51
|
Gao D, Yang J, Bekele TG, Zhao S, Zhao H, Li J, Wang M, Zhao H. Organophosphate esters in human serum in Bohai Bay, North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2721-2729. [PMID: 31836969 DOI: 10.1007/s11356-019-07204-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate esters (OPEs), as a class of emerging flame retardant and plasticizers, have attracted particular attention due to their ubiquitous existence in the environment and potential effects on human health. Here, we investigated the levels of OPEs in human serum and examined the role of demographic variables on the body burden of such compounds. Of 11 OPEs screened, 8 were detected in human serum samples collected from a population (n = 89) in Bohai Bay, North China. The ∑OPE concentrations ranged from 4.7 to 948 ng/g lipid weight (lw), with a median concentration of 243 ng/g lw. Tris(2-chloroethyl)phosphate (TCEP) was identified as the most abundant OPEs with a median concentration of 214 ng/g lw. The concentrations of the triphenyl phosphate (TPhP) in older adults were higher than those in young adults (p < 0.05), and lower concentrations of tri-iso-butyl phosphate (TIBP) were observed in female samples compared to males. Furthermore, significant differences were observed in tri-n-propyl phosphate (TPrP) concentrations between urban and rural residence groups (p < 0.05). This study provides important information on the accumulation potential of OPEs in human bodies and suggests the need for further investigation to understand the potential human health risk.
Collapse
Affiliation(s)
- Dute Gao
- General Surgery Department, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Jun Yang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China
| | - Sijia Zhao
- General Surgery Department, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China.
| | - Jun Li
- General Surgery Department, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Mijia Wang
- General Surgery Department, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Haidong Zhao
- General Surgery Department, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
52
|
Ding J, Deng T, Ye X, Covaci A, Liu J, Yang F. Urinary metabolites of organophosphate esters and implications for exposure pathways in adolescents from Eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133894. [PMID: 31425989 DOI: 10.1016/j.scitotenv.2019.133894] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Ten urinary biomarkers of organophosphate esters (OPEs) from six parent OPEs were analyzed in urine from adolescents students in Eastern China. Bis (1,3-dichloro-2-propyl) phosphate, urinary biomarker of tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), was detected in all urine samples with the highest residual concentration of 6.2 ng/mL (median). Bis (1-chloro-propyl) hydroxyl-2-propyl phosphate, dibutyl phosphate, biomarkers of tris (1-chloro-2-propyl) phosphate (TCIPP), tri-n-butyl phosphate (TNBP), respectively, and tris (2-chloroethyl) phosphate (TCEP), were also frequently detected with median concentrations of 1.5, 2.6 and 0.3 ng/mL, respectively. Results indicate that exposure to OPEs, in particular to TDCIPP, TNBP, TCIPP and TCEP, was highly prevalent for adolescent students. The exposure pathways of OPEs were then evaluated according to the OPE internal body burdens (IBBs). Three pathways were identified as the main pathways for adolescents exposed to OPEs including dermal absorption, oral intake of food and dust and inhalation.
Collapse
Affiliation(s)
- Jinjian Ding
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China; Research Institute of Zhejiang University-Taizhou, Zhejiang, China
| | - Tongqing Deng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Xiaoqing Ye
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Jing Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
53
|
Li N, Ho W, Sun Wu RS, Ying GG, Wang Z, Jones K, Deng WJ. Organophosphate flame retardants and bisphenol A in children's urine in Hong Kong: has the burden been underestimated? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109502. [PMID: 31394373 DOI: 10.1016/j.ecoenv.2019.109502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The urine levels of organophosphate flame retardants (PFRs) and bisphenol A (BPA) in kindergarten children (n = 31, 4-6 years old, sampling performed in 2016) in Hong Kong were measured. The detection frequency of the target PFRs, tri(2-chloroethyl)phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(chloroisopropyl)phosphate (TCIPP), triphenyl phosphate (TPHP) and 2-ethylhexyl diphenyl phosphate (EHDPP) ranged from 52% to 84%. The 95th percentile urinary concentrations of TPHP, TDCIPP, TCIPP, EHDPP and TCEP were 1.70, 0.24, 0.03, 0.05, 0.68 and 0.03 ng/mL, respectively. The median urine level of BPA was 1.69 ng/mL, with a detection frequency of 77%. Due to the lack of metabolism information, two scenarios were used to calculate the estimated daily intake (EDI) of these compounds. Back-calculated EDIs of PFRs using the urinary excretion rates from in vivo animal data (scenario 2) were up to 2.97 μg/kg/d (TDCIPP), which was only a little less than that observed in a sample of American infants, and the reference dose (RfD), meaning that the potential health risk of TDCIPP cannot be ignored. Dust ingestion was suggested to be the major pathway of exposure to PFRs, but when the levels in dust and air particles in kindergartens in Hong Kong were used to predict EDIs, these values were nearly half as much as those predicted from urinary TDCIPP in this study. This suggested that children's PFRs burden may be underestimated when considering only PFR levels in dust or air. There is thus a need for further studies with large-scale surveys and investigation of exposure routes.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region, People's Republic of China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region, People's Republic of China
| | - Rudolf Shiu Sun Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region, People's Republic of China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, China.
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Kevin Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region, People's Republic of China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, China.
| |
Collapse
|
54
|
Blum A, Behl M, Birnbaum L, Diamond ML, Phillips A, Singla V, Sipes NS, Stapleton HM, Venier M. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2019; 6:638-649. [PMID: 32494578 PMCID: PMC7269169 DOI: 10.1021/acs.estlett.9b00582] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As the use of polybrominated diphenyl ethers (PBDEs), and the entire class of organohalogen flame retardants, is declining, the use of organophosphate esters flame retardants (OPFRs) is increasing. In this paper, we ask whether OPFRs are a better choice than PBDEs. To address this question, we compared OPFRs with PBDEs for a wide range of properties. OPFRs exposure is ubiquitous in people and in outdoor and indoor environments, and are now often found at higher levels compared to PBDE peak exposure levels. Furthermore, data from toxicity testing, epidemiological studies, and risk assessments all suggest that there are health concerns at current exposure levels for both halogenated and non-halogenated OPFRs. Obtaining the scientific evidence needed for regulation of OPFRs can take many years. Given the large number of OPFRs in use, manufacturers can move towards healthier and safer products by developing innovative ways to reduce fire hazard for electronics enclosures, upholstered furniture, building materials and other consumer products without adding flame retardant chemicals.
Collapse
Affiliation(s)
- Arlene Blum
- Green Science Policy Institute, Berkeley, CA, 94709, and Department of Chemistry, UC Berkeley, Berkeley CA 94705
| | - Mamta Behl
- National Toxicology Program, NIEHS, Research Triangle Park, NC 27709
| | - Linda Birnbaum
- National Cancer Institute at NIEHS, Research Triangle Park, NC 27709
| | - Miriam L. Diamond
- Department of Earth Sciences, University of Toronto, Ontario, Toronto, Canada M5S 3B1
| | - Allison Phillips
- Risk Assessment and Natural Resource Sciences Inc., Arcadis, Raleigh, NC 27607
| | - Veena Singla
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| | - Nisha S Sipes
- National Toxicology Program, NIEHS, Research Triangle Park, NC 27709
| | | | - Marta Venier
- O’ Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47401
| |
Collapse
|
55
|
Ait Bamai Y, Bastiaensen M, Araki A, Goudarzi H, Konno S, Ito S, Miyashita C, Yao Y, Covaci A, Kishi R. Multiple exposures to organophosphate flame retardants alter urinary oxidative stress biomarkers among children: The Hokkaido Study. ENVIRONMENT INTERNATIONAL 2019; 131:105003. [PMID: 31310930 DOI: 10.1016/j.envint.2019.105003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 05/27/2023]
Abstract
Organophosphate flame retardants (PFRs) are used as additives in plastics and other applications such as curtains and carpets as a replacement for brominated flame retardants. As such, exposure to PFR mixtures is widespread, with children being more vulnerable than adults to associated health risks such as allergies and inflammation. Oxidative stress is thought to be able to modulate the development of childhood airway inflammation and atopic dermatitis. To evaluate these associations, the present study investigated the relationship between urinary PFR metabolites, their mixtures and urinary oxidative stress biomarkers in children as part of the Hokkaido Study on Environment and Children's Health. The levels of the oxidative stress biomarkers, such as 8-hydroxy-2'-deoxyguanosine (8-OHdG), hexanoyl-lysine (HEL), and 4-hydroxynonenal (HNE), and of 14 PFR metabolites were measured in morning spot urine samples of 7-year-old children (n = 400). Associations between PFR metabolites or PFR metabolite mixtures and oxidative stress biomarkers were examined by multiple regression analysis and weighted quantile sum regression analysis, respectively. We found that the non-chlorinated PFR metabolites, 2-ethylhexyl phenyl phosphate (EHPHP), bis(2-butoxyethyl) phosphate (BBOEP), and diphenyl phosphate (DPHP) were associated with increased levels of oxidative stress biomarkers. Furthermore, the PFR metabolite mixture was associated with increased levels of HEL and HNE, but not 8-OHdG. The combination of elevated top 2 PFR metabolites was not associated with higher urinary oxidative stress marker levels. This is the first study to report associations between urinary PFR metabolites and oxidative stress biomarkers among children.
Collapse
Affiliation(s)
- Yu Ait Bamai
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Houman Goudarzi
- Hokkaido University Center for Medical Education and International Relations, Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan; Hokkaido University Faculty of Medicine, Graduate School of Medicine, Department of Respiratory Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Satoshi Konno
- Hokkaido University Faculty of Medicine, Graduate School of Medicine, Department of Respiratory Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Sachiko Ito
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Yiming Yao
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
56
|
Phillips AL, Stapleton HM. Inhibition of Human Liver Carboxylesterase (hCE1) by Organophosphate Ester Flame Retardants and Plasticizers: Implications for Pharmacotherapy. Toxicol Sci 2019; 171:396-405. [PMID: 31268531 PMCID: PMC6760270 DOI: 10.1093/toxsci/kfz149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 01/24/2023] Open
Abstract
Organophosphate ester (OPE) flame retardants and plasticizers, consumer product additives with widespread human exposure, were evaluated for their effect on the activity of purified human liver carboxylesterase (hCE1). Four of the 15 OPEs tested had IC50 values lower than 100 nM, including triphenyl phosphate (TPHP), 2-ethylhexyl diphenyl phosphate (EHDPHP), 4-isopropylphenyl diphenyl phosphate (4IPPDPP), and 4-tert-butylphenyl diphenyl phosphate (4tBPDPP), as did 4 of the commercial flame retardant mixtures tested. Because hCE1 is critical for the activation of imidapril, an angiotensin-converting enzyme-inhibitor prodrug prescribed to treat hypertension, the most potent inhibitors, TPHP and 4tBPDPP, and an environmentally relevant mixture (house dust) were further evaluated for their effect on imidapril bioactivation in vitro. TPHP and 4tBPDPP were potent inhibitors of hCE1-mediated imidapril activation (Ki = 49.0 and 17.9 nM, respectively). House dust extracts (100 µg/ml) also caused significant reductions (up to 33%) in imidapril activation. Combined, these data suggest that exposure to OPEs may affect pharmacotherapy.
Collapse
Affiliation(s)
- Allison L Phillips
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708-0328
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708-0328
| |
Collapse
|
57
|
He C, Brandsma SH, Jiang H, O'Brien JW, van Mourik LM, Banks AP, Wang X, Thai PK, Mueller JF. Chlorinated paraffins in indoor dust from Australia: Levels, congener patterns and preliminary assessment of human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:318-323. [PMID: 31125744 DOI: 10.1016/j.scitotenv.2019.05.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 05/22/2023]
Abstract
Chlorinated paraffins (CPs) are a group of polychlorinated n-alkanes with high production volumes. Until now, there are only limited data on the levels of CPs in the environment, especially in the indoor environment. In this study, dust samples were collected from 44 indoor environments, including 27 private houses, 10 offices, and 7 vehicles. Short-, medium-, and long-chain CPs were detected in all dust samples. The median concentration of ∑CPs (C10-C21) was 57, 160 and 290 μg/g, in houses, offices, and vehicles, respectively. Medium-chain CPs were the dominant group, on average accounting for 86% of ∑CPs. Cl6 and Cl8 groups had the highest contributions to ∑CPs across all the different microenvironments, while C13 and C14 were the predominant groups of SCCPs and MCCPs. Median exposure to ∑CPs via indoor dust were estimated at 80 ng/kg/day and 620 μg/kg/day for Australian adults and toddlers respectively. The daily intake of CPs via dust, in the worse scenario, was still 2-3 orders of magnitudes lower than the reference doses based on neoplastic effects.
Collapse
Affiliation(s)
- Chang He
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102 Brisbane, Australia.
| | - Sicco H Brandsma
- Vrije Universiteit, Department of Environment and Health, De Boelelaan 1087, 1081, HV, Amsterdam, the Netherlands
| | - Hui Jiang
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102 Brisbane, Australia
| | - Jake W O'Brien
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102 Brisbane, Australia
| | - Louise M van Mourik
- Vrije Universiteit, Department of Environment and Health, De Boelelaan 1087, 1081, HV, Amsterdam, the Netherlands
| | - Andrew P Banks
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102 Brisbane, Australia
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102 Brisbane, Australia
| | - Phong K Thai
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102 Brisbane, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102 Brisbane, Australia
| |
Collapse
|
58
|
Abafe OA, Martincigh BS. Concentrations, sources and human exposure implications of organophosphate esters in indoor dust from South Africa. CHEMOSPHERE 2019; 230:239-247. [PMID: 31103870 DOI: 10.1016/j.chemosphere.2019.04.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
The concentrations of four organophosphate esters (OPEs) were measured in 50 dust samples from homes (n = 10), offices (n = 9), university computer laboratories (n = 12) and cars (n = 19) in Durban, South Africa. The median concentrations Σn=4 OPEs were 22940, 26930, 19565 and 49010 ng g⁻1 in homes, offices, university computer laboratories and cars respectively. OPEs were detected in all samples with the exception of one car and one computer laboratory sample in which TDCIPP was not detected. Significant association of indoor characteristics with OPE concentrations was observed. OPEs positively correlated (r = 0.22, p value = 0.4862) with electronics and correlated (r = 0.522, p value = 0.0675) with foams and furniture in homes. By employing the median concentrations and an average dust intake rate, the exposure doses (ng d-1) were found to be 169 (TCEP), 74 (TCIPP), 162 (TDCIPP) and 55 (TPHP) for adults; 159 (TCEP), 70 (TCIPP), 108 (TDCIPP) and 57 (TPHP) for teenagers; 317 (TCEP), 152 (TCIPP), 334 (TDCIPP) and 94 (TPHP) for toddlers. The predominance and exposure magnitude of OPEs in the South African environment require further investigations to determine cumulative human health effects arising from mixtures of these compounds through multiple exposure routes.
Collapse
Affiliation(s)
- Ovokeroye A Abafe
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
59
|
Lai NLS, Kwok KY, Wang XH, Yamashita N, Liu G, Leung KMY, Lam PKS, Lam JCW. Assessment of organophosphorus flame retardants and plasticizers in aquatic environments of China (Pearl River Delta, South China Sea, Yellow River Estuary) and Japan (Tokyo Bay). JOURNAL OF HAZARDOUS MATERIALS 2019; 371:288-294. [PMID: 30856439 DOI: 10.1016/j.jhazmat.2019.03.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The concentrations and spatial distribution of 14 organophosphorus flame retardants (OPFRs) and plasticizers were studied in aquatic environments of China, namely, the Pearl River Delta (PRD), South China Sea (SCS) and Yellow River Estuary (YRE), as well as Tokyo Bay (TB) in Japan. These locations were characterized by different levels of socioeconomic development and human activities. The spatial pattern of OPFRs revealed their ubiquity along the coasts of China and Japan; the concentrations ranged from 15 to 1790, 1 to 147, 253 to 1720, and 107 to 284 ng L-1 in the PRD, SCS, YRE and TB, respectively. The most frequently detected OPFR was triethyl phosphate (TEP), followed by triphenylphosphine oxide (TPPO) and tris(2-chloroethyl) phosphate (TCEP). A positive relationship (R2 = 0.668, p = 0.004) was observed between OPFR contamination and socioeconomic activity, measured by gross domestic product (GDP) per capita, for the studied cities in China and Japan. The results suggest that an increase in manufacturing and construction activities in the studied areas may aggravate coastal contamination with OPFRs. The potential threat to aquatic organisms from exposure to TCEP, a suspected carcinogen, was revealed by the hazard quotient (HQ) and probabilistic assessments. Further investigation of OPFR exposure in the aquatic environment of China is urgently required.
Collapse
Affiliation(s)
- Nelson L S Lai
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Karen Y Kwok
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xin-Hong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, China
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Guijian Liu
- School of Earth and Space Sciences, University of Science and Technology of China, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
60
|
Sun Y, Liu LY, Sverko E, Li YF, Li HL, Huo CY, Ma WL, Song WW, Zhang ZF. Organophosphate flame retardants in college dormitory dust of northern Chinese cities: Occurrence, human exposure and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:731-738. [PMID: 30893750 DOI: 10.1016/j.scitotenv.2019.02.098] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Organophosphate flame retardants (OPFRs) are widely added to consumer products and building materials, which may pose potential health risk to humans. But information on their contamination and human exposure in the indoor environment especially dormitories in northern China is rare. In this study, twelve OPFRs were investigated in college dormitory dust that collected from Harbin, Shenyang, and Baoding, in northern China. Indoor dust samples were also collected from homes and public microenvironments (PMEs) in Harbin for comparison. The median ∑OPFR concentrations in dormitory dust in Shenyang samples (8690 ng/g) were higher than those in Baoding (6540 ng/g) and Harbin (6190 ng/g). The median ∑OPFR concentrations in home dust (7150 ng/g) were higher than in dormitory and PME dust (5340 ng/g) in Harbin. Tris(2‑chloroethyl) phosphate (TCEP) and tris (2-chloroisopropyl) phosphate (TCIPP) were the most abundant chlorinated OPFRs, while triphenyl phosphate (TPHP) and tris(2‑butoxyethyl) phosphate (TBOEP) were the dominant non-chlorinated OPFRs. The daily intakes of ∑OPFR were estimated, with the median values for female students (2.45 ng/kg-day) higher than those for male students (2.15 ng/kg-day) while were similar to adults (2.45 ng/kg-day) in homes. The estimated daily intakes (EDI) of these OPFRs from indoor dust in Harbin were all below the recommended values. The calculated non-carcinogenic hazard quotients (10-8-10-3) from OPFRs were much lower than the theoretical risk threshold. Meanwhile, carcinogenic risk (CR) of tri‑n‑butyl phosphate (TNBP), TCEP, tris(2‑ethylhexyl) phosphate (TEHP), and tris(1,3‑dichloroisopropyl) phosphate (TDCIPP) were also estimated. The highest carcinogenic risk of TCEP for gender-specific and age-specific category range from 1.75 × 10-7 to 2.46 × 10-7 from exposure to indoor dust indicated a low potential carcinogenic risk for human exposure.
Collapse
Affiliation(s)
- Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China.
| | - Ed Sverko
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| | - Hai-Ling Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| |
Collapse
|
61
|
Bastiaensen M, Ait Bamai Y, Araki A, Van den Eede N, Kawai T, Tsuboi T, Kishi R, Covaci A. Biomonitoring of organophosphate flame retardants and plasticizers in children: Associations with house dust and housing characteristics in Japan. ENVIRONMENTAL RESEARCH 2019; 172:543-551. [PMID: 30852457 DOI: 10.1016/j.envres.2019.02.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/06/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Indoor environments contain a wide range of new chemicals such as phosphate flame retardants and plasticizers (PFRs). Despite recent epidemiological evidence suggesting that children might be affected by widespread exposure to PFRs, questions remain about the various exposure pathways to these chemicals. Therefore, the aim of this study was to investigate exposure to PFRs by measuring the concentrations a set of urinary metabolites for schoolchildren from Japan (n = 128) and associating them with house dust concentrations and housing characteristics. Detectable concentrations of both diaryl and dialkyl phosphates (DAPs) and hydroxylated metabolites (HO-PFRs) were found in urine samples of almost all children. 2-Hydroxyethyl bis(2-butoxyethyl) phosphate (BBOEHEP) was the most frequently detected metabolite (98%) followed by 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP, 95%) and tris(chloroethyl) phosphate (TCEP). Next to BBOEHEP, two other metabolites of tris(2-butoxyethyl) phosphate (TBOEP) were also frequently detected. Significant correlations of moderate strength were found between parent compounds detected in high concentrations in house dust (TBOEP, tris(2-chloroisopropyl) phosphate (TCIPP)) and their corresponding metabolites, suggesting that dust is a primary exposure source for these PFRs. Several personal and housing characteristics, such as gender, income, and the use of PVC and ventilation were associated with metabolite concentrations in multivariate linear regression. Overall, this study showed that Japanese schoolchildren are exposed to a wide range of PFRs.
Collapse
Affiliation(s)
- Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Tazuru Tsuboi
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
62
|
Kim UJ, Wang Y, Li W, Kannan K. Occurrence of and human exposure to organophosphate flame retardants/plasticizers in indoor air and dust from various microenvironments in the United States. ENVIRONMENT INTERNATIONAL 2019; 125:342-349. [PMID: 30739054 DOI: 10.1016/j.envint.2019.01.065] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 05/22/2023]
Abstract
The occurrence and profiles of 15 organophosphate flame retardants/plasticizers (OPFRs) (3 chlorinated [Cl-], 2 aryl-, 5 non-Cl alkyl-, and 5 other types of OPFRs) were investigated in indoor air and dust collected from various microenvironments, including homes in the Albany area of New York State, United States. Concurrent indoor air and dust were collected from floors and window sills at homes and fire stations to investigate the partitioning of OPFRs between the vapor and particulate phases of air and dust. The total concentrations of OPFRs in bulk air (vapor plus particulate phases) were found at several tens to hundreds of ng/m3, with mean concentrations that ranged from 0.12 ng/m3 for tripropyl phosphate (TPP) to 43.8 ng/m3 for tris(1-chloro-2-propyl)phosphate (TCIPP). TCIPP, triethyl phosphate (TEP) and tris(2-butoxyethyl)phosphate (TBOEP) were the predominant compounds found in bulk air, vapor phase, and dust. Among the ten types of microenvironments studied, indoor air samples collected from automobile parts shops contained the highest concentrations of OPFRs (mean: 258 ng/m3), followed by electronics shops, nail salons/shops that sell nail polish, and home construction/interior products shops. Estimated daily intakes of OPFRs via inhalation of air, dermal sorption, and ingestion of dust were 149, 279, and 390 ng/kg bw/day, respectively, which suggested that dust ingestion is an important source of human exposure to OPFRs among the indoor exposure pathways studied.
Collapse
Affiliation(s)
- Un-Jung Kim
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, United States
| | - Yu Wang
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, United States
| | - Wenhui Li
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, United States; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
63
|
Tokumura M, Ogo S, Kume K, Muramatsu K, Wang Q, Miyake Y, Amagai T, Makino M. Comparison of rates of direct and indirect migration of phosphorus flame retardants from flame-retardant-treated polyester curtains to indoor dust. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:464-469. [PMID: 30472470 DOI: 10.1016/j.ecoenv.2018.11.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
In this study, the pathways for migration of phosphorus flame retardants (PFRs), tris(1,3-dichloroisopropyl) phosphate (TDCPP) and tricresyl phosphate (TCsP) which were detected from curtains often, from flame-retardant-treated polyester curtains to indoor dust were investigated. Two possible migration pathways were compared quantitatively: (1) an indirect pathway in which the PFRs in the curtains first evaporate from the curtains and are then adsorbed onto indoor dust and (2) a direct pathway in which the PFRs are directly transferred to dust placed on the curtains. The contribution of the indirect pathway was evaluated by means of emission cell tests, which showed that the area-specific emission rates from curtains treated with PFRs were 0.044 (TDCPP, Curtain 5), 0.17 (TDCPP, Curtain 8), and 0.060 (TCsP, Curtain 12) μg m-2 h-1 at 20 °C (averaged during 24 h). The contribution of the direct pathway was evaluated by measurement of the time dependence of PFR concentrations on the indoor dust placed on the curtains. These measurements indicated that PFR concentrations on the dust increased with time and that the direct migration rates of PFRs from curtains treated with PFRs were 4.4 (TDCPP, Curtain 5), 12 (TDCPP, Curtain 8), and 7.0 (TCsP, Curtain 12) μg m-2 h-1 at 20 °C (averaged during 24 h), or 71-120 times the indirect migration rate. This result suggests that the direct pathway can be expected to predominate.
Collapse
Affiliation(s)
- Masahiro Tokumura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sayaka Ogo
- Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan
| | | | - Kosuke Muramatsu
- Department of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Qi Wang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuichi Miyake
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Takashi Amagai
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Masakazu Makino
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
64
|
Cao D, Lv K, Gao W, Fu J, Wu J, Fu J, Wang Y, Jiang G. Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:383-391. [PMID: 30466019 DOI: 10.1016/j.ecoenv.2018.11.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
In this study, levels of 14 organophosphate flame retardants (OPEs) were measured in 101 indoor dust samples collected from dormitories, residential homes, and offices in Beijing, China. In addition, paired air samples were also analyzed to evaluate any correlation between OPE levels in air and that in corresponding dust samples. The Σ14OPEs levels substantially varied between individual samples. Thereinto, significantly higher OPE levels were found in dust samples from office (mean value: 14 μg g-1), comparing to that in dust samples from residential homes (mean value: 5.9 μg g-1) and dormitories (mean value: 6.9 μg g-1). Congener profiles of OPEs in dust samples from different microenvironments indicated that tris (2-chloroethyl) phosphate (TCEP) was the dominant OPE in the office samples, followed by tris (2-chloroisopropyl) phosphate (TCPP). In contrast, TCPP was the dominant OPE in the residential home and dormitory samples, followed by TCEP. The mean concentration (range) of Σ14OPEs in the 15 air samples was 5.2 (1.0-20) ng m-3, and TCPP was the dominated congener in these samples. The concentration of TCEP and TCPP in air was positively correlated with that in corresponding indoor dust, and OPEs with highly saturated vapor pressures have higher fractions in the air than that in the dust. The estimated daily intakes through dust ingestion, dermal absorption, and inhalation indicated that the exposure to OPEs in indoor environments do not result in significant health risk for the general population in Beijing.
Collapse
Affiliation(s)
- Dandan Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kun Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
65
|
Shoeib T, Webster GM, Hassan Y, Tepe S, Yalcin M, Turgut C, Kurt-Karakuş PB, Jantunen L. Organophosphate esters in house dust: A comparative study between Canada, Turkey and Egypt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:193-201. [PMID: 30196219 DOI: 10.1016/j.scitotenv.2018.08.407] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate esters (OPEs) are commonly used as flame retardants (FRs) and plasticizers. The usage of OPEs has increased recently due to the ban of several brominated flame retardants, but information on levels in the environment, including the indoor environment is still limited. We investigated the occurrence and distribution of 12 OPEs in urban house dust from Vancouver, Canada; Istanbul, Turkey; and Cairo, Egypt. The median ∑OPE concentration was 41.4 μg/g in the Vancouver samples while median levels in Istanbul and Cairo were significantly lower. The median composition profiles of OPEs in Vancouver and Cairo were dominated by tris (2-butoxyethyl) phosphate (TBOEP), accounting for 56 and 92% of total OPEs respectively while it showed a detection frequency of only 14% in Istanbul. Tris (2-chloropropyl) phosphate (TCPP) was the most abundant chlorinated OPE representing 20 and 36% of the total OPEs in Vancouver and Istanbul respectively, but was below the detection limit in the Cairo dust samples. Consistent with other studies, ΣOPE concentrations were ~1 to 2 orders of magnitude higher than PBDEs and currently used flame retardants in the same dust samples. The mean estimated daily intakes (EDI) of ΣOPE from dust were 115, 38 and 9 ng/kg/bw/day in Vancouver, Cairo and Istanbul respectively for toddlers where adults were ~10 times lower. The total toddler OPE intake ranged from 115 to 2900, 38 to 845 and from 9 to 240 ng/kg bw/day across the three cities. TBOEP had the largest contribution to the EDI in both toddler and adults, where toddler TBOEP exposures via dust represented 4% to 80%, 2% to 44% and 0.1% to 6% of the Reference Doses (RfD) in the mean and high intake scenarios for toddlers in Vancouver, Cairo and Istanbul respectively.
Collapse
Affiliation(s)
- Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt.
| | - Glenys M Webster
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Yasmeen Hassan
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Sedef Tepe
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Melis Yalcin
- Faculty of Agriculture, Adnan Menderes University, 09100 Aydin, Turkey
| | - Cafer Turgut
- Faculty of Agriculture, Adnan Menderes University, 09100 Aydin, Turkey
| | - Perihan Binnur Kurt-Karakuş
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Yildirim/Bursa, Turkey
| | - Liisa Jantunen
- Air Quality Processes Research Section, Environment and Climate Change Canada, 6248 Eighth Line, Egbert, ON, Canada
| |
Collapse
|
66
|
Yadav IC, Devi NL, Singh VK, Li J, Zhang G. Measurement of legacy and emerging flame retardants in indoor dust from a rural village (Kopawa) in Nepal: Implication for source apportionment and health risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:304-314. [PMID: 30390529 DOI: 10.1016/j.ecoenv.2018.10.089] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Under the Stockholm Convention, signatory countries are obliged to direct source inventories, find current sources, and provide ecological monitoring evidence to guarantee that the encompassing levels of persistent organic pollutants (POPs) are declining. However, such monitoring of different types of POPs are to a great degree constrained in most developing countries including Nepal and are primarily confined to suspected source area/ densely populated regions. In this study, 9 polybrominated diphenyl ethers (PBDEs), 2 dechlorane plus (DPs), 6 novel brominated flame retardants (NBFRs) and 8 organophosphate ester flame retardants (OPFRs) were investigated in indoor dust from a rural area (Kopawa) in Nepal in order to evaluate their occurrence/level, profile, spatial distribution and their sources. Additionally, health risk exposure was estimated to anticipate the possible health risk to the local population. The results showed that OPFRs was the most abundant FR measured in the dust. The concentration of ∑8OPFRs was about 2, 3 and 4 orders of magnitude higher than the ∑6NBFRs, ∑9PBDEs, and ∑2DPs, respectively. Tris (methylphenyl) phosphate (TMPP) and Tris (2-ethylhexyl) phosphate (TEHP) were the most abundant OPFRs analyzed in the dust; while decabromodiphenyl ethane (DBDPE) exceeded among NBFRs. Likewise, 2,2',3,3',4,4',5,5',6,6'-decabromodiphenylether (BDE-209) was the most identified chemical among PBDEs. The total organic carbon (TOC) content in dust was significantly and positively connected with octa-BDEs (Rho = 0.615, p < 0.01), BTBPE (Rho = 0.733, p < 0.01), TPHP (Rho = 0.621, p < 0.01), TEHP (Rho = 0.560, p < 0.01) and TMPPs (Rho = 0.550, p < 0.01), while black carbon (BC) was either weakly related or not related, suggesting little or no impact of BC in the distribution of FRs. Principal component analysis indicated the contribution from commercial penta-, octa- and deca-BDEs formulation, the adhesive substance, food packaging and paints, and degradation of BDE-209 as the essential sources of FRs. Health risk exposure estimates showed that dermal absorption via dust as the primary route of FRs intake. The estimated daily exposure of PBDEs, NBFRs and OPFRs were 2-10 orders of magnitude lower than their corresponding reference dose (RfD), suggesting insignificant risk. However, other routes such as inhalation and dietary intake might still be significant in the case of Kopawa which should be tested in future.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT) 3-5-8, Saiwai-Cho, Fuchu-Shi, Tokyo 1838509, Japan
| | - Ningombam Linthoingambi Devi
- Centre for Environmental Sciences, Central University of South Bihar, SH-7, Gaya-Panchanpur, Post-Fatehpur, P.S-Tekari, District-Gaya 824236, Bihar, India
| | - Vipin Kumar Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
67
|
Cristale J, Aragão Belé TG, Lacorte S, de Marchi MRR. Occurrence of flame retardants in landfills: A case study in Brazil. ENVIRONMENTAL RESEARCH 2019; 168:420-427. [PMID: 30388499 DOI: 10.1016/j.envres.2018.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Huge amounts of waste containing flame retardants reach landfills annually, which can result in environmental contamination if this type of solid residues is not properly managed. This study presents data concerning the occurrence of organophosphorus flame retardants (OPFRs), polybrominated diphenyl ethers (PBDEs) and new brominated flame retardants (NBFRs) in soil, dust, leachate and well water samples from a landfill in Brazil. Samples were collected in different points of the landfill site, including offices, concierge, electronic waste storage area, bulk waste storage area, a place where a recycling cooperative operates, leachate pound and wells. Most of the flame retardants (FRs) were quantified in soil samples (up to 2500 ng g-1). The tris(2-chloroisopropyl) phosphate (TCIPP) and tris(1,3-dichloroisopropyl) phosphate (TDCIPP) were present at the highest levels in the site where bulk waste was disposed in the open air. The most abundant brominated FRs in soil samples were BDE-99, BDE-209, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and the highest levels were observed in the samples collected from the electronic waste storage area. Concerning dust samples, the highest levels of brominated FRs were observed in the electronic waste storage area, while the highest levels of OPFRs were observed in the landfill office. TCIPP, TDCIPP and tris(2-choroethyl) phosphate (TCEP) were quantified in the well water sample collected downstream the bulk waste area. Finally, six OPFRs were quantified in leachate at concentrations ranging from 14 to 965 ng L-1. In conclusion, this study demonstrates that an improper management of wastes containing FRs in landfills can potentially contaminate the surrounding environment and groundwater.
Collapse
Affiliation(s)
- Joyce Cristale
- Department of Analytical Chemistry, Institute of Chemistry, São Paulo State University (Unesp), Professor Francisco Degni 55, 14800-060 Araraquara, SP, Brazil.
| | - Tiago Gomes Aragão Belé
- Department of Analytical Chemistry, Institute of Chemistry, São Paulo State University (Unesp), Professor Francisco Degni 55, 14800-060 Araraquara, SP, Brazil
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Spain
| | - Mary Rosa Rodrigues de Marchi
- Department of Analytical Chemistry, Institute of Chemistry, São Paulo State University (Unesp), Professor Francisco Degni 55, 14800-060 Araraquara, SP, Brazil
| |
Collapse
|
68
|
Ait Bamai Y, Araki A, Nomura T, Kawai T, Tsuboi T, Kobayashi S, Miyashita C, Takeda M, Shimizu H, Kishi R. Association of filaggrin gene mutations and childhood eczema and wheeze with phthalates and phosphorus flame retardants in house dust: The Hokkaido study on Environment and Children's Health. ENVIRONMENT INTERNATIONAL 2018; 121:102-110. [PMID: 30195067 DOI: 10.1016/j.envint.2018.08.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIM Exposure to phthalates and phosphorus flame retardants (PFRs) is considered to be a risk factor for asthma and allergies. However, little is known about the contribution of loss-of-function mutations in the gene encoding filaggrin (FLG) gene, which are considered to be predisposing factors for eczema and asthma, to these associations. We investigated the associations between exposure to phthalates and PFRs in dust and eczema/wheeze among Japanese children, taking into consideration loss-of-function mutations in FLG. METHODS This study was part of the Hokkaido study on Environment and Children's Health. Seven phthalates and 11 PFRs in household dust were measured by gas chromatography-mass spectrometry. Eczema and wheeze were assessed in children aged 7 years using the International Study of Asthma and Allergies in Childhood questionnaire. Eight FLG mutations previously identified in the Japanese population were extracted from cord blood samples. Children with one or more FLG mutations were considered to be positive for FLG mutations. The study included 296 children who had complete data (birth records, FLG mutations, first trimester and 7 years questionnaires, and phthalate/PFR levels). Odds ratios (ORs) and 95% confidential intervals (CIs) of eczema and wheeze were calculated for log-transformed phthalate/PFR levels by logistic regression. We also performed stratified analyses based on FLG mutations. RESULTS The prevalence rates of eczema and wheeze were 20.6% and 13.9%, respectively. Among children without any FLG mutations, tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP) increased the OR of wheeze, (OR: 1.22, CI: 1.00-1.48). Significant p values for trends were found between tris (2-butoxyethyl) phosphate (TBOEP) and eczema and di-iso-nonyl phthalate (DiNP) and eczema among children without any FLG mutations, respectively. CONCLUSIONS Despite our limited sample size and cross-sectional study design, the effects of indoor environmental factors on childhood eczema and wheeze were clearer in children without loss-of-function mutations in FLG than in children with mutations. Children with FLG mutations might already be cared for differently in terms of medication or parental lifestyle. Further studies in larger populations are warranted so that severity of symptoms and combinations of FLG mutations can be investigated.
Collapse
Affiliation(s)
- Yu Ait Bamai
- Hokkaido University Center for Environmental and Health Sciences, North 12, West 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, North 12, West 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Toshifumi Nomura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan.
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Tazuru Tsuboi
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan.
| | - Sumitaka Kobayashi
- Hokkaido University Center for Environmental and Health Sciences, North 12, West 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, North 12, West 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Masae Takeda
- Department of Dermatology, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan.
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, North 12, West 7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
69
|
Zhang B, Lu S, Huang M, Zhou M, Zhou Z, Zheng H, Jiang Y, Bai X, Zhang T. Urinary metabolites of organophosphate flame retardants in 0-5-year-old children: Potential exposure risk for inpatients and home-stay infants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:318-325. [PMID: 30195161 DOI: 10.1016/j.envpol.2018.08.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 05/24/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been commonly observed in indoor dust, food, and drinking water in China, but little is known about their exposure levels or factors leading to exposure in Chinese children. In this study, we measured eight metabolites of OPFRs (mOPFRs) in 227 urine samples collected from 0- to 5-year-old children in China. The high detection rates of mOPFRs (60%-100%) in the collected urine samples demonstrated the widespread exposure of this population to OPFRs. The median concentrations indicated that bis(2-chloroethyl)phosphate (BCEP, 0.85 ng/mL) and diphenyl phosphate (DPHP, 0.27 ng/mL) were the dominant chlorinated mOPFRs and nonchlorinated mOPFRs, respectively. Interestingly, the median urinary levels of bis(1-chloro-2-propyl)phosphate (BCIPP, 6.48 ng/mL) and bis(2-butoxyethyl)phosphate (BBOEP, 0.31 ng/mL) in inpatient infants were one order of magnitude higher (p < 0.01) than those observed in outpatient infants. For home-stay participants, furthermore, infants (0-1 year) had the highest median levels of BCIPP (0.72 ng/mL) and dibutyl phosphate (DBP, 0.14 ng/mL) among the three age groups (i.e., 0-1, >1-3, and >3-5 years), and significantly (p < 0.05) negative age-related relationships were found for both urinary mOPFRs. Two set of data on estimated daily intakes (EDIs) were calculated based on the fraction of OPFR excreted as the corresponding mOPFR (FUE) in human liver microsomes (EDIHLM) and S9 fraction (EDIS9) system, respectively. In general, children have relatively high EDIs of tris(2-chloroethyl)phosphate (TCEP: EDIHLM = 485 ng/kg bw/day, EDIS9 = 261 ng/kg bw/day). Furthermore, 17% or 21% of inpatient infants had EDIs that exceeded the reference dose, whereas this value was reduced to 13% in outpatient infants; and this value decreased with age among all home-stay children (0-5 years). Our results indicated that inpatient and home-stay infants had a higher potential risk of OPFR exposure. To our knowledge, this is the first study to identify the elevated urinary levels of mOPFRs in inpatients.
Collapse
Affiliation(s)
- Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, PR China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, PR China
| | - Mingzhi Huang
- Environmental Research Institute, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou, 510631, PR China
| | - Meizhou Zhou
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ziqing Zhou
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hangcong Zheng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yongchen Jiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xueyuan Bai
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, PR China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, PR China.
| |
Collapse
|
70
|
Bi C, Maestre JP, Li H, Zhang G, Givehchi R, Mahdavi A, Kinney KA, Siegel J, Horner SD, Xu Y. Phthalates and organophosphates in settled dust and HVAC filter dust of U.S. low-income homes: Association with season, building characteristics, and childhood asthma. ENVIRONMENT INTERNATIONAL 2018; 121:916-930. [PMID: 30347374 DOI: 10.1016/j.envint.2018.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 05/20/2023]
Abstract
Phthalates and organophosphates are ubiquitous indoor semi-volatile organic contaminants (SVOCs) that have been widely used as plasticizers and flame retardants in consumer products. Although many studies have assessed their levels in house dust, only a few used dust samples captured by filters of building heating, ventilation, and air conditioning (HVAC) systems. HVAC filters collect particles from large volumes of air over a long period of time (potentially known) and thus provide a spatially and temporally integrated concentration. This study measured concentrations of phthalates and organophosphates in HVAC filter dust and settled floor dust collected from low-income homes in Texas, United States, in both the summer and winter seasons. The most frequently detected compounds were benzyl butyl phthalate (BBzP), di-(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), tris (1-chloro-2-propyl) phosphate (TCIPP), triphenyl phosphate (TPHP), and tris (1,3-dichloroisopropyl) phosphate (TDCIPP). The median level of TCIPP in settled dust was 3- to 180-times higher than levels reported in other studies of residential homes. Significantly higher concentrations were observed in HVAC filter dust as compared to settled dust for most of the frequently detected compounds in both seasons, except for several phthalates in the winter. SVOC concentrations in settled dust in winter were generally higher than in summer, while different seasonality patterns were found for HVAC filter dust. Settled dust samples from homes with vinyl flooring contained significantly higher levels of BBzP and DEHP as compared to homes with other types of floor material. The concentration of DEHP and TDCIPP in settled dust also significantly associated with the presence of carpet in homes. Cleaning activities to remove dust from furniture actually increased the levels of certain compounds in HVAC filter dust, while frequent vacuuming of carpet helped to decrease the concentrations of some compounds in settled dust. Additionally, the size and age of a given house also correlated with the levels of some pollutants in dust. A statistically significant association between DEHP concentration in HVAC filter dust in summer and the severity of asthma in children was observed. These results suggest that HVAC filter dust represents a useful sampling medium to monitor indoor SVOC concentrations with high sensitivity; in contrast, when using settled dust, in addition to consideration of seasonal influences, it is critical to know the sampling location because the type and level of SVOCs may be related to local materials used there.
Collapse
Affiliation(s)
- Chenyang Bi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Juan P Maestre
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Hongwan Li
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Ge Zhang
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA; Department of Building Environment and Energy Application Engineering, University of Science and Technology Beijing, Beijing, China
| | - Raheleh Givehchi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Alireza Mahdavi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Kerry A Kinney
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Jeffrey Siegel
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sharon D Horner
- School of Nursing, The University of Texas at Austin, TX, USA
| | - Ying Xu
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA; Department of Building Science, Tsinghua University, Beijing, China.
| |
Collapse
|
71
|
Araki A, Bastiaensen M, Ait Bamai Y, Van den Eede N, Kawai T, Tsuboi T, Ketema RM, Covaci A, Kishi R. Associations between allergic symptoms and phosphate flame retardants in dust and their urinary metabolites among school children. ENVIRONMENT INTERNATIONAL 2018; 119:438-446. [PMID: 30031263 DOI: 10.1016/j.envint.2018.07.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Phosphate flame retardants (PFRs) are ubiquitously detected in indoor environments. Despite increasing health concerns pertaining to PFR exposure, few epidemiological studies have examined PFR exposure and its effect on children's allergies. OBJECTIVES To investigate the association between PFRs in house dust, their metabolites in urine, and symptoms of wheeze and allergies among school-aged children. METHODS A total of 128 elementary school-aged children were enrolled. House dust samples were collected from upper-surface objects. Urine samples were collected from the first morning void. Levels of 11 PFRs in dust and 14 PFR metabolites in urine were measured. Parent-reported symptoms of wheeze, rhinoconjunctivitis, and eczema were evaluated using the International Study of Asthma and Allergies in Childhood questionnaire. The odds ratios (ORs) of the Ln transformed PFR concentrations and categorical values were calculated using a logistic regression model adjusted for sex, grade, dampness index, annual house income, and creatinine level (for PFR metabolites only). RESULTS The prevalence rates of wheeze, rhinoconjunctivitis, and eczema were 22.7%, 36.7%, and 28.1%, respectively. A significant association between tris(1,3-dichloroisopropyl) phosphate (TDCIPP) in dust and eczema was observed: OR (95% confidence interval), 1.44 (1.13-1.82) (>limit of detection (LOD) vs <LOD). The ORs for rhinoconjunctivitis (OR = 5.01 [1.53-16.5]) and for at least one symptom of allergy (OR = 3.87 [1.22-12.3]) in the 4th quartile of Σtris(2-chloro-isopropyl) phosphate (TCIPP) metabolites was significantly higher than those in the 1st quartile, with significant p-values for trend (Ptrend) (0.013 and 0.024, respectively). A high OR of 2.86 (1.04-7.85) (>LOD vs <LOD) was found for hydroxy tris(2-butoxyethyl) phosphate (TBOEP)-OH and eczema. OR of the 3rd tertile of bis (1,3-dichloro-2-propyl) phosphate (BDCIPP) was higher than the 1st tertile as a reference for at least one symptom (OR = 3.91 [1.25-12.3]), with a significant Ptrend = 0.020. CONCLUSIONS We found that TDCIPP in house dust, and metabolites of TDCIPP, TBOEP and TCIPP were associated with children's allergic symptoms. Despite some limitations of this study, these results indicate that children's exposure to PFR may impact their allergic symptoms.
Collapse
Affiliation(s)
- Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yu Ait Bamai
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Tazuru Tsuboi
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8, Tosabori, Nishi-ku, Osaka 550-0001, Japan
| | - Rahel Mesfin Ketema
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan; Hokkaido University, Graduate School of Health Sciences, Kita 12, Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
72
|
Iadaresta F, Manniello MD, Östman C, Crescenzi C, Holmbäck J, Russo P. Chemicals from textiles to skin: an in vitro permeation study of benzothiazole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24629-24638. [PMID: 29911295 PMCID: PMC6133113 DOI: 10.1007/s11356-018-2448-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/29/2018] [Indexed: 05/21/2023]
Abstract
Despite the possible impact on human health, few studies have been conducted to assess the penetration and accumulation of contaminants in the skin after a prolonged contact with textile materials. In previous studies, we have shown that benzothiazole and its derivatives, as well as other potentially hazardous chemicals, often are present as textile contaminants in clothes available on the retail market. Since benzothiazole is a common contaminant in clothes, these can be a possible route for human chemical exposure, both systemic and onto the skin. To investigate this potential exposure, Franz-type and flow-through cells were used for the permeation studies together with a Strat-M® artificial membranes. Experiments were performed using solutions of benzothiazole, as well as contaminated textile samples in the donor chamber. Benzothiazole was demonstrated to penetrate through, as well as being accumulated in the membrane mimicking the skin. After 24 h, up to 62% of benzothiazole was found in the acceptor cell, while up to 37% was found absorbed in the skin mimicking membrane. It also was shown that there was release and permeation from contaminated fabrics. The results indicate that benzothiazole can be released from textile materials, penetrate through the skin, and further enter the human body. This will possibly also apply to other chemical contaminants in textiles, and the results of this study indicate that the presence of these textile contaminants entails potential health risks. A rough risk assessment was made for clothing textiles according to Environmental Protection Agency (EPA) and European regulations for carcinogenic and non-carcinogenic compounds, using literature data for benzothiazole.
Collapse
Affiliation(s)
- Francesco Iadaresta
- Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden
| | - Michele Dario Manniello
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084, Fisciano, SA, Italy
| | - Conny Östman
- Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Carlo Crescenzi
- Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084, Fisciano, SA, Italy
| | - Jan Holmbäck
- Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084, Fisciano, SA, Italy
| |
Collapse
|
73
|
Mokra K, Bukowski K, Woźniak K. Effects of tris(1-chloro-2-propyl)phosphate and tris(2-chloroethyl)phosphate on cell viability and morphological changes in peripheral blood mononuclear cells (in vitro study). Hum Exp Toxicol 2018; 37:1336-1345. [PMID: 29945461 DOI: 10.1177/0960327118783529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Organophosphorus flame retardants (OPFRs) are a group of chemicals widely used in various everyday use products. Tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCPP) are one of the commonly used chemicals belonging to this group. Due to the need of limitation of the use of polybrominated diphenyl ethers (PBDEs) as retardants, the share of the compounds tested in our experiments in chemicals production systematically increases. There is limited information about the influence of halogenated OPFRs on living cells, especially on the immune system cells. That is why the aim of this study was to assess the impact of TCEP and TCPP on viability and morphological alterations of human peripheral blood mononuclear cells (PBMCs). The cells were incubated with selected flame retardants in the concentrations ranging from 0.001 to 1 mM for 24 h. It was found that TCEP at 1 mM and TCPP at 0.5 mM decreased viability of PBMCs, while only TCPP induced morphological alterations in the incubated cells. The results of our experiments suggest that TCPP is more cytotoxic than TCEP, which can be explained by the presence of methyl groups in the molecule of this compound. Similar to other studies, our data also suggest that OPFRs are suitable replacements for PBDEs.
Collapse
Affiliation(s)
- K Mokra
- 1 Department of Biophysics Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - K Bukowski
- 2 Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - K Woźniak
- 2 Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
74
|
Been F, Bastiaensen M, Lai FY, Libousi K, Thomaidis NS, Benaglia L, Esseiva P, Delémont O, van Nuijs ALN, Covaci A. Mining the Chemical Information on Urban Wastewater: Monitoring Human Exposure to Phosphorus Flame Retardants and Plasticizers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6996-7005. [PMID: 29798668 DOI: 10.1021/acs.est.8b01279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
At the individual level, exposure to contaminants is generally assessed through the analysis of specific biomarkers in biological matrices. However, these studies are costly and logistically demanding, limiting their applicability to monitor population-wide exposure over time and space. By focusing on a selection of exposure biomarkers to phosphorus flame retardants and plasticizers (PFRs), this study aims to explore the possibility of using wastewater as a complementary source of information about exposure. Wastewater samples were collected from five cities in Europe and analyzed using a previously established method. Substantial differences in biomarker levels were observed between the investigated catchments, suggesting differences in exposure. Time trends in biomarkers observed between 2013 and 2016 were found to agree with results from human biomonitoring studies and reports about production volumes. Using Monte Carlo simulations, average urinary concentrations were estimated. These were generally higher compared to results from human biomonitoring studies. Various explanations for these differences were formulated (i.e., other excretion routes, external sources and different sampling approaches). Obtained results show that wastewater analysis provides unique information about geographical and temporal differences in exposure, which would be difficult to gather using other monitoring tools.
Collapse
Affiliation(s)
- Frederic Been
- Toxicological Centre , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| | - Michiel Bastiaensen
- Toxicological Centre , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| | - Foon Yin Lai
- Toxicological Centre , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| | - Katerina Libousi
- Laboratory of Analytical Chemistry, Department of Chemistry , University of Athens , Panepistimiopolis Zografou , 15771 Athens , Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry , University of Athens , Panepistimiopolis Zografou , 15771 Athens , Greece
| | - Lisa Benaglia
- Ecole des Sciences Criminelles , University of Lausanne , 1015 Lausanne-Dorigny, Switzerland
| | - Pierre Esseiva
- Ecole des Sciences Criminelles , University of Lausanne , 1015 Lausanne-Dorigny, Switzerland
| | - Olivier Delémont
- Ecole des Sciences Criminelles , University of Lausanne , 1015 Lausanne-Dorigny, Switzerland
| | - Alexander L N van Nuijs
- Toxicological Centre , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| | - Adrian Covaci
- Toxicological Centre , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| |
Collapse
|
75
|
Cristale J, Aragão Belé TG, Lacorte S, Rodrigues de Marchi MR. Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:695-703. [PMID: 29129432 DOI: 10.1016/j.envpol.2017.10.110] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Indoor dust is considered an important human exposure route to flame retardants (FRs), which has arised concern due the toxic properties of some of these substances. In this study, ten organophosphorus flame retardants (OPFRs), eight polybrominated diphenyl ethers (PBDEs) and four new brominated flame retardants (NBFRs) were determined in indoor dust from different places in Araraquara-SP (Brazil). The sampled places included houses, apartments, offices, primary schools and cars. The analysis of the sample extracts was performed by gas chromatography coupled to mass spectrometry and two ionization techniques were used (electron ionization - EI; electron capture negative ionization - ECNI). OPFRs were the most abundant compounds and tris(2-butoxyethyl) phosphate (TBOEP), tris(phenyl) phosphate (TPHP), tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and tris(2-chloroisopropyl) phosphate (TCIPP) were present at the highest concentrations. Among the brominated FRs, the most ubiquitous compounds were BDE-209, bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP) and decabromodiphenyl ethane (DBDPE). Statistical analysis revealed that there were differences among dust typologies for TBOEP, TDCIPP, ethylhexyl diphenyl phosphate (EHDPHP), BDE-209, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB), BEH-TEBP and DBDPE, which were attributed to different construction materials in each particular environment and to the age of the buildings. The highest levels of brominated FRs were observed in offices, TBOEP was at high concentration in primary schools, and TDCIPP was at high concentration in cars. A preliminary risk assessment revealed that toddlers were exposed to TBOEP levels higher than the reference dose when considering the worst case scenario. The results obtained in this study showed for the first time that although Brazil does not regulate the use of FRs, these substances are present in indoor dust at levels similar to the observed in countries that have strict fire safety standards, and that humans are exposed to complex mixtures of these contaminants via indoor dust.
Collapse
Affiliation(s)
- Joyce Cristale
- Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Professor Francisco Degni 55, 14800-060 Araraquara, SP, Brazil.
| | - Tiago Gomes Aragão Belé
- Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Professor Francisco Degni 55, 14800-060 Araraquara, SP, Brazil
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Mary Rosa Rodrigues de Marchi
- Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Professor Francisco Degni 55, 14800-060 Araraquara, SP, Brazil
| |
Collapse
|
76
|
Kurt-Karakus P, Alegria H, Birgul A, Gungormus E, Jantunen L. Organophosphate ester (OPEs) flame retardants and plasticizers in air and soil from a highly industrialized city in Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:555-565. [PMID: 29291570 DOI: 10.1016/j.scitotenv.2017.12.307] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Passive air samples were collected at eight sites in Bursa, Turkey during five sampling periods between February-December 2014. Locations encompassed urban, suburban, industrial, rural and background environments. Soil samples (n=8) were collected at each site during February 2014. Six OPEs were detected in samples: tris(2-chloroethyl) phosphate (TCEP), tris(chloropropyl) phosphate (TCPP), triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate (TBOEP), tris(2-ethylhexyl) phosphate (TEHP), and tris(2-isopropylphenyl) phosphate (T2iPPP). Frequency of detection in air samples was TCPP and TPHP (100%)>TBOEP (88%)>TCEP (85%)>TEHP (78%)>T2iPPP (20%). Total OPEs in air per site by sampling period (excluding non-detects) ranged from 529 to 19,139pg/m3. In soil, total OPEs ranged from 38 to 468ng/g dw. In air, alkylated OPEs dominated followed by halogenated and aryl OPEs. In air, annual mean concentrations were TBOEP>TCPP>TPHP>T2iPPP>TEHP>TCEP. In soils, alkylated OPEs were dominant at six sites and chlorinated OPEs at two sites. A comparison of OPE profiles between air and soil suggests that soils may be partly a source of OPEs to air. Mean concentrations in air were not directly proportional to temperature, and there were differences between alkylated compared to halogenated and aryl OPEs. In air, total and alkylated OPEs levels were fairly uniform, whereas more variability was found for the halogenated and aryl compounds. The relative contribution to total OPEs decreases for alkylated OPEs and increases for halogenated OPEs in samples going from background to suburban to urban and industrial sites. Levels of individual OPEs were all positively correlated between air and soils. In air, correlations between individual compounds were weak to moderate and were only statistically significant for TBOEP and TPHP. In soils, correlations were generally stronger and statistically significant only for TPHP and T2iPPP.
Collapse
Affiliation(s)
- Perihan Kurt-Karakus
- Bursa Technical University, Department of Environmental Engineering, Faculty of Natural Sciences, Architecture and Engineering, Mimar Sinan Mah., Mimar Sinan Bulv., Eflak Cad. No:177, 16310 Yıldırım/Bursa/, Turkey
| | - Henry Alegria
- University of South Florida St Petersburg, Department of Environmental Science, Policy & Geography, 140 7th Avenue South, St. Petersburg, FL 33701, USA.
| | - Askin Birgul
- Bursa Technical University, Department of Environmental Engineering, Faculty of Natural Sciences, Architecture and Engineering, Mimar Sinan Mah., Mimar Sinan Bulv., Eflak Cad. No:177, 16310 Yıldırım/Bursa/, Turkey
| | - Elif Gungormus
- Izmir Institute of Technology, Department of Chemical Engineering, Gülbahçe, Urla 35430, İzmir, Turkey
| | - Liisa Jantunen
- Air Quality Processes Research Section, Environment and Climate Change Canada, 6248 8th Line, Egbert, Ontario, Canada
| |
Collapse
|
77
|
Ingle ME, Mínguez-Alarcón L, Carignan CC, Butt CM, Stapleton HM, Williams PL, Ford JB, Hauser R, Meeker JD. The association between urinary concentrations of phosphorous-containing flame retardant metabolites and semen parameters among men from a fertility clinic. Int J Hyg Environ Health 2018; 221:809-815. [PMID: 29739653 PMCID: PMC5997557 DOI: 10.1016/j.ijheh.2018.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND The use of PFRs has steadily increased as brominated compounds have been or are being phased out. Human exposure is widespread and animal studies have shown adverse impacts on male reproduction, but human data are lacking. OBJECTIVE To study the associations between urinary concentrations of phosphorous-containing flame retardant (PFR) metabolites and semen parameters. METHODS A subset of 220 men from an existing longitudinal cohort of couples were recruited from Massachusetts General Hospital fertility clinic between 2005 and 2015. Semen parameters included sperm count, concentration, motility, and morphology; some men had samples measured from multiple clinic visits (up to five visits; n = 269 semen samples). Metabolites [bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), diphenyl phosphate (DPHP), isopropylphenyl phenyl phosphate (ip-PPP), tert-butylphenyl phenyl phosphate (tb-PPP) and bis(1-chloro-2-propyl) phosphate (BCIPP)] were measured in urine samples (between one and five urine samples per participant; n = 355 urine samples). Semen parameters were evaluated continuously and dichotomized for models. Metabolites were assessed for associations with semen parameters as continuous and categorized into quartiles using multivariable generalized mixed models, adjusted for specific gravity, age, BMI, smoking, and abstinence period. RESULTS Metabolites BDCIPP, DPHP, and ip-PPP were detected in a high proportion of urine samples (85%, 86%, and 65% respectively). Concentrations varied by season of collection, particularly for BDCIPP where samples collected in the summer were approximately 2-fold higher than concentrations of other seasons (p < 0.0001). The odds of having a sperm count less than 39 mil/ejaculate decreased by 20% for increasing BDCIPP concentrations (p = 0.04). When regressing semen parameters on PFR metabolite quartiles, some negative associations were observed for individual quartiles among sample volume and morphology, but overall associations were weak and inconsistent. CONCLUSION Detection rates were high for BDCIPP, DPHP, and ip-PPP. We did not observe consistent associations between PFR metabolites and semen parameters. Due to the high prevalence of exposure, further investigation of other potential health effects should be conducted.
Collapse
Affiliation(s)
- Mary E Ingle
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Courtney C Carignan
- Department of Food Science and Nutrition, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Craig M Butt
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
78
|
Wang Y, Sun H, Zhu H, Yao Y, Chen H, Ren C, Wu F, Kannan K. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1056-1064. [PMID: 29996402 DOI: 10.1016/j.scitotenv.2018.01.013] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
Distribution of 12 organophosphate flame retardants (OPFRs) was determined in soil and outdoor settled dust samples collected from a multi-waste (electronic, plastic, and rubber wastes and abandoned household-appliances and vehicles) recycling area, that encompassed different modes of operation i.e. open (ORS) and semi-closed recycling (SCRS). Among the twelve OPFRs analyzed, eleven were detected at a frequency of 75%-100% in all soil and dust samples. In soil samples, ΣOPFR concentrations were significantly higher at ORS (122-2100ng/g) than at SCRS (58.5-316ng/g) and nearby farmlands (37.7-156ng/g). The ΣOPFR concentrations in dust samples were higher than those in soil samples with spatial distribution similar to that observed for soil, decreasing from ORS (1390-42,700ng/g) to SCRS (914-7940ng/g). Tris(2-chloroisopropyl) phosphate (TCIPP) was the major OPFRs in both soil (<MDL-1370ng/g) and dust (39.9-16,300ng/g) samples. Chlorinated OPFRs [TCIPP, tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP)] and aryl-OPFRs [triphenyl phosphate (TPHP), tris(methylphenyl) phosphate (TMPP)] exhibited spatial difference between ORS and SCRS. Principle component analysis (PCA) of OPFR concentrations revealed that TCIPP, TDCIPP, TPHP, TMPP originated from similar sources. TMPP was assessed to pose eco-toxicological risk (risk quotient values: RQs) in the soil ecosystem. The median estimated daily intake (EDI) of OPFRs via soil and outdoor settled dust ingestion (based on average ingestion rate) was 3.14×10-1ng/kgbw/day for adults at ORS. Our results suggest that waste recycling is an important source of chlorinated- and aryl-OPFRs in the environment.
Collapse
Affiliation(s)
- Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chao Ren
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States
| |
Collapse
|
79
|
Tokumura M, Miyake Y, Wang Q, Nakayama H, Amagai T, Ogo S, Kume K, Kobayashi T, Takasu S, Ogawa K. Methods for the analysis of organophosphorus flame retardants-Comparison of GC-EI-MS, GC-NCI-MS, LC-ESI-MS/MS, and LC-APCI-MS/MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:475-481. [PMID: 29303426 DOI: 10.1080/10934529.2017.1410419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Organophosphorus flame retardants (PFRs) are extensively used as alternatives to banned polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). In this study, we analyzed 14 PFRs by means of four mass-spectrometry-based methods: gas chromatography combined with electron-impact mass spectrometry (GC-EI-MS) or negative-chemical-ionization mass spectrometry (GC-NCI-MS) and liquid chromatography combined with tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS) or atmospheric pressure chemical ionization (LC-APCI-MS/MS). The limits of quantification (LOQs) for LC-ESI-MS/MS and LC-APCI-MS/MS (0.81-970 pg) were 1-2 orders of magnitude lower than the LOQs for GC-EI-MS and GC-NCI-MS (2.3-3900 pg). LC-APCI-MS/MS showed the lowest LOQs (mean = 41 pg; median = 3.4 pg) for all but two of the PFRs targeted in this study. For LC-APCI-MS/MS, the lowest LOQ was observed for tributyl phosphate (TBP) (0.81 pg), and the highest was observed for tris(butoxyethyl) phosphate (TBOEP) (36 pg). The results of this study indicate that LC-APCI-MS/MS is the optimum analytical method for the target PFRs, at least in terms of LOQ.
Collapse
Affiliation(s)
- Masahiro Tokumura
- a Graduate School of Nutritional and Environmental Science , University of Shizuoka , Suruga-ku, Shizuoka , Japan
| | - Yuichi Miyake
- a Graduate School of Nutritional and Environmental Science , University of Shizuoka , Suruga-ku, Shizuoka , Japan
| | - Qi Wang
- a Graduate School of Nutritional and Environmental Science , University of Shizuoka , Suruga-ku, Shizuoka , Japan
| | - Hayato Nakayama
- a Graduate School of Nutritional and Environmental Science , University of Shizuoka , Suruga-ku, Shizuoka , Japan
| | - Takashi Amagai
- a Graduate School of Nutritional and Environmental Science , University of Shizuoka , Suruga-ku, Shizuoka , Japan
| | - Sayaka Ogo
- b Department of Environmental Sciences , Shizuoka Institute of Environment and Hygiene , Aoi-ku, Sizuoka , Japan
| | - Kazunari Kume
- c Faculty of Environmental Studies , Tokyo City University , Setagaya-ku, Tokyo , Japan
| | - Takeshi Kobayashi
- d Faculty of Environment and Information Sciences , Yokohama National University , Hodogaya-ku, Yokohama , Japan
| | - Shinji Takasu
- e Division of Pathology , National Institute of Health Sciences , Kawasaki-ku, Kawasaki , Japan
| | - Kumiko Ogawa
- e Division of Pathology , National Institute of Health Sciences , Kawasaki-ku, Kawasaki , Japan
| |
Collapse
|
80
|
He C, Wang X, Thai P, Baduel C, Gallen C, Banks A, Bainton P, English K, Mueller JF. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:670-679. [PMID: 29339336 DOI: 10.1016/j.envpol.2017.12.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/14/2017] [Accepted: 12/06/2017] [Indexed: 05/15/2023]
Abstract
Concentrations of nine organophosphate flame retardants (OPFRs) and eight polybrominated diphenyl ethers (PBDEs) were measured in samples of indoor dust (n = 85) and air (n = 45) from Australian houses, offices, hotels, and transportation (buses, trains, and aircraft). All target compounds were detected in indoor dust and air samples. Median ∑9OPFRs concentrations were 40 μg/g in dust and 44 ng/m3 in indoor air, while median ∑8PBDEs concentrations were 2.1 μg/g and 0.049 ng/m3. Concentrations of FRs were higher in rooms that contained carpet, air conditioners, and various electronic items. Estimated daily intakes in adults are 14000 pg/kg body weight/day and 330 pg/kg body weight/day for ∑9OPFRs and ∑8PBDEs, respectively. Our results suggest that for the volatile FRs such as tris(2-chloroethyl) phosphate (TCEP) and TCIPP, inhalation is expected to be the more important intake pathway compared to dust ingestion and dermal contact.
Collapse
Affiliation(s)
- Chang He
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia.
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| | - Phong Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Christine Baduel
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia; Université Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Christie Gallen
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| | - Andrew Banks
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| | - Paul Bainton
- Department of the Environment and Energy, GPO Box 787, Canberra, ACT 2601, Australia
| | - Karin English
- School of Medicine, The University of Queensland, Australia; Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| |
Collapse
|
81
|
Björnsdotter MK, Romera-García E, Borrull J, de Boer J, Rubio S, Ballesteros-Gómez A. Presence of diphenyl phosphate and aryl-phosphate flame retardants in indoor dust from different microenvironments in Spain and the Netherlands and estimation of human exposure. ENVIRONMENT INTERNATIONAL 2018; 112:59-67. [PMID: 29268159 DOI: 10.1016/j.envint.2017.11.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
Phosphate flame retardants (PFRs) are ubiquitous chemicals in the indoor environment. Diphenyl phosphate (DPHP) is a major metabolite and a common biomarker of aryl-PFRs. Since it is used as a chemical additive and it is a common impurity of aryl-PFRs as well as a degradation product, its presence in indoor dust as an additional source of exposure should not be easily ruled out. In this study, DPHP (and TPHP) are measured in indoor dust in samples collected in Spain and in the Netherlands (n=80). Additionally, the presence of other emerging aryl-PFRs was monitored by target screening. TPHP and DPHP were present in all samples in the ranges 169-142,459ng/g and 106-79,661ng/g, respectively. DPHP concentrations were strongly correlated to the TPHP levels (r=0.90, p<0.01), suggesting that DPHP could be present as degradation product of TPHP or other aryl-PFRs. Estimated exposures for adults and toddlers in Spain to TPHP and DPHP via dust ingestion (country for which the number of samples was higher) were much lower than the estimated reference dose (US EPA) for TPHP. However, other routes of exposure may contribute to the overall internal exposure (diet, dermal contact with dust/consumer products and inhalation of indoor air). The estimated urinary DPHP levels for adults and toddlers in Spain (0.002-0.032ng/mL) as a result of dust ingestion were low in comparison with the reported levels, indicating a low contribution of this source of contamination to the overall DPHP exposure. Other aryl-PFRs, namely cresyl diphenyl phosphate (CDP), resorcinol bis(diphenyl phosphate) (RDP), 2-ethylhexyl diphenyl phosphate (EDPHP), isodecyl diphenyl phosphate (IDP) and bisphenol A bis(diphenyl phosphate) (BDP), were all detected in indoor dust, however, with lower frequency.
Collapse
Affiliation(s)
- Maria K Björnsdotter
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Encarnación Romera-García
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Josep Borrull
- Vrije Universiteit Amsterdam, Environment and Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Jacob de Boer
- Vrije Universiteit Amsterdam, Environment and Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain.
| |
Collapse
|
82
|
Ding J, Deng T, Xu M, Wang S, Yang F. Residuals of organophosphate esters in foodstuffs and implication for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:986-991. [PMID: 29037495 DOI: 10.1016/j.envpol.2017.09.092] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 05/25/2023]
Abstract
Foodstuffs may be contaminated by organophosphate esters (OPEs) and become an important source of human exposure since OPEs are ubiquitous in the environment. In the present study, 10 OPEs were analyzed in various food matrices collected from a city in Eastern China including chicken, pork, fishes, vegetables, tofu, eggs, milk and cereals. The concentrations of Σ10OPEs ranged from 1.1 to 9.6 ng g-1 fresh weight (fw) in the foodstuffs. Cereals had the highest residual level of total OPEs with a mean value of 5.7 ng g-1 fw. Tris(2-ethylhexyl) phosphate was detected in all foodstuff samples and showed the highest median residual concentration of 1.3 ng g-1 fw among the OPE analogs. The daily dietary intake of OPEs was calculated as 3.6 and 2.4 μg d-1 for adults and children. Cereals were identified as the major contributor to the total OPEs among different types of foodstuffs. Preliminary exposure assessment revealed that the current non-cancer health risks of OPEs via dietary intake were in the range of 10-5-10-3, indicating low risk levels. Moreover, the hazard index of OPEs indicated that the risk for children (3 × 10-3) was higher than adults (2 × 10-3).
Collapse
Affiliation(s)
- Jinjian Ding
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China; Laboratory of Environmental Monitoring, Research Institute of Zhejiang University-Taizhou, 318000 Taizhou, China
| | - Tongqing Deng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Mengmeng Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Shen Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
83
|
Araki A, Ait Bamai Y, Ketema RM, Kishi R. [House Dust and Its Adverse Health Effects]. Nihon Eiseigaku Zasshi 2018; 73:130-137. [PMID: 29848863 DOI: 10.1265/jjh.73.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review, we examine house dust and its effect on inhabitants' health. Residential house dust includes components from plants, pollens, microorganisms, insects, skin flakes, hairs and fibers. It also includes materials contaminated with chemicals from combustion, furniture, interior materials, electronics, cleaning agents, personal care products. Nowadays, most people spend their time indoors. Thus, dust is an important medium of exposure to pollutions. According to United States Environmental Protection Agency Exposure Factors Handbook, the estimated amount of dust ingestion is 30 mg/day for adults, and 60 mg/day for children over 1 year of age. Since 2003, we have been conducting epidemiological studies to find the association between the indoor environment and the inhabitants' health. The levels of mite allergens, endotoxins, and β-1,3-d-glucan in house dust were measured as biological factors. Semi volatile organic compounds (SVOC) such as phthalates and phosphate flame retardants (PFRs) in dust were also analyzed. As a result, we found that the ORs (95%CI) of nasal and optical symptoms of sick building syndrome (SBS) were 1.45 (1.01-2.10) and 1.47 (1.14-1.88), respectively, when there was a 10-fold increase in the levels of mite allergens. There was no association of mite allergens with allergies. Endotoxins and β-1,3-d-glucan did not show any association with SBS. Regarding SVOC, increased levels of phthalates and PFR increased the risk of allergies. The association between phthalates and increased risk of allergies was clearer among children than adults. There were no gold standards of dust sampling and pretreatment methods. Thus, caution is needed when comparing findings of various studies. Methods should accurately reflect exposure levels.
Collapse
Affiliation(s)
- Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences
| | - Yu Ait Bamai
- Hokkaido University Center for Environmental and Health Sciences
| | | | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences
| |
Collapse
|
84
|
Zhou L, Hiltscher M, Püttmann W. Occurrence and human exposure assessment of organophosphate flame retardants in indoor dust from various microenvironments of the Rhine/Main region, Germany. INDOOR AIR 2017; 27:1113-1127. [PMID: 28556503 DOI: 10.1111/ina.12397] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
We analyzed organophosphate flame retardants (OPFRs) in 74 indoor dust samples collected from seven microenvironments (building material markets, private cars, daycare centers, private homes, floor/carpet stores, offices, and schools) in the Rhine/Main region of Germany. Ten of 11 target OPFRs were ubiquitously detected, some with more than 97% detection frequency, including tris(1,3-dichloroisopropyl)phosphate (TCIPP), tris(2-butoxyethyl)phosphate (TBOEP), triphenyl phosphate (TPHP), and tris(isobutyl) phosphate (TIBP). Total concentrations (∑OPFRs) ranged from 5.9 to 4800 μg/g, with TBOEP and TCIPP being the most abundant congeners. The ∑OPFRs in schools, private cars, offices, and daycare centers were significantly (P<.05) higher than in private homes. The ∑OPFRs for building material markets (19 μg/g) and floor/carpet stores (20 μg/g) showed no significant difference to the other microenvironments, likely because of forced ventilation. The profiles of OPFRs in dust samples from offices and private homes were highly similar, while profiles from the other five microenvironments were substantially different. Comparison of our results with previous studies indicates a significant global variation in OPFR concentrations and their profiles, reflecting distinct fire safety regulations in different countries and/or different sampling strategies. Dust ingestion constitutes the major exposure pathway to OPFRs for toddlers, while air inhalation is the major pathway for adults.
Collapse
Affiliation(s)
- L Zhou
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - M Hiltscher
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - W Püttmann
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
85
|
Toxicokinetic of tris(2-butoxyethyl) phosphate (TBOEP) in humans following single oral administration. Arch Toxicol 2017; 92:651-660. [DOI: 10.1007/s00204-017-2078-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
86
|
Kademoglou K, Xu F, Padilla-Sanchez JA, Haug LS, Covaci A, Collins CD. Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion. ENVIRONMENT INTERNATIONAL 2017; 102:48-56. [PMID: 28190611 DOI: 10.1016/j.envint.2016.12.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 05/22/2023]
Abstract
Indoor dust has been acknowledged as a major source of flame retardants (FRs) and dust ingestion is considered a major route of exposure for humans. In the present study, we investigated the presence of PBDEs and alternative FRs such as emerging halogenated FRs (EHFRs) and organophosphate flame retardants (PFRs) in indoor dust samples from British and Norwegian houses as well as British stores and offices. BDE209 was the most abundant PBDE congener with median concentrations of 4700ngg-1 and 3400ngg-1 in UK occupational and house dust, respectively, 30 and 20 fold higher than in Norwegian house dust. Monomeric PFRs (m-PFRs), including triphenyl phosphate (TPHP), tris(chloropropyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) dominated all the studied environments. To the best of our knowledge, this is the first report of isodecyldiphenyl phosphate (iDPP) and trixylenyl phosphate (TXP) in indoor environments. iDPP was the most abundant oligomeric PFR (o-PFR) in all dust samples, with median concentrations one order of magnitude higher than TXP and bisphenol A bis(diphenyl phosphate (BDP). iDPP and TXP worst-case scenario exposures for British workers during an 8h exposure in the occupational environment were equal to 34 and 1.4ngkgbw-1day-1, respectively. The worst-case scenario for BDE209 estimated exposure for British toddlers (820ngkgbw-1day-1) did not exceeded the proposed reference dose (RfD) (7000ngkgbw-1day-1), while exposures for sum of m-PFRs (Σm-PFRs) in British toddlers and adults (17,900 and 785ngkgbw-1day-1 respectively) were an order of magnitude higher than for Norwegian toddlers and adults (1600 and 70ngkgbw-1day-1).
Collapse
Affiliation(s)
| | - Fuchao Xu
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | | | - Line Småstuen Haug
- Norwegian Institute of Public Health (NIPH), P.O. Box 4404, Nydalen, 0403 Oslo, Norway
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | - Chris D Collins
- Soil Research Centre, University of Reading, Reading RG6 6DW, UK.
| |
Collapse
|
87
|
Zhou L, Hiltscher M, Gruber D, Püttmann W. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: comparison of concentrations and distribution profiles in different microenvironments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10992-11005. [PMID: 27230144 DOI: 10.1007/s11356-016-6902-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
The concentrations of 9 organophosphate flame retardants (OPFRs) were determined in 56 indoor and 9 outdoor air samples in the Rhine/Main area in Germany. The indoor samples were collected from seven different indoor microenvironments including private cars, private homes, floor/carpet stores, building material markets, schools, offices, and day care centers, while outdoor samples were simultaneously collected close to the indoor sampling locations. The total OPFR concentrations (∑OPFRs) in indoor air ranged from 3.30 to 751.0 ng/m3 with a median of 40.23 ng/m3, which was approximately eight times higher than those in outdoor air (median 5.38 ng/m3), indicating that sources of OPFRs predominate in the indoor environment. Tris(2-chloroisopropyl)phosphate (TCPP), tris(isobutyl)phosphate (TiBP), and tributyl phosphate (TnBP) were the dominating compounds both in indoor and outdoor air. The median concentration of ∑OPFRs in private cars (180.3 ng/m3) was significantly higher than that in private homes (12.51 ng/m3), schools (36.23 ng/m3), day care centers (31.80 ng/m3), and building material markets (31.17 ng/m3) (p < 0.05). Distribution profiles of OPFRs varied among different indoor microenvironments, which are evidenced by dominating indoor air concentrations of non-Cl-OPFRs in day care centers, floor/carpet stores, schools, and of Cl-OPFRs in other indoor microenvironments. Multivariate analyses revealed three distinct groups for OPFRs, i.e., TiBP/TnBP, TEP/TCEP/TDCPP, and TCPP, whose concentrations were closely associated with the distribution profiles and pollution characteristics of materials predominating in different indoor microenvironments.
Collapse
Affiliation(s)
- Lingli Zhou
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438, Frankfurt am Main, Germany
| | - Marco Hiltscher
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438, Frankfurt am Main, Germany
| | - Daniel Gruber
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438, Frankfurt am Main, Germany
| | - Wilhelm Püttmann
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, J. W. Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
88
|
Tokumura M, Hatayama R, Tatsu K, Naito T, Takeda T, Raknuzzaman M, -Al-Mamun MH, Masunaga S. Organophosphate flame retardants in the indoor air and dust in cars in Japan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:48. [PMID: 28054199 DOI: 10.1007/s10661-016-5725-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
The concentrations of organophosphate flame retardants (OPFRs) in the indoor air and dust were measured in 25 unoccupied cars in Japan. In the indoor air of the cars, most OPFRs were neither detected nor found at a concentration lower than the method quantification limit. The highest concentration (1500 ng m-3) was obtained for tris(1-chloro-2-propyl) phosphate (TCIPP). By contrast, many OPFRs were detected in the dust samples collected from the interior of the cars. TCIPP and tris(2-ethylhexyl) phosphate (TEHP) were present at the highest concentrations at 390 μg g-1 (in dust from car seats) and 640 μg g-1 (in dust from car floor mats), respectively. The highest median concentrations (35 μg g-1 for car seats, 53 μg g-1 for car floor mats) were obtained for tris(2-butoxyethyl) phosphate (TBOEP). According to the results of our exposure assessment, the typical exposures to OPFRs via inhalation in car cabins ranged from 9.0×10-4 to 7.8×10-1 ng kg-bw-1 day-1. The typical exposures to OPFRs via dust ingestion ranged from 9.2×10-4 to 8.8×10-1 ng kg-bw-1 day-1. We compared these results with the ref-erence doses for OPFRs and found that, based on cur-rent information about the toxicities of OPFRs, exposure to OPFRs in car cabins via inhalation and dust ingestion is unlikely to have adverse human health effects.
Collapse
Affiliation(s)
- Masahiro Tokumura
- Faculty of Environment and Information Sciences, Yokohama National University, Kanagawa, 240-8501, Japan.
| | - Rurika Hatayama
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa, 240-8501, Japan
| | - Kouichi Tatsu
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa, 240-8501, Japan
- Isuzu Advanced Engineering Center, LTD., Kanagawa, 252-8501, Japan
| | - Toshiyuki Naito
- Isuzu Advanced Engineering Center, LTD., Kanagawa, 252-8501, Japan
| | - Tetsuya Takeda
- Isuzu Advanced Engineering Center, LTD., Kanagawa, 252-8501, Japan
| | - Mohammad Raknuzzaman
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa, 240-8501, Japan
- Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Habibullah -Al-Mamun
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa, 240-8501, Japan
- Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shigeki Masunaga
- Faculty of Environment and Information Sciences, Yokohama National University, Kanagawa, 240-8501, Japan
| |
Collapse
|
89
|
Xu T, Li P, Wu S, Lei L, He D. Tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloropropyl) phosphate (TCPP) induce locomotor deficits and dopaminergic degeneration in Caenorhabditis elegans. Toxicol Res (Camb) 2017; 6:63-72. [PMID: 30090477 PMCID: PMC6060632 DOI: 10.1039/c6tx00306k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/24/2016] [Indexed: 11/21/2022] Open
Abstract
Organophosphate flame retardants (PFRs) are a new class of flame retardants. The health risks of PFRs have received attention recently. However, little is known about the potential toxicity of PFRs on the nervous system. Herein, we evaluated the neurotoxic effects of two typical PFRs, tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloropropyl) phosphate (TCPP), using Caenorhabditis elegans. Median lethal concentrations of chronic exposure (3 d) were 1578 and 857 mg L-1 for TCEP and TCPP, respectively. The sublethal dose of TCEP or TCPP significantly inhibited the body length and reduced the lifespans of nematodes. 500 mg L-1 and above of TCEP/TCPP led to a significant decline in the locomotor frequency of body bending and head thrashing. Furthermore, their exposure reduced the crawling speed and the frequency of bending oscillation of nematodes. This indicates that TCEP/TCPP induces locomotor deficits, along with Parkinsonian-like movement impairment including bradykinesia and hypokinesia. Using transgenic worms, we found that TCEP/TCPP could induce down-expression of P dat-1 and resulted in the degeneration of dopaminergic neurons, especially PDE neurons. Moreover, TCEP/TCPP induced over-expression of unc-54, which indicates the aggregation of α-synuclein in the process of degeneration. These findings suggest the neurotoxicity risks of organophosphorus flame retardants, which are associated with the locomotor deficits and dopaminergic degeneration.
Collapse
Affiliation(s)
- Tiantian Xu
- Lab of Toxicology , School of Ecological and Environmental Sciences , East China Normal University , 500# DongChuang RD , Shanghai , 200241 , China . ; Tel: +86 189 1786 4019
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , Shanghai , 200241 , China
| | - Ping Li
- Lab of Toxicology , School of Ecological and Environmental Sciences , East China Normal University , 500# DongChuang RD , Shanghai , 200241 , China . ; Tel: +86 189 1786 4019
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , Shanghai , 200241 , China
| | - Siyu Wu
- Lab of Toxicology , School of Ecological and Environmental Sciences , East China Normal University , 500# DongChuang RD , Shanghai , 200241 , China . ; Tel: +86 189 1786 4019
| | - Lili Lei
- Lab of Toxicology , School of Ecological and Environmental Sciences , East China Normal University , 500# DongChuang RD , Shanghai , 200241 , China . ; Tel: +86 189 1786 4019
| | - Defu He
- Lab of Toxicology , School of Ecological and Environmental Sciences , East China Normal University , 500# DongChuang RD , Shanghai , 200241 , China . ; Tel: +86 189 1786 4019
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , Shanghai , 200241 , China
| |
Collapse
|
90
|
Cristale J, Hurtado A, Gómez-Canela C, Lacorte S. Occurrence and sources of brominated and organophosphorus flame retardants in dust from different indoor environments in Barcelona, Spain. ENVIRONMENTAL RESEARCH 2016; 149:66-76. [PMID: 27179204 DOI: 10.1016/j.envres.2016.05.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
In this study, the simultaneous presence of eight polybrominated diphenyl ethers (PBDEs), nine new brominated flame retardants (NBFRs) and ten organophosphorus flame retardants (OPFRs) was investigated in dust samples collected from different indoor environments (homes, schools, theatres, a university and a Research Institute) in Barcelona, Spain. OPFRs were detected at the highest concentrations followed by PBDEs. ∑OPFRs ranged from 2053 to 72,090ngg(-1) and tris(2-chloroisopropyl) phosphate (TCIPP) was the most abundant compound. BDE-209 was the main PBDE congener detected (up to 14,990ngg(-1)), while other PBDEs ranged from 2.6 to 118ngg(-1). Among the studied NBFRs, decabromodiphenyl ethane (DBDPE - up to 4432ngg(-1)) followed by bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP - up to 508ngg(-1)) were detected at the highest concentration, whereas a lower detection frequency was observed for 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), pentabromotoluene (PBT) and hexabromobenzene (HBB). The levels and profile of flame retardants (FRs) were characteristic of each environment, where theatres followed by homes presented the highest concentrations and schools had the lowest levels. Principal Component Analysis permitted to identify the main sources and distribution of all FRs, according to specific uses in each environment. The simultaneous presence of all FR families in indoor dust points to the need to monitor these compounds to minimize human exposure.
Collapse
Affiliation(s)
- Joyce Cristale
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Alba Hurtado
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Cristian Gómez-Canela
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
91
|
Langer S, Fredricsson M, Weschler CJ, Bekö G, Strandberg B, Remberger M, Toftum J, Clausen G. Organophosphate esters in dust samples collected from Danish homes and daycare centers. CHEMOSPHERE 2016; 154:559-566. [PMID: 27085316 DOI: 10.1016/j.chemosphere.2016.04.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Organophosphates are used in a wide range of materials and consumer products and are ubiquitous in indoor environments. Certain organophosphates have been associated with various adverse health effects. The present paper reports mass fractions of organophosphates in dust samples collected from 500 bedrooms and 151 daycare centers of children living in Odense, Denmark. The identified compounds include: tris(isobutyl) phosphate (TIBP), tri-n-butyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), tris(1,3-dichloroisopropyl) phosphate (TDCIPP), tris(2-butoxyethyl) phosphate (TBOEP), triphenylphosphate (TPHP), 2-ethylhexyl-diphenyl phosphate (EHDPP), tris(2-ethylhexyl) phosphate (TEHP) and tris(methylphenyl) phosphate (TMPP). Both the number of organophosphates with median values above the limit of detection and the median values were higher for samples from daycare centers than for samples from homes. Organophosphates with median mass fractions above the limit of detection were: TCEP from homes (6.9 μg g(-1)), and TCEP (16 μg g(-1)), TCIPP (5.6 μg g(-1)), TDCIPP (7.1 μg g(-1)), TBOEP (26 μg g(-1)), TPHP (2.0 μg g(-1)) and EHDPP (2.1 μg g(-1)) from daycare centers. When present, TBOEP was typically the most abundant of the identified OPs. The sum of the organophosphate dust mass fractions measured in this study was roughly in the mid-range of summed mass fractions reported for dust samples collected in other countries. On a global scale, the geographical distribution of organophosphates in indoor dust is quite variable, with higher concentrations in industrialized countries. This trend differs from that for phthalate esters, whose geographic distribution is more homogeneous. Exposure to organophosphates via dust ingestion is relatively low, although there is considerable uncertainly in this assessment.
Collapse
Affiliation(s)
- Sarka Langer
- IVL Swedish Environmental Research Institute Ltd., P.O. Box 53021, SE-400 14 Göteborg, Sweden.
| | - Malin Fredricsson
- IVL Swedish Environmental Research Institute Ltd., P.O. Box 53021, SE-400 14 Göteborg, Sweden
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Gabriel Bekö
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Bo Strandberg
- Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, Box 414, SE-405 30 Göteborg, Sweden
| | - Mikael Remberger
- IVL Swedish Environmental Research Institute Ltd., P.O. Box 210 60, SE-100 31 Stockholm, Sweden
| | - Jørn Toftum
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Geo Clausen
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
92
|
Canbaz D, van Velzen MJM, Hallner E, Zwinderman AH, Wickman M, Leonards PEG, van Ree R, van Rijt LS. Exposure to organophosphate and polybrominated diphenyl ether flame retardants via indoor dust and childhood asthma. INDOOR AIR 2016; 26:403-413. [PMID: 25952720 DOI: 10.1111/ina.12221] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
Although the ubiquitous detection of polybrominated diphenyl ether (PBDE) and organophosphate flame retardants (PFRs) in indoor dust has raised health concerns, only very few epidemiological studies have assessed their impact on human health. Inhalation of dust is one of the exposure routes of FRs, especially in children and can be hazardous for the respiratory health. Moreover, PFRs are structurally similar to organophosphate pesticides, which have been associated with allergic asthma. Thus, we investigated whether the concentrations of PFRs and PBDEs in indoor dust are associated with the development of childhood asthma. We selected 110 children who developed asthma at 4 or at 8 years old and 110 matched controls from a large prospective birth cohort (BAMSE - Barn, Allergy, Milieu Stockholm Epidemiology). We analyzed the concentrations of 7 PFRs and 21 PBDEs in dust collected around 2 months after birth from the mother's mattress. The abundance rank in dust was as follows: TBOEP⪢TPHP>mmp-TMPP>EHDPHP~TDCIPP>TCEP~TCIPP~BDE-209⪢BDE-99>BDE-47>BDE-153>BDE-183>BDE-100. There was no positive association between the FRs in mattress dust and the development of childhood asthma. In contrast, dust collected from mattresses of the mothers of children who would develop asthma contained significant lower levels of TPHP and mmp-TMPP. This study provides data on a wide range of PFRs and PBDEs in dust samples and development of asthma in children.
Collapse
Affiliation(s)
- D Canbaz
- Department Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M J M van Velzen
- Institute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands
| | - E Hallner
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center of Occupational and Environmental Medicine, Stockholm, Sweden
| | - A H Zwinderman
- Department Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M Wickman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Occupational and Environmental Health, Karolinska Hospital, Stockholm, Sweden
- Sachs's Children's Hospital, Institute of Sodersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - P E G Leonards
- Institute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands
| | - R van Ree
- Department Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L S van Rijt
- Department Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
93
|
Hou R, Xu Y, Wang Z. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research. CHEMOSPHERE 2016; 153:78-90. [PMID: 27010170 DOI: 10.1016/j.chemosphere.2016.03.003] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Due to their widespread use, organophosphate flame retardants (OPFRs) are commonly detected in various environmental matrices and have been identified as emerging contaminants. Considering the adverse effects of OPFRs, many researchers have paid their attention on the absorption, bioaccumulation, metabolism and internal exposure processes of OPFRs in animals and humans. In this article, we first review the diverse absorption routes of OPFRs by animals and humans (e.g., inhalation, ingestion, dermal absorption and gill absorption). Bioaccumulation and biomagnification potentials of OPFRs in different types of organisms and food webs are also summarized, based on quite limited available data and results. For metabolism, we review the Phase-I and Phase-II metabolic processes for each type of OPFRs (chlorinated OPFRs, alkyl-OPFRs and aryl-OPFRs) in the animals and humans, as well as toxicokinetic information and putative exposure biomarkers on OPFRs. Finally, we highlight gaps in our knowledge and critical directions for future internal exposure studies of OPFRs in animals and humans.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
94
|
Wu M, Yu G, Cao Z, Wu D, Liu K, Deng S, Huang J, Wang B, Wang Y. Characterization and human exposure assessment of organophosphate flame retardants in indoor dust from several microenvironments of Beijing, China. CHEMOSPHERE 2016; 150:465-471. [PMID: 26796586 DOI: 10.1016/j.chemosphere.2015.12.111] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 06/05/2023]
Abstract
Ten target organophosphate flame retardants (PFRs) were measured from floor dust samples collected from homes (n = 21), offices (n = 23) and daycare centers (room n = 16) located in Beijing, China, and paired elevated surface dust and floor dust from the same daycare centers (room n = 9) were analyzed in this study. Most PFRs were detected in analyzed dust samples, and detection frequency up to 100% was observed on tris (2-chloroethyl) phosphate (TCEP), tris (2-chloroisopropyl) phosphate (TCIPP), triphenyl phosphate (TPHP) and tris (2-butoxyethyl) phosphate (TBOEP). Among studied microenvironments, office samples showed significantly (p < 0.05) higher PFRs contamination level (1687-200,489 ng/g), followed by homes (4571-67,450 ng/g), and daycare centers (1489-33,316 ng/g). TCEP was the predominant PFR in both home and daycare center samples, while TCIPP was dominant in floor dust from offices. TCEP, TCIPP and TBOEP showed positive correlations (p < 0.05) between their levels in elevated surface dust and corresponding floor dust, and the mean concentrations of TPHP (1116 ng/g) and tricresyl phosphate (TMPP) (336 ng/g) were significantly higher (p < 0.05) in floor dust than those in elevated surface dust (269 and 93 ng/g, respectively). Estimated exposures of toddlers, average adults and the elderly to PFRs via dust ingestion were 38, 6 and 5 ng/kg bw/day, respectively (assuming the average daily time spent are 62.5% home and 37.5% daycare center for toddlers, 62.5% home and 37.5% office for average adults, and 100% home for the elderly; assuming median concentrations and average dust ingestion rate).
Collapse
Affiliation(s)
- Min Wu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China.
| | - Zhiguo Cao
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Dongkui Wu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, Beijing 100083, China
| | - Kai Liu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Bin Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| |
Collapse
|
95
|
Zhang Q, Ji C, Yin X, Yan L, Lu M, Zhao M. Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and in silico approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:27-33. [PMID: 26701863 DOI: 10.1016/j.envpol.2015.11.051] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 05/03/2023]
Abstract
In recent years, phosphorus-containing flame retardants (PFRs) have been frequently detected in various environmental media and biota - and in humans - as the result of steady increase in global usage of PFRs. However, studies on the potential health and ecological risks of PFRs are still scarce. In this study, we investigated the thyroid hormone-disrupting activity and ecological risk of nine frequently detected PFRs by in vitro, in vivo and in silico approaches. Results from the dual-luciferase reporter gene assay showed that tributyl phosphate (TNBP), tricresyl phosphate (TMPP), tris(2-chloroisopropyl)phosphate (TCIPP) and tris(2-chloro-1-(chloromethyl)ethyl)phosphate (TDCIPP) exerted thyroid receptor β (TRβ) antagonistic activity, with the values of RIC20 of 5.2 × 10(-7), 2.7 × 10(-7), 1.2 × 10(-6) and 6.8 × 10(-6) M, respectively. Molecular docking platform simulations suggested that the observed effects may be attributed to direct binding of PFRs to TR. Results from the T-screen assay indicated that TNBP and TMPP showed T3 antagonistic activity and thus significantly decreased the viability of GH3 cell lines in the presence of T3. The exposure assay using Xenopus tropicalis embryos revealed the potential teratogenic effect of TNBP, TMPP, TCIPP and TDCIPP. In conclusion, our studies revealed that some PFRs were potential thyroid hormone disruptors and may cause health and ecological risks. However, the mode of action of PFRs on TR remains uncertain. The correlation between the predicted affinity and the amplitude of the effect observed in cell based assay is encouraging, but not decisive. Further in vitro binding experiments of TR and PFRs are required. At the same time, the results provided here also demonstrated that multi-model approaches are of great importance to comprehensively evaluate the potential risks of emerging contaminants.
Collapse
Affiliation(s)
- Quan Zhang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenyang Ji
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaohui Yin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China; School of Agricultural and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Lu Yan
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Meiya Lu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Meirong Zhao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
96
|
Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors. Toxicol Lett 2016; 245:31-9. [DOI: 10.1016/j.toxlet.2016.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022]
|
97
|
Van den Eede N, de Meester I, Maho W, Neels H, Covaci A. Biotransformation of three phosphate flame retardants and plasticizers in primary human hepatocytes: untargeted metabolite screening and quantitative assessment. J Appl Toxicol 2016; 36:1401-8. [DOI: 10.1002/jat.3293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/12/2015] [Accepted: 12/22/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Nele Van den Eede
- Toxicological Center, Department of Pharmaceutical Sciences; University of Antwerp; Universiteitsplein 1 2610 Antwerp Belgium
| | - Ingrid de Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences; University of Antwerp; Universiteitsplein 1 2610 Antwerp Belgium
| | - Walid Maho
- Toxicological Center, Department of Pharmaceutical Sciences; University of Antwerp; Universiteitsplein 1 2610 Antwerp Belgium
| | - Hugo Neels
- Toxicological Center, Department of Pharmaceutical Sciences; University of Antwerp; Universiteitsplein 1 2610 Antwerp Belgium
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences; University of Antwerp; Universiteitsplein 1 2610 Antwerp Belgium
| |
Collapse
|
98
|
Matsukami H, Suzuki G, Takigami H. Compositional Analysis of Commercial Oligomeric Organophosphorus Flame Retardants Used as Alternatives for PBDEs: Concentrations and Potential Environmental Emissions of Oligomers and Impurities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12913-12921. [PMID: 26449156 DOI: 10.1021/acs.est.5b03447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Four commercial oligomeric organophosphorus flame retardants (o-PFRs) were characterized using a refractive index detector and atmospheric pressure photoionization (APPI)-quadrupole time-of-flight mass spectrometry (QTOF-MS) compatible with gel permeation chromatography (GPC). Commercial o-PFRs consisted of approximately 90% or more oligomers and several impurities. Triphenyl phosphate (TPHP), tris(dimethylphenyl) phosphate (TDMPP), tris(2-chloroisopropyl) phosphate (TCIPP), and some new impurities were identified as byproducts of some manufacturing process of commercial o-PFRs for the first time. The concentrations of TPHP, TDMPP, and TCIPP were more than 1 weight %, whereas those of new impurities might be approximately 1 weight % by comparison among their abundances acquired through GPC-APPI-QTOF-MS analysis. Based on their vapor pressure and water solubility estimations, the potential environmental emissions of low molecular weight impurities were expected to be higher than those of oligomers. The presence and environmental emissions of low molecular weight impurities might be regarded as risk factors along with commercial o-PFRs.
Collapse
Affiliation(s)
- Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES) , 16-2 Onogawa, Tsukuba 305-8506, Japan
- Graduate School of Frontier Sciences, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES) , 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Hidetaka Takigami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES) , 16-2 Onogawa, Tsukuba 305-8506, Japan
- Graduate School of Frontier Sciences, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| |
Collapse
|
99
|
Hendriks HS, Westerink RH. Neurotoxicity and risk assessment of brominated and alternative flame retardants. Neurotoxicol Teratol 2015; 52:248-69. [DOI: 10.1016/j.ntt.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 11/29/2022]
|
100
|
Brommer S, Harrad S. Sources and human exposure implications of concentrations of organophosphate flame retardants in dust from UK cars, classrooms, living rooms, and offices. ENVIRONMENT INTERNATIONAL 2015; 83:202-7. [PMID: 26232632 DOI: 10.1016/j.envint.2015.07.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/25/2015] [Accepted: 07/01/2015] [Indexed: 05/25/2023]
Abstract
Concentrations of a number of organophosphate flame retardants (PFRs) were measured in floor dust collected from UK living rooms (n = 32), cars (n = 21), school and child daycare centre classrooms (n = 28), and offices (n = 61). While concentrations were overall broadly within the range of those reported previously for North America, Japan, and other European countries, median concentrations of TCIPP in all UK microenvironments exceeded those reported elsewhere in the world. Moreover, concentrations of TCIPP and TDCIPP in 2 UK car dust samples were--at 370 μg g(-1) and 740 μg g(-1) respectively--amongst the highest reported globally in indoor dust to date. Consistent with this, concentrations of TDCIPP in dust from UK cars exceed significantly those detected in the other microenvironments studied. Concentrations of EHDPP were shown for the first time to be significantly higher in classroom dust than in samples from other microenvironments. When compared to concentrations of PBDEs determined previously in the classroom dust samples; concentrations of all target PFRs exceeded substantially those of those PBDEs that are the principal constituents of the Penta- and Octa-BDE formulations. Moreover, while mass-based concentrations of BDE-209 exceeded those of most of our target PFRs, they still fell below those of TCIPP and EHDPP. In line with a previous observation in Sweden that indoor air contamination with TNBP was significantly lower in newer buildings; concentrations of TNBP in classroom dust were significantly higher in older compared to more recently-constructed schools. Consistent with the reported extensive use of TCIPP and TDCIPP in polyurethane foam, the highest concentrations of both TCIPP and TDCIPP in the classrooms studied, were observed in rooms containing the highest numbers of foam chairs (n = 31 and 18 respectively). Exposure to PFRs of both adults and young children via ingestion of indoor dust was estimated. While even our high-end exposure estimate for young children was ~100 times lower than one previously reported health-based limit (HBLV) value for TCIPP; the margin of safety was only 5-fold when compared to another HBLV for this contaminant.
Collapse
Affiliation(s)
- Sandra Brommer
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stuart Harrad
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|