51
|
Yılmaz Nayır T, Konuk S, Kara S. Extraction of polyhydroxyalkanoate from activated sludge using supercritical carbon dioxide process and biopolymer characterization. J Biotechnol 2023; 364:50-57. [PMID: 36709000 DOI: 10.1016/j.jbiotec.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable polymers and have the potential to substitute with fossil-fuel based polymers since they have similar properties. Many studies on the production of PHA have been conducted, but the extraction/purification processes have received less attention. Mostly, solvent extraction has been studied, and the effect of different solvent types on the separation processes have been investigated. A better extraction method for PHA makes it a feasible alternative to fossil-fuel based polymers. In this study, a new protocol for the extraction of PHA from activated sludge by supercritical carbon dioxide disruption (sCO2) and biopolymer recovery from disrupted cells were proposed. Extraction experiments were carried out with sCO2 at different pressures, temperatures, times, biomass amounts, and modifier volumes. The operation yield was expressed based on the polyhydroxybutyrate (PHB) release efficiency. The biomass for the extraction experiments was obtained from a PHA production reactor where activated sludge was fed with anaerobically pretreated yeast industry wastewater. 80 % PHB releasing efficiency was achieved by disturbing 2 g of biomass at a density of 57 g/L (biomass/volume) with sCO2 at 200 bar pressure for 15 min at 40 °C. The PHB purity and molecular weight (Mv) of biopolymers were 80 % and 0.27•106 respectively. The use of methanol as a modifier during the sCO2 disruption increased the Mv to 0.37•106. Characterization studies by Fourier transform infrared spectroscopy (FTIR) and thermal degradation analysis (TGA) demonstrated that the biopolymer recovered with this extraction protocol was comparable to commercial PHB. As a clear advantage over the other extraction protocols; operationally fast and simple extraction procedure was achieved.
Collapse
Affiliation(s)
- Tülin Yılmaz Nayır
- Gebze Technical University, Department of Environmental Engineering, 41400, Gebze, Kocaeli, Turkey.
| | - Selver Konuk
- Gebze Technical University, Department of Environmental Engineering, 41400, Gebze, Kocaeli, Turkey
| | - Serdar Kara
- Gebze Technical University, Department of Environmental Engineering, 41400, Gebze, Kocaeli, Turkey
| |
Collapse
|
52
|
Biosynthesis and Properties of Sulfur-Containing Polyhydroxyalkanoates (PHAs) Produced by Wild-Type Strain Cupriavidus necator B-10646. Polymers (Basel) 2023; 15:polym15041005. [PMID: 36850288 PMCID: PMC9963769 DOI: 10.3390/polym15041005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The study addresses the growth of the wild-type strain Cupriavidus necator B-10646 and the synthesis of sulfur-containing polyhydroxyalkanoates (PHA) by this strain on media containing fructose and three different precursors (3-mercaptopropionic acid, 3',3'-dithiodipropionic acid and 3',3'-thiodipropionic acid). By varying the concentration and number of doses of the precursors added into the bacterial culture, it was possible to find conditions that ensure the formation of 3-mercaptopropionate (3MP) monomers from the precursors and their incorporation into the C-chain of poly(3-hydroxybutyrate). A series of P(3HB-co-3MP) copolymer samples with different content of 3MP monomers (from 2.04 to 39.0 mol.%) were synthesized and the physicochemical properties were studied. The effect of 3MP monomers is manifested in a certain decrease in the molecular weight of the samples and an increase in polydispersity. Temperature changes are manifested in the appearance of two peaks in the melting region with different intervals regardless of the 3MP content. The studied P(3HB-co-3MP) samples, regardless of the content of 3MP monomers, are characterized by equalization of the ratio of the amorphous and crystalline phases and have a close degree of crystallinity with a minimum of 42%, = and a maximum of 54%.
Collapse
|
53
|
Ryltseva GA, Dudaev AE, Menzyanova NG, Volova TG, Alexandrushkina NA, Efimenko AY, Shishatskaya EI. Influence of PHA Substrate Surface Characteristics on the Functional State of Endothelial Cells. J Funct Biomater 2023; 14:jfb14020085. [PMID: 36826884 PMCID: PMC9959859 DOI: 10.3390/jfb14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The needs of modern regenerative medicine for biodegradable polymers are wide and varied. Restoration of the viability of the vascular tree is one of the most important components of the preservation of the usefulness of organs and tissues. The creation of vascular implants compatible with blood is an important task of vascular bioengineering. The function of the endothelial layer of the vessel, being largely responsible for the development of thrombotic complications, is of great importance for hemocompatibility. The development of surfaces with specific characteristics of biomaterials that are used in vascular technologies is one of the solutions for their correct endothelialization. Linear polyhydroxyalkanoates (PHAs) are biodegradable structural polymeric materials suitable for obtaining various types of implants and tissue engineering, having a wide range of structural and physicomechanical properties. The use of PHA of various monomeric compositions in endothelial cultivation makes it possible to evaluate the influence of material properties, especially surface characteristics, on the functional state of cells. It has been established that PHA samples with the inclusion of 3-hydroxyhexanoate have optimal characteristics for the formation of a human umbilical vein endothelial cell, HUVEC, monolayer in terms of cell morphology as well as the levels of expression of vinculin and VE-cadherin. The obtained results provide a rationale for the use of PHA copolymers as materials for direct contact with the endothelium in vascular implants.
Collapse
Affiliation(s)
- Galina A. Ryltseva
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Natalia G. Menzyanova
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia A. Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anastasia Yu. Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| |
Collapse
|
54
|
Modification of Polyhydroxyalkanoates Polymer Films Surface of Various Compositions by Laser Processing. Polymers (Basel) 2023; 15:polym15030531. [PMID: 36771832 PMCID: PMC9920739 DOI: 10.3390/polym15030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The results of surface modification of solvent casting films made from polyhydroxyalkanoates (PHAs) of various compositions are presented: homopolymer poly-3-hydroxybutyrate P(3HB) and copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate(4HB), and 3-hydroxyhexanoate (3HHx) monomers treated with a CO2 laser in continuous and quasi-pulsed radiation modes. The effects of PHAs film surface modification, depending on the composition and ratio of monomers according to the results of the study of SEM and AFM, contact angles of wetting with water, adhesion and growth of fibroblasts have been revealed for the laser radiation regime used. Under continuous irradiation with vector lines, melted regions in the form of grooves are formed on the surface of the films, in which most of the samples have increased values of the contact angle and a decrease in roughness. The quasi-pulse mode by the raster method causes the formation of holes without pronounced melted zones, the total area of which is lower by 20% compared to the area of melted grooves. The number of viable fibroblasts NIH 3T3 on the films after the quasi-pulse mode is 1.5-2.0 times higher compared to the continuous mode, and depends to a greater extent on the laser treatment mode than on the PHAs' composition. The use of various modes of laser modification on the surface of PHAs with different compositions makes it possible to influence the morphology and properties of polymer films in a targeted manner. The results that have been obtained contribute to solving the critical issue of functional biodegradable polymeric materials.
Collapse
|
55
|
Can Biomass Mastication Assist the Downstreaming of Polyhydroxyalkanoates Produced from Mixed Microbial Cultures? MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020767. [PMID: 36677824 PMCID: PMC9861560 DOI: 10.3390/molecules28020767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are natural polyesters which biodegrade in soils and oceans but have more than double the cost of comparable oil-based polymers. PHA downstreaming from its biomass represents 50% of its overall cost. Here, in an attempt to assist downstreaming, mastication of wet biomasses is tested as a new mechanical continuous biomass pretreatment with potential for industrial upscaling. Downstreaming conditions where both product recovery and purity are low due to the large amount of treated wet biomass (50% water) were targeted with the following process: extraction of 20 g in 100 mL solvent at 30 °C for 2 h, followed by 4.8 h digestion of 20 g in 0.3 M NaOH. Under the studied conditions, NaOH digestion was more effective than solvent extraction in recovering larger PHA amounts, but with less purity. A nearly 50% loss of PHA was seen during digestion after mastication. PHAs downstreamed by digestion with large amounts of impurities started to degrade at lower temperatures, but their melt elasticity was thermally stable at 170 °C. As such, these materials are attractive as fully PHA-compatible processing aids, reinforcing fillers or viscosity modifiers. On the other hand, wet biomass mastication before solvent extraction improves PHA purity and thermal stability as well as the melt rheology, which recovers the viscoelasticity measured with a PHA extracted from a dried biomass.
Collapse
|
56
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
57
|
Wu M, Gong X, Liu X, Tu W, Yu P, Zou Y, Wang H. Comprehensive Techno-environmental Evaluation of a Pilot-Scale PHA Production from Food Waste in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 57:1467-1478. [PMID: 36580666 DOI: 10.1021/acs.est.2c05976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polyhydroxyalkanoates (PHAs), a biodegradable plastic that might replace petroleum-based plastics, can be recovered from organic waste using mixed microbial cultures (MMCs). Research in this field has been ongoing for about 25 years and is now in a critical commercialization period. However, few pilot-scale studies are available to analyze its technical feasibility and environmental impact. We ran an MMC PHA production pilot plant for 6 months using local food waste as the feedstock. The traditional three-stage process achieved PHA content of 47.91 ± 1.91% dry cell weight and volumetric productivity of 9.94 ± 0.01 g/L·d, while a novel rapid proliferation stage was built in, the PHA content and productivity could reach 41.39 ± 2.39% cell dry weight and 20.02 ± 0.01 g/L·d, respectively. Life cycle assessment using field data showed that greenhouse warming potential was much more than five times that of the known literature, and the fossil depletion potential was 10.30 (scenario #1)/7.59 (scenario #2) times higher than petroleum-based polyethylene (PE) plastic. However, establishing a resource-energy-water union instead of an isolated plant could achieve environmental benefits compared to PE plastic. This techno-environmental analysis provides emerging MMC PHA producers worldwide with a valuable reference for further development opportunities and market planning.
Collapse
Affiliation(s)
- Menghan Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084Beijing, China
| | - Xiaoqiang Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084Beijing, China
| | - Xinning Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084Beijing, China
| | - Weiming Tu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084Beijing, China
| | - Peng Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084Beijing, China
| | - Yina Zou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084Beijing, China
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084Beijing, China
| |
Collapse
|
58
|
Tang X, Shi C, Zhang Z, Chen EY. Crystalline aliphatic polyesters from eight‐membered cyclic (di)esters. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaoyan Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing China
- Department of Chemistry Colorado State University Fort Collins Colorado USA
| | - Changxia Shi
- Department of Chemistry Colorado State University Fort Collins Colorado USA
| | - Zhen Zhang
- Department of Chemistry Colorado State University Fort Collins Colorado USA
| | - Eugene Y.‐X. Chen
- Department of Chemistry Colorado State University Fort Collins Colorado USA
| |
Collapse
|
59
|
Lisha VS, Kothale RS, Sidharth S, Kandasubramanian B. A critical review on employing algae as a feed for polycarbohydrate synthesis. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
60
|
Al-Khairy D, Fu W, Alzahmi AS, Twizere JC, Amin SA, Salehi-Ashtiani K, Mystikou A. Closing the Gap between Bio-Based and Petroleum-Based Plastic through Bioengineering. Microorganisms 2022; 10:microorganisms10122320. [PMID: 36557574 PMCID: PMC9787566 DOI: 10.3390/microorganisms10122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Bioplastics, which are plastic materials produced from renewable bio-based feedstocks, have been investigated for their potential as an attractive alternative to petroleum-based plastics. Despite the harmful effects of plastic accumulation in the environment, bioplastic production is still underdeveloped. Recent advances in strain development, genome sequencing, and editing technologies have accelerated research efforts toward bioplastic production and helped to advance its goal of replacing conventional plastics. In this review, we highlight bioengineering approaches, new advancements, and related challenges in the bioproduction and biodegradation of plastics. We cover different types of polymers, including polylactic acid (PLA) and polyhydroxyalkanoates (PHAs and PHBs) produced by bacterial, microalgal, and plant species naturally as well as through genetic engineering. Moreover, we provide detailed information on pathways that produce PHAs and PHBs in bacteria. Lastly, we present the prospect of using large-scale genome engineering to enhance strains and develop microalgae as a sustainable production platform.
Collapse
Affiliation(s)
- Dina Al-Khairy
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Department of Marine Science, Ocean College, Zhejiang University & Donghai Laboratory, Zhoushan 316021, China
| | - Amnah Salem Alzahmi
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Jean-Claude Twizere
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Shady A. Amin
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| |
Collapse
|
61
|
Kundu D, Dutta D, Samanta P, Dey S, Sherpa KC, Kumar S, Dubey BK. Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157709. [PMID: 35908693 DOI: 10.1016/j.scitotenv.2022.157709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Limitation in the availability of natural resources like water is the main drive for focussing on resource recovery from wastewater. Rapid urbanization with increased consumption of natural resources has severely affected its management and security. The application of biotechnological processes offers a feasible approach to concentrating and transforming wastewater for resource recovery and a step towards a circular economy. Wastewater generally contains high organic materials, nutrients, metals and chemicals, which have economic value. Hence, its management can be a valuable resource through the implementation of a paradigm transformation for value-added product recovery. This review focuses on the circular economy of "close loop" process by wastewater reuse and energy recovery identifying the emerging technologies for recovering resources across the wastewater treatment phase. Conventional wastewater treatment technologies have been discussed along with the advanced treatment technologies such as algal treatment, anammox technology, microbial fuel cells (MFC). Apart from recovering energy in the form of biogas and biohydrogen, second and third-generation biofuels as well as biohythane and electricity generation have been deliberated. Other options for resource recovery are single-cell protein (SCP), biopolymers as well as recovery of metals and nutrients. The paper also highlights the applications of treated wastewater in agriculture, aquaponics, fisheries and algal cultivation. The concept of Partitions-release-recover (PRR) has been discussed for a better understanding of the filtration treatment coupled with anaerobic digestion. The review provides a critical evaluation on the importance of adopting a circular economy and their role in achieving sustainable development goals (SDGs). Thus, it is imperative that such initiatives towards resource recovery from wastewater through integration of concepts can aid in providing wastewater treatment system with resource efficiency.
Collapse
Affiliation(s)
- Debajyoti Kundu
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Deblina Dutta
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, West Bengal 735210, India
| | - Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal 713 104, India
| | - Knawang Chhunji Sherpa
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Sunil Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India.
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| |
Collapse
|
62
|
Estévez-Alonso Á, Altamira-Algarra B, Arnau-Segarra C, van Loosdrecht MCM, Kleerebezem R, Werker A. Process conditions affect properties and outcomes of polyhydroxyalkanoate accumulation in municipal activated sludge. BIORESOURCE TECHNOLOGY 2022; 364:128035. [PMID: 36182016 DOI: 10.1016/j.biortech.2022.128035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The developments of mixed culture polyhydroxyalkanoate production has been directed to maximize the biomass PHA content with limited attention to polymer quality. Direct comparison of PHA accumulation literature is challenging, and even regularly contradicting in reported results, due to underlying differences that are not well expressed. A study was undertaken to systematically compare the commonly reported process conditions for PHA accumulation by full-scale municipal activated sludge. A biomass acclimation step combined with a pulse-wise feeding strategy resulted in maximum average PHA contents and product yields. pH control and active nitrification did not result in observable effects on the PHA productivity. Under these conditions a high molecular weight polymer (1536 ± 221 kDa) can be produced. Polymer extraction recoveries were influenced by the PHA molecular weight. A standard protocol for an activated sludge PHA accumulation test including downstream processing and standardized extraction has been developed and is available as supplementary material.
Collapse
Affiliation(s)
- Ángel Estévez-Alonso
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands.
| | - Beatriz Altamira-Algarra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| | - César Arnau-Segarra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Alan Werker
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| |
Collapse
|
63
|
Westlie AH, Quinn EC, Parker CR, Chen EYX. Synthetic biodegradable polyhydroxyalkanoates (PHAs): Recent advances and future challenges. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
64
|
Shishatskaya EI, Dudaev AE, Volova TG. Resorbable Nanomatrices from Microbial Polyhydroxyalkanoates: Design Strategy and Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3843. [PMID: 36364619 PMCID: PMC9656924 DOI: 10.3390/nano12213843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
From a series of biodegradable natural polymers of polyhydroxyalkanoates (PHAs)-poly-3-hydroxybutyrate (P(3HB) and copolymers containing, in addition to 3HB monomers, monomers of 3-hydroxyvalerate (3HV), 3-hydroxyhexanoate (3HHx), and 4-hydroxybutyrate (4HB), with different ratios of monomers poured-solvent casting films and nanomembranes with oriented and non-oriented ultrathin fibers were obtained by electrostatic molding. With the use of SEM, AFM, and measurement of contact angles and energy characteristics, the surface properties and mechanical and biological properties of the polymer products were studied depending on the method of production and the composition of PHAs. It has been shown in cultures of mouse fibroblasts of the NIH 3T3 line and diploid human embryonic cells of the M22 line that elastic films and nanomembranes composed of P(3HB-co-4HB) copolymers have high biocompatibility and provide adhesion, proliferation and preservation of the high physiological activity of cells for up to 7 days. Polymer films, namely oriented and non-oriented nanomembranes coated with type 1 collagen, are positively evaluated as experimental wound dressings in experiments on laboratory animals with model and surgical skin lesions. The results of planimetric measurements of the dynamics of wound healing and analysis of histological sections showed the regeneration of model skin defects in groups of animals using experimental wound dressings from P(3HB-co-4HB) of all types, but most actively when using non-oriented nanomembranes obtained by electrospinning. The study highlights the importance of nonwoven nanomembranes obtained by electrospinning from degradable low-crystalline copolymers P(3HB-co-4HB) in the effectiveness of the skin wound healing process.
Collapse
Affiliation(s)
- Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Chemistry Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint Petersburg, Russia
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| |
Collapse
|
65
|
Stereoselective synthesis of biodegradable polymers by salen-type metal catalysts. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
66
|
Biosynthesis and Properties of a P(3HB- co-3HV- co-4HV) Produced by Cupriavidus necator B-10646. Polymers (Basel) 2022; 14:polym14194226. [PMID: 36236173 PMCID: PMC9570873 DOI: 10.3390/polym14194226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Synthesis of P(3HB-co-3HV-co-4HV) copolymers by the wild-type strain Cupriavidus necator B-10646 on fructose or sodium butyrate as the main C-substrate with the addition of γ-valerolactone as a precursor of 3HV and 4HV monomers was studied. Bacterial cells were cultivated in the modes that enabled production of a series of copolymers with molar fractions of 3HV (from 7.3 to 23.4 mol.%) and 4HV (from 1.9 to 4.7 mol.%) with bacterial biomass concentration (8.2 ± 0.2 g/L) and PHA content (80 ± 2%). Using HPLC, DTA, DSC, X-Ray, SEM, and AFM, the physicochemical properties of copolymers and films prepared from them have been investigated as dependent on proportions of monomers. Copolymers are characterized by a reduced degree of crystallinity (Cx 38-49%) molecular weight characteristics Mn (45-87 kDa), and Mw (201-248 kDa) compared with P(3HB). The properties of the films surface of various composition including the porosity and surface roughness were studied. Most of the samples showed a decrease in the average pore area and an increase in their number with a total increase in 3HV and 4HV monomers. The results allow scaling up the productive synthesis of P(3HB-co-3HV-co-4HV) copolymers using Cupriavidus necator B-10646.
Collapse
|
67
|
Montiel-Jarillo G, Morales-Urrea DA, Contreras EM, López-Córdoba A, Gómez-Pachón EY, Carrera J, Suárez-Ojeda ME. Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction. Polymers (Basel) 2022; 14:polym14193938. [PMID: 36235886 PMCID: PMC9573287 DOI: 10.3390/polym14193938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The use of mixed microbial cultures (MMC) and organic wastes and wastewaters as feed sources is considered an appealing approach to reduce the current polyhydroxyalkanoates (PHAs) production costs. However, this method entails an additional hurdle to the PHAs downstream processing (recovery and purification). In the current work, the effect of a sodium hypochlorite (NaClO) pre-treatment coupled with dimethyl carbonate (DMC) or chloroform (CF) as extraction solvents on the PHAs recovery efficiency (RE) from MMC was evaluated. MMC were harvested from a sequencing batch reactor (SBR) fed with a synthetic prefermented olive mill wastewaster. Two different carbon-sources (acetic acid and acetic/propionic acids) were employed during the batch accumulation of polyhydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from MMC. Obtained PHAs were characterized by 1H and 13C nuclear magnetic resonance, gel-permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis. The results showed that when a NaClO pre-treatment is not added, the use of DMC allows to obtain higher RE of both biopolymers (PHB and PHBV), in comparison with CF. In contrast, the use of CF as extraction solvent required a pre-treatment step to improve the PHB and PHBV recovery. In all cases, RE values were higher for PHBV than for PHB.
Collapse
Affiliation(s)
- Gabriela Montiel-Jarillo
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Diego A. Morales-Urrea
- División Catalizadores y Superficies, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
- Correspondence: (D.A.M.-U.); (M.E.S.-O.)
| | - Edgardo M. Contreras
- División Catalizadores y Superficies, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Alex López-Córdoba
- Grupo de Investigación en Bioeconomía y Sostenibilidad Agroalimentaria, Escuela de Administración de Empresas Agropecuarias, Facultad Seccional Duitama, Universidad Pedagógica y Tecnológica de Colombia, Carrera 18 con Calle 22, Duitama 150461, Colombia
| | - Edwin Yesid Gómez-Pachón
- Grupo de Investigación en Diseño, Innovación y Asistencia Técnica de Materiales Avanzados-DITMAV, Escuela de Diseño Industrial, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Duitama 150461, Colombia
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (D.A.M.-U.); (M.E.S.-O.)
| |
Collapse
|
68
|
Volova TG, Kiselev EG, Baranovskiy SV, Zhila NO, Prudnikova SV, Shishatskaya EI, Kuzmin AP, Nemtsev IV, Vasiliev AD, Thomas S. Degradable Poly(3-hydroxybutyrate)-The Basis of Slow-Release Fungicide Formulations for Suppressing Potato Pathogens. Polymers (Basel) 2022; 14:3669. [PMID: 36080743 PMCID: PMC9460056 DOI: 10.3390/polym14173669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Three-component slow-release fungicide formulations with different modes of action of the active ingredients for suppressing potato pathogens were constructed for the first time. The difenoconazole, mefenoxam, prothioconazole, and azoxystrobin fungicides were embedded in the degradable polymer P(3HB)/birch wood flour blend and examined using SEM, IR spectroscopy, X-ray analysis, DTA, and DSC. Results showed that no chemical bonds were established between the components and that they were physical mixtures that had a lower degree of crystallinity compared to the initial P(3HB), which suggested different crystallization kinetics in the mixtures. The degradation behavior of the experimental formulations was investigated in laboratory micro-ecosystems with pre-characterized field soil. The slow-release fungicide formulations were prolonged-action forms with a half-life of at least 50-60 d, enabling gradual and sustained delivery of the active ingredients to plants. All slow-release fungicide formulations had a strong inhibitory effect on the most common and harmful potato pathogens (Phytophthorainfestans, Alternarialongipes, Rhizoctoniasolani, and Fusariumsolani).
Collapse
Affiliation(s)
- Tatiana G. Volova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Evgeniy G. Kiselev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Sergey V. Baranovskiy
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia O. Zhila
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Svetlana V. Prudnikova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Andrey P. Kuzmin
- Basic Department of Chemistry and Technology of Natural Energy Sources and Carbon Materials, School of Petroleum and Gas Engineering, Siberian Federal University, 82 Svobodny Pr., 660041 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Federal Research Center, “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Aleksander D. Vasiliev
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radio Electronics, Siberian Federal University, 26 Kirensky St., 660074 Krasnoyarsk, Russia
| | - Sabu Thomas
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- International and Interuniversity Centre for Nano Science and Nano Technology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
69
|
Li H, Guillaume SM, Carpentier J. Polythioesters Prepared by Ring-Opening Polymerization of Cyclic Thioesters and Related Monomers. Chem Asian J 2022; 17:e202200641. [PMID: 35816010 PMCID: PMC9543045 DOI: 10.1002/asia.202200641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters with a wide range of applications; in particular, they currently stand as promising alternatives to conventional polyolefin-based "plastics". The introduction of sulfur atoms within the PHAs backbone can endow the resulting polythioesters (PTEs) with differentiated, sometimes enhanced thermal, optical and mechanical properties, thereby widening their versatility and use. Hence, PTEs have been gaining increasing attention over the past half-decade. This review highlights recent advances towards the synthesis of well-defined PTEs by ring-opening polymerization (ROP) of cyclic thioesters - namely thiolactones - as well as of S-carboxyanhydrides and thionolactones; it also covers the ring-opening copolymerization (ROCOP) of cyclic thioanhydrides or thiolactones with epoxides or episulfides. Most of the ROP reactions described are of anionic type, mediated by inorganic, organic or organometallic initiators/catalysts, along with a few enzymatic reactions as well. Emphasis is placed on the reactivity of the thio monomers, in relation to their ring-size ranging from 4- to 5-, 6- and 7-membered cycles, the nature of the catalyst/initiating systems implemented and their efficiency in terms of activity and control over the PTE molar mass, dispersity, topology, and microstructure.
Collapse
Affiliation(s)
- Hui Li
- Univ RennesCNRSISCR-UMR 622635000RennesFrance
| | | | | |
Collapse
|
70
|
Charon G, Peixinho J, Michely L, Guinault A, Langlois V. Rosin natural terpenes as processing aid for polyhydroxyalkanoate: Thermal, mechanical, and viscoelastic properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.53052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gaëtan Charon
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Université Paris France
| | - Jorge Peixinho
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Université Paris France
| | - Laurent Michely
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Université Paris France
| | - Alain Guinault
- Université Paris Est Creteil, CNRS, ICMPE Créteil France
| | | |
Collapse
|
71
|
Pereira J, de Melo MMR, Silva CM, Lemos PC, Serafim LS. Impact of a Pretreatment Step on the Acidogenic Fermentation of Spent Coffee Grounds. Bioengineering (Basel) 2022; 9:362. [PMID: 36004887 PMCID: PMC9404928 DOI: 10.3390/bioengineering9080362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/26/2022] Open
Abstract
Acidogenic fermentation (AF) is often applied to wastes to produce short-chain organic acids (SCOAs)-molecules with applications in many industries. Spent coffee grounds (SCGs) are a residue from the coffee industry that is rich in carbohydrates, having the potential to be valorized by this process. However, given the recalcitrant nature of this waste, the addition of a pretreatment step can significantly improve AF. In this work, several pretreatment strategies were applied to SCGs (acidic hydrolysis, basic hydrolysis, hydrothermal, microwave, ultrasounds, and supercritical CO2 extraction), evaluated in terms of sugar and inhibitors release, and used in AF. Despite the low yields of sugar extracted, almost all pretreatments increased SCOAs production. Milder extraction conditions also resulted in lower concentrations of inhibitory compounds and, consequently, in a higher concentration of SCOAs. The best results were obtained with acidic hydrolysis of 5%, leading to a production of 1.33 gSCOAs/L, an increase of 185% compared with untreated SCGs.
Collapse
Affiliation(s)
- Joana Pereira
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| | - Marcelo M. R. de Melo
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| | - Carlos M. Silva
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| | - Paulo C. Lemos
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Luísa S. Serafim
- CICECO-Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (J.P.); (M.M.R.d.M.); (C.M.S.)
| |
Collapse
|
72
|
Pei R, Vicente-Venegas G, Van Loosdrecht MCM, Kleerebezem R, Werker A. Quantification of polyhydroxyalkanoate accumulated in waste activated sludge. WATER RESEARCH 2022; 221:118795. [PMID: 35785696 DOI: 10.1016/j.watres.2022.118795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Polyhydroxyalkanoate accumulation experiments at pilot scale were performed with fullscale municipal waste activated sludge. Development of biomass PHA content was quantified by thermogravimetric analysis. Over 48 h the biomass reached up to 0.49 ± 0.03 gPHA/gVSS (n=4). Samples were processed in parallel to characterise the distribution of PHA in the biomass. Selective staining methods and image analysis were performed by Confocal Laser Scanning Microscopy. The image analysis indicated that nominally 55% of this waste activated sludge was engaged in PHA storage activity. Thus even if the biomass PHA content reached 0.49gPHA/gVSS, the accumulating fraction of the biomass was estimated to have attained about 0.64gPHA/gVSS. The combination of quantitative microscopy and polymer mass assessment enabled to distinguish the effect of level of enrichment in PHA storing bacteria and the average PHA storage capacity of the accumulating bacteria. The distribution of microbial 16S rRNA levels did not follow a measurable trend during PHA accumulation.
Collapse
Affiliation(s)
- Ruizhe Pei
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands.
| | - Gerard Vicente-Venegas
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands
| | - Mark C M Van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Alan Werker
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands
| |
Collapse
|
73
|
Mai J, Chan CM, Colwell J, Pratt S, Laycock B. Characterisation of end groups of hydroxy-functionalised scl-PHAs prepared by transesterification using ethylene glycol. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
74
|
Westlie AH, Chen EYX, Holland CM, Stahl SS, Doyle M, Trenor SR, Knauer KM. Polyolefin Innovations toward Circularity and Sustainable Alternatives. Macromol Rapid Commun 2022; 43:e2200492. [PMID: 35908163 DOI: 10.1002/marc.202200492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Indexed: 11/10/2022]
Abstract
The unprecedented growth and socioeconomic impacts of polyolefins clearly outline a major success story in the world of polymer science. Polyolefins revolutionizes industries such as health care, construction, and food packaging. Despite the benefits of polyolefins, there is a rising concern for the environment due to high production volume (i.e., fossil fuel consumption), often short usage time, and problems related to waste management and accumulation in the natural environment. Creating a circular economy for polyolefins through effective recycling technologies has the potential to decrease the environmental impact of these materials. This perspective discusses polyolefins and their impact, existing and emerging recycling/upcycling solutions, and recycle-by-design alternatives that are challenging the status quo.
Collapse
Affiliation(s)
- Andrea H Westlie
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Chris M Holland
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Meredith Doyle
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, 80401, USA
| | - Scott R Trenor
- Plastics Additives, Milliken Chemical, Milliken and Company, Spartanburg, SC, 29303, USA
| | - Katrina M Knauer
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, 80401, USA
| |
Collapse
|
75
|
Aliotta L, Gigante V, Lazzeri A. Analytical Modeling of Stress Relaxation and Evaluation of the Activation Volume Variation: Effect of Temperature and Plasticizer Content for Poly(3-hydroxybutyrate-3-hydroxyvalerate). ACS OMEGA 2022; 7:23662-23672. [PMID: 35847325 PMCID: PMC9280768 DOI: 10.1021/acsomega.2c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, stress-relaxation tests that have been carried out at different temperatures (quite below the heat deflection temperature) on a poly(3-hydroxybutyrate-3hydroxyvalerate) (PHB-HV) matrix containing different amounts of the acetyl tributyl citrate plasticizer (added at 5 and 10 wt %) are investigated. The analytical modeling of the stress relaxation behavior by the coupling of Eyring's approach and the Guiu and Pratt model is successful. The activation volume results achieved are very interesting; in fact, not only the dependence of the activation volume from temperature is confirmed (and it resulted in dependence from the α' relaxation temperature) but also, for the first time, the dependence of the activation volume from the plasticizer content is shown. In particular, the presence of a linear relationship between the activation volume and the plasticizer volume content is observed.
Collapse
Affiliation(s)
- Laura Aliotta
- University
of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi, 2, Pisa 56122, Italy
- Interuniversity
National Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Florence 50121, Italy
| | - Vito Gigante
- University
of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi, 2, Pisa 56122, Italy
- Interuniversity
National Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Florence 50121, Italy
| | - Andrea Lazzeri
- University
of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi, 2, Pisa 56122, Italy
- Interuniversity
National Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Florence 50121, Italy
| |
Collapse
|
76
|
From Organic Wastes and Hydrocarbons Pollutants to Polyhydroxyalkanoates: Bioconversion by Terrestrial and Marine Bacteria. SUSTAINABILITY 2022. [DOI: 10.3390/su14148241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of fossil-based plastics has become unsustainable because of the polluting production processes, difficulties for waste management sectors, and high environmental impact. Polyhydroxyalkanoates (PHA) are bio-based biodegradable polymers derived from renewable resources and synthesized by bacteria as intracellular energy and carbon storage materials under nutrients or oxygen limitation and through the optimization of cultivation conditions with both pure and mixed culture systems. The PHA properties are affected by the same principles of oil-derived polyolefins, with a broad range of compositions, due to the incorporation of different monomers into the polymer matrix. As a consequence, the properties of such materials are represented by a broad range depending on tunable PHA composition. Producing waste-derived PHA is technically feasible with mixed microbial cultures (MMC), since no sterilization is required; this technology may represent a solution for waste treatment and valorization, and it has recently been developed at the pilot scale level with different process configurations where aerobic microorganisms are usually subjected to a dynamic feeding regime for their selection and to a high organic load for the intracellular accumulation of PHA. In this review, we report on studies on terrestrial and marine bacteria PHA-producers. The available knowledge on PHA production from the use of different kinds of organic wastes, and otherwise, petroleum-polluted natural matrices coupling bioremediation treatment has been explored. The advancements in these areas have been significant; they generally concern the terrestrial environment, where pilot and industrial processes are already established. Recently, marine bacteria have also offered interesting perspectives due to their advantageous effects on production practices, which they can relieve several constraints. Studies on the use of hydrocarbons as carbon sources offer evidence for the feasibility of the bioconversion of fossil-derived plastics into bioplastics.
Collapse
|
77
|
Ylinen A, de Ruijter JC, Jouhten P, Penttilä M. PHB production from cellobiose with Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:124. [PMID: 35729556 PMCID: PMC9210708 DOI: 10.1186/s12934-022-01845-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Replacement of petrochemical-based materials with microbially produced biodegradable alternatives calls for industrially attractive fermentation processes. Lignocellulosic materials offer non-edible alternatives for cultivated sugars, but require often use of expensive sugar releasing enzymes, such as β-glucosidases. These cellulose treatment costs could be reduced if microbial production hosts could use short cellodextrins such as cellobiose directly as their substrates. In this study, we demonstrate production of poly(hydroxybutyrate) (PHB) in yeast Saccharomyces cerevisiae using cellobiose as a sole carbon source. Yeast strains expressing PHB pathway genes from Cupriavidus necator and cellodextrin transporter gene CDT-1 from Neurospora crassa were complemented either with β-glucosidase gene GH1-1 from N. crassa or with cellobiose phosphorylase gene cbp from Ruminococcus flavefaciens. These cellobiose utilization routes either with Gh1-1 or Cbp enzymes differ in energetics and dynamics. However, both routes enabled higher PHB production per consumed sugar and higher PHB accumulation % of cell dry weight (CDW) than use of glucose as a carbon source. As expected, the strains with Gh1-1 consumed cellobiose faster than the strains with Cbp, both in flask and bioreactor batch cultures. In shake flasks, higher final PHB accumulation % of CDW was reached with Cbp route (10.0 ± 0.3%) than with Gh1-1 route (8.1 ± 0.2%). However, a higher PHB accumulation was achieved in better aerated and pH-controlled bioreactors, in comparison to shake flasks, and the relative performance of strains switched. In bioreactors, notable PHB accumulation levels per CDW of 13.4 ± 0.9% and 18.5 ± 3.9% were achieved with Cbp and Gh1-1 routes, respectively. The average molecular weights of accumulated PHB were similar using both routes; approximately 500 kDa and 450 kDa for strains expressing either cbp or GH1-1 genes, respectively. The formation of PHB with high molecular weights, combined with efficient cellobiose conversion, demonstrates a highly potential solution for improving attractiveness of sustainable polymer production using microbial cells.
Collapse
Affiliation(s)
- Anna Ylinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.
| | - Jorg C de Ruijter
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland
| | - Paula Jouhten
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 00076, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 00076, Espoo, Finland
| |
Collapse
|
78
|
Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy. ENERGIES 2022. [DOI: 10.3390/en15114105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pulp and paper industry is recognized as a well-established sector, which throughout its process, generates a vast amount of waste streams with the capacity to be valorized. Typically, these residues are burned for energy purposes, but their use as substrates for biological processes could be a more efficient and sustainable alternative. With this aim, it is essential to identify and characterize each type of waste to determine its biotechnological potential. In this context, this research highlights possible alternatives with lower environmental impact and higher revenues. The bio-based pathway should be a promising alternative for the valorization of pulp and paper industry wastes, in particular for bioproduct production such as bioethanol, polyhydroxyalkanoates (PHA), and biogas. This article focuses on state of the art regarding the identification and characterization of these wastes, their main applied deconstruction technologies and the valorization pathways reported for the production of the abovementioned bioproducts.
Collapse
|
79
|
Mastropetros SG, Pispas K, Zagklis D, Ali SS, Kornaros M. Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: Recent advances. Biotechnol Adv 2022; 60:107999. [DOI: 10.1016/j.biotechadv.2022.107999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
80
|
Maheshwari N, Thakur IS, Srivastava S. Role of carbon-dioxide sequestering bacteria for clean air environment and prospective production of biomaterials: a sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38950-38971. [PMID: 35304714 DOI: 10.1007/s11356-022-19393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The increase in demand of fossil fuel uses for developmental activity and manufacturing of goods have resulted a huge emission of global warming gases (GWGs) in the atmosphere. Among all GWGs, CO2 is the major contributor that inevitably causes global warming and climate change. Mitigation strategies like biological CO2 capture through sequestration and their storage into biological organic form are used to minimize the concentration of atmospheric CO2 with the goal to control climate change. Since increasing atmospheric CO2 level supports microbial growth and productivity thus microbial-based CO2 sequestration has remarkable advantages as compared to plant-based sequestration. This review focuses on CO2 sequestration mechanism in bacteria through different carbon fixation pathways, involved enzymes, their role in calcite, and other environmentally friendly biomaterials such as biofuel, bioplastic, and biosurfactant.
Collapse
Affiliation(s)
- Neha Maheshwari
- Amity School of Earth and Environmental Science, Amity University, Gurugram, Haryana, India
| | - Indu Shekhar Thakur
- Amity School of Earth and Environmental Science, Amity University, Gurugram, Haryana, India
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shaili Srivastava
- Amity School of Earth and Environmental Science, Amity University, Gurugram, Haryana, India.
| |
Collapse
|
81
|
Kopf S, Åkesson D, Skrifvars M. Textile Fiber Production of Biopolymers – A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2076693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sabrina Kopf
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| | - Dan Åkesson
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| | - Mikael Skrifvars
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| |
Collapse
|
82
|
Li H, Ollivier J, Guillaume SM, Carpentier JF. Tacticity Control of Cyclic Poly(3-Thiobutyrate) Prepared by Ring-Opening Polymerization of Racemic β-Thiobutyrolactone. Angew Chem Int Ed Engl 2022; 61:e202202386. [PMID: 35286752 DOI: 10.1002/anie.202202386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 12/19/2022]
Abstract
We report here on the ring-opening polymerization (ROP) of racemic β-thiobutyrolactone (rac-TBL), as the first chemical synthesis of poly(3-thiobutyrolactone) (P3TB), the thioester analogue of the ubiquitous poly(3-hydroxybutyrate) (P3HB). The ROP reactions proceed very fast (TOF >12 000 h-1 at r.t.) in the presence of various metal-based catalysts. Remarkably, catalyst systems based on non-chiral yttrium complexes stabilized by tetradentate amino alkoxy- or diamino-bis(phenolate) ligands {ONXOR1,R2 }2- (X=O, N) provide access to cyclic P3TB with either high isoselectivity (Pm up to 0.90) or high syndiotactic bias (Pr up to 0.70). The stereoselectivity can be controlled by manipulation of the substituents on the ligand platform and adequate choice of the reaction solvent and temperature as well. The cyclic polymer topology is evidenced by MALDI-ToF MS, NMR and TGA. Highly isotactic cyclic P3TB is a semi-crystalline material as revealed by DSC.
Collapse
Affiliation(s)
- Hui Li
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | | | | | | |
Collapse
|
83
|
Majerczak K, Wadkin‐Snaith D, Magueijo V, Mulheran P, Liggat J, Johnston K. Polyhydroxybutyrate: a review of experimental and simulation studies on the effect of fillers on crystallinity and mechanical properties. POLYM INT 2022. [DOI: 10.1002/pi.6402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katarzyna Majerczak
- Department of Pure and Applied Chemistry Thomas Graham Building, 295 Cathedral Street, University of Strathclyde Glasgow G1 1XL United Kingdom
| | - Dominic Wadkin‐Snaith
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - Vitor Magueijo
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - Paul Mulheran
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - John Liggat
- Department of Pure and Applied Chemistry Thomas Graham Building, 295 Cathedral Street, University of Strathclyde Glasgow G1 1XL United Kingdom
| | - Karen Johnston
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| |
Collapse
|
84
|
Sugar Beet Molasses as a Potential C-Substrate for PHA Production by Cupriavidus necator. Bioengineering (Basel) 2022; 9:bioengineering9040154. [PMID: 35447714 PMCID: PMC9031461 DOI: 10.3390/bioengineering9040154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
To increase the availability and expand the raw material base, the production of polyhydroxyalkanoates (PHA) by the wild strain Cupriavidus necator B-10646 on hydrolysates of sugar beet molasses was studied. The hydrolysis of molasses was carried out using β-fructofuranosidase, which provides a high conversion of sucrose (88.9%) to hexoses. We showed the necessity to adjust the chemical composition of molasses hydrolysate to balance with the physiological needs of C. necator B-10646 and reduce excess sugars and nitrogen and eliminate phosphorus deficiency. The modes of cultivation of bacteria on diluted hydrolyzed molasses with the controlled feeding of phosphorus and glucose were implemented. Depending on the ratio of sugars introduced into the bacterial culture due to the molasses hydrolysate and glucose additions, the bacterial biomass concentration was obtained from 20–25 to 80–85 g/L with a polymer content up to 80%. The hydrolysates of molasses containing trace amounts of propionate and valerate were used to synthesize a P(3HB-co-3HV) copolymer with minor inclusions of 3-hydroxyvlaerate monomers. The introduction of precursors into the medium ensured the synthesis of copolymers with reduced values of the degree of crystallinity, containing, in addition to 3HB, monomers 3HB, 4HB, or 3HHx in an amount of 12–16 mol.%.
Collapse
|
85
|
Bilal M, Qamar SA, Qamar M, Yadav V, Taherzadeh MJ, Lam SS, Iqbal HMN. Bioprospecting lignin biomass into environmentally friendly polymers—Applied perspective to reconcile sustainable circular bioeconomy. BIOMASS CONVERSION AND BIOREFINERY 2022. [DOI: 10.1007/s13399-022-02600-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
86
|
Li H, Ollivier J, Guillaume SM, Carpentier J. Tacticity Control of Cyclic Poly(3‐Thiobutyrate) Prepared by Ring‐Opening Polymerization of Racemic β‐Thiobutyrolactone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Li
- Univ Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | | | | |
Collapse
|
87
|
Morphology and crystallization kinetics of regime transition for biosynthesized polyhydroxyalkanoate. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
88
|
Saratale RG, Cho SK, Kadam AA, Ghodake GS, Kumar M, Bharagava RN, Varjani S, Nair S, Kim DS, Shin HS, Saratale GD. Developing Microbial Co-Culture System for Enhanced Polyhydroxyalkanoates (PHA) Production Using Acid Pretreated Lignocellulosic Biomass. Polymers (Basel) 2022; 14:polym14040726. [PMID: 35215639 PMCID: PMC8876045 DOI: 10.3390/polym14040726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
In the growing polymer industry, the interest of researchers is captivated by bioplastics production with biodegradable and biocompatible properties. This study examines the polyhydroxyalkanoates (PHA) production performance of individual Lysinibacillus sp. RGS and Ralstonia eutropha ATCC 17699 and their co-culture by utilizing sugarcane bagasse (SCB) hydrolysates. Initially, acidic (H2SO4) and acidified sodium chlorite pretreatment was employed for the hydrolysis of SCB. The effects of chemical pretreatment on the SCB biomass assembly and its chemical constituents were studied by employing numerous analytical methods. Acidic pretreatment under optimal conditions showed effective delignification (60%) of the SCB biomass, leading to a maximum hydrolysis yield of 74.9 ± 1.65% and a saccharification yield of 569.0 ± 5.65 mg/g of SCB after enzymatic hydrolysis. The resulting SCB enzymatic hydrolysates were harnessed for PHA synthesis using individual microbial culture and their defined co-culture. Co-culture strategy was found to be effective in sugar assimilation, bacterial growth, and PHA production kinetic parameters relative to the individual strains. Furthermore, the effects of increasing acid pretreated SCB hydrolysates (20, 30, and 40 g/L) on cell density and PHA synthesis were studied. The effects of different cost-effective nutrient supplements and volatile fatty acids (VFAs) with acid pretreated SCB hydrolysates on cell growth and PHA production were studied. By employing optimal conditions and supplementation of corn steep liquor (CSL) and spent coffee waste extracted oil (SCGO), the co-culture produced maximum cell growth (DCW: 11.68 and 11.0 g/L), PHA accumulation (76% and 76%), and PHA titer (8.87 and 8.36 g/L), respectively. The findings collectively suggest that the development of a microbial co-culture strategy is a promising route for the efficient production of high-value bioplastics using different agricultural waste biomass.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (R.G.S.); (A.A.K.)
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si 10326, Gyonggi-do, Korea; (S.-K.C.); (G.S.G.)
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (R.G.S.); (A.A.K.)
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si 10326, Gyonggi-do, Korea; (S.-K.C.); (G.S.G.)
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Ram Naresh Bharagava
- Department of Environmental Microbiology, School for Environmental Sciences Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226 025, Uttar Pradesh, India;
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India;
| | - Supriya Nair
- Department of Research and Development, SRL Limited, Prime Square, S. V. Road, Goregaon (W), Mumbai 400 062, Maharashtra State, India;
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Korea;
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
- Correspondence:
| |
Collapse
|
89
|
Miu DM, Eremia MC, Moscovici M. Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. MATERIALS 2022; 15:ma15041410. [PMID: 35207952 PMCID: PMC8875380 DOI: 10.3390/ma15041410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible biopolymers. These biomaterials have grown in importance in the fields of tissue engineering and tissue reconstruction for structural applications where tissue morphology is critical, such as bone, cartilage, blood vessels, and skin, among others. Furthermore, they can be used to accelerate the regeneration in combination with drugs, as drug delivery systems, thus reducing microbial infections. When cells are cultured under stress conditions, a wide variety of microorganisms produce them as a store of intracellular energy in the form of homo- and copolymers of [R]—hydroxyalkanoic acids, depending on the carbon source used for microorganism growth. This paper gives an overview of PHAs, their biosynthetic pathways, producing microorganisms, cultivation bioprocess, isolation, purification and characterization to obtain biomaterials with medical applications such as tissue engineering.
Collapse
Affiliation(s)
- Dana-Maria Miu
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Mihaela Carmen Eremia
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Correspondence:
| | - Misu Moscovici
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
| |
Collapse
|
90
|
Wong HSJ, Bhubalan K, Amirul AAA. A Critical Review on the Economically Feasible and Sustainable Poly(3-Hydroxybutyrate- co-3-hydroxyvalerate) Production from Alkyl Alcohols. Polymers (Basel) 2022; 14:670. [PMID: 35215584 PMCID: PMC8876610 DOI: 10.3390/polym14040670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 01/14/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) is the most studied short-chain-length polyhydroxyalkanoates (PHA) with high application importance in various fields. The domination of high-cost propionate and valerate over other 3-hydroxyvalerate (3HV) precursors owing to their wide preference among PHA-producing bacteria has hindered the development of diverse production processes. As alkyl alcohols are mainly produced from inexpensive starting materials through oxo synthesis, they contribute a cost-effective advantage over propionate and valerate. Moreover, alkyl alcohols can be biosynthesized from natural substrates and organic wastes. Despite their great potential, their toxicity to most PHA-producing bacteria has been the major drawback for their wide implementation as 3HV precursors for decades. Although the standard PHA-producing bacteria Cupriavidus necator showed promising alcohol tolerance, the 3HV yield was discouraging. Continuous discovery of alkyl alcohols-utilizing PHA-producing bacteria has enabled broader choices in 3HV precursor selection for diverse P(3HB-co-3HV) production processes with higher economic feasibility. Besides continuous effort in searching for promising wild-type strains, genetic engineering to construct promising recombinant strains based on the understanding of the mechanisms involved in alkyl alcohols toxicity and tolerance is an alternative approach. However, more studies are required for techno-economic assessment to analyze the economic performance of alkyl alcohol-based production compared to that of organic acids.
Collapse
Affiliation(s)
- Hau Seung Jeremy Wong
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia
| | - Kesaven Bhubalan
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia
| |
Collapse
|
91
|
Zhang X, Liu XY, Yang H, Chen JN, Lin Y, Han SY, Cao Q, Zeng HS, Ye JW. A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications. Front Bioeng Biotechnol 2022; 9:798724. [PMID: 35071207 PMCID: PMC8767415 DOI: 10.3389/fbioe.2021.798724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive substances (BAS), such as small molecule drugs, proteins, RNA, cells, etc., play a vital role in many therapeutic applications, especially in tissue repair and regeneration. However, the therapeutic effect is still a challenge due to the uncontrollable release and instable physico-chemical properties of bioactive components. To address this, many biodegradable carrier systems of micro-nano structures have been rapidly developed based on different biocompatible polymers including polyhydroxyalkanoates (PHA), the microbial synthesized polyesters, to provide load protection and controlled-release of BAS. We herein highlight the developments of PHA-based carrier systems in recent therapeutic studies, and give an overview of its prospective applications in various disease treatments. Specifically, the biosynthesis and material properties of diverse PHA polymers, designs and fabrication of micro- and nano-structure PHA particles, as well as therapeutic studies based on PHA particles, are summarized to give a comprehensive landscape of PHA-based BAS carriers and applications thereof. Moreover, recent efforts focusing on novel-type BAS nano-carriers, the functionalized self-assembled PHA granules in vivo, was discussed in this review, proposing the underlying innovations of designs and fabrications of PHA-based BAS carriers powered by synthetic biology. This review outlines a promising and applicable BAS carrier platform of novelty based on PHA particles for different medical uses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Tsinghua-Peking Center of Life Sciences, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiang-Nan Chen
- Tsinghua-Peking Center of Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qian Cao
- China Manned Space Agency, Beijing, China
| | - Han-Shi Zeng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
92
|
Volova TG, Kiselev EG, Demidenko AV, Zhila NO, Nemtsev IV, Lukyanenko AV. Production and Properties of Microbial Polyhydroxyalkanoates Synthesized from Hydrolysates of Jerusalem Artichoke Tubers and Vegetative Biomass. Polymers (Basel) 2021; 14:polym14010132. [PMID: 35012158 PMCID: PMC8747110 DOI: 10.3390/polym14010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
One of the major challenges in PHA biotechnology is optimization of biotechnological processes of the entire synthesis, mainly by using new inexpensive carbon substrates. A promising substrate for PHA synthesis may be the sugars extracted from the Jerusalem artichoke. In the present study, hydrolysates of Jerusalem artichoke (JA) tubers and vegetative biomass were produced and used as carbon substrate for PHA synthesis. The hydrolysis procedure (the combination of aqueous extraction and acid hydrolysis, process temperature and duration) influenced the content of reducing substances (RS), monosaccharide contents, and the fructose/glucose ratio. All types of hydrolysates tested as substrates for cultivation of three strains—C. necator B-10646 and R. eutropha B 5786 and B 8562—were suitable for PHA synthesis, producing different biomass concentrations and polymer contents. The most productive process, conducted in 12-L fermenters, was achieved on hydrolysates of JA tubers (X = 66.9 g/L, 82% PHA) and vegetative biomass (55.1 g/L and 62% PHA) produced by aqueous extraction of sugars at 80 °C followed by acid hydrolysis at 60 °C, using the most productive strain, C. necator B-10646. The effects of JA hydrolysates on physicochemical properties of PHAs were studied for the first time. P(3HB) specimens synthesized from the JA hydrolysates, regardless of the source (tubers or vegetative biomass), hydrolysis conditions, and PHA producing strain employed, exhibited the 100–120 °C difference between the Tmelt and Tdegr, prevailing of the crystalline phase over the amorphous one (Cx between 69 and 75%), and variations in weight average molecular weight (409–480) kDa. Supplementation of the culture medium of C. necator B-10646 grown on JA hydrolysates with potassium valerate and ε-caprolactone resulted in the synthesis of P(3HB-co-3HV) and P(3HB-co-4HB) copolymers that had decreased degrees of crystallinity and molecular weights, which influenced the porosity and surface roughness of polymer films prepared from them. The study shows that JA hydrolysates used as carbon source enabled productive synthesis of PHAs, comparable to synthesis from pure sugars. The next step is to scale up PHA synthesis from JA hydrolysates and conduct the feasibility study. The present study contributes to the solution of the critical problem of PHA biotechnology—finding widely available and inexpensive substrates.
Collapse
Affiliation(s)
- Tatiana G. Volova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Evgeniy G. Kiselev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Alexey V. Demidenko
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Natalia O. Zhila
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
- Correspondence: ; Tel.: +7-391-290-54-91; Fax: +7-391-243-34-00
| | - Ivan V. Nemtsev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
| | - Anna V. Lukyanenko
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| |
Collapse
|
93
|
Dutta D, Arya S, Kumar S. Industrial wastewater treatment: Current trends, bottlenecks, and best practices. CHEMOSPHERE 2021; 285:131245. [PMID: 34246094 DOI: 10.1016/j.chemosphere.2021.131245] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/12/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Rapid urbanization and industrialization have inextricably linked to water consumption and wastewater generation. Mining resources from industrial wastewater has proved to be an excellent source of secondary raw materials i.e., proficient for providing economic and financial benefits, clean and sustainable resilient environment, and achieving sustainable development goals (SDGs). Treatment of industrial wastewater for reusable resources has become a tedious task for decision-makers due to several bottlenecks and barriers, such as inefficient treatment options, high-cost expenditure, poor infrastructure, lack of financial support, and technical know-how. Most of the existing methods are conventional and fails to provide an economic benefit to the industries and have certain disadvantages. Also, the untreated industrial wastewater is discharged into the open drains, lakes, and rivers that lead to environmental pollution and severe health hazards. This paper has consolidated information about the current trends, opportunities, bottlenecks, and best practices associated with wastewater treatment and scope for the advancement in the existing technologies. Along with the efficient resource recovery, the wastewater could be ideally explored in the development of value-added materials, energy, and product recovery. The concepts, such as the circular economy (CE), partitions-release-recover (PRR), and transforming wastewater into bio factory are anticipated to be more convenient options to tackle the industrial wastewater menace.
Collapse
Affiliation(s)
- Deblina Dutta
- School of Environmental Science & Engineering, Indian Institute of Technology Kharagpur, 721 302, India
| | - Shashi Arya
- CSIR- National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Sunil Kumar
- CSIR- National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
94
|
Panaitescu DM, Popa MS, Raditoiu V, Frone AN, Sacarescu L, Gabor AR, Nicolae CA, Teodorescu M. Effect of calcium stearate as a lubricant and catalyst on the thermal degradation of poly(3-hydroxybutyrate). Int J Biol Macromol 2021; 190:780-791. [PMID: 34517031 DOI: 10.1016/j.ijbiomac.2021.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Poly(3-hydroxybutyrate) (PHB) is a promising substitute to petroleum-based polymers in packaging and biomedical applications provided that its melt processability and degradability are improved. A new method to control the properties of PHB by using cheap calcium stearate (CS) as a lubricant and decomposition catalyst in melt-mixed PHB-CS compounds was first used. CS is composed of a metallic cation, which promotes PHB degradation, and a hydrophobic anion that improves the compatibility with PHB and processability. An environmentally friendly melt mixing technique was employed to obtain the PHB-CS compounds. Incorporation of 0.5 or 5 wt% CS reduced the melt viscosity and molecular weight of PHB, decreased the melting temperature with up to 5 °C, the crystallization temperature with more than 25 °C, and the degradation temperature with 15 and 40 °C, respectively. In small amounts (0.05 wt%), CS improved the processability and mechanical properties of PHB. In higher amount (0.5 wt%), CS slightly improved the Young's modulus, reduced the tensile strength and enhanced degradation. A better control of thermal and mechanical properties of PHB is, thus, possible by using different CS amount and processing conditions. These results are relevant for PHB application in the context of the global transition to biodegradable packaging.
Collapse
Affiliation(s)
- Denis Mihaela Panaitescu
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania.
| | - Marius Stelian Popa
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania; Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Valentin Raditoiu
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Adriana Nicoleta Frone
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Liviu Sacarescu
- Romanian Academy, Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania
| | - Augusta Raluca Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021, Bucharest, Romania.
| | - Mircea Teodorescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
95
|
Khattab AM, Esmael ME, Farrag AA, Ibrahim MIA. Structural assessment of the bioplastic (poly-3-hydroxybutyrate) produced by Bacillus flexus Azu-A2 through cheese whey valorization. Int J Biol Macromol 2021; 190:319-332. [PMID: 34411615 DOI: 10.1016/j.ijbiomac.2021.08.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The demand for the production of biodegradable plastics has significantly increased. Bioplastics have become an essential alternative to the threats of the daily consumable plastics, sourced from fossil fuels, to the environment. Polyhydroxyalkonates (PHAs) are a ubiquitous group of bioderived and biodegradable plastics, however their production is limited by the costs associated mainly with the carbon sources. Herein, this study aims to reduce the PHAs production cost by using a by-product from the dairy industry, i.e., cheese whey (CW), as a sole carbon source. The developed process recruits an aquatic isolate, Bacillus flexus Azu-A2, and is optimized via studying various parameters using the shaking flasks technique. The results showed that the maximum PHA production (0.95 g L-1) and PHA content (20.96%, w/w), were obtained after incubation period 72 h at 45 °C, 100 rpm agitation rate, 50% CWS concentration, pH 8.5, and 1.0 g L-1 ammonium chloride. Physiochemically, Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR), and energy-dispersive X-ray (EDX) techniques, emphasized the type of the extracted PHA as polyhydroxybutyrate (PHB). The thermal properties of PHB were measured using differential scanning calorimetry (DSC), recording melting transition temperature (Tm) at 170.96 °C. Furthermore, a scanning electron microscope (SEM) visualized a homogenous microporous structure for the thin PHB biofilm. In essence, this study highlights the ability of Bacillus flexus Azu-A2 to produce a good yield of highly purified PHB at reduced production cost from dairy CW. Consequently, the current study paves the way for an improved whey management strategy.
Collapse
Affiliation(s)
- Abdelrahman M Khattab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mahmoud E Esmael
- Al-Azhar Center for Fermentation Biotechnology and Applied Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ayman A Farrag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; Al-Azhar Center for Fermentation Biotechnology and Applied Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed I A Ibrahim
- Laboratory of Marine Chemistry, Marine Environment Division, National Institute of Oceanography and Fisheries, NIOF, Egypt.
| |
Collapse
|
96
|
Use of Mixed Microbial Cultures to Protect Recycled Concrete Surfaces: A Preliminary Study. MATERIALS 2021; 14:ma14216545. [PMID: 34772095 PMCID: PMC8585264 DOI: 10.3390/ma14216545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022]
Abstract
One approach to tackle the problems created by the vast amounts of construction and demolition waste (CDW) generated worldwide while at the same time lengthening concrete durability and service life is to foster the use of recycled aggregate (RA) rather than natural aggregate (NA). This article discusses the use of polyhydroxyalkanoates (PHAs)-producing mixed microbial cultures (MMCs) to treat the surface of recycled concrete with a view to increase its resistance to water-mediated deterioration. The microorganisms were cultured in a minimal medium using waste pinewood bio-oil as a carbon source. Post-application variations in substrate permeability were determined with the water drop absorption and penetration by water under pressure tests. The significant reduction in water absorption recorded reveals that this bioproduct is a promising surface treatment for recycled concrete.
Collapse
|
97
|
Kaniuk Ł, Stachewicz U. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomater Sci Eng 2021; 7:5339-5362. [PMID: 34649426 PMCID: PMC8672356 DOI: 10.1021/acsbiomaterials.1c00757] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Biodegradable polymeric
biomaterials offer a significant advantage
in disposable or fast-consuming products in medical applications.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
is an example of a polyhydroxyalkanoate (PHA), i.e., one group of
natural polyesters that are byproducts of reactions taking place in
microorganisms in conditions with an excess carbon source. PHA polymers
are a promising material for the production of everyday materials
and biomedical applications. Due to the high number of monomers in
the group, PHAs permit modifications enabling the production of copolymers
of different compositions and with different proportions of individual
monomers. In order to change and improve the properties of polymer
fibers, PHAs are combined with either other natural and synthetic
polymers or additives of inorganic phases. Importantly, electrospun
PHBV fibers and mats showed an enormous potential in both the medical
field (tissue engineering scaffolds, plasters, wound healing, drug
delivery systems) and industrial applications (filter systems, food
packaging). This Review summarizes the current state of the art in
processing PHBV, especially by electrospinning, its degradation processes,
and biocompatibility studies, starting from a general introduction
to the PHA group of polymers.
Collapse
Affiliation(s)
- Łukasz Kaniuk
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Urszula Stachewicz
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
98
|
Tang X, Shi C, Zhang Z, Chen EYX. Toughening Biodegradable Isotactic Poly(3-hydroxybutyrate) via Stereoselective Copolymerization of a Diolide and Lactones. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaoyan Tang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
99
|
Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su131910528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The great increase in the production and consumption of plastics has resulted in large amounts of plastic wastes, creating a serious problem in terms of their environmentally friendly disposal. The need for the production of more environmentally friendly polymers gave birth to the production of biodegradable, and more recently, biobased polymers, used in the production of biodegradable or biobased plastics. Although the percentage of currently produced bioplastics is rather small, almost 1% compared to petrochemical-based plastics, inevitably is going to significantly increase in the near future due to strict legislation recently posed by the European Union and other countries’ Governments. Thus, recycling strategies that have been developed could be disturbed and the economic balance of this sector could be destabilized. In the present review, the recycling of the polymer mainly used in food plastic packaging, i.e., poly(ethylene terephthalate), PET is examined together with its counterparts from the biobased polymers, i.e., poly(lactic acid), PLA (already replacing PET in several applications), poly(3-hydroxybutyrate), PHB and poly(ethylene furanoate), PEF. Methods for the chemical recycling of these materials together with the chemical products obtained are critically reviewed. Specifically, hydrolysis, alcoholysis and glycolysis. Hydrolysis (i.e., the reaction with water) under different environments (alkaline, acidic, neutral), experimental conditions and catalysts results directly in the production of the corresponding monomers, which however, should be separated in order to be re-used for the re-production of the respective polymer. Reaction conditions need to be optimized with a view to depolymerize only a specific polymer, while the others remain intact. Alcoholysis (i.e., the reaction with some alcohol, methanol or ethanol) results in methyl or ethyl esters or diesters that again could be used for the re-production of the specific polymer or as a source for producing other materials. Glycolysis (reaction with some glycol, such as ethylene, or diethylene glycol) is much studied for PET, whereas less studied for the biopolymers and seems to be a very promising technique. Oligomers having two terminal hydroxyl groups are produced that can be further utilized as starting materials for other value-added products, such as unsaturated polyester resins, methacrylated crosslinked resins, biodegradable polyurethanes, etc. These diols derived from both PET and the bio-based polymers can be used simultaneously without the need for an additional separation step, in the synthesis of final products incorporating biodegradable units in their chemical structure.
Collapse
|
100
|
Zhila NO, Sapozhnikova KY, Kiselev EG, Vasiliev AD, Nemtsev IV, Shishatskaya EI, Volova TG. Properties of Degradable Polyhydroxyalkanoates (PHAs) Synthesized by a New Strain, Cupriavidus necator IBP/SFU-1, from Various Carbon Sources. Polymers (Basel) 2021; 13:polym13183142. [PMID: 34578042 PMCID: PMC8468435 DOI: 10.3390/polym13183142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
The bacterial strain isolated from soil was identified as Cupriavidus necator IBP/SFU-1 and investigated as a PHA producer. The strain was found to be able to grow and synthesize PHAs under autotrophic conditions and showed a broad organotrophic potential towards different carbon sources: sugars, glycerol, fatty acids, and plant oils. The highest cell concentrations (7–8 g/L) and PHA contents were produced from oleic acid (78%), fructose, glucose, and palm oil (over 80%). The type of the carbon source influenced the PHA chemical composition and properties: when grown on oleic acid, the strain synthesized the P(3HB-co-3HV) copolymer; on plant oils, the P(3HB-co-3HV-co-3HHx) terpolymer, and on the other substrates, the P(3HB) homopolymer. The type of the carbon source influenced molecular-weight properties of PHAs: P(3HB) synthesized under autotrophic growth conditions, from CO2, had the highest number-average (290 ± 15 kDa) and weight-average (850 ± 25 kDa) molecular weights and the lowest polydispersity (2.9 ± 0.2); polymers synthesized from organic carbon sources showed increased polydispersity and reduced molecular weight. The carbon source was not found to affect the degree of crystallinity and thermal properties of the PHAs. The type of the carbon source determined not only PHA composition and molecular weight but also surface microstructure and porosity of the polymer films. The new strain can be recommended as a promising P(3HB) producer from palm oil, oleic acid, and sugars (fructose and glucose) and as a producer of P(3HB-co-3HV) from oleic acid and P(3HB-co-3HV-co-3HHx) from palm oil.
Collapse
Affiliation(s)
- Natalia O. Zhila
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Correspondence: ; Tel.: +7-391-290-54-91; Fax: +7-391-243-34-00
| | - Kristina Yu. Sapozhnikova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Evgeniy G. Kiselev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Alexander D. Vasiliev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, L.V. Kirensky Institute of Physics SB RAS, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, L.V. Kirensky Institute of Physics SB RAS, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ekaterina I. Shishatskaya
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|