51
|
Yin R, Chmielarz P, Zaborniak I, Zhao Y, Szczepaniak G, Wang Z, Liu T, Wang Y, Sun M, Wu H, Tarnsangpradit J, Bockstaller MR, Matyjaszewski K. Miniemulsion SI-ATRP by Interfacial and Ion-Pair Catalysis for the Synthesis of Nanoparticle Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Paweł Chmielarz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | - Izabela Zaborniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jirameth Tarnsangpradit
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
52
|
Wang C, Zhao H. Polymer brush-based nanostructures: from surface self-assembly to surface co-assembly. SOFT MATTER 2022; 18:5138-5152. [PMID: 35781482 DOI: 10.1039/d2sm00458e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface structures play an important role in the practical applications of materials. The synthesis of polymer brushes on a solid surface has emerged as an effective tool for tuning surface properties. The fabrication of polymer brush-based surface nanostructures has greatly facilitated the development of materials with unique surface properties. In this review article, synthetic methods used in the synthesis of polymer brushes, and self-assembly approaches applied in the fabrication of surface nanostructures including self-assembly of polymer brushes, co-assembly of polymer brushes and "free" block copolymer chains, and polymerization induced surface self-assembly, are reviewed. It is demonstrated that polymer brush-based surface nanostructures, including spherical surface micelles, wormlike surface structures, layered structures and surface vesicles, can be fabricated. Meanwhile, the challenges in the synthesis and applications of the surface nanostructures are discussed. This review is expected to be helpful for understanding the principles, methods and applications of polymer brush-based surface nanostructures.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| |
Collapse
|
53
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
54
|
Aktas Eken G, Ober CK. Strong Polyelectrolyte Brushes via Alternating Copolymers of Styrene and Maleimides: Synthesis, Properties, and Stability. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gozde Aktas Eken
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Christopher K. Ober
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
55
|
Tang S, Wan B, Zhang M, Cheng D, Zhang H, Li Z. Microporous Carbon Nanospheres with Fast Sodium Storage Capability Enabled by Dominant Capacitive Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7331-7340. [PMID: 35652688 DOI: 10.1021/acs.langmuir.2c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hard carbon is considered one of the most promising anode candidates for sodium ion batteries but suffers from a moderate rate performance. Here, we design microporous carbon nanospheres using a novel hybrid monomer that simultaneously involves an organic moiety and an inorganic moiety as the starting unit. The inorganic moiety forms a continuous network, which serves as a 3D scaffold and a nanometer-scale template, then supports the off-collapse of the carbon skeleton and creates a well-developed microporous structure. In addition, the graphite microcrystal structure can be tailored by adjusting the heating treatment temperatures. The electrochemical study demonstrates that the microporous carbon nanospheres show dominant capacitive sodium storage behavior, thus presenting an outstanding rate performance. Even if a very high current density of 10 A g-1 is applied, the hard carbon anode can deliver a large capacity of 127 mAh g-1 with a considerable plateau capacity of 53 mAh g-1, which has rarely been obtained in previous publications. Besides, the carbon anode has a good cycling stability, and the capacity reached 210 mAh g-1 after 1000 cycles with a current density of 1 A g-1, showing no dramatic capacity loss.
Collapse
Affiliation(s)
- Shuang Tang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Baoshan Wan
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Minglu Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Dejian Cheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Haiyan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhenghui Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
56
|
Kubiak JM, Li B, Suazo M, Macfarlane RJ. Polymer Grafted Nanoparticle Composites with Enhanced Thermal and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21535-21543. [PMID: 35500102 DOI: 10.1021/acsami.2c03797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The distribution of filler particles within a polymer matrix nanocomposite has a profound influence on the properties and processability of the material. While filler aggregation and percolation can significantly enhance particular functionalities such as thermal and electrical conductivity, the formation of larger filler clusters and networks can also impair mechanical properties like strength and toughness and can also increase the difficulty of processing. Here, a strategy is presented for the preparation of functional composites that enhance thermal conductivity over polymer alone, without negatively affecting mechanical performance or processability. Thermal cross-linking of self-suspended polymer grafted nanoparticles is used to prepare highly filled (>50 vol %) macroscopic nanocomposites with homogeneously dispersed, non-percolating alumina particles in an organic matrix. The initial composites use low glass transition temperature polymer grafts and thus are flexible and easily shaped by thermoforming methods. However, after thermal aging, the resulting materials display high stiffness (>10 GPa) and enhanced thermal conductivity (>100% increase) and also possess mechanical strength similar to commodity plastics. Moreover, the covalent bonding between matrix and filler allows for the significant elevation of thermal conductivity despite the extensive interfacial area in the nanocomposite. The thermal aging of polymer grafted nanoparticles is therefore a promising method for producing easily processable, mechanically sturdy, and macroscopic nanocomposites with improved thermal conductivity.
Collapse
Affiliation(s)
- Joshua M Kubiak
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Buxuan Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mathew Suazo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
57
|
Li S, Shi X. 接枝高分子对纳米-生物界面粘附性能的调控研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
58
|
Li Z, Wang X, Kuang W, Dong C, Fan Y, Guo Y, Qiao Q, Zhu Z, Liu Y, Zhu Y. Biofiber waste derived zwitterionic and photocatalytic dye adsorbent: Switchable selectivity, in-situ degradation and multi-tasking application. BIORESOURCE TECHNOLOGY 2022; 352:127080. [PMID: 35351559 DOI: 10.1016/j.biortech.2022.127080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Dye wastewater and discarded biofiber have brought huge pressure to sustainable developments of ecology and economy. By utilizing dopamine chemistry and benzophenone mediated "grafting onto" atom transfer radical polymerization (ATRP), this work reported a biomass adsorbent containing discarded wool substrate, photocatalytic PDA coating and zwitterionic polymer brushes for dyes removal. The grafted zwitterionic polymer brushes impart the material with not only high adsorption capacity and rapid adsorption rate, but also switchable adsorption selectivity and pH-controlled regeneration capability. Benefiting from such outstanding adsorption performance and excellent free-standing property, the adsorbent could fulfill diversified needs of both static and dynamic adsorptions. Under daylight, the constructed photocatalytic PDA coating could in-situ degrade the captured pollutant, thus achieving consecutive adsorption-degradation-regeneration utilization. Furthermore, through simple dip-coating and cleaner UV-irradiation techniques, the preparation process could be scaled up. This work contributes to both the upcycling of discarded biofiber waste and the development of advanced biomass adsorbent.
Collapse
Affiliation(s)
- Zilong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Wei Kuang
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Cuihua Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yunxiang Fan
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuan Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qiongjie Qiao
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhengjie Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingying Liu
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ying Zhu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
59
|
Wang ST, Zhang H, Xuan S, Nykypanchuk D, Zhang Y, Freychet G, Ocko BM, Zuckermann RN, Todorova N, Gang O. Compact Peptoid Molecular Brushes for Nanoparticle Stabilization. J Am Chem Soc 2022; 144:8138-8152. [PMID: 35452210 DOI: 10.1021/jacs.2c00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Controlling the interfaces and interactions of colloidal nanoparticles (NPs) via tethered molecular moieties is crucial for NP applications in engineered nanomaterials, optics, catalysis, and nanomedicine. Despite a broad range of molecular types explored, there is a need for a flexible approach to rationally vary the chemistry and structure of these interfacial molecules for controlling NP stability in diverse environments, while maintaining a small size of the NP molecular shell. Here, we demonstrate that low-molecular-weight, bifunctional comb-shaped, and sequence-defined peptoids can effectively stabilize gold NPs (AuNPs). The generality of this robust functionalization strategy was also demonstrated by coating of silver, platinum, and iron oxide NPs with designed peptoids. Each peptoid (PE) is designed with varied arrangements of a multivalent AuNP-binding domain and a solvation domain consisting of oligo-ethylene glycol (EG) branches. Among designs, a peptoid (PE5) with a diblock structure is demonstrated to provide a superior nanocolloidal stability in diverse aqueous solutions while forming a compact shell (∼1.5 nm) on the AuNP surface. We demonstrate by experiments and molecular dynamics simulations that PE5-coated AuNPs (PE5/AuNPs) are stable in select organic solvents owing to the strong PE5 (amine)-Au binding and solubility of the oligo-EG motifs. At the vapor-aqueous interface, we show that PE5/AuNPs remain stable and can self-assemble into ordered 2D lattices. The NP films exhibit strong near-field plasmonic coupling when transferred to solid substrates.
Collapse
Affiliation(s)
- Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Honghu Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Sunting Xuan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Guillaume Freychet
- Energy Sciences Directorate/Photon Science Division, NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin M Ocko
- Energy Sciences Directorate/Photon Science Division, NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ronald N Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Nevena Todorova
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States.,Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.,Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
60
|
Lai E, Bao B, Zhu Y, Lin H. Transglutaminase-Catalyzed Bottom-Up Synthesis of Polymer Hydrogel. Front Bioeng Biotechnol 2022; 10:824747. [PMID: 35392400 PMCID: PMC8980521 DOI: 10.3389/fbioe.2022.824747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Enzyme catalysis has attracted increasing attention for application in the synthesis of polymer hydrogel due to the eco-friendly process and the devisable catalytic reaction. Moreover, bottom-up approaches combining enzyme catalysts and molecular self-assembly have been explored for synthesizing hydrogel with complex architectures. An enzyme widely distributed in nature, transglutaminase (TGase) has been confirmed to catalyze the formation of isopeptide bonds between proteins, which can effectively improve the gelation of proteins. In this mini-review, TGase-catalyzed synthesis of polymer hydrogels, including fibrin hydrogels, polyethylene glycol hydrogels, soy protein hydrogels, collagen hydrogels, gelatin hydrogels and hyaluronan hydrogels, has been reviewed in detail. The catalytic process and gel formation mechanism by TGase have also been considered. Furthermore, future perspectives and challenges in the preparation of polymer hydrogels by TGase are also highlighted.
Collapse
|
61
|
Reese CJ, Qi Y, Abele DT, Shlafstein MD, Dickhudt RJ, Guan X, Wagner MJ, Liu X, Boyes SG. Aromatic Polyamide Brushes for High Young’s Modulus Surfaces by Surface-Initiated Chain-Growth Condensation Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caleb J. Reese
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| | - Yarong Qi
- Department of Civil & Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Dustin T. Abele
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| | - Maximillian D. Shlafstein
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| | - Rhys J. Dickhudt
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| | - Xun Guan
- Department of Civil & Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Michael J. Wagner
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| | - Xitong Liu
- Department of Civil & Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Stephen G. Boyes
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
62
|
Zhu Z, Tsai CY, Zhao M, Baker J, Sue HJ. PMMA Nanocomposites Based on PMMA-Grafted α-Zirconium Phosphate Nanoplatelets. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zewen Zhu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Chia-Ying Tsai
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Mingzhen Zhao
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Joseph Baker
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Hung-Jue Sue
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
63
|
Pradhan SS, Saha S. Advances in design and applications of polymer brush modified anisotropic particles. Adv Colloid Interface Sci 2022; 300:102580. [PMID: 34922246 DOI: 10.1016/j.cis.2021.102580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
Current advancements in the creation of anisotropy in particles and their surface modification with polymer brushes have established a new class of hybrid materials termed polymer brush modified anisotropic particles (PBMAP). PBMAPs display unique property combinations, e.g., multi-functionality in multiple directions along with smart behavior, which is not easily achievable in traditional hybrid materials. Typically, anisotropic particles can be categorized based on three different factors, such as shape anisotropy (geometry driven), compositional anisotropy (functionality driven), and surface anisotropy (spatio-selective surface modification driven). In this review, we have particularly focused on the synthetic strategies to construct the various type of PBMAPs based on inorganic or organic core which may or may not be isotropic in nature, and their applications in various fields ranging from drug delivery to catalysis. In addition, superior performances and fascinating properties of PBMAPs over their isotropic analogues are also highlighted. A brief overview of their future developments and associated challenges have been discussed at the end.
Collapse
Affiliation(s)
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
64
|
Lishchuk A, Csányi E, Darroch B, Wilson C, Nabok A, Leggett GJ. Active control of strong plasmon-exciton coupling in biomimetic pigment-polymer antenna complexes grown by surface-initiated polymerisation from gold nanostructures. Chem Sci 2022; 13:2405-2417. [PMID: 35310503 PMCID: PMC8864694 DOI: 10.1039/d1sc05842h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Plexcitonic antenna complexes, inspired by photosynthetic light-harvesting complexes, are formed by attachment of chlorophylls (Chl) to poly(cysteine methacrylate) (PCysMA) scaffolds grown by atom-transfer radical polymerisation from gold nanostructure arrays. In these pigment–polymer antenna complexes, localised surface plasmon resonances on gold nanostructures are strongly coupled to Chl excitons, yielding hybrid light–matter states (plexcitons) that are manifested in splitting of the plasmon band. Modelling of the extinction spectra of these systems using a simple coupled oscillator model indicates that their coupling energies are up to twice as large as those measured for LHCs from plants and bacteria. Coupling energies are correlated with the exciton density in the grafted polymer layer, consistent with the collective nature of strong plasmon–exciton coupling. Steric hindrance in fully-dense PCysMA brushes limits binding of bulky chlorophylls, but the chlorophyll concentration can be increased to ∼2 M, exceeding that in biological light-harvesting complexes, by controlling the grafting density and polymerisation time. Moreover, synthetic plexcitonic antenna complexes display pH- and temperature-responsiveness, facilitating active control of plasmon–exciton coupling. Because of the wide range of compatible polymer chemistries and the mild reaction conditions, plexcitonic antenna complexes may offer a versatile route to programmable molecular photonic materials. Excitons in pigment–polymer antenna complexes formed by attachment of chlorophyll to surface grafted polymers are coupled strongly to plasmon modes, with coupling energies twice those for biological light-harvesting complexes and active control of plasmon–exciton coupling.![]()
Collapse
Affiliation(s)
- Anna Lishchuk
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Evelin Csányi
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Brice Darroch
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Chloe Wilson
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Alexei Nabok
- Materials and Engineering Research Institute, Sheffield Hallam University City Campus Sheffield S1 1WB UK
| | - Graham J Leggett
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| |
Collapse
|
65
|
Smenda J, Wolski K, Chajec K, Zapotoczny S. Preparation of Homopolymer, Block Copolymer, and Patterned Brushes Bearing Thiophene and Acetylene Groups Using Microliter Volumes of Reaction Mixtures. Polymers (Basel) 2021; 13:4458. [PMID: 34961009 PMCID: PMC8704565 DOI: 10.3390/polym13244458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
The synthesis of surface-grafted polymers with variable functionality requires the careful selection of polymerization methods that also enable spatially controlled grafting, which is crucial for the fabrication of, e.g., nano (micro) sensor or nanoelectronic devices. The development of versatile, simple, economical, and eco-friendly synthetic strategies is important for scaling up the production of such polymer brushes. We have recently shown that poly (3-methylthienyl methacrylate) (PMTM) and poly (3-trimethylsilyl-2-propynyl methacrylate) (PTPM) brushes with pendant thiophene and acetylene groups, respectively, could be used for the production of ladder-like conjugated brushes that are potentially useful in the mentioned applications. However, the previously developed syntheses of such brushes required the use of high volumes of reagents, elevated temperature, or high energy UV-B light. Therefore, we present here visible light-promoted metal-free surface-initiated ATRP (metal-free SI-ATRP) that allows the economical synthesis of PMTM and PTPM brushes utilizing only microliter volumes of reaction mixtures. The versatility of this approach was shown by the formation of homopolymers but also the block copolymer conjugated brushes (PMTM and PTPM blocks in both sequences) and patterned films using TEM grids serving as photomasks. A simple reaction setup with only a monomer, solvent, commercially available organic photocatalyst, and initiator decorated substrate makes the synthesis of these complex polymer structures achievable for non-experts and ready for scaling up.
Collapse
Affiliation(s)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (J.S.); (K.C.); (S.Z.)
| | | | | |
Collapse
|
66
|
Polymerization and Structure of Opposing Polymer Brushes Studied by Computer Simulations. Polymers (Basel) 2021; 13:polym13244294. [PMID: 34960846 PMCID: PMC8706839 DOI: 10.3390/polym13244294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
A model of the polymerization process during the formation of a pair of polymer brushes was designed and investigated. The obtained system consisted of two impenetrable parallel surfaces with the same number of chains grafted on both surfaces. Coarse-grained chains embedded in nodes of a face-centered cubic lattice with excluded volume interactions were obtained by a ‘grafted from’ procedure. The structure of synthesized macromolecular systems was also studied. Monte Carlo simulations using the dynamic lattice liquid model were employed using dedicated parallel machine ARUZ in a large size and time scale. The parameters of the polymerization process were found to be crucial for the proper structure of the brush. It was found that for high grafting densities, chains were increasingly compressed, and there is surprisingly little interpenetration of chains from opposite surfaces. It was predicted and confirmed that in a polydisperse sample, the longer chains have unique configurations consisting of a stretched stem and a coiled crown.
Collapse
|
67
|
Anthi J, Kolivoška V, Holubová B, Vaisocherová-Lísalová H. Probing polymer brushes with electrochemical impedance spectroscopy: a mini review. Biomater Sci 2021; 9:7379-7391. [PMID: 34693954 DOI: 10.1039/d1bm01330k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymer brushes are frequently used as surface-tethered antifouling layers in biosensors to improve sensor surface-analyte recognition in the presence of abundant non-target molecules in complex biological samples by suppressing nonspecific interactions. However, because brushes are complex systems highly responsive to changes in their surrounding environment, studying their properties remains a challenge. Electrochemical impedance spectroscopy (EIS) is an emerging method in this context. In this mini review, we aim to elucidate the potential of EIS for investigating the physicochemical properties and structural aspects of polymer brushes. The application of EIS in brush-based biosensors is also discussed. Most common principles employed in these biosensors are presented, as well as interpretation of EIS data obtained in such setups. Overall, we demonstrate that the EIS-polymer brush pairing has a considerable potential for providing new insights into brush functionalities and designing highly sensitive and specific biosensors.
Collapse
Affiliation(s)
- Judita Anthi
- Institute of Physics of the CAS, Na Slovance 2, 182 21 Prague, Czech Republic. .,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic.
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | | |
Collapse
|
68
|
Li S, Lorandi F, Wang H, Liu T, Whitacre JF, Matyjaszewski K. Functional polymers for lithium metal batteries. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
69
|
Xiao W, Xu H, Zhang J, Chen Y, Dong Z, Chen A, Xu J, Lei C. One-Shot synthesis of heterografted brush copolymers through orthogonal Ring-Opening polymerization and atom transfer radical polymerization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
70
|
Xu C, He C, Li N, Yang S, Du Y, Matyjaszewski K, Pan X. Regio- and sequence-controlled conjugated topological oligomers and polymers via boronate-tag assisted solution-phase strategy. Nat Commun 2021; 12:5853. [PMID: 34615871 PMCID: PMC8494804 DOI: 10.1038/s41467-021-26186-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
The regulation of polymer topology and the precise control over the monomer sequence is crucial and challenging in polymer science. Herein, we report an efficient solution-phase synthetic strategy to prepare regio- and sequence-controlled conjugated polymers with topological variations via the usage of methyliminodiacetic acid (MIDA) boronates. Based on the solubility of MIDA boronates and their unusual binary affinity for silica gel, the synthesized regio- and sequence-defined conjugated oligomers can be rapidly purified via precipitation or automatic liquid chromatography. These synthesized discrete oligomers can be used for iterative exponential and sequential growth to obtain linear and dendrimer-like star polymers. Moreover, different topological sequence-controlled conjugated polymers are conveniently prepared from these discrete oligomers via condensation polymerization. By investigating the structure-property relationship of these polymers, we find that the optical properties are strongly influenced by the regiochemistry, which may give inspiration to the design of optoelectronic polymeric materials.
Collapse
Affiliation(s)
- Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ning Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shicheng Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yuxuan Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
71
|
Beyou E, Bourgeat-Lami E. Organic–inorganic hybrid functional materials by nitroxide-mediated polymerization. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
72
|
Fu L, Jafari H, Gießl M, Yerneni SS, Sun M, Wang Z, Liu T, Kapil K, Cheng BC, Yu A, Averick SE, Matyjaszewski K. Grafting Polymer Brushes by ATRP from Functionalized Poly(ether ether ketone) Microparticles. POLYM ADVAN TECHNOL 2021; 32:3948-3954. [PMID: 34924736 PMCID: PMC8680496 DOI: 10.1002/pat.5405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022]
Abstract
Poly(ether ether ketone) (PEEK) is a semi-crystalline thermoplastic with excellent mechanical and chemical properties. PEEK exhibits a high degree of resistance to thermal, chemical, and bio-degradation. PEEK is used as biomaterial in the field of orthopaedic and dental implants; however, due to its intrinsic hydrophobicity and inert surface, PEEK does not effectively support bone growth. Therefore, new methods to modify PEEK's surface to improve osseointegration are key to next generation polymer implant materials. Unfortunately, PEEK is a challenging material to both modify and subsequently characterize thus stymieing efforts to improve PEEK osseointegration. In this manuscript, we demonstrate how surface-initiated atom transfer radical polymerization (SI-ATRP) can be used to modify novel PEEK microparticles (PMP). The hard core-soft shell microparticles were synthesized and characterized by DLS, ATR-IR, XPS and TEM, indicating the grafted materials increased solubility and stability in a range of solvents. The discovered surface grafted PMP can be used as compatibilizers for the polymer-tissue interface.
Collapse
Affiliation(s)
- Liye Fu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Hossein Jafari
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Michael Gießl
- Department of Chemistry, University of Konstanz, Universitatsstraße 10, D-78457 Konstanz, Germany
| | | | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Boyle C. Cheng
- Allegheny Health Network - Neuroscience Institute, 320 E. North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Alexander Yu
- Allegheny Health Network - Neuroscience Institute, 320 E. North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Saadyah E. Averick
- Allegheny Health Network - Neuroscience Institute, 320 E. North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | | |
Collapse
|
73
|
Hałagan K, Banaszak M, Jung J, Polanowski P, Sikorski A. Dynamics of Opposing Polymer Brushes: A Computer Simulation Study. Polymers (Basel) 2021; 13:2758. [PMID: 34451296 PMCID: PMC8398710 DOI: 10.3390/polym13162758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 01/16/2023] Open
Abstract
Opposing polymer brush systems were synthesized and investigated by molecular modeling. Chains were restricted to a face-centered cubic lattice with the excluded volume interactions only. The system was confined between two parallel impenetrable walls, with the same number of chains grafted to each surface. The dynamic properties of such systems were studied by Monte Carlo simulations based on the dynamic lattice liquid model and using a highly efficient parallel machine ARUZ, which enabled the study of large systems and long timescales. The influence of the surface density and mean polymer length on the system dynamic was discussed. The self-diffusion coefficient of the solvent depended strongly on the degree of polymerization and on the polymer concentration. It was also shown that it is possible to capture changes in solvent mobility that can be attributed to the regions of different polymer densities.
Collapse
Affiliation(s)
- Krzysztof Hałagan
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90924 Lodz, Poland; (J.J.); (P.P.)
| | - Michał Banaszak
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61614 Poznan, Poland;
- NanoBiomedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61614 Poznan, Poland
| | - Jarosław Jung
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90924 Lodz, Poland; (J.J.); (P.P.)
| | - Piotr Polanowski
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90924 Lodz, Poland; (J.J.); (P.P.)
| | - Andrzej Sikorski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland;
| |
Collapse
|
74
|
Wu W, Singh M, Masud A, Wang X, Nallapaneni A, Xiao Z, Zhai Y, Wang Z, Terlier T, Bleuel M, Yuan G, Satija SK, Douglas JF, Matyjaszewski K, Bockstaller MR, Karim A. Control of Phase Morphology of Binary Polymer Grafted Nanoparticle Blend Films via Direct Immersion Annealing. ACS NANO 2021; 15:12042-12056. [PMID: 34255492 DOI: 10.1021/acsnano.1c03357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While the phase separation of binary mixtures of chemically different polymer-grafted nanoparticles (PGNPs) is observed to superficially resemble conventional polymer blends, the presence of a "soft" polymer-grafted layer on the inorganic core of these nanoparticles qualitatively alters the phase separation kinetics of these "nanoblends" from the typical pattern of behavior seen in polymer blends and other simple fluids. We investigate this system using a direct immersion annealing method (DIA) that allows for a facile tuning of the PGNPs phase boundary, phase separation kinetics, and the ultimate scale of phase separation after a sufficient "aging" time. In particular, by switching the DIA solvent composition from a selective one (which increases the interaction parameter according to Timmerman's rule) to an overall good solvent for both PGNP components, we can achieve rapid switchability between phase-separated and homogeneous states. Despite a relatively low and non-classical power-law coarsening exponent, the overall phase separation process is completed on a time scale on the order of a few minutes. Moreover, the roughness of the PGNP blend film saturates at a scale that is proportional to the in-plane phase separation pattern scale, as observed in previous blend and block copolymer film studies. The relatively low magnitude of the coarsening exponent n is attributed to a suppression of hydrodynamic interactions between the PGNPs. The DIA method provides a significant opportunity to control the phase separation morphology of PGNP blends by solution processing, and this method is expected to be quite useful in creating advanced materials.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ali Masud
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Xiaoteng Wang
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Asritha Nallapaneni
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Zihan Xiao
- Department of Materials Science and Engineering, University of Houston, Houston, Texas 77204, United States
| | - Yue Zhai
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Guangcui Yuan
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sushil K Satija
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
75
|
Li N, Yang S, Huang Z, Pan X. Radical Reduction of Polymer Chain-End Functionality by Stoichiometric N-Heterocyclic Carbene Boranes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ning Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Shicheng Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhujun Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
76
|
|
77
|
|
78
|
Wang Y, Chen J, Zhu C, Zhu B, Jeong S, Yi Y, Liu Y, Fiadorwu J, He P, Ye X. Kinetically Controlled Self-Assembly of Binary Polymer-Grafted Nanocrystals into Ordered Superstructures via Solvent Vapor Annealing. NANO LETTERS 2021; 21:5053-5059. [PMID: 34101469 DOI: 10.1021/acs.nanolett.1c00890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer-inorganic nanocomposites based on polymer-grafted nanocrystals (PGNCs) are enabling technologically relevant applications owing to their unique physical, chemical, and mechanical properties. While diverse PGNC superstructures have been realized through evaporation-driven self-assembly, this approach presents multifaceted challenges in experimentally probing and controlling assembly kinetics. Here, we report a kinetically controlled assembly of binary superstructures from a homogeneous disordered PGNC mixture utilizing solvent vapor annealing (SVA). Using a NaZn13-type superstructure as a model system, we demonstrate that varying the solvent vapor pressure during SVA allows for exquisite control of the rate and extent of PGNC assembly, providing access to nearly complete kinetic pathways of binary PGNC crystallization. Characterization of kinetically arrested intermediates reveals that assembly follows a multistep crystallization pathway involving spinodal-like preordering of PGNCs prior to NaZn13 nucleation. Our work opens up new avenues for the synthesis of multicomponent PGNC superstructures exhibiting multifunctionalities and emergent properties through a thorough understanding of kinetic pathways.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jun Chen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Baixu Zhu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Soojin Jeong
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yi Yi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yang Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Joshua Fiadorwu
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, United States
| | - Peng He
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, United States
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
79
|
Sim XM, Chen C, Goto A. Polymer Coupling via Hetero-Disulfide Exchange and Its Applications to Rewritable Polymer Brushes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24183-24193. [PMID: 33982564 DOI: 10.1021/acsami.1c07195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An iodide-terminated polymer (Polymer-I) is converted to a thiol-terminated polymer (Polymer-SH) using HSCH2CH2SH in a remarkably short time (10 min). Polymer-SH is further converted to a pyridyl disulfide-terminated polymer (Polymer-SS-Py). The hetero-coupling of Polymer-SH and Polymer-SS-Py is successfully achieved to quantitatively generate a polymer disulfide (Polymer-SS-Polymer). Exploiting this efficient hetero-coupling technique, Polymer-SH is attached (grafted) on a Py-SS-immobilized surface to generate a polymer brush via a disulfide (-SS-) linkage (writing process). The -SS- linkage is cleaved by the treatment with dithiothreitol (DTT) to detach the polymer from the surface (erasing process). Subsequently, another Polymer-SH is attached on the surface to generate another polymer brush (rewriting process). Thus, a writable, erasable, and rewritable polymer brush surface is achieved. Hydrophilic, hydrophobic, and super-hydrophobic polymers (Polymer-SH) are attached on the surface, tailoring the surface wettability in the writing-erasing-rewriting cycles. Polymer-SH is also attached on a chain-end Py-SS-functionalized polymer brush surface, generating a rewritable block copolymer brush surface. A patterned block copolymer brush surface is also obtained using photo-irradiation and a photo-mask in the erasing process. The metal-free synthetic procedure, accessibility to patterned brushes, and switchable surface properties via the writing-erasing-rewriting process are attractive features of the present approach.
Collapse
Affiliation(s)
- Xuan Ming Sim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Chen Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
80
|
Tawade BV, Apata IE, Pradhan N, Karim A, Raghavan D. Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications. Molecules 2021; 26:2942. [PMID: 34063362 PMCID: PMC8157189 DOI: 10.3390/molecules26102942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the "grafting from" and "grafting to" approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.
Collapse
Affiliation(s)
- Bhausaheb V. Tawade
- Department of Chemistry, Howard University, Washington, DC 20059, USA; (B.V.T.); (I.E.A.)
| | - Ikeoluwa E. Apata
- Department of Chemistry, Howard University, Washington, DC 20059, USA; (B.V.T.); (I.E.A.)
| | - Nihar Pradhan
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA;
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA;
| | - Dharmaraj Raghavan
- Department of Chemistry, Howard University, Washington, DC 20059, USA; (B.V.T.); (I.E.A.)
| |
Collapse
|
81
|
Kadre D, Iyer BVS. Modeling Local Oscillatory Shear Dynamics of Functionalized Polymer Grafted Nanoparticles. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Diksha Kadre
- Department of Chemical Engineering Indian Institute of Technology Hyderabad 502285 India
| | - Balaji V. S. Iyer
- Department of Chemical Engineering Indian Institute of Technology Hyderabad 502285 India
| |
Collapse
|
82
|
Li SJ, Shi X. Tailoring Antifouling Properties of Nanocarriers via Entropic Collision of Polymer Grafting. ACS NANO 2021; 15:5725-5734. [PMID: 33710849 DOI: 10.1021/acsnano.1c01173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer graftings (PGs) are widely employed in antifouling surfaces and drug delivery systems to regulate the interaction with a foreign environment. Through molecular dynamics simulations and scaling theory analysis, we investigate the physical antifouling properties of PGs via their collision behaviors. Compared with mushroom-like PGs with low grafting density, we find brush-like PGs with high grafting density could generate large deformation-induced entropic repulsive force during a collision, revealing a microscopic mechanism for the hop motions of polymer-grafted nanoparticles for drug delivery observed in experiment. In addition, the collision elasticity of PGs is found to decay with the collision velocity by a power law, i.e., a concise dynamic scaling despite the complex process involved, which is beyond expectation. These results elucidate the dynamic interacting mechanism of PGs, which are of immediate interest for a fundamental understanding of the antifouling performance of PGs and the rational design of PG-coated nanoparticles in nanomedicine for drug delivery.
Collapse
Affiliation(s)
- Shu-Jia Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
83
|
Improved antifouling properties of PVA hydrogel via an organic semiconductor graphitic carbon nitride catalyzed surface-initiated photo atom transfer radical polymerization. Colloids Surf B Biointerfaces 2021; 203:111718. [PMID: 33774491 DOI: 10.1016/j.colsurfb.2021.111718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023]
Abstract
An innovative g-C3N4 catalyzed surface-initiated photo atom transfer radical polymerization (SI-photoATRP) has been developed to construct MEDSAH zwitterionic polymer brushes on PVA hydrogel surface. g-C3N4 catalyzed SI-photoATRP is temporal and spatial control. As a heterogeneous reaction system, it can solve the catalyst residues problem. After grafting with MEDSAH, surface chemical composition and morphology of PVA-g-pMEDSAH hydrogel confirmed that MEDSAH was successfully grafted onto PVA hydrogel. Thermal property of PVA-g-pMEDSAH hydrogel decreased and hydrophilicity increased. No statistically significant differences between PVA and PVA-g-pMEDSAH were observed on mechanical properties. Cytotoxicity in vitro of PVA-g-pMEDSAH hydrogel could be considered as no cytotoxicity for L929 and NDHF cells. The antifouling properties of PVA-g-pMEDSAH hydrogel were significantly improved due to the enhancement of the surface hydration and steric repulsion effects caused by pMEDSAH polymer brushes. In addition, g-C3N4 is easier to modify to enhance the photocatalyst property. Thus, the heterogeneous reaction system of g-C3N4 catalyzed SI-photoATRP has huge potential applied in biomaterials surface modification.
Collapse
|
84
|
Rahimi M, Charmi G, Matyjaszewski K, Banquy X, Pietrasik J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater 2021; 123:31-50. [PMID: 33444800 DOI: 10.1016/j.actbio.2021.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), is a common musculoskeletal disorder that will progressively increase in older populations and is expected to be the most dominant cause of disability in the world population by 2030. The progression of OA is controlled by a multi-factorial pathway that has not been completely elucidated and understood yet. However, over the years, research efforts have provided a significant understanding of some of the processes contributing to the progression of OA. Both cartilage and bone degradation processes induce articular cells to produce inflammatory mediators that produce proinflammatory cytokines that block the synthesis of collagen type II and aggrecan, the major components of cartilage. Systemic administration and intraarticular injection of anti-inflammatory agents are the first-line treatments of OA. However, small anti-inflammatory molecules are rapidly cleared from the joint cavity which limits their therapeutic efficacy. To palliate this strong technological drawback, different types of polymeric materials such as microparticles, nanoparticles, and hydrogels, have been examined as drug carriers for the delivery of therapeutic agents to articular joints. The main purpose of this review is to provide a summary of recent developments in natural and synthetic polymeric drug delivery systems for the delivery of anti-inflammatory agents to arthritic joints. Furthermore, this review provides an overview of the design rules that have been proposed so far for the development of drug carriers used in OA therapy. Overall it is difficult to state clearly which polymeric platform is the most efficient one because many advantages and disadvantages could be pointed to both natural and synthetic formulations. That requires further research in the near future.
Collapse
|
85
|
Wu J, Liu S, Huang J, Cui Y, Ma P, Wu D, Matyjaszewski K. Fabrication of Advanced Hierarchical Porous Polymer Nanosheets and Their Application in Lithium–Sulfur Batteries. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinlun Wu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shaohong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Junlong Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yin Cui
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Pengwei Ma
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dingcai Wu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
86
|
Grishin DF, Grishin ID. Modern trends in controlled synthesis of functional polymers: fundamental aspects and practical applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major trends in controlled radical polymerization (CRP) or reversible-deactivation radical polymerization (RDRP), the most efficient method of synthesis of well-defined homo- and copolymers with specified parameters and properties, are critically analyzed. Recent advances associated with the three classical versions of CRP: nitroxide mediated polymerization, reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization, are considered. Particular attention is paid to the prospects for the application of photoinitiation and photocatalysis in CRP. This approach, which has been intensively explored recently, brings synthetic methods of polymer chemistry closer to the light-induced processes of macromolecular synthesis occurring in living organisms. Examples are given of practical application of CRP techniques to obtain industrially valuable, high-tech polymeric products.
The bibliography includes 429 references.
Collapse
|
87
|
New methods in polymer brush synthesis: Non-vinyl-based semiflexible and rigid-rod polymer brushes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
88
|
Galeziewska M, Lipinska M, Mrlik M, Ilcikova M, Gajdosova V, Slouf M, Achbergerová E, Musilová L, Mosnacek J, Pietrasik J. Polyacrylamide brushes with varied morphologies as a tool for control of the intermolecular interactions within EPDM/MVQ blends. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
89
|
Yin R, Wang Z, Bockstaller MR, Matyjaszewski K. Tuning dispersity of linear polymers and polymeric brushes grown from nanoparticles by atom transfer radical polymerization. Polym Chem 2021. [DOI: 10.1039/d1py01178b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular weight distribution imposes considerable influence on the properties of polymers, making it an important parameter, impacting morphology and structural behavior of polymeric materials.
Collapse
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
90
|
RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
91
|
Ma Q, Liu S, Le Dot M, Mokbel H, Zhang Y, Graff B, Lalevée J. Imidazole based dual photo/thermal initiators for highly efficient radical polymerization under air with a metal-free approach. Polym Chem 2021. [DOI: 10.1039/d1py01079d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free visible LED photopolymerization process, initiated by imidazole based charge transfer complexes under mild conditions (room temperature, without an inert atmosphere, monomer purification or stabilizer removal), is reported.
Collapse
Affiliation(s)
- Qiang Ma
- Université de Haute-Alsace, CNRS, IS2 M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shaohui Liu
- Université de Haute-Alsace, CNRS, IS2 M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Marie Le Dot
- Université de Haute-Alsace, CNRS, IS2 M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Haifaa Mokbel
- Université de Haute-Alsace, CNRS, IS2 M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Yijun Zhang
- Université de Haute-Alsace, CNRS, IS2 M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Bernadette Graff
- Université de Haute-Alsace, CNRS, IS2 M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2 M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| |
Collapse
|
92
|
Cang Y, Lee J, Wang Z, Yan J, Matyjaszewski K, Bockstaller MR, Fytas G. Transparent Hybrid Opals with Unexpected Strong Resonance-Enhanced Photothermal Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004732. [PMID: 33251706 PMCID: PMC11468544 DOI: 10.1002/adma.202004732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/12/2020] [Indexed: 05/24/2023]
Abstract
Photothermal energy conversion is of fundamental importance to applications ranging from drug delivery to microfluidics and from ablation to fabrication. It typically originates from absorptive processes in materials that-when coupled with non-radiative dissipative processes-allow the conversion of radiative energy into heat. Microstructure design provides versatile strategies for controlling light-matter interactions. In particular, the deliberate engineering of the band structure in photonic materials is known to be an effective approach to amplify absorption in materials. However, photonic amplification is generally tied to high optical contrast materials which limit the applicability of the concept to metamaterials such as microfabricated metal-air hybrids. This contribution describes the first observation of pronounced amplification of absorption in low contrast opals formed by the self-assembly of polymer-tethered particles. The dependence of the amplification factor on the length scale and degree of order of materials as well as the angle of incidence reveal that it is related to the slow photon effect. A remarkable amplification factor of 16 is shown to facilitate the rapid "melting" of opal films even in the absence of "visible" absorption. The results point to novel opportunities for tailoring light-matter interactions in hybrid materials that can benefit the manipulation and fabrication of functional materials.
Collapse
Affiliation(s)
- Yu Cang
- School of Aerospace Engineering and Applied MechanicsTongji University100 Zhangwu RoadShanghai200092China
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Jaejun Lee
- Department of Materials Science and EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Zuyuan Wang
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Jiajun Yan
- Chemistry DepartmentCarnegie Mellon University4400 Fifth Ave.PittsburghPA15213USA
| | | | - Michael R. Bockstaller
- Department of Materials Science and EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - George Fytas
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
93
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
94
|
|
95
|
Zhang J, Wen H, Wang P, Raza S, Zhu Z, Huang W, Hu H, Liang L, Liu C. Photo-initiated polymer brush grafting and multi-stage assembly of hydrophobic oil-absorbing self-cleaning cotton fabrics for acidic and alkaline environments. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
96
|
Qian Y, Deng S, Lu Z, She Y, Xie J, Cong Z, Zhang W, Liu R. Using In Vivo Assessment on Host Defense Peptide Mimicking Polymer-Modified Surfaces for Combating Implant Infections. ACS APPLIED BIO MATERIALS 2020; 4:3811-3829. [DOI: 10.1021/acsabm.0c01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yuxin Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Deng
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ziyi Lu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yunrui She
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayang Xie
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
97
|
Xie Z, Gan T, Fang L, Zhou X. Recent progress in creating complex and multiplexed surface-grafted macromolecular architectures. SOFT MATTER 2020; 16:8736-8759. [PMID: 32969442 DOI: 10.1039/d0sm01043j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-grafted macromolecules, including polymers, DNA, peptides, etc., are versatile modifications to tailor the interfacial functions in a wide range of fields. In this review, we aim to provide an overview of the most recent progress in engineering surface-grafted chains for the creation of complex and multiplexed surface architectures over micro- to macro-scopic areas. A brief introduction to surface grafting is given first. Then the fabrication of complex surface architectures is summarized with a focus on controlled chain conformations, grafting densities and three-dimensional structures. Furthermore, recent advances are highlighted for the generation of multiplexed arrays with designed chemical composition in both horizontal and vertical dimensions. The applications of such complicated macromolecular architectures are then briefly discussed. Finally, some perspective outlooks for future studies and challenges are suggested. We hope that this review will be helpful to those just entering this field and those in the field requiring quick access to useful reference information about the progress in the properties, processing, performance, and applications of functional surface-grafted architectures.
Collapse
Affiliation(s)
- Zhuang Xie
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| | - Lvye Fang
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| |
Collapse
|
98
|
Kim CS, Cho S, Lee JH, Cho WK, Son KS. Open-to-Air RAFT Polymerization on a Surface under Ambient Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11538-11545. [PMID: 32921056 DOI: 10.1021/acs.langmuir.0c01947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxygen (O2)-mediated controlled radical polymerization was performed on surfaces under ambient conditions, enabling on-surface polymer brush growth under open-to-air conditions at room temperature in the absence of metal components. Polymerization of zwitterionic monomers using this O2-mediated surface-initiated reversible addition fragmentation chain-transfer (O2-SI-RAFT) method yielded hydrophilic surfaces that exhibited anti-biofouling effects. O2-SI-RAFT polymerization can be performed on large surfaces under open-to-air conditions. Various monomers including (meth)acrylates and acrylamides were employed for O2-SI-RAFT polymerization; the method is thus versatile in terms of the polymers used for coating and functionalization. A wide range of hydrophilic and hydrophobic monomers can be employed. In addition, the end-group functionality of the polymer grown by O2-SI-RAFT polymerization allowed chain extension to form block copolymer brushes on a surface.
Collapse
Affiliation(s)
- Chung Soo Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soojeong Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Hoon Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-Sun Son
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
99
|
Zhu T, Rahman MA, Benicewicz BC. Synthesis of Well-Defined Polyolefin Grafted SiO 2 Nanoparticles with Molecular Weight and Graft Density Control. ACS Macro Lett 2020; 9:1255-1260. [PMID: 35638619 DOI: 10.1021/acsmacrolett.0c00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent advances in surface-initiated polymerization have given rise to a range of brush nanocomposites and hybrid functional materials. However, the synthesis of pure polyolefin-grafted nanocomposites by surface-initiated ring-opening metathesis polymerization (SI-ROMP) is a significant challenge due to the particle aggregation and irreversible particle coupling. This study presents a synthetic approach toward well-defined poly(cyclooctene)- and polyethylene-grafted nanoparticles by tethering Grubbs third generation catalyst on the particle surface and initiating the polymerization in a rapid manner. This work also serves as a template to prepare other hairy nanoparticles and functions as a basis toward understanding their thermomechanical behaviors.
Collapse
Affiliation(s)
- Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Md Anisur Rahman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C. Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
100
|
Han J, Zhai Y, Wang Z, Bleuel M, Liu T, Yin R, Wu W, Hakem IF, Karim A, Matyjaszewski K, Bockstaller MR. Nanosized Organo-Silica Particles with "Built-In" Surface-Initiated Atom Transfer Radical Polymerization Capability as a Platform for Brush Particle Synthesis. ACS Macro Lett 2020; 9:1218-1223. [PMID: 35638636 DOI: 10.1021/acsmacrolett.0c00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A facile synthetic method was developed to prepare sub-5 nm organo-silica (oSiO2) nanoparticles through the self-condensation of atom transfer radical polymerization (ATRP)-initiator-containing silica precursors. The obtained oSiO2 nanoparticles were characterized by a combination of nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The accessibility of the surface-Br initiating sites was evaluated by the polymerization of poly(methyl methacrylate) (PMMA) ligands from the surface of the oSiO2 nanoparticles using surface-initiated atom transfer radical polymerization (SI-ATRP). The ultrasmall size, tunable composition, and ease of surface modification may render these organo-silica nanoparticle systems with built-in SI-ATRP capability an interesting alternative to conventional silica nanoparticles for functional material design.
Collapse
Affiliation(s)
- Jin Han
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Yue Zhai
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20988-8562, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ilhem F. Hakem
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|