51
|
Jiang CK, Ma JQ, Apostolides Z, Chen L. Metabolomics for a Millenniums-Old Crop: Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6445-6457. [PMID: 31117495 DOI: 10.1021/acs.jafc.9b01356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tea cultivation and utilization dates back to antiquity. Today it is the most widely consumed beverage on earth due to its pleasant taste and several beneficial health properties attributed to specific metabolites. Metabolomics has a tremendous potential to correlate tea metabolites with taste and health properties in humans. Our review on the current application of metabolomics in the science of tea suggests that metabolomics is a promising frontier in the evaluation of tea quality, identification of functional genes responsible for key metabolites, investigation of their metabolic regulation, and pathway analysis in the tea plant. Furthermore, the challenges, possible solutions, and the prospects of metabolomics in tea science are reviewed.
Collapse
Affiliation(s)
- Chen-Kai Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | - Zeno Apostolides
- Department of Biochemistry, Genetics and Microbiology , University of Pretoria , Pretoria 0002 , South Africa
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| |
Collapse
|
52
|
Girelli CR, Angilè F, Del Coco L, Migoni D, Zampella L, Marcelletti S, Cristella N, Marangi P, Scortichini M, Fanizzi FP. 1H-NMR Metabolite Fingerprinting Analysis Reveals a Disease Biomarker and a Field Treatment Response in Xylella fastidiosa subsp. pauca-Infected Olive Trees. PLANTS (BASEL, SWITZERLAND) 2019; 8:E115. [PMID: 31035723 PMCID: PMC6571561 DOI: 10.3390/plants8050115] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022]
Abstract
Xylella fastidiosa subsp. pauca is a xylem-limited bacterial phytopathogen currently found associated on many hectares with the "olive quick decline syndrome" in the Apulia region (Southern Italy), and the cultivars Ogliarola salentina and Cellina di Nardò result in being particularly sensitive to the disease. In order to find compounds showing the capability of reducing the population cell density of the pathogen within the leaves, we tested, in some olive orchards naturally-infected by the bacterium, a zinc-copper-citric acid biocomplex, namely Dentamet®, by spraying it to the crown, once per month, during spring and summer. The occurrence of the pathogen in the four olive orchards chosen for the trial was molecularly assessed. A 1H NMR metabolomic approach, in conjunction with a multivariate statistical analysis, was applied to investigate the metabolic pattern of both infected and treated adult olive cultivars, Ogliarola salentina and Cellina di Nardò trees, in two sampling periods, performed during the first year of the trial. For both cultivars and sampling periods, the orthogonal partial least squares discriminant analysis (OPLS-DA) gave good models of separation according to the treatment application. In both cultivars, some metabolites such as quinic acid, the aldehydic form of oleoeuropein, ligstroside and phenolic compounds, were consistently found as discriminative for the untreated olive trees in comparison with the Dentamet®-treated trees. Quinic acid, a precursor of lignin, was confirmed as a disease biomarker for the olive trees infected by X. fastidiosa subsp. pauca. When treated with Dentamet®, the two cultivars showed a distinct response. A consistent increase in malic acid was observed for the Ogliarola salentina trees, whereas in the Cellina di Nardò trees the treatments attenuate the metabolic response to the infection. To note that in Cellina di Nardò trees at the first sampling, an increase in γ-aminobutyric acid (GABA) was observed. This study highlights how the infection incited by X. fastidiosa subsp. pauca strongly modifies the overall metabolism of olive trees, and how a zinc-copper-citric acid biocomplex can induce an early re-programming of the metabolic pathways in the infected trees.
Collapse
Affiliation(s)
- Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Federica Angilè
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Luigi Zampella
- Council for Agricultural research and Economics-Research Centre for Olive, Fruit Trees and Citrus, Via Torrino, 3, I-81100, Caserta, Italy.
| | - Simone Marcelletti
- Council for Agricultural research and Economics-Research Centre for Olive, Fruit Trees and Citrus, Via Torrino, 3, I-81100, Caserta, Italy.
| | - Nicola Cristella
- Studio Agro-Ambientale ed Ingegneria Terranostra srls, Via XXIV Maggio, 10, I-74020 Lizzano (TA), Italy.
| | - Paolo Marangi
- Studio Agro-Ambientale ed Ingegneria Terranostra srls, Via XXIV Maggio, 10, I-74020 Lizzano (TA), Italy.
| | - Marco Scortichini
- Council for Agricultural research and Economics-Research Centre for Olive, Fruit Trees and Citrus, Via Torrino, 3, I-81100, Caserta, Italy.
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
53
|
Metabolites identification of (+)-usnic acid in vivo by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Fitoterapia 2019; 133:85-95. [DOI: 10.1016/j.fitote.2018.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 01/31/2023]
|
54
|
Deborde C, Fontaine JX, Jacob D, Botana A, Nicaise V, Richard-Forget F, Lecomte S, Decourtil C, Hamade K, Mesnard F, Moing A, Molinié R. Optimizing 1D 1H-NMR profiling of plant samples for high throughput analysis: extract preparation, standardization, automation and spectra processing. Metabolomics 2019; 15:28. [PMID: 30830443 PMCID: PMC6394467 DOI: 10.1007/s11306-019-1488-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/07/2019] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Proton nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic profiling has a range of applications in plant sciences. OBJECTIVES The aim of the present work is to provide advice for minimizing uncontrolled variability in plant sample preparation before and during NMR metabolomic profiling, taking into account sample composition, including its specificity in terms of pH and paramagnetic ion concentrations, and NMR spectrometer performances. METHODS An automation of spectrometer preparation routine standardization before NMR acquisition campaign was implemented and tested on three plant sample sets (extracts of durum wheat spikelet, Arabidopsis leaf and root, and flax leaf, root and stem). We performed 1H-NMR spectroscopy in three different sites on the wheat sample set utilizing instruments from two manufacturers with different probes and magnetic field strengths. The three collections of spectra were processed separately with the NMRProcFlow web tool using intelligent bucketing, and the resulting buckets were subjected to multivariate analysis. RESULTS Comparability of large- (Arabidopsis) and medium-size (flax) datasets measured at 600 MHz and from the wheat sample set recorded at the three sites (400, 500 and 600 MHz) was exceptionally good in terms of spectral quality. The coefficient of variation of the full width at half maximum (FWHM) and the signal-to-noise ratio (S/N) of two selected peaks was comprised between 5 and 10% depending on the size of sample set and the spectrometer field. EDTA addition improved citrate and malate resonance patterns for wheat sample sets. A collection of 22 samples of wheat spikelet extracts was used as a proof of concept and showed that the data collected at the three sites on instruments of different field strengths and manufacturers yielded the same discrimination pattern of the biological groups. CONCLUSION Standardization or automation of several steps from extract preparation to data reduction improves data quality for small to large collections of plant samples of different origins.
Collapse
Affiliation(s)
- Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Nouvelle Aquitaine Bordeaux, INRA, Univ. Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Jean-Xavier Fontaine
- BIOPI - EA 3900, Univ. Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens Cedex, France
| | - Daniel Jacob
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Nouvelle Aquitaine Bordeaux, INRA, Univ. Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Adolfo Botana
- JEOL UK, Silver Court, Watchmead Road, Welwyn Garden City, AL7 1LT UK
| | - Valérie Nicaise
- UR1264 MycSA, INRA, Centre INRA de Nouvelle Aquitaine Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Florence Richard-Forget
- UR1264 MycSA, INRA, Centre INRA de Nouvelle Aquitaine Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Sylvain Lecomte
- BIOPI - EA 3900, Univ. Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens Cedex, France
| | - Cédric Decourtil
- BIOPI - EA 3900, Univ. Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens Cedex, France
| | - Kamar Hamade
- BIOPI - EA 3900, Univ. Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens Cedex, France
| | - François Mesnard
- BIOPI - EA 3900, Univ. Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens Cedex, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Nouvelle Aquitaine Bordeaux, INRA, Univ. Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Roland Molinié
- BIOPI - EA 3900, Univ. Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens Cedex, France
| |
Collapse
|
55
|
Statistically correlating NMR spectra and LC-MS data to facilitate the identification of individual metabolites in metabolomics mixtures. Anal Bioanal Chem 2019; 411:1301-1309. [PMID: 30793214 DOI: 10.1007/s00216-019-01600-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/16/2018] [Accepted: 01/11/2019] [Indexed: 01/02/2023]
Abstract
NMR and LC-MS are two powerful techniques for metabolomics studies. In NMR spectra and LC-MS data collected on a series of metabolite mixtures, signals of the same individual metabolite are quantitatively correlated, based on the fact that NMR and LC-MS signals are derived from the same metabolite covary. Deconvoluting NMR spectra and LC-MS data of the mixtures through this kind of statistical correlation, NMR and LC-MS spectra of individual metabolites can be obtained as if the specific metabolite is virtually isolated from the mixture. Integrating NMR and LC-MS spectra, more abundant and orthogonal information on the same compound can significantly facilitate the identification of individual metabolites in the mixture. This strategy was demonstrated by deconvoluting 1D 13C, DEPT, HSQC, TOCSY, and LC-MS spectra acquired on 10 mixtures consisting of 6 typical metabolites with varying concentration. Based on statistical correlation analysis, NMR and LC-MS signals of individual metabolites in the mixtures can be extracted as if their spectra are acquired on the purified metabolite, which notably facilitates structure identification. Statistically correlating NMR spectra and LC-MS data (CoNaM) may represent a novel approach to identification of individual compounds in a mixture. The success of this strategy on the synthetic metabolite mixtures encourages application of the proposed strategy of CoNaM to biological samples (such as serum and cell extracts) in metabolomics studies to facilitate identification of potential biomarkers.
Collapse
|
56
|
Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombié S, Gibon Y, Pétriacq P. Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1091. [PMID: 31620143 PMCID: PMC6760520 DOI: 10.3389/fpls.2019.01091] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/09/2019] [Indexed: 05/02/2023]
Abstract
Plant central metabolism generates reactive oxygen species (ROS), which are key regulators that mediate signalling pathways involved in developmental processes and plant responses to environmental fluctuations. These highly reactive metabolites can lead to cellular damage when the reduction-oxidation (redox) homeostasis becomes unbalanced. Whilst decades of research have studied redox homeostasis in leaves, fundamental knowledge in fruit biology is still fragmentary. This is even more surprising when considering the natural profusion of fruit antioxidants that can process ROS and benefit human health. In this review, we explore redox biology in fruit and provide an overview of fruit antioxidants with recent examples. We further examine the central role of the redox hub in signalling during development and stress, with particular emphasis on ascorbate, also referred to as vitamin C. Progress in understanding the molecular mechanisms involved in the redox regulations that are linked to central metabolism and stress pathways will help to define novel strategies for optimising fruit nutritional quality, fruit production and storage.
Collapse
Affiliation(s)
- Guillaume Decros
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| | - Pierre Baldet
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Amélie Flandin
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| |
Collapse
|
57
|
Amirova KM, Dimitrova P, Marchev AS, Aneva IY, Georgiev MI. Clinopodium vulgare L. (wild basil) extract and its active constituents modulate cyclooxygenase-2 expression in neutrophils. Food Chem Toxicol 2018; 124:1-9. [PMID: 30481570 DOI: 10.1016/j.fct.2018.11.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/26/2022]
Abstract
Clinopodium vulgare L. (wild basil) has a wide range of ethnopharmacological applications and accumulates a broad spectrum of phenolic compounds, recognized for their anti-inflammatory and anticancer properties. The triggered cyclooxygenase-2 (COX-2) expression is creating an immunosuppressive microenvironment in the inflamed tissue and considered to be the main cause of failure of even new anticancer-/immune-therapies. Nowadays, selective and novel plant-derived COX-2 inhibitors with safe profile are subject of profound research interest. This study aimed to analyze the metabolic profile of C. vulgare and search for phenolic molecules with potential biological properties. By application of 1H and 2D-NMR (Nuclear Magnetic Resonance) profiling, caffeic, chlorogenic acids and catechin were identified along with a bunch of primary and secondary metabolites. Further, the biological effect of C. vulgare extract (CVE) and its constituents on zymosan-induced COX-2 expression and apoptosis of murine neutrophils have been studied. The CVE, caffeic and chlorogenic acids inhibited zymosan-induced COX-2 expression in bone marrow neutrophils, in vitro and in vivo activated. The obtained data indicate that CVE may have a good potential to manipulate neutrophil functions, however, its action may depend on the cellular state, the inflammatory milieu and the relative content of caffeic and chlorogenic acid in the extract.
Collapse
Affiliation(s)
| | - Petya Dimitrova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113, Sofia, Bulgaria
| | - Andrey S Marchev
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Ina Y Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Milen I Georgiev
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria.
| |
Collapse
|
58
|
Zhang M, Otake K, Miyauchi Y, Yagi M, Yonei Y, Miyakawa T, Tanokura M. Comprehensive NMR analysis of two kinds of post-fermented tea and their anti-glycation activities in vitro. Food Chem 2018; 277:735-743. [PMID: 30502210 DOI: 10.1016/j.foodchem.2018.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
Post-fermented tea (dark tea) is produced from enzyme-inactivated fresh tea leaves by microbial fermentation. Batabata tea and Awaban tea are two major dark teas fermented under aerobic and anaerobic conditions, respectively. However, how their chemical compositions and functionalities change during different post-fermentation processes remains unclear. Nuclear magnetic resonance (NMR)-based analyses showed that (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC) and (-)-epicatechin (EC) decreased in Batabata tea during post-fermentation with aerobic molds. In contrast, EGC and EC increased, and pyrogallol was produced in Awaban tea during post-fermentation with lactic acid bacteria (LAB). The anti-glycation activities of two dark teas were investigated using an in vitro assay system with human serum albumin (HSA). The anti-glycation activity decreased in Batabata tea, but it was retained in Awaban tea during post-fermentation. Our results showed that post-fermentation with LAB was an efficient way to enhance phenol content and that pyrogallol contributed to anti-glycation activity of Awaban tea.
Collapse
Affiliation(s)
- Mimin Zhang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenichiro Otake
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yumiko Miyauchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayuki Yagi
- Anti-Aging Medical Research Center, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
59
|
Cerulli A, Masullo M, Montoro P, Hošek J, Pizza C, Piacente S. Metabolite profiling of "green" extracts of Corylus avellana leaves by 1H NMR spectroscopy and multivariate statistical analysis. J Pharm Biomed Anal 2018; 160:168-178. [PMID: 30096647 DOI: 10.1016/j.jpba.2018.07.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 01/26/2023]
Abstract
Corylus avellana L. (Betulaceae) leaves, consumed as infusion, are used in traditional medicine, for the treatment of hemorrhoids, varicose veins, phlebitis, and edema due to their astringent, vasoprotective, and antiedema properties. In previous works we reported from the leaves of Corylus avellana cv. "Tonda di Giffoni" diarylheptanoid derivatives, a class of plant secondary metabolites with a wide variety of bioactivities. With the aim to give an interesting and economically feasible opportunity to C. avellana leaves as source of functional ingredients for pharmaceutical and cosmetic formulations, "green" extracts were prepared by employing "eco-friendly" extraction protocols as maceration, infusion and SLDE-Naviglio extraction. Metabolite profiles of the extracts were obtained by 1H NMR experiments and data were processed by multivariate statistical analysis to highlight differences in the extracts and to evidence the extracts with the highest concentrations of bioactive metabolites. Based on the NMR data, a total of 31 compounds were identified. The metabolite variation among the extracts was evaluated using Principle Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA). Furthermore, the total phenolic content of the extracts was measured by Folin-Ciocalteu colorimetric assay and the antioxidant activity of extracts was assayed by the spectrophotometric tests DPPH• and ABTS and by an in vitro test based on the evaluation of cellular reactive oxygen species production stimulated by pyocyanin.
Collapse
Affiliation(s)
- Antonietta Cerulli
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Milena Masullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy
| | - Paola Montoro
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy
| | - Jan Hošek
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 60200, Brno, Czech Republic
| | - Cosimo Pizza
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy
| | - Sonia Piacente
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
60
|
Anokwuru C, Sigidi M, Boukandou M, Tshisikhawe P, Traore A, Potgieter N. Antioxidant Activity and Spectroscopic Characteristics of Extractable and Non-Extractable Phenolics from Terminalia sericea Burch. ex DC. Molecules 2018; 23:E1303. [PMID: 29844261 PMCID: PMC6099621 DOI: 10.3390/molecules23061303] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to determine the antioxidant activity of the extractable and non-extractable phenolics of Terminalia. Sericea Burch. Ex DC. Free, ester bound, ether or glycoside bound and insoluble phenolics were extracted from the fruit, leaves, stem, and root samples. Follin Ciocalteu was used to estimate the phenolic content while DPPH (2,2-diphenyl-1-picrylhydrazyl) assay was used to determine the antioxidant activity. The data obtained were subjected to multivariate analysis for relationships. The result indicated that the highest average total phenolic contents and antioxidant activities were found in the free (14.8 mgGAE/g; IC50 6.8 μg/mL) and ester bound (15.1 mgGAE/g; IC50 6.4 μg/mL) extractable phenolics. There was a strong negative correlation between TPC and DPPH (r = -0.828). Agglomerative hierarchical clustering revealed three clusters. Cluster one contained the insoluble and glycoside phenolics while cluster 2 contained only free phenolic acid of the root. The third cluster was predominantly free and ester bound phenolic extracts. The principal component analysis score plot indicated two major clusters with factor 1 (F1) explaining 61% of the variation. The nuclear magnetic resonance spectroscopy spectra indicated that gallic acid and resveratrol are the major phenolic compounds present in the root. This study has demonstrated that extractable phenolics contributed more to the antioxidant activities compared to the non-extractables.
Collapse
Affiliation(s)
- Chinedu Anokwuru
- Chemistry Department, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Muendi Sigidi
- Microbiology Department, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Marlaine Boukandou
- Microbiology Department, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Peter Tshisikhawe
- Botany Department, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Afsatou Traore
- Microbiology Department, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Natasha Potgieter
- School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| |
Collapse
|
61
|
Wedeking R, Maucourt M, Deborde C, Moing A, Gibon Y, Goldbach HE, Wimmer MA. 1H-NMR metabolomic profiling reveals a distinct metabolic recovery response in shoots and roots of temporarily drought-stressed sugar beets. PLoS One 2018; 13:e0196102. [PMID: 29738573 PMCID: PMC5940195 DOI: 10.1371/journal.pone.0196102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/08/2018] [Indexed: 11/19/2022] Open
Abstract
Yield formation in regions with intermittent drought periods depends on the plant’s ability to recover after cessation of the stress. The present work assessed differences in metabolic recovery of leaves and roots of drought-stressed sugar beets with high temporal resolution. Plants were subjected to drought for 13 days, and rewatered for 12 days. At one to two-day intervals, plant material was harvested for untargeted 1H-NMR metabolomic profiling, targeted analyses of hexose-phosphates, starch, amino acids, nitrate and proteins, and physiological measurements including relative water content, osmotic potential, electrolyte leakage and malondialdehyde concentrations. Drought triggered changes in primary metabolism, especially increases in amino acids in both organs, but leaves and roots responded with different dynamics to rewatering. After a transient normalization of most metabolites within 8 days, a second accumulation of amino acids in leaves might indicate a stress imprint beneficial in upcoming drought events. Repair mechanisms seemed important during initial recovery and occurred at the expense of growth for at least 12 days. These results indicate that organ specific metabolic recovery responses might be related to distinct functions and concomitant disparate stress levels in above- and belowground organs. With respect to metabolism, recovery was not simply a reversal of the stress responses.
Collapse
Affiliation(s)
- Rita Wedeking
- Department of Plant Nutrition, INRES, University of Bonn, Bonn, Germany
| | - Mickaël Maucourt
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux- MetaboHUB, Centre de Génomique Fonctionnelle - IBVM, Villenave d’Ornon, France
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux- MetaboHUB, Centre de Génomique Fonctionnelle - IBVM, Villenave d’Ornon, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux- MetaboHUB, Centre de Génomique Fonctionnelle - IBVM, Villenave d’Ornon, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
| | | | - Monika A. Wimmer
- Department of Plant Nutrition, INRES, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
62
|
Fan K, Zhang M. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology. Crit Rev Food Sci Nutr 2018; 59:2202-2213. [PMID: 29451810 DOI: 10.1080/10408398.2018.1441124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nuclear magnetic resonance (NMR) is a rapid, accurate and non-invasive technology and widely used to detect the quality of food, particularly to fruits and vegetables, meat and aquatic products. This review is a survey of recent developments in experimental results for the quality of food on various NMR technologies in processing and storage over the past decade. Following a discussion of the quality discrimination and classification of food, analysis of food compositions and detection of physical, chemical, structural and microbiological properties of food are outlined. Owing to high cost, low detection limit and sensitivity, the professional knowledge involved and the safety issues related to the maintenance of the magnetic field, so far the practical applications are limited to detect small range of food. In order to promote applications for a broader range of foods further research and development efforts are needed to overcome the limitations of NMR in the detection process. The needs and opportunities for future research and developments are outlined.
Collapse
Affiliation(s)
- Kai Fan
- a State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , Jiangsu , China.,b International Joint Laboratory on Food Safety, Jiangnan University , Wuxi , Jiangsu , China
| | - Min Zhang
- a State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , Jiangsu , China.,c Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University , Wuxi , Jiangsu , China
| |
Collapse
|