51
|
Ricigliano VA, Mott BM, Floyd AS, Copeland DC, Carroll MJ, Anderson KE. Honey bees overwintering in a southern climate: longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci Rep 2018; 8:10475. [PMID: 29992997 PMCID: PMC6041268 DOI: 10.1038/s41598-018-28732-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
Honey bee colony nutritional ecology relies on the acquisition and assimilation of floral resources across a landscape with changing forage conditions. Here, we examined the impact of nutrition and queen age on colony health across extended periods of reduced forage in a southern climate. We measured conventional hive metrics as well as colony-level gene expression of eight immune-related genes and three recently identified homologs of vitellogenin (vg), a storage glycolipoprotein central to colony nutritional state, immunity, oxidative stress resistance and life span regulation. Across three apiary sites, concurrent longitudinal changes in colony-level gene expression and nutritional state reflected the production of diutinus (winter) bees physiologically altered for long-term nutrient storage. Brood production by young queens was significantly greater than that of old queens, and was augmented by feeding colonies supplemental pollen. Expression analyses of recently identified vg homologs (vg-like-A, -B, and -C) revealed distinct patterns that correlated with colony performance, phenology, and immune-related gene transcript levels. Our findings provide new insights into dynamics underlying managed colony performance on a large scale. Colony-level, molecular physiological profiling is a promising approach to effectively identify factors influencing honey bee health in future landscape and nutrition studies.
Collapse
Affiliation(s)
| | - Brendon M Mott
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Amy S Floyd
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Duan C Copeland
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA.,Department of Microbiology, School of Animal & Comparative Biomedical Sciences; University of Arizona, Tucson, AZ, 85721, USA
| | - Mark J Carroll
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Kirk E Anderson
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA. .,Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
52
|
Hernando MD, Gámiz V, Gil-Lebrero S, Rodríguez I, García-Valcárcel AI, Cutillas V, Fernández-Alba AR, Flores JM. Viability of honeybee colonies exposed to sunflowers grown from seeds treated with the neonicotinoids thiamethoxam and clothianidin. CHEMOSPHERE 2018; 202:609-617. [PMID: 29597178 DOI: 10.1016/j.chemosphere.2018.03.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
In this study, honeybee colonies were monitored in a field study conducted on sunflowers grown from seeds treated with the systemic neonicotinoids thiamethoxam or clothianidin. This field trial was carried out in different representative growing areas in Spain over a beekeeping season. The health and development of the colonies was assessed by measuring factors that have a significant influence on their strength and overwintering ability. The parameters assessed were: colony strength (adult bees), brood development, amount of pollen and honey stores and presence and status of the queen. The concentration of residues (clothianidin and thiamethoxam) in samples of beebread and in adult bees was at the level of ng.g-1; in the ranges of 0.10-2.89 ng g-1 and 0.05-0.12 ng g-1; 0.10-0.37 ng g-1 and 0.01-0.05 ng g-1, respectively. Multivariate models were applied to evaluate the interaction among factors. No significant differences were found between the honeybee colonies of the different treatment groups, either exposed or not to the neonicotinoids. The seasonal development of the colonies was affected by the environmental conditions which, together with the initial strength of the bee colonies and the characteristics of the plots, had a significant effect on the different variables studied.
Collapse
Affiliation(s)
- M Dolores Hernando
- National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain.
| | - Victoria Gámiz
- Department of Zoology, University of Córdoba, Campus of Rabanales, 14071, Córdoba, Spain
| | - Sergio Gil-Lebrero
- Department of Zoology, University of Córdoba, Campus of Rabanales, 14071, Córdoba, Spain
| | - Inmaculada Rodríguez
- Department of Nutrition and Bromatology, University of Córdoba, Campus of Rabanales, 14071, Córdoba, Spain
| | - Ana I García-Valcárcel
- National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - V Cutillas
- Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria. European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, 04120, Almería, Spain
| | - Amadeo R Fernández-Alba
- Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria. European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, 04120, Almería, Spain
| | - José M Flores
- Department of Zoology, University of Córdoba, Campus of Rabanales, 14071, Córdoba, Spain
| |
Collapse
|
53
|
Anderson KE, Ricigliano VA, Mott BM, Copeland DC, Floyd AS, Maes P. The queen's gut refines with age: longevity phenotypes in a social insect model. MICROBIOME 2018; 6:108. [PMID: 29914555 PMCID: PMC6006926 DOI: 10.1186/s40168-018-0489-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/29/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND In social insects, identical genotypes can show extreme lifespan variation providing a unique perspective on age-associated microbial succession. In honey bees, short- and long-lived host phenotypes are polarized by a suite of age-associated factors including hormones, nutrition, immune senescence, and oxidative stress. Similar to other model organisms, the aging gut microbiota of short-lived (worker) honey bees accrue Proteobacteria and are depleted of Lactobacillus and Bifidobacterium, consistent with a suite of host senescence markers. In contrast, long-lived (queen) honey bees maintain youthful cellular function with much lower expression of oxidative stress genes, suggesting a very different host environment for age-associated microbial succession. RESULTS We sequenced the microbiota of 63 honey bee queens exploring two chronological ages and four alimentary tract niches. To control for genetic and environmental variation, we quantified carbonyl accumulation in queen fat body tissue as a proxy for biological aging. We compared our results to the age-specific microbial succession of worker guts. Accounting for queen source variation, two or more bacterial species per niche differed significantly by queen age. Biological aging in queens was correlated with microbiota composition highlighting the relationship of microbiota with oxidative stress. Queens and workers shared many major gut bacterial species, but differ markedly in community structure and age succession. In stark contrast to aging workers, carbonyl accumulation in queens was significantly associated with increased Lactobacillus and Bifidobacterium and depletion of various Proteobacteria. CONCLUSIONS We present a model system linking changes in gut microbiota to diet and longevity, two of the most confounding variables in human microbiota research. The pattern of age-associated succession in the queen microbiota is largely the reverse of that demonstrated for workers. The guts of short-lived worker phenotypes are progressively dominated by three major Proteobacteria, but these same species were sparse or significantly depleted in long-lived queen phenotypes. More broadly, age-related changes in the honey bee microbiota reflect the regulatory anatomy of reproductive host metabolism. Our synthesis suggests that the evolution of colony-level reproductive physiology formed the context for host-microbial interactions and age-related succession of honey bee microbiota.
Collapse
Affiliation(s)
- Kirk E. Anderson
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ 85719 USA
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721 USA
| | | | - Brendon M. Mott
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ 85719 USA
| | - Duan C. Copeland
- Department of Microbiology, School of Animal & Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721 USA
| | - Amy S. Floyd
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721 USA
| | - Patrick Maes
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
54
|
Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat MP, vanEngelsdorp D. Drivers of colony losses. CURRENT OPINION IN INSECT SCIENCE 2018; 26:142-148. [PMID: 29764654 DOI: 10.1016/j.cois.2018.02.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 05/11/2023]
Abstract
Over the past decade, in some regions of the world, honey bee (Apis mellifera L.) colonies have experienced rates of colony loss that are difficult for beekeepers to sustain. The reasons for losses are complex and interacting, with major drivers including Varroaand related viruses, pesticides, nutrition and beekeeper practices. In these endeavors it has also become apparent that defining a dead colony, and singling out the effects of specific drivers of loss, is not so straightforward. Using the class of neonicotinoid pesticides as an example we explain why quantifying risk factor impact at the colony level is at times elusive and in some cases unpractical. In this review, we discuss the caveats of defining and quantifying dead colonies. We also summarize the current leading drivers of colony losses, their interactions and the most recent research on their effects on colony mortality.
Collapse
Affiliation(s)
- Nathalie Steinhauer
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Kelly Kulhanek
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones, Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - Hannelie Human
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, 50200, Thailand
| | - Marie-Pierre Chauzat
- Unit of Honey Bee Pathology, ANSES, European Union and National Reference Laboratory for Honey Bee Health, Sophia Antipolis, France
| | | |
Collapse
|
55
|
Coulon M, Schurr F, Martel AC, Cougoule N, Bégaud A, Mangoni P, Dalmon A, Alaux C, Le Conte Y, Thiéry R, Ribière-Chabert M, Dubois E. Metabolisation of thiamethoxam (a neonicotinoid pesticide) and interaction with the Chronic bee paralysis virus in honeybees. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 144:10-18. [PMID: 29463403 DOI: 10.1016/j.pestbp.2017.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 06/08/2023]
Abstract
Pathogens and pesticides are likely to co-occur in honeybee hives, but much remains to be investigated regarding their potential interactions. Here, we first investigated the metabolisation kinetics of thiamethoxam in chronically fed honeybees. We show that thiamethoxam, at a dose of 0.25ng/bee/day, is quickly and effectively metabolised into clothianidin, throughout a 20day exposure period. Using a similar chronic exposure to pesticide, we then studied, in a separate experiment, the impact of thiamethoxam and Chronic bee paralysis virus (CBPV) co-exposure in honeybees. The honeybees were exposed to the virus by contact, mimicking the natural transmission route in the hive. We demonstrate that a high dose of thiamethoxam (5.0ng/bee/day) can cause a synergistic increase in mortality in co-exposed honeybees after 8 to 10days of exposure, with no increase in viral loads. At a lower dose (2.5ng/bee/day), there was no synergistic increase of mortality, but viral loads were significantly higher in naturally dead honeybees, compared with sacrificed honeybees exposed to the same conditions. These results show that the interactions between pathogens and pesticides in honeybees can be complex: increasing pesticide doses may not necessarily be linked to a rise in viral loads, suggesting that honeybee tolerance to the viral infection might change with pesticide exposure.
Collapse
Affiliation(s)
- M Coulon
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France; INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France.
| | - F Schurr
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - A-C Martel
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - N Cougoule
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - A Bégaud
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - P Mangoni
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - A Dalmon
- INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France
| | - C Alaux
- INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France
| | - Y Le Conte
- INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France
| | - R Thiéry
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - M Ribière-Chabert
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - E Dubois
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France.
| |
Collapse
|
56
|
Chicas-Mosier AM, Cooper BA, Melendez AM, Pérez M, Oskay D, Abramson CI. The effects of ingested aqueous aluminum on floral fidelity and foraging strategy in honey bees (Apis mellifera). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:80-86. [PMID: 28505483 DOI: 10.1016/j.ecoenv.2017.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Pollinator decline is of international concern because of the economic services these organisms provide. Commonly cited sources of decline are toxicants, habitat fragmentation, and parasites. Toxicant exposure can occur through uptake and distribution from plant tissues and resources such as pollen and nectar. Metals such as aluminum can be distributed to pollinators and other herbivores through this route especially in acidified or mined areas. A free-flying artificial flower patch apparatus was used to understand how two concentrations of aluminum (2mg/L and 20mg/L) may affect the learning, orientation, and foraging behaviors of honey bees (Apis mellifera) in Turkey. The results show that a single dose of aluminum immediately affects the floral decision making of honey bees potentially by altering sucrose perception, increasing activity level, or reducing the likelihood of foraging on safer or uncontaminated resource patches. We conclude that aluminum exposure may be detrimental to foraging behaviors and potentially to other ecologically relevant behaviors.
Collapse
Affiliation(s)
- Ana M Chicas-Mosier
- Oklahoma State University, Stillwater, OK, USA; Namık Kemal Üniversitesi, Tekirdağ, Turkey
| | - Bree A Cooper
- Namık Kemal Üniversitesi, Tekirdağ, Turkey; University of Oklahoma, Norman, OK, USA
| | - Alexander M Melendez
- Namık Kemal Üniversitesi, Tekirdağ, Turkey; University of Puerto Rico, San Juan, PR, USA
| | - Melina Pérez
- Namık Kemal Üniversitesi, Tekirdağ, Turkey; University of Puerto Rico, San Juan, PR, USA
| | | | - Charles I Abramson
- Oklahoma State University, Stillwater, OK, USA; Namık Kemal Üniversitesi, Tekirdağ, Turkey.
| |
Collapse
|
57
|
Temporal dynamics of whole body residues of the neonicotinoid insecticide imidacloprid in live or dead honeybees. Sci Rep 2017; 7:6288. [PMID: 28740208 PMCID: PMC5524747 DOI: 10.1038/s41598-017-06259-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/09/2017] [Indexed: 01/07/2023] Open
Abstract
In cases of acute intoxication, honeybees often lay in front of their hives for several days, exposed to sunlight and weather, before a beekeeper can take a sample. Beekeepers send samples to analytical laboratories, but sometimes no residues can be detected. Temperature and sun light could influence the decrease of pesticides in bee samples and thereby residues left for analysis. Moreover, samples are usually sent via normal postal services without cooling. We investigated the temporal dynamics of whole-body residues of imidacloprid in live or dead honeybees following a single-meal dietary exposure of 41 ng/bee under various environmental conditions, such as freezing, exposure to UV light or transfer of individuals through the mail system. Immobile, “dead” looking honeybees recovered from paralysis after 48 hours. The decrease of residues in living but paralysed bees was stopped by freezing (= killing). UV light significantly reduced residues, but the mode of transport did not affect residue levels. Group feeding increased the variance of residues, which is relevant for acute oral toxicity tests. In conclusion, elapsed time after poisoning is key for detection of neonicotinoids. Freezing before mailing significantly reduced the decrease of imidacloprid residues and may increase the accuracy of laboratory analysis for pesticides.
Collapse
|
58
|
Brandt A, Grikscheit K, Siede R, Grosse R, Meixner MD, Büchler R. Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin. Sci Rep 2017; 7:4673. [PMID: 28680118 PMCID: PMC5498664 DOI: 10.1038/s41598-017-04734-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/19/2017] [Indexed: 01/13/2023] Open
Abstract
Queen health is crucial to colony survival of honeybees, since reproduction and colony growth rely solely on the queen. Queen failure is considered a relevant cause of colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides can severely affect the immunocompetence of queens of western honeybees (Apis mellifera L.). In young queens exposed to thiacloprid (200 µg/l or 2000 µg/l) or clothianidin (10 µg/l or 50 µg/l), the total hemocyte number and the proportion of active, differentiated hemocytes was significantly reduced. Moreover, functional aspects of the immune defence namely the wound healing/melanisation response, as well as the antimicrobial activity of the hemolymph were impaired. Our results demonstrate that neonicotinoid insecticides can negatively affect the immunocompetence of queens, possibly leading to an impaired disease resistance capacity.
Collapse
Affiliation(s)
- Annely Brandt
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany.
| | - Katharina Grikscheit
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35032, Marburg, Germany
| | - Reinhold Siede
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany
| | - Robert Grosse
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35032, Marburg, Germany
| | | | - Ralph Büchler
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany
| |
Collapse
|
59
|
Bixby M, Baylis K, Hoover SE, Currie RW, Melathopoulos AP, Pernal SF, Foster LJ, Guarna MM. A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:816-825. [PMID: 28334400 PMCID: PMC5444677 DOI: 10.1093/jee/tox077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 06/06/2023]
Abstract
Over the past decade in North America and Europe, winter losses of honey bee (Hymenoptera: Apidae) colonies have increased dramatically. Scientific consensus attributes these losses to multifactorial causes including altered parasite and pathogen profiles, lack of proper nutrition due to agricultural monocultures, exposure to pesticides, management, and weather. One method to reduce colony loss and increase productivity is through selective breeding of queens to produce disease-, pathogen-, and mite-resistant stock. Historically, the only method for identifying desirable traits in honey bees to improve breeding was through observation of bee behavior. A team of Canadian scientists have recently identified markers in bee antennae that correspond to behavioral traits in bees and can be tested for in a laboratory. These scientists have demonstrated that this marker-assisted selection (MAS) can be used to produce hygienic, pathogen-resistant honey bee colonies. Based on this research, we present a beekeeping case study where a beekeeper's profit function is used to evaluate the economic impact of adopting colonies selected for hygienic behavior using MAS into an apiary. Our results show a net profit gain from an MAS colony of between 2% and 5% when Varroa mites are effectively treated. In the case of ineffective treatment, MAS generates a net profit benefit of between 9% and 96% depending on the Varroa load. When a Varroa mite population has developed some treatment resistance, we show that MAS colonies generate a net profit gain of between 8% and 112% depending on the Varroa load and degree of treatment resistance.
Collapse
Affiliation(s)
- Miriam Bixby
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, Canada V6T 1Z4, ( ; ; )
- Corresponding author, e-mail:
| | - Kathy Baylis
- Department of Agricultural & Consumer Economics, University of Illinois at Urbana-Champaign, 302b Mumford Hall, 1301 W. Gregory, Urbana, Illinois 61801
| | - Shelley E Hoover
- Alberta Agriculture and Forestry, Agriculture Centre, 100, 5401- 1 Ave., South, Lethbridge, AB, T1J 4V6, Canada
| | - Rob W Currie
- Department of Entomology, Faculty of Agricultural and Food Sciences, University of Manitoba, Room 218, Entomology Bldg, Winnipeg, MB, R3T 2N2, Canada
| | - Andony P Melathopoulos
- Department of Horticulture, College of Agricultural Sciences, Oregon State University, 2750 SW Campus Way, Corvallis, Oregon 97331 and
| | - Stephen F Pernal
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Box PO 29, Beaverlodge, Alberta T0H 0C0, Canada
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, Canada V6T 1Z4, (; ; )
| | - M Marta Guarna
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, Canada V6T 1Z4, ( ; ; )
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Box PO 29, Beaverlodge, Alberta T0H 0C0, Canada ( )
| |
Collapse
|
60
|
Amiri E, Strand MK, Rueppell O, Tarpy DR. Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. INSECTS 2017; 8:E48. [PMID: 28481294 PMCID: PMC5492062 DOI: 10.3390/insects8020048] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
61
|
Villar G, Grozinger CM. Primer effects of the honeybee, Apis mellifera, queen pheromone 9-ODA on drones. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
62
|
Jacques A, Laurent M, Ribière-Chabert M, Saussac M, Bougeard S, Budge GE, Hendrikx P, Chauzat MP. A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PLoS One 2017; 12:e0172591. [PMID: 28278255 PMCID: PMC5344352 DOI: 10.1371/journal.pone.0172591] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed.
Collapse
Affiliation(s)
- Antoine Jacques
- Unit of coordination and support to surveillance, ANSES, Scientific Affairs Department for Laboratories, Maisons-Alfort, France
- Unit of Honey bee Pathology, ANSES, European Union and National Reference Laboratory for Honey bee Health, Sophia Antipolis, France
| | - Marion Laurent
- Unit of Honey bee Pathology, ANSES, European Union and National Reference Laboratory for Honey bee Health, Sophia Antipolis, France
| | | | - Magali Ribière-Chabert
- Unit of Honey bee Pathology, ANSES, European Union and National Reference Laboratory for Honey bee Health, Sophia Antipolis, France
| | - Mathilde Saussac
- Unit of coordination and support to surveillance, ANSES, Scientific Affairs Department for Laboratories, Maisons-Alfort, France
| | | | - Giles E. Budge
- Fera, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Pascal Hendrikx
- Unit of coordination and support to surveillance, ANSES, Scientific Affairs Department for Laboratories, Maisons-Alfort, France
| | - Marie-Pierre Chauzat
- Unit of coordination and support to surveillance, ANSES, Scientific Affairs Department for Laboratories, Maisons-Alfort, France
- Unit of Honey bee Pathology, ANSES, European Union and National Reference Laboratory for Honey bee Health, Sophia Antipolis, France
- * E-mail:
| |
Collapse
|
63
|
|
64
|
In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Sci Rep 2016; 6:33207. [PMID: 27628343 PMCID: PMC5024099 DOI: 10.1038/srep33207] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
This study measured part of the in-hive pesticide exposome by analyzing residues from live in-hive bees, stored pollen, and wax in migratory colonies over time and compared exposure to colony health. We summarized the pesticide burden using three different additive methods: (1) the hazard quotient (HQ), an estimate of pesticide exposure risk, (2) the total number of pesticide residues, and (3) the number of relevant residues. Despite being simplistic, these models attempt to summarize potential risk from multiple contaminations in real-world contexts. Colonies performing pollination services were subject to increased pesticide exposure compared to honey-production and holding yards. We found clear links between an increase in the total number of products in wax and colony mortality. In particular, we found that fungicides with particular modes of action increased disproportionally in wax within colonies that died. The occurrence of queen events, a significant risk factor for colony health and productivity, was positively associated with all three proxies of pesticide exposure. While our exposome summation models do not fully capture the complexities of pesticide exposure, they nonetheless help elucidate their risks to colony health. Implementing and improving such models can help identify potential pesticide risks, permitting preventative actions to improve pollinator health.
Collapse
|
65
|
Amiri E, Meixner MD, Kryger P. Deformed wing virus can be transmitted during natural mating in honey bees and infect the queens. Sci Rep 2016; 6:33065. [PMID: 27608961 PMCID: PMC5016801 DOI: 10.1038/srep33065] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 08/19/2016] [Indexed: 11/18/2022] Open
Abstract
Deformed wing virus is an important contributor to honey bee colony losses. Frequently queen failure is reported as a cause for colony loss. Here we examine whether sexual transmission during multiple matings of queens is a possible way of virus infection in queens. In an environment with high prevalence of deformed wing virus, queens (n = 30) were trapped upon their return from natural mating flights. The last drone's endophallus (n = 29), if present, was removed from the mated queens for deformed wing virus quantification, leading to the detection of high-level infection in 3 endophalli. After oviposition, viral quantification revealed that seven of the 30 queens had high-level deformed wing virus infections, in all tissues, including the semen stored in the spermathecae. Two groups of either unmated queens (n = 8) with induced egg laying, or queens (n = 12) mated in isolation with drones showing comparatively low deformed wing virus infections served as control. None of the control queens exhibited high-level viral infections. Our results demonstrate that deformed wing virus infected drones are competitive to mate and able to transmit the virus along with semen, which occasionally leads to queen infections. Virus transmission to queens during mating may be common and can contribute noticeably to queen failure.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Agroecology, Aarhus University, Slagelse, 4200, Denmark
- Department of Biology, University of North Carolina, Greensboro, NC, 27403, USA
| | | | - Per Kryger
- Department of Agroecology, Aarhus University, Slagelse, 4200, Denmark
| |
Collapse
|
66
|
Wu-Smart J, Spivak M. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Sci Rep 2016; 6:32108. [PMID: 27562025 PMCID: PMC4999797 DOI: 10.1038/srep32108] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure.
Collapse
Affiliation(s)
- Judy Wu-Smart
- University of Nebraska-Lincoln, Entomology, Lincoln, 68583, USA
| | - Marla Spivak
- University of Minnesota, Entomology, Saint Paul, 55108, USA
| |
Collapse
|
67
|
Simone-Finstrom M, Li-Byarlay H, Huang MH, Strand MK, Rueppell O, Tarpy DR. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci Rep 2016; 6:32023. [PMID: 27554200 PMCID: PMC4995521 DOI: 10.1038/srep32023] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Concerns have been raised about whether such "migratory management" causes bees undue stress; however to date there have been no longer-term studies rigorously addressing whether migratory management is detrimental to bee health. To address this issue, we conducted field experiments comparing bees from commercial and experimental migratory beekeeping operations to those from stationary colonies to quantify effects on lifespan, colony health and productivity, and levels of oxidative damage for individual bees. We detected a significant decrease in lifespan of migratory adult bees relative to stationary bees. We also found that migration affected oxidative stress levels in honey bees, but that food scarcity had an even larger impact; some detrimental effects of migration may be alleviated by a greater abundance of forage. In addition, rearing conditions affect levels of oxidative damage incurred as adults. This is the first comprehensive study on impacts of migratory management on the health and oxidative stress of honey bees.
Collapse
Affiliation(s)
| | - Hongmei Li-Byarlay
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
- The W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Ming H. Huang
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | - Micheline K. Strand
- Life Sciences Division, U.S. Army Research Office, Research Triangle Park, NC, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - David R. Tarpy
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
- The W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
68
|
Wegener J, Ruhnke H, Scheller K, Mispagel S, Knollmann U, Kamp G, Bienefeld K. Pathogenesis of varroosis at the level of the honey bee (Apis mellifera) colony. JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:1-9. [PMID: 27296894 DOI: 10.1016/j.jinsphys.2016.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/29/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
The parasitic mite Varroa destructor, in interaction with different viruses, is the main cause of honey bee colony mortality in most parts of the world. Here we studied how effects of individual-level parasitization are reflected by the bee colony as a whole. We measured disease progression in an apiary of 24 hives with differing degree of mite infestation, and investigated its relationship to 28 biometrical, physiological and biochemical indicators. In early summer, when the most heavily infested colonies already showed reduced growth, an elevated ratio of brood to bees, as well as a strong presence of phenoloxidase/prophenoloxidase in hive bees were found to be predictors of the time of colony collapse. One month later, the learning performance of worker bees as well as the activity of glucose oxidase measured from head extracts were significantly linked to the timing of colony collapse. Colonies at the brink of collapse were characterized by reduced weight of winter bees and a strong increase in their relative body water content. Our data confirm the importance of the immune system, known from studies of individually-infested bees, for the pathogenesis of varroosis at colony level. However, they also show that single-bee effects cannot always be extrapolated to the colony as a whole. This fact, together with the prominent role of colony-level factors like the ratio between brood and bees for disease progression, stress the importance of the superorganismal dimension of Varroa research.
Collapse
Affiliation(s)
- J Wegener
- Bee Research Institute, F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany.
| | - H Ruhnke
- Bee Research Institute, F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - K Scheller
- Bee Research Institute, F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - S Mispagel
- AMP-Lab GmbH, Becherweg 9-11, 55128 Mainz, Germany
| | - U Knollmann
- AMP-Lab GmbH, Becherweg 9-11, 55128 Mainz, Germany
| | - G Kamp
- AMP-Lab GmbH, Becherweg 9-11, 55128 Mainz, Germany
| | - K Bienefeld
- Bee Research Institute, F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| |
Collapse
|
69
|
McMenamin AJ, Brutscher LM, Glenny W, Flenniken ML. Abiotic and biotic factors affecting the replication and pathogenicity of bee viruses. CURRENT OPINION IN INSECT SCIENCE 2016; 16:14-21. [PMID: 27720045 PMCID: PMC5113721 DOI: 10.1016/j.cois.2016.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 05/20/2023]
Abstract
Bees are important pollinators of plants in both agricultural and non-agricultural landscapes. Recent losses of both managed and wild bee species have negative impacts on crop production and ecosystem diversity. Therefore, in order to mitigate bee losses, it is important to identify the factors most responsible. Multiple factors including pathogens, agrochemical exposure, lack of quality forage, and reduced habitat affect bee health. Pathogen prevalence is one factor that has been associated with colony losses. Numerous pathogens infect bees including fungi, protists, bacteria, and viruses, the majority of which are RNA viruses including several that infect multiple bee species. RNA viruses readily infect bees, yet there is limited understanding of their impacts on bee health, particularly in the context of other stressors. Herein we review the influence environmental factors have on the replication and pathogenicity of bee viruses and identify research areas that require further investigation.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - William Glenny
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Institute on Ecosystems, Montana State University, Bozeman, MT, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
70
|
Smart M, Pettis J, Rice N, Browning Z, Spivak M. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use. PLoS One 2016; 11:e0152685. [PMID: 27027871 PMCID: PMC4814072 DOI: 10.1371/journal.pone.0152685] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/17/2016] [Indexed: 11/19/2022] Open
Abstract
We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments.
Collapse
Affiliation(s)
- Matthew Smart
- University of Minnesota, Department of Entomology, St. Paul, MN, United States of America
- * E-mail:
| | - Jeff Pettis
- USDA-ARS-Bee Research Lab, Beltsville, MD, United States of America
| | - Nathan Rice
- USDA-ARS-Bee Research Lab, Beltsville, MD, United States of America
| | - Zac Browning
- Browning’s Honey Company, Jamestown, ND, United States of America
| | - Marla Spivak
- University of Minnesota, Department of Entomology, St. Paul, MN, United States of America
| |
Collapse
|
71
|
Pettis JS, Rice N, Joselow K, vanEngelsdorp D, Chaimanee V. Colony Failure Linked to Low Sperm Viability in Honey Bee (Apis mellifera) Queens and an Exploration of Potential Causative Factors. PLoS One 2016; 11:e0147220. [PMID: 26863438 PMCID: PMC4749221 DOI: 10.1371/journal.pone.0147220] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022] Open
Abstract
Queen health is closely linked to colony performance in honey bees as a single queen is normally responsible for all egg laying and brood production within the colony. In the U. S. in recent years, queens have been failing at a high rate; with 50% or greater of queens replaced in colonies within 6 months when historically a queen might live one to two years. This high rate of queen failure coincides with the high mortality rates of colonies in the US, some years with >50% of colonies dying. In the current study, surveys of sperm viability in US queens were made to determine if sperm viability plays a role in queen or colony failure. Wide variation was observed in sperm viability from four sets of queens removed from colonies that beekeepers rated as in good health (n = 12; average viability = 92%), were replacing as part of normal management (n = 28; 57%), or where rated as failing (n = 18 and 19; 54% and 55%). Two additional paired set of queens showed a statistically significant difference in viability between colonies rated by the beekeeper as failing or in good health from the same apiaries. Queens removed from colonies rated in good health averaged high viability (ca. 85%) while those rated as failing or in poor health had significantly lower viability (ca. 50%). Thus low sperm viability was indicative of, or linked to, colony performance. To explore the source of low sperm viability, six commercial queen breeders were surveyed and wide variation in viability (range 60-90%) was documented between breeders. This variability could originate from the drones the queens mate with or temperature extremes that queens are exposed to during shipment. The role of shipping temperature as a possible explanation for low sperm viability was explored. We documented that during shipment queens are exposed to temperature spikes (<8 and > 40°C) and these spikes can kill 50% or more of the sperm stored in queen spermathecae in live queens. Clearly low sperm viability is linked to colony performance and laboratory and field data provide evidence that temperature extremes are a potential causative factor.
Collapse
Affiliation(s)
- Jeffery S. Pettis
- Bee Research Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Nathan Rice
- Bee Research Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Katie Joselow
- Bee Research Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Dennis vanEngelsdorp
- Entomology Department, University of Maryland, College Park, Maryland, United States of America
| | - Veeranan Chaimanee
- Department of Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae, Thailand
- * E-mail:
| |
Collapse
|
72
|
Barron AB. Death of the bee hive: understanding the failure of an insect society. CURRENT OPINION IN INSECT SCIENCE 2015; 10:45-50. [PMID: 29588013 DOI: 10.1016/j.cois.2015.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/05/2015] [Accepted: 04/10/2015] [Indexed: 05/16/2023]
Abstract
Since 2007 honey bee colony failure rates overwinter have averaged about 30% across much of North America. In addition, cases of extremely rapid colony failure have been reported, which has been termed colony collapse disorder. Both phenomena result from an increase in the frequency and intensity of chronic diseases and environmental stressors. Colonies are often challenged by multiple stressors, which can interact: for example, pesticides can enhance disease transmission in colonies. Colonies may be particularly vulnerable to sublethal effects of pathogens and pesticides since colony functions are compromised whether a stressor kills workers, or causes them to fail at foraging. Modelling provides a way to understand the processes of colony failure by relating impacts of stressors to colony-level functions.
Collapse
Affiliation(s)
- Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
73
|
Lee K, Steinhauer N, Travis DA, Meixner MD, Deen J, vanEngelsdorp D. Honey bee surveillance: a tool for understanding and improving honey bee health. CURRENT OPINION IN INSECT SCIENCE 2015; 10:37-44. [PMID: 29588012 DOI: 10.1016/j.cois.2015.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/04/2015] [Accepted: 04/10/2015] [Indexed: 06/08/2023]
Abstract
Honey bee surveillance systems are increasingly used to characterize honey bee health and disease burdens of bees in different regions and/or over time. In addition to quantifying disease prevalence, surveillance systems can identify risk factors associated with colony morbidity and mortality. Surveillance systems are often observational, and prove particularly useful when searching for risk factors in real world complex systems. We review recent examples of surveillance systems with particular emphasis on how these efforts have helped increase our understanding of honey bee health.
Collapse
Affiliation(s)
- Kathleen Lee
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| | - Nathalie Steinhauer
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Dominic A Travis
- Ecosystem Health Division, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
| | - Marina D Meixner
- LLH Bee Institute Kirchhain, Erlenstr. 9, 35274 Kirchhain, Germany
| | - John Deen
- College of Veterinary Medicine, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
74
|
Antúnez K, Anido M, Branchiccela B, Harriet J, Campa J, Invernizzi C, Santos E, Higes M, Martín-Hernández R, Zunino P. Seasonal Variation of Honeybee Pathogens and its Association with Pollen Diversity in Uruguay. MICROBIAL ECOLOGY 2015; 70:522-533. [PMID: 25794593 DOI: 10.1007/s00248-015-0594-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
Honeybees are susceptible to a wide range of pathogens, which have been related to the occurrence of colony loss episodes reported mainly in north hemisphere countries. Their ability to resist those infections is compromised if they are malnourished or exposed to pesticides. The aim of the present study was to carry out an epidemiological study in Uruguay, South America, in order to evaluate the dynamics and interaction of honeybee pathogens and evaluate their association with the presence of external stress factors such as restricted pollen diversity and presence of agrochemicals. We monitored 40 colonies in two apiaries over 24 months, regularly quantifying colony strength, parasite and pathogen status, and pollen diversity. Chlorinated pesticides, phosphorus, pyrethroid, fipronil, or sulfas were not found in stored pollen in any colony or season. Varroa destructor was widespread in March (end of summer-beginning of autumn), decreasing after acaricide treatments. Viruses ABPV, DWV, and SBV presented a similar trend, while IAPV and KBV were not detected. Nosema ceranae was detected along the year while Nosema apis was detected only in one sample. Fifteen percent of the colonies died, being associated to high V. destructor mite load in March and high N. ceranae spore loads in September. Although similar results have been reported in north hemisphere countries, this is the first study of these characteristics in Uruguay, highlighting the regional importance. On the other side, colonies with pollen of diverse botanical origins showed reduced viral infection levels, suggesting that an adequate nutrition is important for the development of healthy colonies.
Collapse
Affiliation(s)
- Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Statement on the suitability of the BEEHAVE model for its potential use in a regulatory context and for the risk assessment of multiple stressors in honeybees at the landscape level. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
76
|
Maddaloni M, Hoffman C, Pascual DW. Paratransgenesis feasibility in the honeybee (Apis mellifera) using Fructobacillus fructosus commensal. J Appl Microbiol 2014; 117:1572-84. [PMID: 25211052 DOI: 10.1111/jam.12650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/07/2014] [Accepted: 09/09/2014] [Indexed: 11/26/2022]
Abstract
AIMS To establish the molecular tools for honeybee paratransgenesis. METHODS AND RESULTS Commensal bacteria were isolated from two honeybees. Based on 16S ribosomal RNA sequence analysis, some isolates were identified as Fructobacillus fructosus, Lactobacillus kunkeei, Gilliamella apicola, Acinetobacter spp, Arthrobacter spp and Pseudomonas spp. Rolling circle and theta replicons were successfully introduced into F. fructosus and Lact. kunkeei. Green fluorescent protein was expressed into both species. The 7·3 Kb Lactococcus lactis subsp. cremoris MG1363 operon encoding a cluster of five genes involved in the metabolism of galactose via the Leloir pathway was functionally expressed into a non-galactose-fermenting strain of F. fructosus enabling it to grow on galactose as a sole carbon source. CONCLUSIONS Fructophilic lactic acid bacteria, F. fructosus and Lact. kunkeei, are amenable to extensive genetic manipulations. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study demonstrating the feasibility of genetically engineering honeybee commensals, thus establishing the tools necessary for honeybee paratransgenesis.
Collapse
Affiliation(s)
- M Maddaloni
- Department of Infectious Diseases & Pathology, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
77
|
Marringa WJ, Krueger MJ, Burritt NL, Burritt JB. Honey bee hemocyte profiling by flow cytometry. PLoS One 2014; 9:e108486. [PMID: 25285798 PMCID: PMC4186811 DOI: 10.1371/journal.pone.0108486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/29/2014] [Indexed: 12/27/2022] Open
Abstract
Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure.
Collapse
Affiliation(s)
- William J. Marringa
- Department of Biology, University of Wisconsin-Stout, Menomonie, Wisconsin, United States of America
| | - Michael J. Krueger
- Department of Biology, University of Wisconsin-Stout, Menomonie, Wisconsin, United States of America
| | - Nancy L. Burritt
- Department of Biology, University of Wisconsin-Stout, Menomonie, Wisconsin, United States of America
| | - James B. Burritt
- Department of Biology, University of Wisconsin-Stout, Menomonie, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
78
|
Sandrock C, Tanadini M, Tanadini LG, Fauser-Misslin A, Potts SG, Neumann P. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS One 2014; 9:e103592. [PMID: 25084279 PMCID: PMC4118897 DOI: 10.1371/journal.pone.0103592] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/03/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees. METHODOLOGY/PRINCIPAL FINDINGS To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (-28%) and brood (-13%), as well as a reduction in honey production (-29%) and pollen collections (-19%), but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees' genetic background. CONCLUSIONS/SIGNIFICANCE Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet, significant detrimental short and long-term impacts on colony performance and queen fate suggest that neonicotinoids may contribute to colony weakening in a complex manner. Further, we highlight the importance of the genetic basis of neonicotinoid susceptibility in honeybees which can vary substantially.
Collapse
Affiliation(s)
| | | | - Lorenzo G. Tanadini
- Division of Biostatistics, Institute for Social and Preventive Medicine, University of Zurich, Zurich, Switzerland
| | - Aline Fauser-Misslin
- Agroscope, Swiss Bee Research Centre, Berne, Switzerland
- Institute of Bee Health, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Simon G. Potts
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Peter Neumann
- Agroscope, Swiss Bee Research Centre, Berne, Switzerland
- Institute of Bee Health, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| |
Collapse
|
79
|
Rondeau G, Sánchez-Bayo F, Tennekes HA, Decourtye A, Ramírez-Romero R, Desneux N. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci Rep 2014; 4:5566. [PMID: 24993452 PMCID: PMC4081892 DOI: 10.1038/srep05566] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/05/2014] [Indexed: 11/21/2022] Open
Abstract
Imidacloprid, one of the most commonly used insecticides, is highly toxic to bees and other beneficial insects. The regulatory challenge to determine safe levels of residual pesticides can benefit from information about the time-dependent toxicity of this chemical. Using published toxicity data for imidacloprid for several insect species, we construct time-to-lethal-effect toxicity plots and fit temporal power-law scaling curves to the data. The level of toxic exposure that results in 50% mortality after time t is found to scale as t1.7 for ants, from t1.6 to t5 for honeybees, and from t1.46 to t2.9 for termites. We present a simple toxicological model that can explain t2 scaling. Extrapolating the toxicity scaling for honeybees to the lifespan of winter bees suggests that imidacloprid in honey at 0.25 μg/kg would be lethal to a large proportion of bees nearing the end of their life.
Collapse
Affiliation(s)
- Gary Rondeau
- Applied Scientific Instumentation, 1025 Elkay Drive, Eugene, Oregon 97405, USA
| | - Francisco Sánchez-Bayo
- University of Sydney, Faculty of Agriculture & Environment, 1 Central Avenue, Eveleigh, NSW 2015, Australia
| | - Henk A Tennekes
- Experimental Toxicology Services (ETS) Nederland BV, Frankensteeg 4, Zutphen, 7201 KN, The Netherlands
| | - Axel Decourtye
- Association de Coordination Technique Agricole (ACTA), ITSAP-Institut de l'Abeille, UMT PrADE, Site Agroparc, 84914 Avignon, France
| | - Ricardo Ramírez-Romero
- Departamento de Producción Agrícola, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Nicolas Desneux
- French National Institute for Agricultural Research (INRA), Institut Sophia Agrobiotech, 400 route des chappes, 06903 Sophia-Antipolis, France
| |
Collapse
|
80
|
Stankus T. Reviews of Science for Science Librarians: An Update on Honeybee Colony Collapse Disorder. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/0194262x.2014.912573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
81
|
Rueppell O. The Architecture of the Pollen Hoarding Syndrome in Honey Bees: Implications for Understanding Social Evolution, Behavioral Syndromes, and Selective Breeding. APIDOLOGIE 2014; 45:364-374. [PMID: 25506100 PMCID: PMC4264964 DOI: 10.1007/s13592-013-0244-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been coopted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic QTL. Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous "behavioral" syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: If these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection.
Collapse
Affiliation(s)
- Olav Rueppell
- Department of Biology, The University of North Carolina at Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, North Carolina, 27403, USA
| |
Collapse
|
82
|
Scholer J, Krischik V. Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens. PLoS One 2014; 9:e91573. [PMID: 24643057 PMCID: PMC3958374 DOI: 10.1371/journal.pone.0091573] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/12/2014] [Indexed: 11/18/2022] Open
Abstract
In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin), 10 (14 I, 9 C), 20 (16 I, 17C), 50 (71 I, 39 C) and 100 (127 I, 76 C) ppb imidacloprid or clothianidin in sugar syrup (50%). These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower). At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb-100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C) ppb was the statistically significant reduction in queen survival (37% I, 56% C) ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14) ppb I and 50 (39) ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage) that result in detrimental effects on colonies (queen survival and colony weight). Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb.
Collapse
Affiliation(s)
- Jamison Scholer
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Vera Krischik
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
83
|
Tarpy DR, Vanengelsdorp D, Pettis JS. Genetic diversity affects colony survivorship in commercial honey bee colonies. Naturwissenschaften 2013; 100:723-8. [PMID: 23728203 DOI: 10.1007/s00114-013-1065-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/16/2013] [Accepted: 05/22/2013] [Indexed: 11/28/2022]
Abstract
Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.
Collapse
Affiliation(s)
- David R Tarpy
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| | | | | |
Collapse
|