlikely to be successful. This conclusion is offset by the fact that the theory can (1) determine if a cell has the possibility to survive given a specific acute injury, and (2) calculate the degree of therapy needed to cause survival. To appreciate these conclusions, it is necessary to idealize and abstract complex physical systems to identify the fundamental mechanism governing the injury dynamics. The path of abstraction and idealization in biomedical research opens the possibility for medical treatments that may achieve engineering levels of precision.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA.
| | - Doaa Taha
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA.
| | - Fika Tri Anggraini
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA.
| | - Shreya Sutariya
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA.
| | - Gabriel Rababeh
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA.
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
95
|
Nuñez-Figueredo Y, Ramírez-Sánchez J, Pardo Andreu GL, Ochoa-Rodríguez E, Verdecia-Reyes Y, Souza DO. Multi-targeting effects of a new synthetic molecule (JM-20) in experimental models of cerebral ischemia. Pharmacol Rep 2018; 70:699-704. [PMID: 29933207 DOI: 10.1016/j.pharep.2018.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/15/2018] [Accepted: 02/09/2018] [Indexed: 11/30/2022]
Abstract
Ischemic stroke is a major cause of death and disability worldwide. Thrombolysis by tissue plasminogen activator is the only pharmacological treatment approved for clinical practice, but has a narrow therapeutic window and poor efficacy when the cell death cascade is activated. Numerous drugs that are thought to protect neurons against injury have previously failed in human trials despite showing efficacy in experimental models of stroke. Herein, we reviewed the main pre-clinical results of the neuroprotective effects of JM-20, a new hybrid molecule, against brain ischemia. JM-20 appears to protect the brain from ischemic damage by interfering with several elements of the ischemic cascade: antiexcitotoxic, anticalcic, antioxidant, antiapoptotic, and anti-inflammatory. Its ability to protect not only neurons but also glial cells together with its ability to target and preserve mitochondrial function makes JM-20 a promising molecule that may be able to shield the whole neurovascular unit. The multimodal and multi-cell action of JM-20 may explain the high degree of protection observed in a rat model of brain ischemia, as assayed through histological (hematoxylin-eosin, and luxol fast blue staining), neurochemical (glutamate and aspartate levels in cerebrospinal fluid), mitochondrial functionality and behavioural (neurological scale) analysis at doses of 4 and 8mg/kg. Furthermore, the wide therapeutic window of JM-20 of 8h also suggests that this molecule could be of potential interest in situations where brain perfusion is compromised.
Collapse
Affiliation(s)
| | | | - Gilberto L Pardo Andreu
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, La Habana, Cuba.
| | - Estael Ochoa-Rodríguez
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana (Zapata s/n entre G y Carlitos Aguirre, La Habana, Cuba
| | - Yamila Verdecia-Reyes
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana (Zapata s/n entre G y Carlitos Aguirre, La Habana, Cuba
| | - Diogo O Souza
- Departamento de Bioquímica, PPG em Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
96
|
bFGF plays a neuroprotective role by suppressing excessive autophagy and apoptosis after transient global cerebral ischemia in rats. Cell Death Dis 2018; 9:172. [PMID: 29416039 PMCID: PMC5833346 DOI: 10.1038/s41419-017-0229-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/20/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022]
Abstract
Transient global cerebral ischemia (tGCI) is a cerebrovascular disorder that can cause apoptotic neuronal damage and functional deficits. Basic fibroblast growth factor (bFGF) was reported to be highly expressed in the central nervous system (CNS) and to exert neuroprotective effects against different CNS diseases. However, the effects of bFGF on tGCI have not been studied intensively. This study was conducted to investigate the effect of bFGF and its underlying mechanism in an animal model of tGCI. After intracerebroventricular (i.c.v.) injection of bFGF, functional improvement was observed, and the number of viable neurons increased in the ischemia-vulnerable hippocampal CA1 region. Apoptosis was induced after tGCI and could be attenuated by bFGF treatment via inhibition of p53 mitochondrial translocation. In addition, autophagy was activated during this process, and bFGF could inhibit activation of autophagy through the mTOR pathway. Rapamycin, an activator of autophagy, was utilized to explore the relationship among bFGF, apoptosis, and autophagy. Apoptosis deteriorated after rapamycin treatment, which indicated that excessive autophagy could contribute to the apoptosis process. In conclusion, these results demonstrate that bFGF could exert neuroprotective effects in the hippocampal CA1 region by suppressing excessive autophagy via the mTOR pathway and inhibiting apoptosis by preventing p53 mitochondrial translocation. Furthermore, our results suggest that bFGF may be a promising therapeutic agent to for treating tGCI in response to major adverse events, including cardiac arrest, shock, extracorporeal circulation, traumatic hemorrhage, and asphyxiation.
Collapse
|
97
|
Ye L, Feng Z, Doycheva D, Malaguit J, Dixon B, Xu N, Zhang JH, Tang J. CpG-ODN exerts a neuroprotective effect via the TLR9/pAMPK signaling pathway by activation of autophagy in a neonatal HIE rat model. Exp Neurol 2017; 301:70-80. [PMID: 29274721 DOI: 10.1016/j.expneurol.2017.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
Hypoxic Ischemic Encephalopathy (HIE) is an injury caused to the brain due to prolonged lack of oxygen and blood supply which results in death or long-term disabilities. The main aim of this study was to investigate the role of Cytosine-phospho-guanine oligodeoxynucleotide (CpG-ODN) in autophagy after HIE. Ten-day old (P10) rat pups underwent right common carotid artery ligation followed by 2.5h of hypoxia as previously described by Rice-Vannucci. At 1h post HIE, rats were intranasally administered with recombinant CpG-ODN. Time-course expression levels of endogenous key proteins, TLR9, pAMPK/AMPK, LC3II/I, and LAMP1 involved in CpG-ODN's protective effects were measured using western blot. Short (48h) and long (4w) term neurobehavior studies were performed using righting reflex, negative geotaxis, water maze, foot fault and Rota rod tests. Brain samples were collected after long term for histological analysis. Furthermore, to elucidate the pathway via which CpG-ODN confers protection, TLR9 and AMPK inhibitors were used. Time course results showed that the expression of TLR9, pAMPK/AMPK, LC3II/I, LAMP1 increased after HIE. Neurobehavioral studies showed that HIE induced a significant delay in development and resulted in cognitive and motor function deficits. However, CpG-ODN ameliorated HIE-induced outcomes and improved long term neurological deficits. In addition, CpG-ODN increased expression of pAMPK/AMPK, p-ULK1/ULK1, P-AMBRA1/AMBRA1, LC3II/I and LAMP1 while inhibition of TLR9 and AMPK reversed those effects. In summary, CpG-ODN increased HIE-induced autophagy and improved short and long term neurobehavioral outcomes which may be mediated by the TLR9/pAMPK signaling pathway after HIE.
Collapse
Affiliation(s)
- Lan Ye
- The Medical Function Laboratory of Experimental Teaching Center of Basic Medicine, Guizhou Medical University, Guiyang 550004, China; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States
| | - Desislava Doycheva
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States.
| | - Jay Malaguit
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States
| | - Brandon Dixon
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States.
| | - Ningbo Xu
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States
| | - John H Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States
| | - Jiping Tang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92354, CA, United States.
| |
Collapse
|
98
|
Lytton WW, Arle J, Bobashev G, Ji S, Klassen TL, Marmarelis VZ, Schwaber J, Sherif MA, Sanger TD. Multiscale modeling in the clinic: diseases of the brain and nervous system. Brain Inform 2017; 4:219-230. [PMID: 28488252 PMCID: PMC5709279 DOI: 10.1007/s40708-017-0067-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
Computational neuroscience is a field that traces its origins to the efforts of Hodgkin and Huxley, who pioneered quantitative analysis of electrical activity in the nervous system. While also continuing as an independent field, computational neuroscience has combined with computational systems biology, and neural multiscale modeling arose as one offshoot. This consolidation has added electrical, graphical, dynamical system, learning theory, artificial intelligence and neural network viewpoints with the microscale of cellular biology (neuronal and glial), mesoscales of vascular, immunological and neuronal networks, on up to macroscales of cognition and behavior. The complexity of linkages that produces pathophysiology in neurological, neurosurgical and psychiatric disease will require multiscale modeling to provide understanding that exceeds what is possible with statistical analysis or highly simplified models: how to bring together pharmacotherapeutics with neurostimulation, how to personalize therapies, how to combine novel therapies with neurorehabilitation, how to interlace periodic diagnostic updates with frequent reevaluation of therapy, how to understand a physical disease that manifests as a disease of the mind. Multiscale modeling will also help to extend the usefulness of animal models of human diseases in neuroscience, where the disconnects between clinical and animal phenomenology are particularly pronounced. Here we cover areas of particular interest for clinical application of these new modeling neurotechnologies, including epilepsy, traumatic brain injury, ischemic disease, neurorehabilitation, drug addiction, schizophrenia and neurostimulation.
Collapse
Affiliation(s)
- William W. Lytton
- Department of Physiology and Pharmacology and Neurology, SUNY Downstate, Kings County Hospital, Brooklyn, NY 11203 USA
| | | | | | - Songbai Ji
- Thayer School of Engineering, Department of Surgery and of Orthopaedic Surgery, Geisel School of Medicine, Dartmouth College, Hanover, NH 3755 USA
| | | | | | | | - Mohamed A. Sherif
- Yale U, New Haven, CT USA
- VA Connecticut Healthcare System, West Haven, CT USA
- Ain Shams U Institute of Psychiatry, Cairo, Egypt
| | | |
Collapse
|
99
|
Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 2017; 9:437-451. [DOI: 10.1007/s12975-017-0593-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
|
100
|
Hobson BA, Rowland DJ, Supasai S, Harvey DJ, Lein PJ, Garbow JR. A magnetic resonance imaging study of early brain injury in a rat model of acute DFP intoxication. Neurotoxicology 2017; 66:170-178. [PMID: 29183789 DOI: 10.1016/j.neuro.2017.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022]
Abstract
Current treatments for seizures induced by organophosphates do not protect sufficiently against progressive neurodegeneration or delayed cognitive impairment. Developing more effective therapeutic approaches has been challenging because the pathogenesis of these delayed consequences is poorly defined. Using magnetic resonance imaging (MRI), we previously reported brain lesions that persist for months in a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP). However, the early spatiotemporal progression of these lesions remains unknown. To address this data gap, we used in vivo MRI to longitudinally monitor brain lesions during the first 3 d following acute DFP intoxication. Adult male Sprague Dawley rats acutely intoxicated with DFP (4mg/kg, sc) were MR imaged at 6, 12, 18, 24, 48, 72h post-DFP, and their brains then taken for correlative histology to assess neurodegeneration using FluoroJade C (FJC) staining. Acute DFP intoxication elicited moderate-to-severe seizure activity. T2-weighted (T2w) anatomic imaging revealed prominent lesions within the thalamus, piriform cortex, cerebral cortex, hippocampus, corpus striatum, and substantia nigra that corresponded to neurodegeneration, evident as bands of FJC positive cells. Semi-quantitative assessment of lesion severity demonstrated significant regional variation in the onset and progression of injury, and suggested that lesion severity may be modulated by isoflurane anesthesia. These results imply that the timing of therapeutic intervention for attenuating brain injury following OP intoxication may be regionally dependent, and that longitudinal assessment of OP-induced damage by MRI may be a powerful tool for assessing therapeutic response.
Collapse
Affiliation(s)
- Brad A Hobson
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, Davis, CA, 95616, United States.
| | - Suangsuda Supasai
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Joel R Garbow
- Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, School of Medicine,Washington University in St. Louis, St. Louis, MO, 63110, United States.
| |
Collapse
|