51
|
Huang B, Jin L, Zhang L, Cui X, Zhang Z, Lu Y, Yu L, Ma T, Zhang H. Aquaporin-8 transports hydrogen peroxide to regulate granulosa cell autophagy. Front Cell Dev Biol 2022; 10:897666. [PMID: 36081911 PMCID: PMC9445271 DOI: 10.3389/fcell.2022.897666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Aquaporin-8 (AQP8), a member of the aquaporin family, is strongly expressed in follicular granulosa cells, which could affect the hormone secretion level in females. AQP8, as a membrane protein, could mediate H2O2 into cells, thereby triggering various biological events. The deficiency of Aqp8 increases female fertility, resulting from the decrease in follicular atresia. The low cell death rate is related to the apoptosis of granulosa cells. However, the mechanism by which AQP8 regulates the autophagy of granulosa cells remains unclear. Thus, this study aimed to explore the effect of AQP8 on autophagy in follicular atresia. We found that the expression of the autophagy marker light-chain protein 3 was significantly downregulated in the granulosa cells of Aqp8-knockout (Aqp8−/−) mice, compared with wild-type (Aqp8+/+) mice. Immunofluorescence staining and transmission electron microscopic examination indicated that the number of autophagosomes in the granulosa cells of Aqp8−/− mice decreased. Using a follicular granulosa cell autophagy model, namely a follicular atresia model, we verified that the concentration of H2O2 significantly increased during the autophagy of granulosa cells, consistent with the Aqp8 mRNA level. Intracellular H2O2 accumulation was modulated by endogenous AQP8 expression level, indicating that AQP8-mediated H2O2 was involved in the autophagy of granulosa cells. AQP8 deficiency impaired the elevation of H2O2 concentration through phosphorylated tyrosine activation. In addition, we carried out the analysis of transcriptome sequencing datasets in the ovary and found there were obvious differences in principal components, differentially expressed genes (DEGs) and KEGG pathways, which might be involved in AQP8-regulated follicular atresia. Taken together, these findings indicated that AQP8-mediated H2O2 transport could mediate the autophagy of granulosa cells. AQP8 might be a potential target for diseases related to ovarian insufficiency.
Collapse
Affiliation(s)
- Binbin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Lingling Jin
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Luodan Zhang
- Department of Nephrology, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Xiaolin Cui
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhen Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yongqi Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Lujia Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Tonghui Ma
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - He Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: He Zhang,
| |
Collapse
|
52
|
Chen L, Wang S, Wang Z, Liu Y, Xu Y, Yang S, Xue G. Construction and analysis of competing endogenous RNA network and patterns of immune infiltration in abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:955838. [PMID: 35990982 PMCID: PMC9386163 DOI: 10.3389/fcvm.2022.955838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Various studies have highlighted the role of circular RNAs (circRNAs) as critical molecular regulators in cardiovascular diseases, but its role in abdominal aortic aneurysm (AAA) is unclear. This study explores the potential molecular mechanisms of AAA based on the circRNA-microRNA (miRNA)-mRNA competing endogenous RNA (ceRNA) network and immune cell infiltration patterns. Methods The expression profiles of circRNAs (GSE144431) and mRNAs (GSE57691 and GSE47472) were obtained from the Gene Expression Omnibus (GEO). Then, the differentially expressed circRNAs (DEcircRNAs) and mRNAs (DEmRNAs) between AAA patients and healthy control samples, and the target miRNAs of these DEmRNAs and DEcircRNAs were identified. Based on the miRNA-DEmRNAs and miRNA-DEcircRNAs pairs, the ceRNA network was constructed. Furthermore, the proportion of the 22 immune cell types in AAA patients was assessed using cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. The expressions of key genes and immune cell infiltration were validated using clinical specimens. Results A total of 214 DEmRNAs were identified in the GSE57691 and GSE47472 datasets, and 517 DEcircRNAs were identified in the GSE144431 dataset. The ceRNA network included 19 circRNAs, 36 mRNAs, and 68 miRNAs. Two key genes, PPARG and FOXO1, were identified among the hub genes of the established protein-protein interaction between mRNAs in the ceRNA network. Moreover, seven types of immune cells were differentially expressed between AAA patients and healthy control samples. Hub genes in ceRNA, such as FOXO1, HSPA8, and RAB5C, positively correlated with resting CD4 memory T cells or M1 macrophages, or both. Conclusion In conclusion, a ceRNA interaction axis was constructed. The composition of infiltrating immune cells was analyzed in the abdominal aorta of AAA patients and healthy control samples. This may help identify potential therapeutic targets for AAA.
Collapse
Affiliation(s)
- Liang Chen
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuangshuang Wang
- Songyuan Central Hospital, Songyuan Children's Hospital, Songyuan, China
| | - Zheyu Wang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuting Liu
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yi Xu
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Shuofei Yang
| | - Guanhua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Guanhua Xue
| |
Collapse
|
53
|
Zhang X, Hu ZT, Li Y, Li YX, Xian M, Guo SM, Hu JH. Effect of Astragalus polysaccharides on the cryopreservation of goat semen. Theriogenology 2022; 193:47-57. [DOI: 10.1016/j.theriogenology.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
|
54
|
Xu B, Dai W, Liu L, Han H, Zhang J, Du X, Pei X, Fu X. Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway. Endocr J 2022; 69:863-875. [PMID: 35228471 DOI: 10.1507/endocrj.ej21-0480] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%-15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
55
|
Song D, Liu Y, Yao Y, Liu F, Tao W, Zhou X, Li R, Zhang X, Li X. Melatonin improves bisphenol A-induced cell apoptosis, oxidative stress and autophagy impairment via inhibition of the p38 MAPK signaling pathway in FLK-BLV cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1551-1562. [PMID: 35238458 DOI: 10.1002/tox.23505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to assess the protective effect and potential mechanism of melatonin against bisphenol A (BPA)-induced apoptosis and oxidative damage in FLK-BLV cells. The results showed that BPA reduced cell viability in a dose- and time-dependent manner, caused cell shrinkage and induced oxidative stress and apoptosis in FLK-BLV cells, which were effectively reversed by melatonin. In addition, BPA caused autophagy flux impairment, which was confirmed by the increased of LC3-II and p62 levels, whereas melatonin treatment effectively reduced p62 levels under BPA treatment, and reversed apoptosis-related protein expression patterns caused by BPA. However, inhibition of autophagy by CQ partially abolished the protective effect of melatonin on apoptosis, suggesting that melatonin against BPA-induced oxidative injury and apoptosis by activating autophagy pathway. Moreover, we found that melatonin inhibited BPA-induced the activation of p38 MAPK, which was comparable to SB203580 pretreatment, and companied by the activation of autophagy and decreases of apoptosis when compared to BPA alone, indicating that melatonin protected against BPA-induced apoptosis partially through the p38 MAPK-autophagy pathway. In conclusion, these results suggest that melatonin may prevent BPA-induced FLK-BLV cell damage by inhibiting p38/MAPK signaling pathway and activating autophagy, and it could be a potential therapeutic compound in preventing BPA-induced cell damage.
Collapse
Affiliation(s)
- Dan Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yuan Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yaxin Yao
- Department of Clinical Research, Yikon Genomics Company, Ltd., Suzhou, China
| | - Feng Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Wenjing Tao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiaowei Zhang
- Zhejiang Animal Husbandry Technology Extension and Breeding Livestock and Poultry Monitoring Station, Hangzhou, China
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
56
|
Tamura I, Tamura H, Kawamoto-Jozaki M, Shirafuta Y, Fujimura T, Doi-Tanaka Y, Mihara Y, Taketani T, Sugino N. Effects of Melatonin on the Transcriptome of Human Granulosa Cells, Fertilization and Blastocyst Formation. Int J Mol Sci 2022; 23:ijms23126731. [PMID: 35743171 PMCID: PMC9223589 DOI: 10.3390/ijms23126731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/25/2023] Open
Abstract
Melatonin is a promising reagent that can improve assisted reproductive technology (ART) outcomes in infertility patients. However, melatonin is not effective for all infertile patients, and it remains unclear for which patients melatonin would be effective. This study examined the effects of melatonin on ART outcomes and examined its mechanisms. Melatonin increased the fertilization rate in patients whose fertilization rates in the previous cycle were less than 50%, but not in patients whose fertilization rates were more than 50% in the previous cycle. Melatonin increased the blastocyst formation rate in patients whose embryo development rates in the previous cycle were less than 50%, but not in patients whose embryo development rates were more than 50% in the previous cycle. To clarify its mechanisms, transcriptome changes by melatonin treatment in granulosa cells (GCs) of the patients were examined by RNA-sequence. Melatonin treatment altered the transcriptomes of GCs of patients with poor ART outcomes so that they were similar to the transcriptomes of patients with good ART outcomes. The altered genes were associated with the inhibition of cell death and T-cell activity, and the activation of steroidogenesis and angiogenesis. Melatonin treatment was effective for patients with poor fertilization rates and poor embryo development rates in the previous ART cycle. Melatonin alters the GCs transcriptome and, thus, their functions, and this could improve the oocyte quality, leading to good ART outcomes.
Collapse
Affiliation(s)
| | - Hiroshi Tamura
- Correspondence: ; Tel.: +81-836-22-2288; Fax: +81-836-22-2287
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Zhang Y, Liu T, Yang H, He F, Zhu X. Melatonin: A novel candidate for the treatment of osteoarthritis. Ageing Res Rev 2022; 78:101635. [PMID: 35483626 DOI: 10.1016/j.arr.2022.101635] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
Osteoarthritis (OA), characterized by cartilage erosion, synovium inflammation, and subchondral bone remodeling, is a common joint degenerative disease worldwide. OA pathogenesis is regulated by multiple predisposing factors, including imbalanced matrix metabolism, aberrant inflammatory response, and excessive oxidative stress. Moreover, melatonin has been implicated in development of several degenerative disorders owing to its potent biological functions. With regards to OA, melatonin reportedly promotes synthesis of cartilage matrix, inhibition of chondrocyte apoptosis, attenuation of inflammatory response, and suppression of matrix degradation by regulating the TGF-β, MAPK, or NF-κB signaling pathways. Notably, melatonin has been associated with amelioration of oxidative damage by restoring the OA-impaired intracellular antioxidant defense system in articular cartilage. Findings from preliminary application of melatonin or melatonin-loaded biomaterials in animal models have affirmed its potential anti-arthritic effects. Herein, we summarize the anti-arthritic effects of melatonin on OA cartilage and demonstrate that melatonin has potential therapeutic efficacy in treating OA.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| |
Collapse
|
58
|
Yue J, Aobulikasimu A, Sun W, Liu S, Xie W, Sun W. Targeted regulation of FoxO1 in chondrocytes prevents age-related osteoarthritis via autophagy mechanism. J Cell Mol Med 2022; 26:3075-3082. [PMID: 35560791 PMCID: PMC9170816 DOI: 10.1111/jcmm.17319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is designated as a biological recycling process to maintain cellular homeostasis by the sequestration of damaged proteins and organelles in plasma and cargo delivery to lysosomes for degradation and reclamation. This organelle recycling process promotes chondrocyte homeostasis and has been previously implicated in osteoarthritis (OA). Autophagy is widely involved in regulating chondrocyte degeneration markers such as MMPs, ADAMSTs and Col10 in chondrocytes. The critical autophagy‐related (ATG) proteins have now been considered the protective factor against late‐onset OA. The current research field proposes that the autophagic pathway is closely related to chondrocyte activity. However, the mechanism is complex yet needs precise elaboration. This review concluded that FoxO1, a forkhead O family protein, which is a decisive mediator of autophagy, facilitates the pathological process of osteoarthritis. Diverse mechanisms regulate the activity of FoxO1 and promote the initiation of autophagy, including the prominent AMPK and Sirt‐2 cellular pathways. FoxO1 transactive is regulated by phosphorylation and acetylation processes, which modulates the downstream ATGs expression. Furthermore, FoxO1 induces autophagy by directly interacting with ATGs proteins, which control the formation of autophagosomes and lysosomes fusion. This review will discuss cutting‐edge evidence that the FoxO–autophagy pathway plays an essential regulator in the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aikebaier Aobulikasimu
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weichao Sun
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shuyu Liu
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wei Xie
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wei Sun
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
59
|
He H, Li D, Tian Y, Wei Q, Amevor FK, Sun C, Yu C, Yang C, Du H, Jiang X, Ma M, Cui C, Zhang Z, Tian K, Zhang Y, Zhu Q, Yin H. miRNA sequencing analysis of healthy and atretic follicles of chickens revealed that miR-30a-5p inhibits granulosa cell death via targeting Beclin1. J Anim Sci Biotechnol 2022; 13:55. [PMID: 35410457 PMCID: PMC9003977 DOI: 10.1186/s40104-022-00697-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
Background The egg production performance of chickens is affected by many factors, including genetics, nutrition and environmental conditions. These factors all play a role in egg production by affecting the development of follicles. MicroRNAs (miRNAs) are important non-coding RNAs that regulate biological processes by targeting genes or other non-coding RNAs after transcription. In the animal reproduction process, miRNA is known to affect the development and atresia of follicles by regulating apoptosis and autophagy of granulosa cells (GCs). Results In this study, we identified potential miRNAs in the atretic follicles of broody chickens and unatretic follicles of healthy chickens. We identified gga-miR-30a-5p in 50 differentially expressed miRNAs and found that gga-miR-30a-5p played a regulatory role in the development of chicken follicles. The function of miR-30a-5p was explored through the transfection test of miR-30a-5p inhibitor and miR-30a-5p mimics. In the study, we used qPCR, western blot and flow cytometry to detect granulosa cell apoptosis, autophagy and steroid hormone synthesis. Confocal microscopy and transmission electron microscopy are used for the observation of autophagolysosomes. The levels of estradiol (E2), progesterone (P4), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected by ELISA. The results showed that miR-30a-5p showed a negative effect on autophagy and apoptosis of granulosa cells, and also contributed in steroid hormones and reactive oxygen species (ROS) production. In addition, the results obtained from the biosynthesis and dual luciferase experiments showed that Beclin1 was the target gene of miR-30a-5p. The rescue experiment conducted further confirmed that Beclin1 belongs to the miR-30a-5p regulatory pathway. Conclusions In summary, after deep miRNA sequencing on healthy and atretic follicles, the results indicated that miR-30a-5p inhibits granulosa cell death by inhibiting Beclin1. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00697-0.
Collapse
Affiliation(s)
- Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dongmei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yongtong Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qinyao Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunlin Yu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Chaowu Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Huarui Du
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhichao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kai Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
60
|
Chitosan Oligosaccharides Alleviate H2O2-stimulated Granulosa Cell Damage via HIF-1α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4247042. [PMID: 35401926 PMCID: PMC8993563 DOI: 10.1155/2022/4247042] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022]
Abstract
Oocyte maturation disorder and decreased quality are the main causes of infertility in women, and granulosa cells (GCs) provide the only microenvironment for oocyte maturation through autocrine and paracrine signaling by steroid hormones and growth factors. However, chronic inflammation and oxidative stress caused by ovarian hypoxia are the largest contributors to ovarian aging and GC dysfunction. Therefore, the amelioration of chronic inflammation and oxidative stress is expected to be a pivotal method to improve GC function and oocyte quality. In this study, we detected the protective effect of chitosan oligosaccharides (COS), on hydrogen peroxide- (H2O2-) stimulated oxidative damage in a human ovarian granulosa cell line (KGN). COS significantly increased cell viability, mitochondrial function, and the cellular glutathione (GSH) content and reduced apoptosis, reactive oxygen species (ROS) content, and the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial-derived growth factor (VEGF) in H2O2-stimulated KGN cells. COS treatment significantly increased levels of the TGF-β1 and IL-10 proteins and decreased levels of the IL-6 protein. Compared with H2O2-stimulated KGN cells, COS significantly increased the levels of E2 and P4 and decreased SA-β-gal protein expression. Furthermore, COS caused significant inactivation of the HIF-1α-VEGF pathway in H2O2-stimulated KGN cells. Moreover, inhibition of this pathway enhanced the inhibitory effects of COS on H2O2-stimulated oxidative injury and apoptosis in GCs. Thus, COS protected GCs from H2O2-stimulated oxidative damage and apoptosis by inactivating the HIF-1α-VEGF signaling pathway. In the future, COS might represent a therapeutic approach for ameliorating disrupted follicle development.
Collapse
|
61
|
Li Z, Wang H, Zhang K, Zhao J, Liu H, Ma X, Guo J, Wang J, Lu W. Melatonin inhibits autophagy in TM3 cells via AKT/FOXO1 pathway. Mol Biol Rep 2022; 49:2925-2932. [PMID: 34997871 DOI: 10.1007/s11033-021-07107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Melatonin can regulate apoptosis and autophagy of mouse Leydig cells, but its specific mechanism is still unclear. METHODS In this study, we used the TM3 cell line as the research object, and used H2O2 to induce autophagy. After adding 10 ng/ml melatonin, we used qRT-PCR and western-blot to detect autophagy-related gene and protein expression, and flow cytometry to detect cellular ROS level. RESULTS The results showed that melatonin can significantly inhibit the occurrence of autophagy, accompanied by a significant decrease in the expression of Becn1, LC3, and FOXO1 (P < 0.05), a significant increase in the expression of p62 and pAKT (P < 0.05), and a significant decrease in ROS level (P < 0.05). After added the inhibitor of AKT perifosine, the effect of melatonin on inhibiting autophagy was reversed. On this basis, we used small RNA interference technology to knock down the expression of FOXO1, and found that there was no significant change of the expression of genes and proteins related to autophagy and ROS level. CONCLUSIONS In summary, melatonin can inhibit H2O2-induced autophagy in TM3 cells through the AKT/FOXO1 pathway.
Collapse
Affiliation(s)
- Zhiqiang Li
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Hongtao Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Kaiyan Zhang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Jing Zhao
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Hongyu Liu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Xin Ma
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Jing Guo
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China. .,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China. .,College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin Province, China.
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China. .,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China. .,College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin Province, China.
| |
Collapse
|
62
|
Zhou S, Zhao A, Wu Y, Mi Y, Zhang C. Protective Effect of Grape Seed Proanthocyanidins on Oxidative Damage of Chicken Follicular Granulosa Cells by Inhibiting FoxO1-Mediated Autophagy. Front Cell Dev Biol 2022; 10:762228. [PMID: 35242756 PMCID: PMC8886245 DOI: 10.3389/fcell.2022.762228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
A significant decrease in poultry egg production occurs due to ovarian aging and autophagy is one of the important factors of ovarian aging that is induced predominantly by oxidative stress. Increasing evidence showed potential roles of plant-derived grape seed proanthocyanidin (GSPs) in protecting ovarian granulosa cells (GCs) from oxidative damage, although the underlying mechanism is still unclear. Here we investigated the possible functions of autophagy involved in the preventive effect of GSPs on oxidative stress in the GCs of ovarian hierarchical follicles of laying chickens. The results showed that increased autophagy was observed in the aging hens (580-day-old, D580) compared with the peak-lay hens (D280). Treatment of GSPs significantly restored the elevated autophagy and decreased viability of cultured D280 chicken GCs that were elicited by hydrogen peroxide. GSPs also suppressed the increased autophagy in the natural aging hens. Similar to the effect of GSPs on GC viability, inhibition of autophagy also showed a protective effect on the decreased viability of GCs under oxidative damage. However, GSPs were not able to provide further protection in GCs that were pretreated with 3-methyladenine (an autophagy inhibitor). In addition to its promoting action on antioxidant capacity, treatment with GSPs increased survival of GCs from autophagy that was caused by oxidative stress through the FoxO1-related pathway. Inhibition of FoxO1 or activation of PI3K-Akt pathway by GSPs increased the confrontation of GCs to oxidative damage and decreased autophagy in GCs. In addition, activation of the SIRT1 signal inhibited the GCs autophagy that was caused by oxidative stress via GSPs-induced deacetylation of FoxO1. These results revealed a new mechanism of GSPs against oxidative stress of GCs via inhibiting FoxO1, which was probably a possible target for alleviating ovarian aging in laying poultry.
Collapse
Affiliation(s)
- Shuo Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - An Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yangyang Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuling Mi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caiqiao Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
63
|
Liu N, Wang S, Yao Q, Li Y, Hu H, Xiaorong T, Ran H, Price CA, Jiang Z. Activin A attenuates apoptosis of granulosa cells in atretic follicles through ERβ-induced autophagy. Reprod Domest Anim 2022; 57:625-634. [PMID: 35244300 DOI: 10.1111/rda.14103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
It is well known that about 99% of ovarian follicles in mammals suffer from a degenerative process known as atresia, which is a huge waste of genetic resource in female animals. Studies have shown that activin A (ACT-A) is located in ovarian granulosa cells and has different effects in granulosa cell depending on species. Although granulosa cells play a critical role during follicular atresia, the mechanism of action of ACT-A in bovine ovarian granulosa cells (BGC) is poorly understood. In this study, we firstly determined the apoptosis of BGCs isolated from growth follicles and atretic follicles, respectively. Then, BGC isolated from atretic follicles were used as a model to elucidate the role of ACT-A in cattle ovary. The results showed that apoptosis occurred in both growing follicles and atretic follicles, and the percentage of apoptotic cells in atretic follicles was higher than that in growing follicles. The current results indicated that ACT-A can attenuate apoptosis of BGC through maintaining the function of BGC in atretic follicles. Increased ERβ induced by ACT-A promoted BGC autophagy but had no effect on apoptosis. In summary, this study suggests that ACT-A attenuates BGC apoptosis in atretic follicles by ERβ-mediated autophagy signaling.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Shiyou Wang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Qichun Yao
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Yuanyou Li
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Hai Hu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Tang Xiaorong
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| | - Haohan Ran
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Jintong Road, Xiqing District, 300380, Tianjin, China
| | - Christopher A Price
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Zhongliang Jiang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture & Forestry University, 712100, Yangling, Shaanxi, China
| |
Collapse
|
64
|
Dong J, Guo C, Zhou S, Zhao A, Li J, Mi Y, Zhang C. Leukemia inhibitory factor prevents chicken follicular atresia through PI3K/AKT and Stat3 signaling pathways. Mol Cell Endocrinol 2022; 543:111550. [PMID: 34990741 DOI: 10.1016/j.mce.2021.111550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 01/02/2023]
Abstract
Autophagy of granulosa cell (GC) may be a supplementary mechanism involved in follicular atresia through cooperating with apoptosis. Leukemia inhibitory factor (LIF) has been shown to promote follicular growth, through the underlying molecular mechanisms remain unclear. Rapamycin, an autophagy inducer, triggered the elevation of GC apoptosis within follicles, and then prevented follicular growth. However, combined treatment with LIF relieved the follicular regression caused by rapamycin, mainly resulting in alleviating the decline of GCs viability and cell autophagic apoptosis, and eventually, promoting follicle development. Further investigation revealed that LIF inhibited the GC autophagic apoptosis by activating PI3K/AKT and Stat3 pathways, reflecting an increase of BCL-2 expression but a decrease in BECN1. Additionally, blocking PI3K/AKT and Stat3 pathways resulted in the reduction of LIF protection against follicular atresia. These findings illustrated that LIF activated the PI3K/AKT and Stat3 signaling pathways to inhibit GC autophagic cell death, and further relieve chicken follicular atresia.
Collapse
Affiliation(s)
- Juan Dong
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changquan Guo
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuo Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - An Zhao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
65
|
Holcombe J, Weavers H. The role of preconditioning in the development of resilience: mechanistic insights. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
66
|
Wang R, Wang L, Wang L, Cui Z, Cheng F, Wang W, Yang X. FGF2 Is Protective Towards Cisplatin-Induced KGN Cell Toxicity by Promoting FTO Expression and Autophagy. Front Endocrinol (Lausanne) 2022; 13:890623. [PMID: 35784556 PMCID: PMC9243391 DOI: 10.3389/fendo.2022.890623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
It is widely known that chemotherapy-induced apoptosis of granulosa was the main reason for premature ovarian failure (POF). In addition, accumulating evidence has demonstrated that autophagy was involved in it. Studies before have reported that fibroblast growth factor-2 (FGF2) could attenuate cell death via regulating autophagy. In our previous study, FGF2 could decrease granulosa cell apoptosis in cisplatin-induced POF mice. Furthermore, obesity-associated protein [fat mass and obesity-associated protein (FTO)], which decreased significantly in POF mice, could inhibit cell apoptosis via activating autophagy. Moreover, downregulation of FTO could decrease the expression of paracrine factor FGF2. However, the relationship between FTO and FGF2 in granulosa cell autophagy is still unknown. In the present study, Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2-deoxyuridine (EdU) assays showed that exogenous addition of FGF2 could promote cisplatin-induced injured granulosa cell proliferation. Western blotting indicated that FGF2 could inhibit apoptosis of injured granulosa cells via autophagy. Inhibition of autophagy by chemicals suppressed the effect of FGF2 and promoted injured cell apoptosis. In addition, the expression of FTO was decreased in injured cells, and FGF2 addition could reverse it. Overexpression of FTO reduced injured cell apoptosis via activating the autophagy process. Our findings indicated that FGF2 activates autophagy by regulating the expression of FTO, thereby reducing the apoptosis of the injured cells.
Collapse
Affiliation(s)
- Rongli Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xinyuan Yang,
| |
Collapse
|
67
|
Zhong R, Miao L, Zhang H, Tan L, Zhao Y, Tu Y, Angel Prieto M, Simal-Gandara J, Chen L, He C, Cao H. Anti-inflammatory activity of flavonols via inhibiting MAPK and NF-κB signaling pathways in RAW264.7 macrophages. Curr Res Food Sci 2022; 5:1176-1184. [PMID: 35941847 PMCID: PMC9356238 DOI: 10.1016/j.crfs.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Fisetin (Fis), quercetin (Que), and myricetin (Myr) are flavonols with similar structure but different number of hydroxyl groups. The present research focused on the anti-inflammatory effect of these three flavonols in lipopolysaccharide-stimulated RAW264.7 cells. The number and site of hydroxyl group in flavonols obviously affected their anti-inflammation activity. These flavonols suppressed the overproduction of nitric oxide. Fis showed the best activity with an inhibition rate of 52% at 20 μM. Moreover, the flavonols reduced the levels of ROS, TNF-α, and IL-6. The mechanistic study showed that they inhibited the activation of NF-κB and MAPK pathways by suppressing the phosphorylation of IκBα, p65, JNK, ERK, p38, MEK, and reducing the nuclear translocation of NF-κB p65. In addition, the metabolism of the flavonols was examined. The results indicated that Fis was both methylated and glucuronidated. Que and Myr were mainly transformed into methylated products. This study highlights the anti-inflammatory activity of flavonols, particularly Fis, which has the potential for the prevention or treatment of inflammation as an adjuvant medicine or food additive. Flavonols suppressed the production of NO and ROS. Flavonols partially blocked the activation of NF-κB and MAPK pathways. Fisetin is an excellent anti-inflammatory reagent. The number of hydroxyl group in flavonols obviously affects their anti-inflammation activity.
Collapse
Affiliation(s)
- Ruting Zhong
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Haolin Zhang
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Lihua Tan
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Yuxin Zhao
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Yanbei Tu
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Miguel Angel Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, China
| | - Chengwei He
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao Special Administrative Region of China
- Corresponding author. Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China.
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
- Corresponding author. College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, China.
| |
Collapse
|
68
|
Guo R, Zheng H, Li Q, Qiu X, Zhang J, Cheng Z. Melatonin alleviates insulin resistance through the PI3K/AKT signaling pathway in ovary granulosa cells of polycystic ovary syndrome. Reprod Biol 2021; 22:100594. [PMID: 34953312 DOI: 10.1016/j.repbio.2021.100594] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine gynecological disorder. Insulin resistance (IR) is a major cause of PCOS. Melatonin, a critical endogenous hormone, has beneficial effects on the female reproductive system. This study aims to investigate the molecular effect of melatonin on IR in human ovarian granulosa cells (GCs). Hormone levels of the subjects were determined through clinical examination. The expression levels of insulin receptor substrate (IRS)-1 and glucose transporter (GLUT4) in GCs from PCOS patients and a human granulosa cell line (SVOG) were examined using qRT-PCR and western blot. The IR cell model was established by inducing SVOG cells with palmitic acid (PA). IR was detected in GCs of PCOS patients and SVOG by measuring glucose content and glucose uptake. Cell viability and apoptosis levels were detected by CCK-8 assay and flow cytometry. PI3K/Akt pathway expression in SVOG was assessed by western blot. PCOS patients had higher levels of luteinizing hormone (LH), testosterone, and LH/follicle-stimulating hormone. PA decreased cell viability, promoted apoptosis, and reduced glucose uptake in SVOG cells. IRS-1 and GLUT4 mRNA and protein expression was downregulated, and glucose uptake capacity was reduced in PCOS GCs and SVOG cells. Melatonin significantly upregulated IRS-1 and GLUT4 expression, downregulated p-IRS-1 (Ser307), and improved glucose uptake in PCOS patients' GCs and SVOG cells. PA decreased PI3K and Akt phosphorylation, whereas melatonin increased p-PI3K and p-Akt levels. Melatonin can reduce IR in GCs and PA-induced SVOG cells via the PI3K/Akt signaling pathway, providing more evidence for treating polycystic ovary syndrome.
Collapse
Affiliation(s)
- Rui Guo
- Reproductive Medicine Center, Shandong Maternal and Child Health Care Center, NO. 238, East Jingshi Road, Jinan 250014, Shandong, China
| | - Hong Zheng
- Department of Reproductive Medicine, Dezhou People's Hospital, NO. 1166, Dongfanghong West Road, Dezhou 253014, Shandong, China
| | - Qiuying Li
- Department of Radiology, Zhangqiu People's Hospital, NO. 1920, Huiquan Road, Jinan 250200, Shandong, China
| | - Xun Qiu
- Department of Radiology, Zhangqiu People's Hospital, NO. 1920, Huiquan Road, Jinan 250200, Shandong, China
| | - Jian Zhang
- Department of Radiology, Zhangqiu People's Hospital, NO. 1920, Huiquan Road, Jinan 250200, Shandong, China
| | - Zhaofang Cheng
- Department of Radiology, Zhangqiu People's Hospital, NO. 1920, Huiquan Road, Jinan 250200, Shandong, China; Department of Obstetrics and Gynecology, Zhangqiu People's Hospital, NO. 1920, Huiquan Road, Jinan 250200, Shandong, China.
| |
Collapse
|
69
|
Chang P, Li H, Hu H, Li Y, Wang T. The Role of HDAC6 in Autophagy and NLRP3 Inflammasome. Front Immunol 2021; 12:763831. [PMID: 34777380 PMCID: PMC8578992 DOI: 10.3389/fimmu.2021.763831] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy fights against harmful stimuli and degrades cytosolic macromolecules, organelles, and intracellular pathogens. Autophagy dysfunction is associated with many diseases, including infectious and inflammatory diseases. Recent studies have identified the critical role of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasomes activation in the innate immune system, which mediates the secretion of proinflammatory cytokines IL-1β/IL-18 and cleaves Gasdermin D to induce pyroptosis in response to pathogenic and sterile stimuli. Accumulating evidence has highlighted the crosstalk between autophagy and NLRP3 inflammasome in multifaceted ways to influence host defense and inflammation. However, the underlying mechanisms require further clarification. Histone deacetylase 6 (HDAC6) is a class IIb deacetylase among the 18 mammalian HDACs, which mainly localizes in the cytoplasm. It is involved in two functional deacetylase domains and a ubiquitin-binding zinc finger domain (ZnF-BUZ). Due to its unique structure, HDAC6 regulates various physiological processes, including autophagy and NLRP3 inflammasome, and may play a role in the crosstalk between them. In this review, we provide insight into the mechanisms by which HDAC6 regulates autophagy and NLRP3 inflammasome and we explored the possibility and challenges of HDAC6 in the crosstalk between autophagy and NLRP3 inflammasome. Finally, we discuss HDAC6 inhibitors as a potential therapeutic approach targeting either autophagy or NLRP3 inflammasome as an anti-inflammatory strategy, although further clarification is required regarding their crosstalk.
Collapse
Affiliation(s)
- Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| | - Hao Li
- Department of Emergency, First Hospital of China Medical University, Shenyang, China
| | - Hui Hu
- Department of Traumatology, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
70
|
Bhardwaj JK, Paliwal A, Saraf P, Sachdeva SN. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary. J Cell Physiol 2021; 237:1157-1170. [PMID: 34668576 DOI: 10.1002/jcp.30613] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
The reproductive life span of the organism mainly depends on follicular development that maintains the primordial follicle pool in the cohort of follicles within the ovary. The total count of primordial follicles decreases with age due to ovulation and follicular atresia. Follicular atresia, a process of ovarian follicles degradation, mainly occurs via apoptosis, but recent studies also favor autophagy existence. Autophagy is a cellular and energy homeostatic response that helps to maintain the number of healthy primordial follicles, germ cell survival, and removal of corpus luteum remnants. But the excessive autophagic cell death changes both the quality and quantity of oocytes that ultimately affect female reproductive health. Autophagy regulation occurs by various autophagy-regulated genes like BECN1 and LC3-II (autophagy marker genes). Their abnormal regulation or mutation highly influences follicular development by alteration of primordial follicles formation, the decline in oocytes count, and germ cell loss. Various classical signaling pathways such as PI3K/AKT/mTOR, MAPK/ERK1/2, AMPK, and IRE1 are involved in granulosa and oocytes autophagy, while mTOR signaling is the primary mechanism. Along with basal level autophagy, chemical/hormone/stress-mediated autophagy also affects follicular development and female reproduction. In this review, we have primarily focused on granulosa cell and oocytes' autophagy, mechanism, and the role of autophagy determining marker genes in follicular development.
Collapse
Affiliation(s)
- Jitender K Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Aakansha Paliwal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som N Sachdeva
- Department of Civil Engineering, National Institute of Technology and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
71
|
Han S, Wang J, Cui C, Yu C, Zhang Y, Li D, Ma M, Du H, Jiang X, Zhu Q, Yang C, Yin H. Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken. Poult Sci 2021; 101:101524. [PMID: 34784514 PMCID: PMC8591502 DOI: 10.1016/j.psj.2021.101524] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Follicular atresia is an important cause of reproductive decline in egg-laying hens. Therefore, a better understanding of the regulation mechanism of follicle atresia in poultry is an important measure to maintain persistent high egg performance. However, how the role of the regulatory relationship between autophagy and apoptosis in the intrafollicular environment affects the follicular atresia of chickens is remain unclear. The objective of this study was to explore the regulatory molecular mechanisms in regard to follicular atresia. 20 white leghorn layers (32-wk-old) were equally divided into 2 groups. The control group was fed freely, and the experimental group induced follicular atretic by fasting for 5 d. The results showed that the expression of prolactin (PRL) levels was significantly higher in the fasted hens, while the levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were lower. Most importantly, RNA sequencing, qPCR, and Western blotting detected significantly elevated levels of autophagy and apoptosis markers in atresia follicles. Interestingly, we found that fibromodulin (FMOD) levels was significantly lower in follicles from fasted hens and that this molecule had an important regulatory role in autophagy. FMOD silencing significantly promoted autophagy and apoptosis in granulosa cells, resulting in hormonal imbalance. FMOD was found to regulate autophagy via the transforming growth factor beta (TGF-β) signaling pathway. Our results suggest that the increase in autophagy and the imbalance in internal homeostasis cause granulosa cell apoptosis, leading to follicular atresia in the chicken ovary. This finding could provide further insight into broodiness in chicken and provide avenues for further improvements in poultry production.
Collapse
Affiliation(s)
- Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jianping Wang
- Key Laboratory for Animal Disease Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chunlin Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huarui Du
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chaowu Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
72
|
Xie QE, Wang MY, Cao ZP, Du X, Ji DM, Liang D, Cao YX, Liu YJ. Melatonin protects against excessive autophagy-induced mitochondrial and ovarian reserve function deficiency though ERK signaling pathway in Chinese hamster ovary (CHO) cells. Mitochondrion 2021; 61:44-53. [PMID: 34571250 DOI: 10.1016/j.mito.2021.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Excessive autophagy-induced follicular atresia of ovarian granulosa cells might be one of the pathogenesis of Premature Ovarian Insufficiency (POI), and melatonin (MT) exerted many beneficial effects on mitochondria. However, there was little report regarding the beneficial effects of MT on excessive autophagy-induced mitochondrial and ovarian reserve function deficiency, and the mechanisms have not been clearly identified. Autophagy played a protective role in cells survival, however, high level of autophagy could lead to cell death. In this report, firstly, Chinese hamster ovary cell damage model stably expressing EGFP-LC3 was established. Next, we systematically investigated the protective effects of MT on mitochondrial and ovarian reserve function and molecular mechanisms using this cell damage model. Our results revealed that 10-9 M MT not only protected against the decline of anti-mullerian hormone (AMH) expression induced by excessive autophagy, but also rescued excessive autophagy-induced impairment of mitochondrial expression and mitochondrial membrane potential. Furthermore, MT protected against excessive autophagy-induced decrease of nucleus-encoded proteins including SDHA and mitofilin, and mitochondrial dynamic-related proteins including OPA1, MFN2, and DRP1. MT also decreased mitochondrial oxidative stress, increased antioxidant enzyme superoxide dismutase 2 (SOD2) expression and ameliorated the G2/M cell cycle arrest induced by excessive autophagy. Finally, MT inhibited excessive autophagy-induced activation of extracellular signal regulated kinase (ERK) signaling pathway. In conclusion, our study showed that MT rescued impairment of mitochondrial and ovarian reserve function, and production of mitochondrial ROS and cell cycle arrest induced by excessive autophagy through down-regulated ERK pathway, implying the potential therapeutic drug target for POI.
Collapse
Affiliation(s)
- Q E Xie
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui Medical University, Hefei 230022, PR China; Department of Histology and Embryology, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - M Y Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui Medical University, Hefei 230022, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, PR China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, PR China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, PR China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Z P Cao
- The Third People's Hospital of Hefei, The Third Clinical Teaching Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China
| | - X Du
- 901th hospital of PLA Joint Logistic Support Force, No 424 West Changjiang Road, Heifei 230031, Anhui, PR China
| | - D M Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, PR China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, PR China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - D Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui Medical University, Hefei 230022, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, PR China.
| | - Y X Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui Medical University, Hefei 230022, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, PR China.
| | - Y J Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui Medical University, Hefei 230022, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, PR China.
| |
Collapse
|
73
|
Wang J, Jia R, Gong H, Celi P, Zhuo Y, Ding X, Bai S, Zeng Q, Yin H, Xu S, Liu J, Mao X, Zhang K. The Effect of Oxidative Stress on the Chicken Ovary: Involvement of Microbiota and Melatonin Interventions. Antioxidants (Basel) 2021; 10:1422. [PMID: 34573054 PMCID: PMC8472688 DOI: 10.3390/antiox10091422] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The poultry ovary is used as a classic model to study ovarian biology and ovarian cancer. Stress factors induced oxidative stress to cause follicle atresia, which may be a fundamental reason for the reduction in fertility in older laying hens or in aging women. In the present study, we set out to characterize the relationships between oxidative stress and ovarian function. Layers (62 weeks of age; BW = 1.42 ± 0.12 kg) were injected with tert-butyl hydroperoxide (tBHP) at 0 (CON) and 800 μmol/kg BW (oxidative stress group, OS) for 24 days and the role of melatonin (Mel) on tBHP-induced ovary oxidative stress was assessed through ovary culture in vitro. The OS (800 μmol/kg BW tert-butyl hydroperoxide) treatment decreased the reproduction performance and ovarian follicle numbers. OS decreased the expression of SIRT1 and increased the P53 and FoxO1 expression of the ovary. A decreased Firmicutes to Bacteroidetes ratio, enriched Marinifilaceae (family), Odoribacter (genus) and Bacteroides_plebeius (species) were observed in the cecum of the OS group. Using Mel in vitro enhanced the follicle numbers and decreased the ovary cell apoptosis induced by tBHP. In addition, it increased the expression of SIRT1 and decreased the P53 and FoxO1 expression. These findings indicated that oxidative stress could decrease the laying performance, ovarian function and influence gut microbiota and body metabolites in the layer model, while the melatonin exerts an amelioration the ovary oxidative stress through SIRT1-P53/FoxO1 pathway.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Ru Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Haojie Gong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia;
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Xuemei Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Qiufeng Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Huadong Yin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| |
Collapse
|
74
|
Yao W, Du X, Zhang J, Wang Y, Wang M, Pan Z, Li Q. SMAD4-induced knockdown of the antisense long noncoding RNA BRE-AS contributes to granulosa cell apoptosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:251-263. [PMID: 34458009 PMCID: PMC8368758 DOI: 10.1016/j.omtn.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Antisense long noncoding RNAs (AS-lncRNAs), a sub-class of lncRNAs, are transcribed in the opposite direction from their overlapping protein-coding genes and are implicated in various physiological and pathological processes. However, their role in female reproduction remains largely unknown. Here, we report that BRE-AS, an AS-lncRNA transcript from intron 10 of the protein-coding gene BRE, is involved in granulosa cell (GC) apoptosis. Based on our previous RNA sequencing data, we identified 28 AS-lncRNAs as important in the initiation of porcine follicular atresia, with BRE-AS showing the most significant upregulation in early atretic follicles. In this study, gain- and loss-of-function assays demonstrated that BRE-AS induces early apoptosis in GCs. Mechanistically, BRE-AS acts in cis to suppress the expression of BRE, an anti-apoptotic factor, via direct interaction with the pre-mRNA transcript of the latter, inducing increased GC apoptosis. Notably, we also found that BRE-AS was upregulated in SMAD4-silenced GCs. SMAD4 was identified as a transcriptional repressor of BRE-AS because it inhibits BRE-AS expression and BRE-AS-mediated GC apoptosis. In conclusion, we not only identified a novel AS-lncRNA related to the early apoptosis of GCs and initiation of follicular atresia but also described a novel regulatory pathway, SMAD4/BRE-AS/BRE, coordinating GC function and female fertility.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinbi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Miaomiao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
75
|
Chen F, Guo L, Di J, Li M, Dong D, Pei D. Circular RNA ubiquitin-associated protein 2 enhances autophagy and promotes colorectal cancer progression and metastasis via miR-582-5p/FOXO1 signaling. J Genet Genomics 2021; 48:1091-1103. [PMID: 34416339 DOI: 10.1016/j.jgg.2021.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Numerous circular RNAs (circRNAs) have been identified as vital regulators in various cancers. The newly reported circular RNA ubiquitin-associated protein 2 (circUBAP2) is a critical player in cell growth and metastasis in various types of cancers, although its role in colorectal cancer (CRC) has yet to be fully elucidated. We find that circUBAP2 is upregulated in CRC tissues and cell lines to induce autophagy both in vitro and in vivo. The effects of circUBAP2 on migration, invasion, and proliferation may be partially related to autophagy. Mechanistically, we uncover that circUBAP2 can directly interact with miR-582-5p and subsequently act as a microRNA sponge to regulate the expression of the miR-582-5p target gene forkhead box protein O1 (FOXO1) and downstream signaling molecules, which collectively advance the progression and metastasis of CRC. These results suggest that circUBAP2 acts as an oncogene via a novel circUBAP2/miR-582-5p/FOXO1 axis, providing a potential biomarker and therapeutic target for CRC management.
Collapse
Affiliation(s)
- Feifei Chen
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Lei Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Man Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Dong Dong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Dongsheng Pei
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
76
|
Verma AK, Singh S, Garg G, Rizvi SI. Melatonin exerts neuroprotection in a chronodisrupted rat model through reduction in oxidative stress and modulation of autophagy. Chronobiol Int 2021; 39:45-56. [PMID: 34384302 DOI: 10.1080/07420528.2021.1966025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Circadian disruption due to artificial light affects cellular redox homeostasis and may lead to neurodegenerative diseases. The aim of the present study was to investigate the effect of continuous light exposure (CLE) and continuous dark exposure (CDE) along with melatonin supplementation on neuronal redox status, mitochondrial complexes, membrane bound transporters, inflammation, autophagy and neurodegeneration in chronodisrupted model of rat. In the study artificial light of white LED bulb with 500 lux intensity was used. Melatonin (10 mg/kg b.w., orally) was supplemented to control and CLE groups for 10 days. Standard protocols were employed to measure pro-oxidants, non-enzymatic antioxidants, and mitochondrial complexes in brain tissues. Membrane-bound ion transporter activities were evaluated in the crude synaptosomes. Gene expression analysis was performed to assess the expression of inflammatory, autophagy and neuronal marker genes. Histopathological changes in cerebral cortex and different hippocampus regions of the brain were studied. Melatonin exerted a significant normalization of redox status biomarkers in brain tissue. Further melatonin restored the activities of mitochondrial complexes and synaptosomal membrane bound ion transporters. RT-PCR data revealed that melatonin downregulated the expression of inflammatory (TNF-α, IL-6) autophagy (Atg-3, Beclin-1) and neurodegenerative genes (Ngb and NSE) in CLE group. Melatonin also preserved the histology architecture in cerebral cortex and hippocampus. Our results indicate that melatonin exerts a potent neuroprotective effect through reduction of oxidative stress, inflammation and autophagy. Melatonin supplementation might be a promising neurotherapeutic in the treatment neurodegenerative disorders caused by circadian disturbances.
Collapse
Affiliation(s)
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
77
|
Wang X, Li F, Liu J, Li Q, Ji C, Wu H. New insights into the mechanism of hepatocyte apoptosis induced by typical organophosphate ester: An integrated in vitro and in silico approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112342. [PMID: 34023725 DOI: 10.1016/j.ecoenv.2021.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Apoptosis is one of the typical features of liver diseases, therefore molecular targets of hepatic apoptosis and regulatory mechanisms need to be further investigated. The caspases play important functions in the execution of apoptosis and many studies have focused on classical caspase-dependent cell death pathways. However, other types of cell death pathways (such as mitochondrial poly (ADP-ribose) polymerase-1 (PARP1) pathway) are suggested to be also as important as the caspase-mediated pathways in reflection of early toxic effects in hepatocytes, which requires additional research. In this work, an approach integrated in silico and in vitro was used to investigate the underlying toxicological mechanisms of hepatocyte apoptosis through the PARP1 dependent cell death pathway induced by triphenyl phosphate (TPP). Docking view showed that TPP could interact with helix αJ to affect the activation of PARP1 as a molecular initial event. In vitro assays suggested some biochemical events downstream of PARP1 activation, such as mitochondrial injury, apoptosis inducing factor (AIF) release, reactive oxygen species (ROS) production, and DNA damage. Moreover, the apoptosis was alleviated when cells were pretreated with PJ34 hydrochloride (PARP1 inhibitor), suggesting the mitochondrial PARP1 dependent pathway played a pivotal role in L02 cells apoptosis. This study indicated that PARP1 was an important molecular target in this process. And it also helped to understand the mechanism of hepatocytes apoptosis, early hepatic toxicity, and even liver diseases.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Jialin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
| | - Qiongyu Li
- Binzhou Medical University, Yantai 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
78
|
Yao W, Wang S, Du X, Lin C, Zhang J, Pan Z, Li Q. SMAD4 Inhibits Granulosa Cell Apoptosis via the miR-183-96-182 Cluster and FoxO1 Axis. Reprod Sci 2021; 29:1577-1585. [PMID: 34287793 DOI: 10.1007/s43032-021-00690-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022]
Abstract
The miR-183-96-182 cluster is a polycistronic miRNA cluster necessary for ovarian functions in mammals. However, its transcriptional regulation in the ovary is largely unclear. In this study, we characterized the promoter region of the porcine miR-183-96-182 cluster, and showed that SMAD4 may function as a transcriptional activator of the miR-183-96-182 cluster in GCs through direct binding to SBE motifs in its promoter. SMAD4 may inhibit GC apoptosis via suppression of FoxO1, an effector of GC apoptosis and a direct target of the miR-183-96-182 cluster, by inducing the miR-183-96-182 cluster, and this process may be regulated by the TGF-β/SMAD signaling pathway. Our findings uncovered the regulatory mechanism of miR-183-96-182 cluster expression in GCs and demonstrated that TGF-β1/SMAD4/miR-183-96-182 cluster/FoxO1 may be a potential pathway for regulating follicular atresia and female reproduction.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenggang Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
79
|
Li C, Liu Z, Wu G, Zang Z, Zhang JQ, Li X, Tao J, Shen M, Liu H. FOXO1 mediates hypoxia-induced G0/G1 arrest in ovarian somatic granulosa cells by activating the TP53INP1-p53-CDKN1A pathway. Development 2021; 148:269228. [PMID: 34152408 DOI: 10.1242/dev.199453] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/13/2021] [Indexed: 12/14/2022]
Abstract
The development of ovarian follicles constitutes the foundation of female reproduction. The proliferation of granulosa cells (GCs) is a basic process required to ensure normal follicular development. However, the mechanisms involved in controlling GC cell cycle are not fully understood. Here, by performing gene expression profiling in the domestic pig (Sus scrofa), we showed that cell cycle arrest at G0/G1 phase is highly correlated with pathways associated with hypoxic stress and FOXO signalling. Specifically, the elevated proportion of GCs at the arrested G0/G1 phase was accompanied by increased nuclear translocation of FOXO1 under conditions of hypoxia both in vivo and in vitro. Furthermore, phosphorylation of 14-3-3 by the JNK kinase is required for hypoxia-mediated FOXO1 activation and the resultant G0/G1 arrest. Notably, a FOXO1 mutant without DNA-binding activity failed to induce G0/G1 arrest of GCs during hypoxia. Importantly, we identified a new target gene of FOXO1, namely TP53INP1, which contributes to suppression of the G1-S cell cycle transition in response to hypoxia. Furthermore, we demonstrated that the inhibitory effect of the FOXO1-TP53INP1 axis on the GC cell cycle is mediated through a p53-CDKN1A-dependent mechanism. These findings could provide avenues for the clinical treatment of human infertility caused by impaired follicular development.
Collapse
Affiliation(s)
- Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyu Zang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Qing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xiaoxuan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
80
|
Jiang Y, Shen M, Chen Y, Wei Y, Tao J, Liu H. Melatonin Represses Mitophagy to Protect Mouse Granulosa Cells from Oxidative Damage. Biomolecules 2021; 11:biom11070968. [PMID: 34209255 PMCID: PMC8301909 DOI: 10.3390/biom11070968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Various environmental stimuli, including oxidative stress, could lead to granulosa cell (GC) death through mitophagy. Recently, it was reported that melatonin (MEL) has a significant effect on GC survival during oxidative damage. Here, we found that MEL inhibited oxidative stress-induced mitophagy to promote GC survival. The loss of cell viability upon H2O2 exposure was significantly restored after MEL treatment. Concomitantly, MEL inhibited the activation of mitophagy during oxidative stress. Notably, blocking mitophagy repressed GC death caused by oxidative stress. However, MEL cannot further restore viability of cells treated with mitophagy inhibitor. Moreover, PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase, was inhibited by MEL during oxidative stress. As a result, the E3 ligase Parkin failed to translocate to mitochondria, leading to impaired mitochondria clearance. Using RNAi to knock down PINK1 expression, we further verified the role of the MEL-PINK1-Parkin (MPP) pathway in maintaining GC survival by suppressing mitophagy. Our findings not only clarify the protective mechanisms of MEL against oxidative damage in GCs, but also extend the understanding about how circadian rhythms might influence follicles development in the ovary. These findings reveal a new mechanism of melatonin in defense against oxidative damage to GCs by repressing mitophagy, which may be a potential therapeutic target for anovulatory disorders.
Collapse
Affiliation(s)
- Yi Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
81
|
Xue R, Li S, Zou H, Ji D, Lv M, Zhou P, Wei Z, Zhang Z, Cao Y. Melatonin alleviates deoxynivalenol-induced apoptosis of human granulosa cells by reducing mutually accentuated FOXO1 and ER stress‡. Biol Reprod 2021; 105:554-566. [PMID: 33907797 DOI: 10.1093/biolre/ioab084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Deoxynivalenol (DON) is one of the most prevalent Fusarium mycotoxins, which cause detrimental effects on human and animal reproductive systems by inducing oxidative stress. Increasing evidence has suggested the potential roles of melatonin in protecting granulosa cells from oxidative injury, but the underlying mechanisms remain largely elusive. Here, we demonstrated that suppression of FOXO1 and endoplasmic reticulum (ER) stress was engaged in melatonin-mediated protection against oxidative damage in human granulosa cells upon DON exposure in vitro. DON induced excess reactive oxygen species accumulation, cells viability loss, reduced estradiol-17β, and progesterone production in human granulosa cells, whereas melatonin ameliorated these phenotypes. Next, we found that the protective effect of melatonin against apoptosis was via reducing ER stress because the inhibition of ER stress displayed similar protective effects during DON treatment. Moreover, melatonin provided no additional protection when ER stress was inhibited. We further found that FOXO1 is a pivotal downstream effector of melatonin and ER stress in regulating DON-induced apoptosis in human granulosa cells. Blocking of FOXO1 reduced DON-induced cells death and FOXO1 activation could be suppressed by melatonin or ER stress inhibitor. However, melatonin failed to further restore cells viability in the presence of FOXO1 inhibitor. Collectively, our results reveal a new mechanism of melatonin in protecting against DON-induced apoptosis and dysfunction by suppressing ER stress and FOXO1 in human granulosa cells.
Collapse
Affiliation(s)
- Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Shuhang Li
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| |
Collapse
|
82
|
Xu S, Li L, Wu J, An S, Fang H, Han Y, Huang Q, Chen Z, Zeng Z. Melatonin Attenuates Sepsis-Induced Small-Intestine Injury by Upregulating SIRT3-Mediated Oxidative-Stress Inhibition, Mitochondrial Protection, and Autophagy Induction. Front Immunol 2021; 12:625627. [PMID: 33790896 PMCID: PMC8006917 DOI: 10.3389/fimmu.2021.625627] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Melatonin reportedly alleviates sepsis-induced multi-organ injury by inducing autophagy and activating class III deacetylase Sirtuin family members (SIRT1-7). However, whether melatonin attenuates small-intestine injury along with the precise underlying mechanism remain to be elucidated. To investigate this, we employed cecal ligation and puncture (CLP)- or endotoxemia-induced sepsis mouse models and confirmed that melatonin treatment significantly prolonged the survival time of mice and ameliorated multiple-organ injury (lung/liver/kidney/small intestine) following sepsis. Melatonin partially protected the intestinal barrier function and restored SIRT1 and SIRT3 activity/protein expression in the small intestine. Mechanistically, melatonin treatment enhanced NF-κB deacetylation and subsequently reduced the inflammatory response and decreased the TNF-α, IL-6, and IL-10 serum levels; these effects were abolished by SIRT1 inhibition with the selective blocker, Ex527. Correspondingly, melatonin treatment triggered SOD2 deacetylation and increased SOD2 activity and subsequently reduced oxidative stress; this amelioration of oxidative stress by melatonin was blocked by the SIRT3-selective inhibitor, 3-TYP, and was independent of SIRT1. We confirmed this mechanistic effect in a CLP-induced sepsis model of intestinal SIRT3 conditional-knockout mice, and found that melatonin preserved mitochondrial function and induced autophagy of small-intestine epithelial cells; these effects were dependent on SIRT3 activation. This study has shown, to the best of our knowledge, for the first time that melatonin alleviates sepsis-induced small-intestine injury, at least partially, by upregulating SIRT3-mediated oxidative-stress inhibition, mitochondrial-function protection, and autophagy induction.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Pathology, Qingdao Municipal Hospital (Group), Qingdao, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lulan Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haihong Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyang Han
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
83
|
Melatonin Protects Goat Spermatogonial Stem Cells against Oxidative Damage during Cryopreservation by Improving Antioxidant Capacity and Inhibiting Mitochondrial Apoptosis Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5954635. [PMID: 33488926 PMCID: PMC7790556 DOI: 10.1155/2020/5954635] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Spermatogonial stem cells (SSCs) are the only adult stem cells that pass genes to the next generation and can be used in assisted reproductive technology and stem cell therapy. SSC cryopreservation is an important method for the preservation of immature male fertility. However, freezing increases the production of intracellular reactive oxygen species (ROS) and causes oxidative damage to SSCs. The aim of this study was to investigate the effect of melatonin on goat SSCs during cryopreservation and to explore its protective mechanism. We obtained SSCs from dairy goat testes by two-step enzymatic digestion and differential plating. The SSCs were cryopreserved with freezing media containing different melatonin concentrations. The results showed that 10−6 M of melatonin increased significantly the viability, total antioxidant capacity (T-AOC), and mitochondrial membrane potential of frozen-thawed SSCs, while it reduced significantly the ROS level and malondialdehyde (MDA) content (P < 0.05). Further analysis was performed by western blotting, flow cytometry, and transmission electron microscopy (TEM). Melatonin improved significantly the enzyme activity and protein expression of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) (P < 0.05), thereby activating the antioxidant defense system of SSCs. Furthermore, melatonin inhibited significantly the expression of proapoptotic protein (Bax) and increased the expression of antiapoptotic proteins (Bcl-2 and Bcl-XL) (P < 0.05). The mitochondrial apoptosis pathway analysis showed that the addition of melatonin reduced significantly the mitochondrial swelling and vacuolation, and inhibited the release of cytochrome C from mitochondria into the cytoplasm, thereby preventing the activation of caspase-3 (P < 0.05) and inhibiting SSC apoptosis. In addition, melatonin reduced significantly the autophagosome formation and regulated the expression of autophagy-related proteins (LC3-I, LC3-II, P62, Beclin1, and ATG7) (P < 0.05), thereby reversing the freeze-induced excessive autophagy. In summary, melatonin protected goat SSCs during cryopreservation via antioxidant, antiapoptotic, and autophagic regulation.
Collapse
|
84
|
Juhnevica-Radenkova K, Moreno DA, Ikase L, Drudze I, Radenkovs V. Naturally occurring melatonin: Sources and possible ways of its biosynthesis. Compr Rev Food Sci Food Saf 2020; 19:4008-4030. [PMID: 33337029 DOI: 10.1111/1541-4337.12639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
According to recent reports, the global market for melatonin is worth 700 million USD in 2018 and would reach 2,790 million USD by 2025, growing at a CAGR of 18.9% during 2019 to 2025. Having regard to the prevalence of sleep and circadian rhythm disorders and a clear tendency to increase the demand for melatonin, and the current lack of alternative green and cost-efficient technologies of its synthesis, the supply of this remedy will not be enough to guarantee melatonin supply and affordability on a global scale. The emergence of naturally occurring melatonin and its isomers in fermented foods has opened an exciting new research area; there are still, however, some obscure points in the efficient microbiological biosynthesis of melatonin. This review summarizes the research progress and recent evidence related to melatonin and its isomers in various foodstuffs. Additionally, one possible way to synthesize melatonin is also discussed. The evidence pointed out that the presence of melatonin and its isomers is not exclusive for grapes and grape-derived products, because it can be also found in sweet and sour cherries. However, different species of both Saccharomyces and non-Saccharomyces yeasts could be used to obtain melatonin and melatonin isomers in the process of alcoholic fermentation biotechnologically. The availability of L-tryptophan has been a key factor in determining the concentration of indolic compounds produced, and the utilization of probiotic lactic acid bacteria could help in the formation of melatonin isomers during malolactic fermentation. These approaches are environmentally friendly alternatives with a safer profile than conventional ones and could represent the future for sustainable industrial-scale melatonin production.
Collapse
Affiliation(s)
| | - Diego A Moreno
- Phytochemistry and Healthy Foods Lab, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | | | | | | |
Collapse
|
85
|
Zhang J, Wang M, Ding W, Zhao M, Ye J, Xu Y, Wang Z, Ye D, Li D, Liu J, Wan J. Resolvin E1 protects against doxorubicin-induced cardiotoxicity by inhibiting oxidative stress, autophagy and apoptosis by targeting AKT/mTOR signaling. Biochem Pharmacol 2020; 180:114188. [PMID: 32750329 DOI: 10.1016/j.bcp.2020.114188] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity impairs the quality of life of cancer patients during or after DOX treatment, and it is imperative to explore a novel strategy to address this problem. Resolvin E1 (RvE1) is derived from eicosapentaenoic acid (EPA), which has been reported to exert beneficial effects on DOX-induced oxidative stress in cardiomyocytes. This study was designed to investigate whether RvE1 protects against DOX-induced cardiotoxicity, and the underlying mechanism was explored. DOX (20 mg/kg, one injection, i.p.) was used to induce DOX-induced cardiotoxicity in C57BL/6 mice. At 5 days after DOX administration, the effect of RvE1 was assessed by measuring cardiac function, oxidative stress, autophagy and apoptosis in cardiac tissue. We used an AKT inhibitor and rapamycin to investigate the underlying mechanisms. Our results showed that RvE1 inhibited the DOX-induced decrease in body weight and heart weight, the reduction in left ventricular ejection fraction and fractional shortening, and the increase in lactate dehydrogenase, creatine kinase myocardial bound and cardiomyocyte vacuolization. Compared to the control group, the DOX group exhibited increased oxidative stress, autophagy and apoptosis in cardiac tissue, which were alleviated by treatment with RvE1. The AKT/mTOR signaling pathways were responsible for RvE1-mediated regulation of DOX-induced oxidative stress, autophagy and myocardial apoptosis. In conclusion, RvE1 protected against DOX-induced cardiotoxicity via the regulation of AKT/mTOR signaling.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dan Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
86
|
He Q, Gu L, Lin Q, Ma Y, Liu C, Pei X, Li PA, Yang Y. The Immp2l Mutation Causes Ovarian Aging Through ROS-Wnt/β-Catenin-Estrogen Pathway: Preventive Effect of Melatonin. Endocrinology 2020; 161:5870341. [PMID: 32652035 DOI: 10.1210/endocr/bqaa119] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria play important roles in ovarian follicle development. Mitochondrial dysfunction, including mitochondrial gene deficiency, impairs ovarian development. Here, we explored the role and mechanism of mitochondrial inner membrane gene Immp2l in ovarian follicle growth and development. Our results revealed that female Immp2l-/- mice were infertile, whereas Immp2l+/- mice were normal. Body and ovarian weights were reduced in the female Immp2l-/- mice, ovarian follicle growth and development were stunted in the secondary follicle stage. Although a few ovarian follicles were ovulated, the oocytes were not fertilized because of mitochondrial dysfunction. Increased oxidative stress, decreased estrogen levels, and altered genes expression of Wnt/β-catenin and steroid hormone synthesis pathways were observed in 28-day-old Immp2l-/- mice. The Immp2l mutation accelerated ovarian aging process, as no ovarian follicles were detected by age 5 months in Immp2l-/- mice. All the aforementioned changes in the Immp2l-/- mice were reversed by administration of antioxidant melatonin to the Immp2l-/- mice. Furthermore, our in vitro study using Immp2l knockdown granulosa cells confirmed that the Immp2l downregulation induced granulosa cell aging by enhancing reactive oxygen species (ROS) levels, suppressing Wnt16, increasing β-catenin, and decreasing steroid hormone synthesis gene cyp19a1 and estrogen levels, accompanied by an increase in the aging phenotype of granulosa cells. Melatonin treatment delayed granulosa cell aging progression. Taken together, Immp2l causes ovarian aging through the ROS-Wnt/β-catenin-estrogen (cyp19a1) pathway, which can be reversed by melatonin treatment.
Collapse
Affiliation(s)
- Qing He
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Department of Pathology, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Center for Reproductive Medicine, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Lifang Gu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Department of Pathology, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Center for Reproductive Medicine, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Qingyin Lin
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Department of Pathology, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Center for Reproductive Medicine, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Yi Ma
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Department of Pathology, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Center for Reproductive Medicine, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Chunlian Liu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Department of Pathology, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Center for Reproductive Medicine, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Department of Pathology, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Center for Reproductive Medicine, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, North Carolina
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Department of Pathology, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Center for Reproductive Medicine, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| |
Collapse
|
87
|
Ma L, Tang X, Guo S, Liang M, Zhang B, Jiang Z. miRNA-21-3p targeting of FGF2 suppresses autophagy of bovine ovarian granulosa cells through AKT/mTOR pathway. Theriogenology 2020; 157:226-237. [PMID: 32818880 DOI: 10.1016/j.theriogenology.2020.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
Abstract
It is widely thought that the main reason for ovarian follicular atresia is apoptosis of granulosa cells, however, accumulating evidence suggests that autophagy plays a role in the fate of granulosa cells. Although epigenetic regulation including miR-21-3p associated with autophagy process has been reported in many cancer types, nevertheless, the mechanism of miR-21-3p in bovine ovary is poorly understood. In the present study, bovine ovarian granulosa cells (BGCs) were used as a model to elucidate the autophagy and role of miR-21-3p in a cattle ovary. The results from gene expression and tagged autophagosomes showed the autophagy in BGCs and miR-21-3p was identified as an important miRNA regulating autophagy of BGCs. The current results indicated that FGF2 was a validated target of miR-21-3p in autophagy regulation of BGCs according to the results from FGF2 luciferase reporter assays and FGF2 overexpression (oe-FGF2) or small interference (si-FGF2). Transfection of miR-21-3p mimic and si-FGF2 plasmids resulted in decreasing phosphorylated AKT and mTOR, while transfection of miR-21-3p inhibitor and oe-FGF2 increased the phosphorylated level of AKT and mTOR in BGCs. These data indicate that regulation of miR-21-3p on BGCs autophagy through AKT/mTOR pathway. In summary, this study suggests that miR-21-3p targets FGF2 to inhibit BGCs autophagy by repressing AKT/mTOR signaling.
Collapse
Affiliation(s)
- Lizhu Ma
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Xiaorong Tang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Shun Guo
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Mingyue Liang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Bin Zhang
- College of Animal Science and Technology, State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Zhongliang Jiang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
88
|
Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging (Albany NY) 2020; 12:13187-13205. [PMID: 32620714 PMCID: PMC7377856 DOI: 10.18632/aging.103420] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury occurs when blood flow is restored in the brain, causing secondary damage to the ischemic tissues. Previous studies have shown that electroacupuncture (EA) treatment contributes to brain protection against CIR injury through modulating autophagy. Studies indicated that SIRT1-FOXO1 plays a crucial role in regulating autophagy. Here we investigated the mechanisms underlying the neuroprotective effect of EA and its role in modulating autophagy via the SIRT1-FOXO1 signaling pathway in rats with CIR injury. EA pretreatment at "Baihui", "Quchi" and "Zusanli" acupoints (2/15Hz, 1mA, 30 min/day) was performed for 5 days before the rats were subjected to middle cerebral artery occlusion, and the results indicated that EA pretreatment substantially reduced the Longa score and infarct volume, increased the dendritic spine density and lessened autophagosomes in the peri-ischemic cortex of rats. Additionally, EA pretreatment also reduced the ratio of LC3-II/LC3-I, the levels of Ac-FOXO1 and Atg7, and the interaction of Ac-FOXO1 and Atg7, but increased the levels of p62, SIRT1, and FOXO1. The above effects were abrogated by the SIRT1 inhibitor EX527. Thus, we presume that EA pretreatment elicits a neuroprotective effect against CIR injury, potentially by suppressing autophagy via activating the SIRT1-FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Guang Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zhi-Tao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Nan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Li-Peng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Kang Jiang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiao-Lu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xian-Yun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yi-Hui Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua-Jun Zhou
- The Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
89
|
Shi XY, Guan ZQ, Yu JN, Liu HL. Follicle Stimulating Hormone Inhibits the Expression of p53 Up-Regulated Modulator of Apoptosis Induced by Reactive Oxygen Species Through PI3K/Akt in Mouse Granulosa Cells. Physiol Res 2020; 69:687-694. [PMID: 32584135 DOI: 10.33549/physiolres.934421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In mammalian ovaries, follicular atresia occurs periodically and destroys almost all the follicles in the ovary. Follicle-stimulating hormone (FSH) acts as the primary survival factor during follicular atresia by preventing apoptosis in granulosa cells (GCs). Many studies have demonstrated that oxidative stress-induced apoptosis is a main cause of follicular atresia. Reactive oxygen species (ROS)-induced GCs apoptosis is regulated by a variety of signaling pathways involving numerous genes and transcription factors. Therefore, we examined whether FSH inhibits the expression of p53 up-regulated modulator of apoptosis (PUMA) induced by reactive oxygen species (ROS) through phosphoinositide 3-kinase (PI3K) / protein kinase B (AKT) in mouse GCs. In vivo study: thirty-two-mice were randomly assigned to four groups and given FSH. We found that FSH can inhibit the 3-nitropropionic acid (3-NP) induced apoptosis and PUMA expression in mRNA level. Moreover, In vitro experiment, we found that FSH can inhibit the H(2)O(2)-induced apoptosis and PUMA expression in mRNA level. Additionally, we also found that PI3K/AKT inhibitor LY294002 abolished the downregulation of PUMA mRNA by FSH in vitro, In conclusion, FSH inhibit the expression of PUMA induced by ROS through PI3K/AKT pathway in vivo and vitro.
Collapse
Affiliation(s)
- X Y Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang, Nanjing, China.
| | | | | | | |
Collapse
|
90
|
Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199:105595. [PMID: 31954766 DOI: 10.1016/j.jsbmb.2020.105595] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
From an evolutionary point of view, vitamin D and melatonin appeared very early and share functions related to defense mechanisms. In the current clinical setting, vitamin D is exclusively associated with phosphocalcic metabolism. Meanwhile, melatonin has chronobiological effects and influences the sleep-wake cycle. Scientific evidence, however, has identified new actions of both molecules in different physiological and pathological settings. The biosynthetic pathways of vitamin D and melatonin are inversely related relative to sun exposure. A deficiency of these molecules has been associated with the pathogenesis of cardiovascular diseases, including arterial hypertension, neurodegenerative diseases, sleep disorders, kidney diseases, cancer, psychiatric disorders, bone diseases, metabolic syndrome, and diabetes, among others. During aging, the intake and cutaneous synthesis of vitamin D, as well as the endogenous synthesis of melatonin are remarkably depleted, therefore, producing a state characterized by an increase of oxidative stress, inflammation, and mitochondrial dysfunction. Both molecules are involved in the homeostatic functioning of the mitochondria. Given the presence of specific receptors in the organelle, the antagonism of the renin-angiotensin-aldosterone system (RAAS), the decrease of reactive species of oxygen (ROS), in conjunction with modifications in autophagy and apoptosis, anti-inflammatory properties inter alia, mitochondria emerge as the final common target for melatonin and vitamin D. The primary purpose of this review is to elucidate the common molecular mechanisms by which vitamin D and melatonin might share a synergistic effect in the protection of proper mitochondrial functioning.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Department of Pediatrics, Nephrology Division, Miller School of Medicine, University of Miami, FL, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
91
|
Li K, Deng Y, Deng G, Chen P, Wang Y, Wu H, Ji Z, Yao Z, Zhang X, Yu B, Zhang K. High cholesterol induces apoptosis and autophagy through the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells. Stem Cell Res Ther 2020; 11:131. [PMID: 32197645 PMCID: PMC7082977 DOI: 10.1186/s13287-020-01643-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hypercholesterolemia increases the risk of tendon pain and tendon rupture. Tendon-derived stem cells (TDSCs) play a vital role in the development of tendinopathy. Our previous research found that high cholesterol inhibits tendon-related gene expression in TDSCs. Whether high cholesterol has other biological effects on TDSCs remains unknown. METHODS TDSCs isolated from female SD rats were exposed to 10 mg/dL cholesterol for 24 h. Then, cell apoptosis was assessed using flow cytometry and fluorescence microscope. RFP-GFP-LC3 adenovirus transfection was used for measuring autophagy. Signaling transduction was measured by immunofluorescence and immunoblotting. In addition, Achilles tendons from ApoE -/- mice fed with a high-fat diet were histologically assessed using HE staining and immunohistochemistry. RESULTS In this work, we verified that 10 mg/dL cholesterol suppressed cell proliferation and migration and induced G0/G1 phase arrest. Additionally, cholesterol induced apoptosis and autophagy simultaneously in TDSCs. Apoptosis induction was related to increased expression of cleaved caspase-3 and BAX and decreased expression of Bcl-xL. The occurrence of autophagic flux and accumulation of LC3-II demonstrated the induction of autophagy by cholesterol. Compared with the effects of cholesterol treatment alone, the autophagy inhibitor 3-methyladenine (3-MA) enhanced apoptosis, while the apoptosis inhibitor Z-VAD-FMK diminished cholesterol-induced autophagy. Moreover, cholesterol triggered reactive oxygen species (ROS) generation and activated the AKT/FOXO1 pathway, while the ROS scavenger NAC blocked cholesterol-induced activation of the AKT/FOXO1 pathway. NAC and the FOXO1 inhibitor AS1842856 rescued the apoptosis and autophagy induced by cholesterol. Finally, high cholesterol elevated the expression of cleaved caspase-3, Bax, LC3-II, and FOXO1 in vivo. CONCLUSION The present study indicated that high cholesterol induced apoptosis and autophagy through ROS-activated AKT/FOXO1 signaling in TDSCs, providing new insights into the mechanism of hypercholesterolemia-induced tendinopathy. High cholesterol induces apoptosis and autophagy through the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells.
Collapse
Affiliation(s)
- Kaiqun Li
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ye Deng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ganming Deng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.,Baoan District People's Hospital of Shenzhen, Shenzhen, 518100, China
| | - Pengyu Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yutian Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hangtian Wu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhiguo Ji
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zilong Yao
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xianrong Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Kairui Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
92
|
Leocarpinolide B attenuates LPS-induced inflammation on RAW264.7 macrophages by mediating NF-κB and Nrf2 pathways. Eur J Pharmacol 2019; 868:172854. [PMID: 31837308 DOI: 10.1016/j.ejphar.2019.172854] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Macrophages-mediated inflammation is involved in the regulation of rheumatoid arthritis (RA). Sigesbeckiae Herba (SH) has been traditionally used for rheumatism. However, the bioactive ingredients of SH are still unclear. Recently, we isolated a compound (Leocarpinolide B, LB) from SH and identified its potent anti-inflammatory and antioxidant effects on RAW264.7 macrophages for the first time. LB effectively inhibited excessive production of nitric oxide (NO), prostaglandin E2 (PGE2), cytokines (IL-6, TNF-α and MCP-1), and the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthases (iNOS) in lipopolysaccharide (LPS)-induced RAW264.7 cells. LB blocked the degradation of inhibitor of kappa B (IκBα) and translocation of nuclear factor kappa B (NF-κB) p65. Additionally, LB reduced the intracellular reactive oxygen species, and increased the expression of heme oxygenase-1 (HO-1) and the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the presence or absence of LPS. The results suggested that LB might be one of the bioactive components of SH, and be potential for the treatment of RA and valuable to be further investigated.
Collapse
|
93
|
Integrated Analysis of miRNA-mRNA Interaction Network in Porcine Granulosa Cells Undergoing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1041583. [PMID: 31781320 PMCID: PMC6875397 DOI: 10.1155/2019/1041583] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress (OS), a common intracellular phenomenon induced by excess reactive oxygen species (ROS) generation, has been shown to be associated with mammalian ovarian follicular development blockage and granulosa cell (GC) impairment. However, the mechanism involved in these effects remains unknown, and the effect of OS on the transcriptome profiles in porcine GCs has not been fully characterized. In this study, we found that hydrogen peroxide-mediated oxidative stress induced porcine GC apoptosis and impaired cell viability. Moreover, RNA-seq analysis showed that oxidative stress induced dramatic changes in gene expression in porcine GCs. A total of 2025 differentially expressed genes (DEGs) were identified, including 1940 DEmRNAs and 55 DEmiRNAs. Functional annotation showed that the DEGs were mainly associated with cell states and function regulation. In addition, multiple hub genes (FOXO1, SOD2, BMP2, DICER1, BCL2L11, FZD4, ssc-miR-424, and ssc-miR-27b) were identified by constructing protein-protein interaction and DEmiRNA-DEmRNA regulatory networks. Furthermore, a gene-pathway-function coregulatory network was established and demonstrated that these hub genes were enriched in FoxO, TGF-β, Wnt, PIK3-Akt, MAPK, and cAMP signaling pathways, which play important roles in regulating cell apoptosis, cell proliferation, stress responses, and hormone secretion. The current research provides a comprehensive perspective of the effects of oxidative stress on porcine GCs and also identifies potential therapeutic targets for oxidative stress-induced female infertility.
Collapse
|
94
|
Hua S, Yang L, Gao T, Jiang P, Jiang F, Liu Y. Graphene Quantum Dots Induce Autophagy and Reveal Protection Against Hydrogen Peroxide-Induced Oxidative Stress Injury. ACS APPLIED BIO MATERIALS 2019; 2:5760-5768. [DOI: 10.1021/acsabm.9b00784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Siyu Hua
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Liyun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Tian Gao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Peng Jiang
- School of Pharmocy, Wuhan University, Wuhan 430071, People’s Republic of China
| | - Fenglei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- School of Pharmocy, Wuhan University, Wuhan 430071, People’s Republic of China
- Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| |
Collapse
|
95
|
Zhu FX, Wang XT, Zeng HQ, Yin ZH, Ye ZZ. A predicted risk score based on the expression of 16 autophagy-related genes for multiple myeloma survival. Oncol Lett 2019; 18:5310-5324. [PMID: 31612041 PMCID: PMC6781562 DOI: 10.3892/ol.2019.10881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy has an important role in the pathogenesis of plasma cell development and multiple myeloma (MM); however, the prognostic role of autophagy-related genes (ARGs) in MM remains undefined. In the present study, the expression profiles of 234 ARGs were obtained from a Gene Expression Omnibus dataset (accession GSE24080), which contains 559 samples of patients with MM analyzed with 54,675 probes. Univariate Cox regression analysis identified 55 ARGs that were significantly associated with event-free survival of MM. Furthermore, a risk score with 16 survival-associated ARGs was developed using multivariate Cox regression analysis, including ATIC, BNIP3L, CALCOCO2, DNAJB1, DNAJB9, EIF4EBP1, EVA1A, FKBP1B, FOXO1, FOXO3, GABARAP, HIF1A, NCKAP1, PRKAR1A and SUPT20H, was constructed. Using this prognostic signature, patients with MM could be separated into high- and low-risk groups with distinct clinical outcomes. The area under the curve values for the receiver operating characteristic curves were 0.740, 0.741 and 0.712 for 3, 5 and 10 years prognosis predictions, respectively. Notably, the prognostic role of this risk score could be validated with another four independent cohorts (accessions: GSE57317, GSE4581, GSE4452 and GSE4204). In conclusion, ARGs may serve vital roles in the progression of MM, and the ARGs-based prognostic model may provide novel ideas for clinical applications in MM.
Collapse
Affiliation(s)
- Fang-Xiao Zhu
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Xiao-Tao Wang
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical College, Guilin, Guangxi 541001, P.R. China
| | - Hui-Qiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Zhi-Hua Yin
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Zhi-Zhong Ye
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| |
Collapse
|
96
|
Cheng Z. The FoxO-Autophagy Axis in Health and Disease. Trends Endocrinol Metab 2019; 30:658-671. [PMID: 31443842 DOI: 10.1016/j.tem.2019.07.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
Autophagy controls cellular remodeling and quality control. Dysregulated autophagy has been implicated in several human diseases including obesity, diabetes, cardiovascular disease, neurodegenerative diseases, and cancer. Current evidence has revealed that FoxO (forkhead box class O) transcription factors have a multifaceted role in autophagy regulation and dysregulation. Nuclear FoxOs transactivate genes that control the formation of autophagosomes and their fusion with lysosomes. Independently of transactivation, cytosolic FoxO proteins induce autophagy by directly interacting with autophagy proteins. Autophagy is also controlled by FoxOs through epigenetic mechanisms. Moreover, FoxO proteins can be degraded directly or indirectly by autophagy. Cutting-edge evidence is reviewed that the FoxO-autophagy axis plays a crucial role in health and disease.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Food Science and Human Nutrition Department, The University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
97
|
Jafari‐Vayghan H, Saleh‐Ghadimi S, Maleki V, Moludi J, Alizadeh M. The effects of melatonin on neurohormonal regulation in cardiac cachexia: A mechanistic review. J Cell Biochem 2019; 120:16340-16351. [DOI: 10.1002/jcb.29151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hamed Jafari‐Vayghan
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Sevda Saleh‐Ghadimi
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Vahid Maleki
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Jalal Moludi
- Department of Nutrition, Faculty of Nutrition Sciences and Food Technology Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
98
|
Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Adib A, Darband SG, Sadighparvar S, Mihanfar A, Majidinia M, Yousefi B. Melatonin-mediated regulation of autophagy: Making sense of double-edged sword in cancer. J Cell Physiol 2019; 234:17011-17022. [PMID: 30859580 DOI: 10.1002/jcp.28435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Much research has been conducted to discover novel techniques to reverse the process of tumorigenesis and, cure already stablished malignancies. One well-stablished approach has been the use of organic compounds and naturally found agents such as melatonin whose anticancer effects have been shown in multiple studies, signaling a unique opportunity regarding cancer prevention and treatment. Various agents use a variety of methods to exert their anticancer effects. Two of the most important of these methods are interfering with cell signaling pathways and changing cellular functions, such as autophagy, which is essential in maintaining cellular stability against multiple exogenous and endogenous sources of stress, and is a major tool to evade early cell death. In this study, the importance of melatonin and autophagy are discussed, and the effects of melatonin on autophagy, and its contribution in the process of tumorigenesis are then noted.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mohammadzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adib
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
99
|
Liu Y, Yang Y, Li W, Ao H, Zhang Y, Zhou R, Li K. Effects of melatonin on the synthesis of estradiol and gene expression in pig granulosa cells. J Pineal Res 2019; 66:e12546. [PMID: 30586196 DOI: 10.1111/jpi.12546] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022]
Abstract
The interaction of granulosa cells (GCs) with oocytes is important to regulate follicle development. The exogenous melatonin promoting the maturation of oocytes by GCs has been approved in pig, however, the transcriptome profile and the functions of the genes regulated by melatonin in GCs have not yet to be fully characterized. In this study, we found melatonin could stimulate the synthesis of estradiol in pig GCs. The RNA-seq was used to explore the effects of melatonin on gene expression, a total of 89 differentially expressed genes (DEGs) were identified. Gene ontology analysis showed DEGs which associated with regulation of cell proliferation, cell cycle, and anti-apoptosis were significantly enriched. The functions of two DEGs, NOTCH2 and FILIP1L, were studied in pig GCs. The results showed that NOTCH2 inhibited the synthesis of estradiol, but FILIP1L promoted the synthesis of estradiol. Furthermore, inhibiting NOTCH2 in granulosa cells cocultured with cumulus-oocyte-complexes had no obvious effect on the maturation of pig oocyte, but could upregulate the cleavage rate of oocyte. We proved that FILIP1L had no effect on the maturation and cleavage of pig oocytes. Our work deepens the understanding of melatonin's effects on GCs and oocyte. The DEGs we found will be beneficial to reveal mechanisms of melatonin acting on GCs and oocytes and design the pharmacological interventions.
Collapse
Affiliation(s)
- Ying Liu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Wentong Li
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hong Ao
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanmin Zhang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhou
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
100
|
Zhou J, Peng X, Mei S. Autophagy in Ovarian Follicular Development and Atresia. Int J Biol Sci 2019; 15:726-737. [PMID: 30906205 PMCID: PMC6429023 DOI: 10.7150/ijbs.30369] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/15/2018] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a mechanism that exists in all eukaryotes under a variety of physiological and pathological conditions. In the mammalian ovaries, less than 1% of follicles ovulate, whereas the remaining 99% undergo follicular atresia. Autophagy and apoptosis have been previously found to be involved in the regulation of both primordial follicular development as well as atresia. The relationship between autophagy, follicular development, and atresia have been summarized in this review with the aim to obtain a more comprehensive understanding of the role played by autophagy in follicular development and atresia.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.,Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Xianwen Peng
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.,Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Shuqi Mei
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.,Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| |
Collapse
|