51
|
Martenies SE, Wilson A, Hoskovec L, Bol KA, Burket TL, Podewils LJ, Magzamen S. The COVID-19-wildfire smoke paradox: Reduced risk of all-cause mortality due to wildfire smoke in Colorado during the first year of the COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2023; 225:115591. [PMID: 36878268 PMCID: PMC9985917 DOI: 10.1016/j.envres.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/11/2023]
Abstract
BACKGROUND In 2020, the American West faced two competing challenges: the COVID-19 pandemic and the worst wildfire season on record. Several studies have investigated the impact of wildfire smoke (WFS) on COVID-19 morbidity and mortality, but little is known about how these two public health challenges impact mortality risk for other causes. OBJECTIVES Using a time-series design, we evaluated how daily risk of mortality due to WFS exposure differed for periods before and during the COVID-19 pandemic. METHODS Our study included daily data for 11 counties in the Front Range region of Colorado (2010-2020). We assessed WFS exposure using data from the National Oceanic and Atmospheric Administration and used mortality counts from the Colorado Department of Public Health and Environment. We estimated the interaction between WFS and the pandemic (an indicator variable) on mortality risk using generalized additive models adjusted for year, day of week, fine particulate matter, ozone, temperature, and a smoothed term for day of year. RESULTS WFS impacted the study area on 10% of county-days. We observed a positive association between the presence of WFS and all-cause mortality risk (incidence rate ratio (IRR) = 1.03, 95%CI: 1.01-1.04 for same-day exposures) during the period before the pandemic; however, WFS exposure during the pandemic resulted in decreased risk of all-cause mortality (IRR = 0.90, 95%CI: 0.87-0.93 for same-day exposures). DISCUSSION We hypothesize that mitigation efforts during the first year of the pandemic, e.g., mask mandates, along with high ambient WFS levels encouraged health behaviors that reduced exposure to WFS and reduced risk of all-cause mortality. Our results suggest a need to examine how associations between WFS and mortality are impacted by pandemic-related factors and that there may be lessons from the pandemic that could be translated into health-protective policies during future wildfire events.
Collapse
Affiliation(s)
- Sheena E Martenies
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Lauren Hoskovec
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Kirk A Bol
- Center for Health and Environmental Data, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Tori L Burket
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Denver Department of Public Health and Environment, Denver, CO, USA
| | - Laura Jean Podewils
- Center for Health Systems Research, Denver Health Office of Research, Denver, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
52
|
Hu H, Laden F, Hart J, James P, Fishe J, Hogan W, Shenkman E, Bian J. A spatial and contextual exposome-wide association study and polyexposomic score of COVID-19 hospitalization. EXPOSOME 2023; 3:osad005. [PMID: 37089437 PMCID: PMC10118922 DOI: 10.1093/exposome/osad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Environmental exposures have been linked to COVID-19 severity. Previous studies examined very few environmental factors, and often only separately without considering the totality of the environment, or the exposome. In addition, existing risk prediction models of severe COVID-19 predominantly rely on demographic and clinical factors. To address these gaps, we conducted a spatial and contextual exposome-wide association study (ExWAS) and developed polyexposomic scores (PES) of COVID-19 hospitalization leveraging rich information from individuals' spatial and contextual exposome. Individual-level electronic health records of 50 368 patients aged 18 years and older with a positive SARS-CoV-2 PCR/Antigen lab test or a COVID-19 diagnosis between March 2020 and October 2021 were obtained from the OneFlorida+ Clinical Research Network. A total of 194 spatial and contextual exposome factors from 10 data sources were spatiotemporally linked to each patient based on geocoded residential histories. We used a standard two-phase procedure in the ExWAS and developed and validated PES using gradient boosting decision trees models. Four exposome measures significantly associated with COVID-19 hospitalization were identified, including 2-chloroacetophenone, low food access, neighborhood deprivation, and reduced access to fitness centers. The initial prediction model in all patients without considering exposome factors had a testing-area under the curve (AUC) of 0.778. Incorporation of exposome data increased the testing-AUC to 0.787. Similar findings were observed in subgroup analyses focusing on populations without comorbidities and aged 18-24 years old. This spatial and contextual exposome study of COVID-19 hospitalization confirmed previously reported risk factor but also generated novel predictors that warrant more focused evaluation.
Collapse
Affiliation(s)
- Hui Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jaime Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter James
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Population Medicine, Harvard Pilgrim Healthcare, Boston, MA, USA
| | - Jennifer Fishe
- Department of Emergency Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, FL, USA
| | - William Hogan
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elizabeth Shenkman
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
53
|
Priya S, Iqbal J. Assessment of NO 2 concentrations over industrial state Jharkhand, at the time frame of pre, concurrent, and post-COVID-19 lockdown along with the meteorological behaviour: an overview from satellite and ground approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68591-68608. [PMID: 37126175 PMCID: PMC10150349 DOI: 10.1007/s11356-023-27236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
Burning of fossil fuels in the form of coal or gasoline in thermal power plants, industries, and automobiles is a prime source of nitrogen dioxide (NO2), a major air pollutant causing health problems. In this paper, spatio-temporal unevenness of NO2 concentrations via both spaceborne Sentinel-5P and ground-based in situ data have been studied for the period of 2017-2021. Annual and seasonal distribution of TROPOMI-NO2 depict consistency over the Jharkhand region, highlighting six hotspot regions. As compared to 2019, a notable dip of 11% in the spatial annual average TROPOMI-NO2 was achieved in 2020, which were elevated again by 22% in 2021 as the lockdown gradually goes out of the picture. Among eight ground-monitoring stations, Tata and Golmuri stations always displayed a higher level of TROPOMI-NO2 ranges up to 15.2 ×1015molecules.cm-2 and 16.9 ×1015molecules.cm-2 respectively, as being located in the highly industrialised district of Jamshedpur. A big percentage reduction of up to 30% in TROPOMI-NO2 has been reported in Jharia and Bastacola stations in Dhanbad in the lockdown phase of 2020 compared to 2019. Good agreement between TROPOMI-NO2 and surface-NO2 has been achieved with R = 0.8 and R = 0.71 during winter and post-monsoon respectively. Among four meteorological parameters, TROPOMI-NO2 was majorly found to be influenced by precipitation, having R = 0.6-0.8 for almost all stations. More advanced satellite algorithms and ground-based data may be used to estimate NO2 in places where monitoring facilities are limited and thus can help in air pollution control policy.
Collapse
Affiliation(s)
- Shalini Priya
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand 835215 India
| | - Jawed Iqbal
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
54
|
Kreutz J, Heitmann J, Schäfer AC, Aldudak S, Schieffer B, Schieffer E. Environmental factors and their impact on the COVID-19 pandemic. Herz 2023:10.1007/s00059-023-05178-2. [PMID: 37097475 PMCID: PMC10127158 DOI: 10.1007/s00059-023-05178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/26/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has resulted in numerous cases of illness and death worldwide. Research has shown that there are associations between transmission, as well as the severity of SARS-CoV‑2 (severe acute respiratory syndrome coronavirus 2) infections, and various environmental factors. For example, air pollution with particulate matter is thought to play a crucial role, and both climatic and geographical aspects must be considered. Furthermore, environmental conditions such as industry and urban lifestyle have a significant impact on air quality and thus on health aspects of the population. In this regard, other factors such as chemicals, microplastics, and diet also critically impact health, including respiratory and cardiovascular diseases. Overall, the COVID-19 pandemic has highlighted how closely health and the environment are linked. This review discusses the impact of environmental factors on the COVID-19 pandemic.
Collapse
Affiliation(s)
- Julian Kreutz
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany.
| | - Juliane Heitmann
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany
| | - Ann-Christin Schäfer
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany
| | - Sümeya Aldudak
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany
| | - Bernhard Schieffer
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany
| | - Elisabeth Schieffer
- Department of Cardiology, Angiology, and Intensive Care Medicine, Philipps University of Marburg, Baldinger Str., 35043, Marburg, Germany
| |
Collapse
|
55
|
Yang J, Fan X, Zhang H, Zheng W, Ye T. A review on characteristics and mitigation strategies of indoor air quality in underground subway stations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161781. [PMID: 36708828 DOI: 10.1016/j.scitotenv.2023.161781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Due to the rapidly increasing ridership and the relatively enclosed underground space, the indoor air quality (IAQ) in underground subway stations (USSs) has attracted more public attention. The air pollutants in USSs, such as particulate matter (PM), CO2 and volatile organic compounds (VOCs), are hazardous to the health of passengers and staves. Firstly, this paper presents a systematic review on the characteristics and sources of air pollutants in USSs. According to the review work, the concentrations of PM, CO2, VOCs, bacteria and fungi in USSs are 1.1-13.2 times higher than the permissible concentration limits specified by WHO, ASHRAE and US EPA. The PM and VOCs are mainly derived from the internal and outdoor sources. CO2 concentrations are highly correlated with the passenger density and the ventilation rate while the exposure levels of bacteria and fungi depend on the thermal conditions and the settled dust. Then, the online monitoring, fault detection and prediction methods of IAQ are summarized and the advantages and disadvantages of these methods are also discussed. In addition, the available control strategies for improving IAQ in USSs are reviewed, and these strategies are classified and compared from different viewpoints. Lastly, challenges of the IAQ management in the context of the COVID-19 epidemic and several suggestions for underground stations' IAQ management in the future are put forward. This paper is expected to provide a comprehensive guidance for further research and design of the effective prevention measures on air pollutants in USSs so as to achieve more sustainable and healthy underground environment.
Collapse
Affiliation(s)
- Junbin Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xianwang Fan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Huan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, PR China; National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300000, PR China
| | - Wandong Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, PR China; National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300000, PR China.
| | - Tianzhen Ye
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, PR China; National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit, Tianjin 300000, PR China
| |
Collapse
|
56
|
Karim R, Akter N. Does climate change affect the transmission of COVID-19? A Bayesian regression analysis. ZEITSCHRIFT FUR GESUNDHEITSWISSENSCHAFTEN = JOURNAL OF PUBLIC HEALTH 2023:1-11. [PMID: 37361264 PMCID: PMC10105149 DOI: 10.1007/s10389-023-01860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 06/28/2023]
Abstract
Aim Coronavirus is an airborne and infectious disease and it is crucial to check the impact of climatic risk factors on the transmission of COVID-19. The main objective of this study is to determine the effect of climate risk factors using Bayesian regression analysis. Methods Coronavirus disease 2019, due to the effect of the SARS-CoV-2 virus, has become a serious global public health issue. This disease was identified in Bangladesh on March 8, 2020, though it was initially identified in Wuhan, China. This disease is rapidly transmitted in Bangladesh due to the high population density and complex health policy setting. To meet our goal, The MCMC with Gibbs sampling is used to draw Bayesian inference, which is implemented in WinBUGS software. Results The study revealed that high temperatures reduce confirmed cases and deaths from COVID-19, but low temperatures increase confirmed cases and deaths. High temperatures have decreased the proliferation of COVID-19, reducing the virus's survival and transmission. Conclusions Considering only the existing scientific evidence, warm and wet climates seem to reduce the spread of COVID-19. However, more climate variables could account for explaining most of the variability in infectious disease transmission.
Collapse
Affiliation(s)
- Rezaul Karim
- Department of Statistics, Jahangirnagar University, Savar, Bangladesh
| | - Nazmin Akter
- Department of Statistics, Jahangirnagar University, Savar, Bangladesh
| |
Collapse
|
57
|
Bhaskar A, Chandra J, Hashemi H, Butler K, Bennett L, Cellini J, Braun D, Dominici F. A Literature Review of the Effects of Air Pollution on COVID-19 Health Outcomes Worldwide: Statistical Challenges and Data Visualization. Annu Rev Public Health 2023; 44:1-20. [PMID: 36542771 DOI: 10.1146/annurev-publhealth-071521-120424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several peer-reviewed papers and reviews have examined the relationship between exposure to air pollution and COVID-19 spread and severity. However, many of the existing reviews on this topic do not extensively present the statistical challenges associated with this field, do not provide comprehensive guidelines for future researchers, and review only the results of a relatively small number of papers. We reviewed 139 papers, 127 of which reported a statistically significant positive association between air pollution and adverse COVID-19 health outcomes. Here, we summarize the evidence, describe the statistical challenges, and make recommendations for future research. To summarize the 139 papers with data from geographical locations around the world, we also present anopen-source data visualization tool that summarizes these studies and allows the research community to contribute evidence as new research papers are published.
Collapse
Affiliation(s)
- A Bhaskar
- Department of Government, Harvard University, Cambridge, Massachusetts, USA
| | - J Chandra
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - H Hashemi
- Environmental Systems Research Institute, Redlands, California, USA
| | - K Butler
- Environmental Systems Research Institute, Redlands, California, USA
| | - L Bennett
- Environmental Systems Research Institute, Redlands, California, USA
| | - Jacqueline Cellini
- Countway Library of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA;
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA;
| |
Collapse
|
58
|
Urso P, Cattaneo A, Pulvirenti S, Vercelli F, Cavallo DM, Carrer P. Early-phase pandemic in Italy: Covid-19 spread determinant factors. Heliyon 2023; 9:e15358. [PMID: 37041936 PMCID: PMC10079324 DOI: 10.1016/j.heliyon.2023.e15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
Although the Covid-19 pandemic is still ongoing, the environmental factors beyond virus transmission are only partially known. This statistical study has the aim to identify the key factors that have affected the virus spread during the early phase of pandemic in Italy, among a wide set of potential determinants concerning demographics, environmental pollution and climate. Because of its heterogeneity in pollution levels and climate conditions, Italy provides an ideal scenario for an ecological study. Moreover, the selected period excludes important confounding factors, as different virus variants, restriction policies or vaccines. The short-term relationship between the infection maximum increase and demographic, pollution and meteo-climatic parameters was investigated, including both winter-spring and summer 2020 data, also focusing separately on the two seasonal periods and on North vs Centre-South. Among main results, the importance of population size confirmed social distancing as a key management option. The pollution hazardous role undoubtedly emerged, as NO2 affected infection increase in all the studied scenarios, PM2.5 manifested its impact in North of Italy, while O3 always showed a protective action. Whereas higher temperatures were beneficial, especially in the cold season with also wind and relative humidity, solar irradiance was always relevant, revealing several significant interactions with other co-factors. Presented findings address the importance of the environment in Sars-CoV-2 spread and indicated that special carefulness should be taken in crowded areas, especially if they are highly polluted and weakly exposed to sun. The results suggest that containment of future epidemics similar to Covid-19 could be supported by reducing environmental pollution, achieving safer social habits and promoting preventive health care for better immune system response, as an only comprehensive strategy.
Collapse
Affiliation(s)
- Patrizia Urso
- Department of Biomedical and Clinical Sciences Hospital ‘L. Sacco’, University of Milan, Milano, Italy
- Department of Radiotherapy, Clinica Luganese Moncucco SA, Lugano, Switzerland
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Salvatore Pulvirenti
- Department of Biomedical and Clinical Sciences Hospital ‘L. Sacco’, University of Milan, Milano, Italy
| | - Franco Vercelli
- Department of Biomedical and Clinical Sciences Hospital ‘L. Sacco’, University of Milan, Milano, Italy
| | | | - Paolo Carrer
- Department of Biomedical and Clinical Sciences Hospital ‘L. Sacco’, University of Milan, Milano, Italy
| |
Collapse
|
59
|
Yin CX, Gu YF, Zhao GL. Effects of shared governance and cost redistribution on air pollution control: a study of game theory-based cooperation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49180-49196. [PMID: 36773258 PMCID: PMC9918827 DOI: 10.1007/s11356-023-25713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023]
Abstract
This study seeks cost-effective strategies for PM2.5 reduction to generate insights into minimizing pollution abatement costs subject to different scenarios. This study theorizes that the cooperation of PM2.5 abatement has potential gains for participants and develop an empirical way to compare the costs and efficiency of PM2.5 abatement involving the variation of environmental conditions. This study revises the cooperative game model in the context of threshold effects using data obtained from the Beijing-Tianjin-Hebei metropolitan cluster in China. In general, the results support the key assertion that cooperation in the metropolitan cluster plays a vital role in optimizing the efficiency and costs of PM2.5 abatement. In addition to extending the application of the revised model, this study provides a way to estimate the costs and the mitigation benefits of meeting the pollution targets for each coparticipant and take the scenario of multiparty cooperation into account as well as the scenarios involving other types of pollutants. The empirical findings have important policy implications for regional shared governance, decentralization, and resource reallocation. Economic incentive-based shared governance and cost reallocation work better than traditional regulations.
Collapse
Affiliation(s)
- Chen-Xi Yin
- Chinese Academy of Finance and Development, Central University of Finance and Economics, Beijing, 100081, China
| | - Yi-Fan Gu
- Institute of Circular Economy, Beijing University of Technology, Beijing, 100124, China
| | - Guo-Long Zhao
- School of Labor and Human Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
60
|
He T, Jin L, Li X. On the triad of air PM pollution, pathogenic bioaerosols, and lower respiratory infection. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1067-1077. [PMID: 34236582 PMCID: PMC8264819 DOI: 10.1007/s10653-021-01025-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/24/2021] [Indexed: 05/21/2023]
Abstract
Airborne particulate matter (PM) pollution, as a leading environmental health risk, causes millions of premature deaths globally every year. Lower respiratory infection (LRI) is a sensitive response to short-term exposure to outdoor PM pollution. The airborne transmission of etiological agents of LRI, as an important pathway for infection and morbidity, bridges the public health issues of air quality and pathogen infectivity, virulence, resistance, and others. Enormous efforts are underway to identify common pathogens and substances that are etiological agents for LRI and to understand the underlying toxicological and clinical basis of health effects by identifying mechanistic pathways. Seasonal variations and geographical disparities in the survival and infectivity of LRI pathogens are unsolved mysteries. Weather conditions in geographical areas may have a key effect, but also potentially connect LRI with short-term increases in ambient air PM pollution. Statistical associations show that short-term elevations in fine and coarse PM lead to increases in respiratory infections, but the causative agents could be chemical or microbiological and be present individually or in mixtures, and the interactions between chemical and microbiological agents remain undefined. Further investigations on high-resolution monitoring of airborne pathogens in relation to PM pollution for an integrated exposure-response assessment and mechanistic study are warranted. Improving our understanding of the spatiotemporal features of pathogenic bioaerosols and air pollutants and translating scientific evidence into effective policies is vital to reducing the health risks and devastating death toll from PM pollution.
Collapse
Affiliation(s)
- Tangtian He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
61
|
Scapini V, Torres S, Rubilar-Torrealba R. Meteorological, PM2.5 and PM10 factors on SARS-COV-2 transmission: The case of southern regions in Chile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:120961. [PMID: 36621713 PMCID: PMC9813498 DOI: 10.1016/j.envpol.2022.120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
There are several determinants of a population's health, including meteorological factors and air pollution. For example, it is well known that low temperatures and air pollution increase mortality rates in infant and elderly populations. With the emergence of SARS-COV-2, it is important to understand what factors contribute to its mitigation and control. There is some research in this area which shows scientific evidence on the virus's behavior in the face of these variables. This research aims to quantify the impact of climatic factors and environmental pollution on SARS-COV-2 specifically the effect on the number of new infections in different areas of Chile. At the local level, historical information available from the Department of Statistics and Health Information, the Chilean National Air Quality Information System, the Chilean Meteorological Directorate, and other databases will allow the generation of panel data suitable for the analysis. The results show the significant effect of pollution and climate variables measured in lags and will allow us to explain the behavior of the pandemic by identifying the relevant factors affecting health, using heteroskedastic models, which in turn will serve as a contribution to the generation of more effective and timely public policies for the control of the pandemic.
Collapse
|
62
|
Jana A, Kundu S, Shaw S, Chakraborty S, Chattopadhyay A. Spatial shifting of COVID-19 clusters and disease association with environmental parameters in India: A time series analysis. ENVIRONMENTAL RESEARCH 2023; 222:115288. [PMID: 36682443 PMCID: PMC9850905 DOI: 10.1016/j.envres.2023.115288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND The viability and virulence of COVID-19 are complex in nature. Although the relationship between environmental parameters and COVID-19 is well studied across the globe, in India, such studies are limited. This research aims to explore long-term exposure to weather conditions and the role of air pollution on the infection spread and mortality due to COVID-19 in India. METHOD District-level COVID-19 data from April 26, 2020 to July 10, 2021 was used for the study. Environmental determinants such as land surface temperature, relative humidity (RH), Sulphur dioxide (SO2), Nitrogen dioxide (NO2), Ozone (O3), and Aerosol Optical Depth (AOD) were considered for analysis. The bivariate spatial association was used to explore the spatial relationship between Case Fatality Rate (CFR) and these environmental factors. Further, the Bayesian multivariate linear regression model was applied to observe the association between environmental factors and the CFR of COVID-19. RESULTS Spatial shifting of COVID-19 cases from Western to Southern and then Eastern parts of India were well observed. The infection rate was highly concentrated in most of the Western and Southern regions of India, while the CFR shows more concentration in Northern India along with Maharashtra. Four main spatial clusters of infection were recognized during the study period. The time-series analysis indicates significantly more CFR with higher AOD, O3, and NO2 in India. CONCLUSIONS COVID-19 is highly associated with environmental parameters and air pollution in India. The study provides evidence to warrant consideration of environmental parameters in health models to mediate potential solutions. Cleaner air is a must to mitigate COVID-19.
Collapse
Affiliation(s)
- Arup Jana
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| | - Sampurna Kundu
- Center of Social Medicine and Community Health, Jawaharlal Nehru University, Delhi, 110067, India.
| | - Subhojit Shaw
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| | - Sukanya Chakraborty
- IMPRS Neuroscience, Max Planck Institute of Multidisciplinary Sciences, University of Goettingen, Germany.
| | - Aparajita Chattopadhyay
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| |
Collapse
|
63
|
Huang J, Kwan MP. Associations between COVID-19 risk, multiple environmental exposures, and housing conditions: A study using individual-level GPS-based real-time sensing data. APPLIED GEOGRAPHY (SEVENOAKS, ENGLAND) 2023; 153:102904. [PMID: 36816398 PMCID: PMC9928735 DOI: 10.1016/j.apgeog.2023.102904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Few studies have used individual-level data to explore the association between COVID-19 risk with multiple environmental exposures and housing conditions. Using individual-level data collected with GPS-tracking smartphones, mobile air-pollutant and noise sensors, an activity-travel diary, and a questionnaire from two typical neighborhoods in a dense and well-developed city (i.e., Hong Kong), this study seeks to examine 1) the associations between multiple environmental exposures (i.e., different types of greenspace, PM2.5, and noise) and housing conditions (i.e., housing types, ownership, and overcrowding) with individuals' COVID-19 risk both in residential neighborhoods and along daily mobility trajectories; 2) which social groups are disadvantaged in COVID-19 risk through the perspective of the neighborhood effect averaging problem (NEAP). Using separate multiple linear regression and logistical regression models, we found a significant negative association between COVID-19 risk with greenspace (i.e., NDVI) both in residential areas and along people's daily mobility trajectories. Meanwhile, we also found that high open space and recreational land exposure and poor housing conditions were positively associated with COVID-19 risk in high-risk neighborhoods, and noise exposure was positively associated with COVID-19 risk in low-risk neighborhoods. Further, people with work places in high-risk areas and poor housing conditions were disadvantaged in COVID-19 risk.
Collapse
Affiliation(s)
- Jianwei Huang
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mei-Po Kwan
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
64
|
Zukaib U, Maray M, Mustafa S, Haq NU, Khan AUR, Rehman F. Impact of COVID-19 lockdown on air quality analyzed through machine learning techniques. PeerJ Comput Sci 2023; 9:e1270. [PMID: 37346587 PMCID: PMC10280446 DOI: 10.7717/peerj-cs.1270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/10/2023] [Indexed: 06/23/2023]
Abstract
After February 2020, the majority of the world's governments decided to implement a lockdown in order to limit the spread of the deadly COVID-19 virus. This restriction improved air quality by reducing emissions of particular atmospheric pollutants from industrial and vehicular traffic. In this study, we look at how the COVID-19 shutdown influenced the air quality in Lahore, Pakistan. HAC Agri Limited, Dawn Food Head Office, Phase 8-DHA, and Zeenat Block in Lahore were chosen to give historical data on the concentrations of many pollutants, including PM2.5, PM10 (particulate matter), NO2 (nitrogen dioxide), and O3 (ozone). We use a variety of models, including decision tree, SVR, random forest, ARIMA, CNN, N-BEATS, and LSTM, to compare and forecast air quality. Using machine learning methods, we looked at how each pollutant's levels changed during the lockdown. It has been shown that LSTM estimates the amounts of each pollutant during the lockout more precisely than other models. The results show that during the lockdown, the concentration of atmospheric pollutants decreased, and the air quality index improved by around 20%. The results also show a 42% drop in PM2.5 concentration, a 72% drop in PM10 concentration, a 29% drop in NO2 concentration, and an increase of 20% in O3 concentration. The machine learning models are assessed using the RMSE, MAE, and R-SQUARE values. The LSTM measures NO2 at 4.35%, O3 at 8.2%, PM2.5 at 4.46%, and PM10 at 8.58% in terms of MAE. It is observed that the LSTM model outperformed with the fewest errors when the projected values are compared with the actual values.
Collapse
Affiliation(s)
- Umer Zukaib
- Computer Science, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
- Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China
| | - Mohammed Maray
- College of Computer Science and Information Systems, King Khalid University, Abha, Saudi Arabia
| | - Saad Mustafa
- Computer Science, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| | - Nuhman Ul Haq
- Computer Science, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| | - Atta ur Rehman Khan
- College of Engineering and Information Technology, Ajman University, Ajman, UAE
| | - Faisal Rehman
- Computer Science, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| |
Collapse
|
65
|
Rowan NJ. Challenges and future opportunities to unlock the critical supply chain of personal and protective equipment (PPE) encompassing decontamination and reuse under emergency use authorization (EUA) conditions during the COVID-19 pandemic: Through a reflective circularity and sustainability lens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161455. [PMID: 36621483 PMCID: PMC9815879 DOI: 10.1016/j.scitotenv.2023.161455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), and the resulting coronavirus disease (COVID-19), was declared a public health emergency of global concern by the World Health Organization (WHO) in the early months of 2020. There was a marked lack of knowledge to inform national pandemic response plans encompassing appropriate disease mitigation and preparation strategies to constrain and manage COVID-19. For example, the top 16 "most cited" papers published at the start of the pandemic on core knowledge gaps collectively constitute a staggering 29,393 citations. Albeit complex, appropriate decontamination modalities have been reported and developed for safe reuse of personal and protective equipment (PPE) under emergency use authorization (EUA) where critical supply chain shortages occur for healthcare workers (HCWs) caused by the COVID-19 pandemic. Commensurately, these similar methods may provide solutions for the safe decontamination of enormous volumes of PPE waste promoting opportunities in the circular bioeconomy that will also protect our environment, habitats and natural capital. The co-circulation of the highly transmissive mix of COVID-19 variants of concern (VoC) will continue to challenge our embattled healthcare systems globally for many years to come with an emphasis placed on maintaining effective disease mitigation strategies. This viewpoint article addresses the rationale and key developments in this important area since the onset of the COVID-19 pandemic and provides an insight into a variety of potential opportunities to unlock the long-term sustainability of single-use medical devices, including waste management.
Collapse
Affiliation(s)
- Neil J Rowan
- Department of Nursing and Healthcare, Technological University of the Shannon Midlands Midwest, Ireland; Centre for Disinfection and Sterilization, Technological University of the Shannon Midlands Midwest, Ireland; School of Medicine, Nursing and Health Sciences, University of Galway, Ireland; CURAM SFI Research Centre for Medical Devices, University of Galway, Ireland.
| |
Collapse
|
66
|
Monoson A, Schott E, Ard K, Kilburg-Basnyat B, Tighe RM, Pannu S, Gowdy KM. Air pollution and respiratory infections: the past, present, and future. Toxicol Sci 2023; 192:3-14. [PMID: 36622042 PMCID: PMC10025881 DOI: 10.1093/toxsci/kfad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Air pollution levels across the globe continue to rise despite government regulations. The increase in global air pollution levels drives detrimental human health effects, including 7 million premature deaths every year. Many of these deaths are attributable to increased incidence of respiratory infections. Considering the COVID-19 pandemic, an unprecedented public health crisis that has claimed the lives of over 6.5 million people globally, respiratory infections as a driver of human mortality is a pressing concern. Therefore, it is more important than ever to understand the relationship between air pollution and respiratory infections so that public health measures can be implemented to ameliorate further morbidity and mortality. This article aims to review the current epidemiologic and basic science research on interactions between air pollution exposure and respiratory infections. The first section will present epidemiologic studies organized by pathogen, followed by a review of basic science research investigating the mechanisms of infection, and then conclude with a discussion of areas that require future investigation.
Collapse
Affiliation(s)
- Alexys Monoson
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Evangeline Schott
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kerry Ard
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43210, USA
| | - Brita Kilburg-Basnyat
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina 27834, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sonal Pannu
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kymberly M Gowdy
- Department of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
67
|
Pramanik P. Path integral control of a stochastic multi-risk SIR pandemic model. Theory Biosci 2023; 142:107-142. [PMID: 36899154 PMCID: PMC10005926 DOI: 10.1007/s12064-023-00388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/29/2023] [Indexed: 03/12/2023]
Abstract
In this paper a Feynman-type path integral control approach is used for a recursive formulation of a health objective function subject to a fatigue dynamics, a forward-looking stochastic multi-risk susceptible-infective-recovered (SIR) model with risk-group's Bayesian opinion dynamics toward vaccination against COVID-19. My main interest lies in solving a minimization of a policy-maker's social cost which depends on some deterministic weight. I obtain an optimal lock-down intensity from a Wick-rotated Schrödinger-type equation which is analogous to a Hamiltonian-Jacobi-Bellman (HJB) equation. My formulation is based on path integral control and dynamic programming tools facilitates the analysis and permits the application of algorithm to obtain numerical solution for pandemic control model.
Collapse
Affiliation(s)
- Paramahansa Pramanik
- Department of Mathematics and Statistics, University of South Alabama, 411 University Boulevard North, Mobile, AL, 36688-0002, USA.
| |
Collapse
|
68
|
Joshua BW, Fuwape I, Rabiu B, Pires EES, Sa'id RS, Ogunro TT, Awe OF, Osunmakinwa OO, Ogunjo S. The Impact of the First and Second Waves of COVID-19 Pandemic in Nigeria. GEOHEALTH 2023; 7:e2022GH000722. [PMID: 36968154 PMCID: PMC10030272 DOI: 10.1029/2022gh000722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In recent times, the COVID-19 pandemic has been the subject of global concern. It has so far claimed over 5.4 million lives globally, with over 291 million cases recorded worldwide as of 5 January 2022. It is known to have different waves and variants, thus making it difficult to handle/manage. This study investigates the impact of the first and second waves of COVID-19 in Nigeria, West Africa. The data used is for the 36 states of Nigeria archived at the National Centre for Disease Control from February 2020 to April 2021. Results from the study reveal that the highest number of COVID-19 cases during the first/second wave was recorded at Lagos (23,238/34,616), followed by the Federal Capital Territory (FCT) (6,770/12,911) and alternates between Plateau (3,858/5,170) and Kaduna (3,064/5,908). Similarly, the highest number of deaths (during the first/second wave) was also recorded in Lagos (220/219), followed by Edo (112/73), and then FCT (83/81). The Case Fatality Ratio (CFR) was observed to be higher mostly in northern Nigeria during the first wave and the southeast during the second wave of the pandemic. On the average, the number of cases/deaths recorded during the second wave was higher than those of the first wave, but a decrease in the CFR values was observed during the second wave. Higher values of COVID-19 cases/death were mostly recorded in Nigeria during; maximum relative humidity (RH) (>70%) with minimum Temperatures (<25°C), Low temperatures, and low RH which is mostly observed during the cold/dusty periods.
Collapse
Affiliation(s)
- Benjamin Wisdom Joshua
- Department of PhysicsKebbi State University of Science and Technology AlieroKauraNigeria
- Physics UnitDepartment of Physical and Natural SciencesUniversity of the GambiaSerrekundaNigeria
| | - Ibiyinka Fuwape
- Department of PhysicsMichael and Cecilia Ibru UniversityEriem FieldsNigeria
- Department of PhysicsFederal University of Technology AkureGagaNigeria
| | - Babatunde Rabiu
- African Regional Centre for Space Science and Technology Education ‐ EnglishIle‐IfeNigeria
- Atmospheric & Space Weather Research LaboratoryARCSSTE‐ENASRDAOsun State UniversityOsogboNigeria
| | - Evanilton E. S. Pires
- Centro de Estudos e Pesquisa do TundavalaEngineering DepartmentISPTundavalaLubangoAngola
| | | | | | - Oluwayomi Funmilola Awe
- Atmospheric & Space Weather Research LaboratoryARCSSTE‐ENASRDAOsun State UniversityOsogboNigeria
| | | | - Samuel Ogunjo
- Department of PhysicsFederal University of Technology AkureGagaNigeria
| |
Collapse
|
69
|
Chakraborty P, Kumar R, Karn S, Srivastava AK, Mondal P. The long-term impact of coronavirus disease 2019 on environmental health: a review study of the bi-directional effect. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2023; 47:33. [PMID: 36879580 PMCID: PMC9976686 DOI: 10.1186/s42269-023-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Background When health systems worldwide grapple with the coronavirus disease 2019 (COVID-19) pandemic, its effect on the global environment is also a significant consideration factor. It is a two-way process where the pre-COVID climate factors influenced the landscape in which the disease proliferates globally and the consequences of the pandemic on our surroundings. The environmental health disparities will also have a long-lasting effect on public health response. Main body The ongoing research on the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19 must also include the role of environmental factors in the process of infection and the differential severity of the disease. Studies have shown that the virus has created positive and negative ramifications on the world environment, especially in countries most critically affected by the pandemic. Contingency measures to slow down the virus, such as self-distancing and lockdowns have shown improvements in air, water, and noise quality with a concomitant decrease in greenhouse gas emissions. On the other hand, biohazard waste management is a cause for concern that can result in negative effects on planetary health. At the peak of the infection, most attention has been diverted to the medical aspects of the pandemic. Gradually, policymakers must shift their focus to social and economic avenues, environmental development, and sustainability. Conclusion The COVID-19 pandemic has profoundly impacted the environment, both directly and indirectly. On the one hand, the sudden halt in economic and industrial activities led to a decrease in air and water pollution, as well as a reduction in greenhouse gas emissions. On the other hand, the increased use of single-use plastics and a surge in e-commerce activities have had negative effects on the environment. As we move forward, we must consider the pandemic's long-term impacts on the environment and work toward a more sustainable future that balances economic growth and environmental protection. The study shall update the readers on the various facets of the interaction between this pandemic and environmental health with model development for long-term sustainability. Graphic Abstract
Collapse
Affiliation(s)
- Prasenjit Chakraborty
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat 382740 India
| | - Randhir Kumar
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat 382740 India
| | - Sanjay Karn
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat 382740 India
| | - Ankit Kumar Srivastava
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat 382740 India
| | - Priya Mondal
- Laboratory of Cell Biology, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| |
Collapse
|
70
|
Guo Q, He Z, Wang Z. Change in Air Quality during 2014-2021 in Jinan City in China and Its Influencing Factors. TOXICS 2023; 11:210. [PMID: 36976975 PMCID: PMC10056825 DOI: 10.3390/toxics11030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Air pollution affects climate change, food production, traffic safety, and human health. In this paper, we analyze the changes in air quality index (AQI) and concentrations of six air pollutants in Jinan during 2014-2021. The results indicate that the annual average concentrations of PM10, PM2.5, NO2, SO2, CO, and O3 and AQI values all declined year after year during 2014-2021. Compared with 2014, AQI in Jinan City fell by 27.3% in 2021. Air quality in the four seasons of 2021 was obviously better than that in 2014. PM2.5 concentration was the highest in winter and PM2.5 concentration was the lowest in summer, while it was the opposite for O3 concentration. AQI in Jinan during the COVID epoch in 2020 was remarkably lower compared with that during the same epoch in 2021. Nevertheless, air quality during the post-COVID epoch in 2020 conspicuously deteriorated compared with that in 2021. Socioeconomic elements were the main reasons for the changes in air quality. AQI in Jinan was majorly influenced by energy consumption per 10,000-yuan GDP (ECPGDP), SO2 emissions (SDE), NOx emissions (NOE), particulate emissions (PE), PM2.5, and PM10. Clean policies in Jinan City played a key role in improving air quality. Unfavorable meteorological conditions led to heavy pollution weather in the winter. These results could provide a scientific reference for the control of air pollution in Jinan City.
Collapse
Affiliation(s)
- Qingchun Guo
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
- Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
| | - Zhenfang He
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
- Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhaosheng Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
71
|
Wang Q, Chen Z, Huang W, Kou B, Li J. Short-Term Effect of Moderate Level Air Pollution on Outpatient Visits for Multiple Clinic Departments: A Time-Series Analysis in Xi'an China. TOXICS 2023; 11:166. [PMID: 36851041 PMCID: PMC9967132 DOI: 10.3390/toxics11020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
There is limited evidence concerning the association between air pollution and different outpatient visits in moderately polluted areas. This paper investigates the effects of moderate-level air pollution on outpatient visits associated with six categories of clinic department. We analyzed a total of 1,340,791 outpatient visits for the pediatric, respiratory, ear-nose-throat (ENT), cardiovascular, ophthalmology, and orthopedics departments from January 2016 to December 2018. A distributed lag nonlinear model was used to analyze the associations and was fitted and stratified by age and season (central heating season and nonheating season). We found SO2 had the largest effect on pediatrics visits (RR = 1.105 (95%CI: 1.090, 1.121)). Meanwhile, PM2.5 and SO2 had greater effects on ENT visits for people under 50 years old. The results showed a strong association between O3 and cardiovascular outpatient visits in the nonheating season (RR = 1.273, 95% CI: 1.189,1.358). The results showed every 10 μg/m3 increase in SO2 was associated with a lower number of respiratory outpatient visits. Significant different associations were observed in PM2.5, NO2, CO, and O3 on ophthalmology visits between the heating and nonheating seasons. Although no significant association has been found in existing studies, our findings showed PM2.5 and NO2 were significantly related to orthopedic outpatient visits for people under 60 (RR = 1.063 (95%CI: 1.032, 1.095), RR = 1.055 (95%CI: 1.011, 1.101)). This study also found that the effect-level concentrations of air pollutants for some clinic departments were lower than the national standards, which means that people should also pay more attention when the air quality is normal.
Collapse
Affiliation(s)
- Qingnan Wang
- Department of Information Management, School of Management, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhuo Chen
- College of Public Health, University of Georgia, Athens, GA 30602, USA
- School of Economics, University of Nottingham Ningbo China, Ningbo 315000, China
| | - Wei Huang
- Department of Information Management, School of Management, Xi’an Jiaotong University, Xi’an 710049, China
- College of Business, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Kou
- Department of Otolaryngology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710016, China
| | - Jingwei Li
- Department of Information Management, School of Management, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
72
|
Government-Enterprise Collusion and the Effectiveness of Environmental Regulations: Implications for Public Health. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2023; 2023:3958944. [PMID: 36816820 PMCID: PMC9935812 DOI: 10.1155/2023/3958944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023]
Abstract
Effective environmental management will create a win-win situation for building an ecological civilization with the potential to control the COVID-19 pandemic. From the perspective of government-enterprise collusion (GEC), this study analyzes the moderating effects of the officials' promotion incentives and turnover on the effectiveness of environmental regulations utilizing a panel dataset on 276 cities in China from 2003 to 2019. The study reveals the following empirical results: First, promotion incentives positively moderate the relationship between environmental regulations and environmental pollution, mainly air pollution; results for water pollution are not significant. Compared with general cities, the positive moderating effect of promotion incentives in high-level cities is weaker and the negative moderating effect is more potent. Additionally, the moderating effect of promotion incentives is predominantly positive in the new developmental stage from 2013 to 2019. Second, the negative moderating effect of officials' turnover on the effectiveness of environmental regulations is mainly observed for water pollution but not evident for air pollution. Compared with high-level cities, officials' turnover in general cities is more conducive to the effectiveness of environmental regulations. These findings provide beneficial insights for promoting green growth by improving official governance and destroying GEC.
Collapse
|
73
|
Singh BP, Sohrab SS, Athar M, Alandijany TA, Kumari S, Nair A, Kumari S, Mehra K, Chowdhary K, Rahman S, Azhar EI. Substantial Changes in Selected Volatile Organic Compounds (VOCs) and Associations with Health Risk Assessments in Industrial Areas during the COVID-19 Pandemic. TOXICS 2023; 11:165. [PMID: 36851040 PMCID: PMC9963041 DOI: 10.3390/toxics11020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
During the COVID-19 pandemic, governments in many countries worldwide, including India, imposed several restriction measures, including lockdowns, to prevent the spread of the infection. COVID-19 lockdowns led to a reduction in gaseous and particulate pollutants in ambient air. In the present study, we investigated the substantial changes in selected volatile organic compounds (VOCs) after the outbreak of the coronavirus pandemic and associations with health risk assessments in industrial areas. VOC data from 1 January 2019 to 31 December 2021 were collected from the Central Pollution Control Board (CPCB) website, to identify percentage changes in VOC levels before, during, and after COVID-19. The mean TVOC levels at all monitoring stations were 47.22 ± 30.15, 37.19 ± 37.19, and 32.81 ± 32.81 µg/m3 for 2019, 2020, and 2021, respectively. As a result, the TVOC levels gradually declined in consecutive years due to the pandemic in India. The mean TVOC levels at all monitoring stations declined from 9 to 61% during the pandemic period as compared with the pre-pandemic period. In the current study, the T/B ratio values ranged from 2.16 (PG) to 26.38 (NL), which indicated that the major pollutant contributors were traffic and non-traffic sources during the pre-pandemic period. The present findings indicated that TVOC levels had positive but low correlations with SR, BP, RF, and WD, with correlation coefficients (r) of 0.034, 0.118, 0.012, and 0.007, respectively, whereas negative correlations were observed with AT and WS, with correlation coefficients (r) of -0.168 and -0.150, respectively. The lifetime cancer risk (LCR) value for benzene was reported to be higher in children, followed by females and males, for the pre-pandemic, pandemic, and post-pandemic periods. A nationwide scale-up of this study's findings might be useful in formulating future air pollution reduction policies associated with a reduction in health risk factors. Furthermore, the present study provides baseline data for future studies on the impacts of anthropogenic activities on the air quality of a region.
Collapse
Affiliation(s)
- Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbadhu College, University of Delhi, New Delhi 110019, India
- Delhi School of Climate Change and Sustainability (Institute of Eminence), University of Delhi, New Delhi 110007, India
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Athar
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Thamir A. Alandijany
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saumya Kumari
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Arathi Nair
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Sweety Kumari
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Kriti Mehra
- Department of Life Science, Deshbadhu College, University of Delhi, New Delhi 110019, India
| | - Khyati Chowdhary
- Department of Life Science, Deshbadhu College, University of Delhi, New Delhi 110019, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110019, India
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
74
|
Han J, Yin J, Wu X, Wang D, Li C. Environment and COVID-19 incidence: A critical review. J Environ Sci (China) 2023; 124:933-951. [PMID: 36182196 PMCID: PMC8858699 DOI: 10.1016/j.jes.2022.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 05/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an unprecedented worldwide health crisis. Many previous research studies have found and investigated its links with one or some natural or human environmental factors. However, a review on the relationship between COVID-19 incidence and both the natural and human environment is still lacking. This review summarizes the inter-correlation between COVID-19 incidence and environmental factors. Based on keyword searching, we reviewed 100 relevant peer-reviewed articles and other research literature published since January 2020. This review is focused on three main findings. One, we found that individual environmental factors have impacts on COVID-19 incidence, but with spatial heterogeneity and uncertainty. Two, environmental factors exert interactive effects on COVID-19 incidence. In particular, the interactions of natural factors can affect COVID-19 transmission in micro- and macro- ways by impacting SARS-CoV-2 survival, as well as human mobility and behaviors. Three, the impact of COVID-19 incidence on the environment lies in the fact that COVID-19-induced lockdowns caused air quality improvement, wildlife shifts and socio-economic depression. The additional value of this review is that we recommend future research perspectives and adaptation strategies regarding the interactions of the environment and COVID-19. Future research should be extended to cover both the effects of the environment on the COVID-19 pandemic and COVID-19-induced impacts on the environment. Future adaptation strategies should focus on sustainable environmental and public policy responses.
Collapse
Affiliation(s)
- Jiatong Han
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Jie Yin
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Danyang Wang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Chenlu Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
75
|
Rawat N, Kumar P. Interventions for improving indoor and outdoor air quality in and around schools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159813. [PMID: 36411671 DOI: 10.1016/j.scitotenv.2022.159813] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Students spend nearly one third of their typical day in the school environment, where they may be exposed to harmful air pollutants. A consolidated knowledge base of interventions to reduce this exposure is required for making informed decisions on their implementation and wider uptake. We attempt to fill this knowledge gap by synthesising the existing scientific literature on different school-based air pollution exposure interventions, their efficiency, suitability, and limitations. We assessed technological (air purifiers, HVAC - Heating Ventilation and Air Conditioning etc.), behavioural, physical barriers, structural, school-commute and policy and regulatory interventions. Studies suggest that the removal efficiency of air purifiers for PM2.5, PM10, PM1 and BC can be up to 57 %, 34 %, 70 % and 58 %, respectively, depending on the air purification technology compared with control levels in classroom. The HVAC system combined with high efficiency filters has BC, PM10 and PM2.5 removal efficiency up to 97 %, 34 % and 30 %, respectively. Citizen science campaigns are effective in reducing the indoor air pollutants' exposure up to 94 %. The concentration of PM10, NO2, O3, BC and PNC can be reduced by up to 60 %, 59 %, 16 %, 63 % and 77 %, respectively as compared to control conditions, by installing green infrastructure (GI) as a physical barrier. School commute interventions can reduce NO2 concentration by up to 23 %. The in-cabin concentration reduction of up to 77 % for PM2.5, 43 % for PNC, 89 % for BC, 74 % for PM10 and 75 % for NO2, along with 94 % reduction in tailpipe emission of total particles, can be achieved using clean fuels and retrofits. No stand-alone method is found as the absolute solution for controlling pollutants exposure, their combined application can be effective in most of the scenarios. More research is needed on assessing combined interventions, and their operational synchronisation for getting the optimum results.
Collapse
Affiliation(s)
- Nidhi Rawat
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
76
|
Yamamoto A, Sly PD, Chew KY, Khachatryan L, Begum N, Yeo AJ, Vu LD, Short KR, Cormier SA, Fantino E. Environmentally persistent free radicals enhance SARS-CoV-2 replication in respiratory epithelium. Exp Biol Med (Maywood) 2023; 248:271-279. [PMID: 36628928 PMCID: PMC9836833 DOI: 10.1177/15353702221142616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/28/2022] [Indexed: 01/12/2023] Open
Abstract
Epidemiological evidence links lower air quality with increased incidence and severity of COVID-19; however, mechanistic data have yet to be published. We hypothesized air pollution-induced oxidative stress in the nasal epithelium increased viral replication and inflammation. Nasal epithelial cells (NECs), collected from healthy adults, were grown into a fully differentiated epithelium. NECs were infected with the ancestral strain of SARS-CoV-2. An oxidant combustion by-product found in air pollution, the environmentally persistent free radical (EPFR) DCB230, was used to mimic pollution exposure four hours prior to infection. Some wells were pretreated with antioxidant, astaxanthin, for 24 hours prior to EPFR-DCB230 exposure and/or SARS-CoV-2 infection. Outcomes included viral replication, epithelial integrity, surface receptor expression (ACE2, TMPRSS2), cytokine mRNA expression (TNF-α, IFN-β), intracellular signaling pathways, and oxidative defense enzymes. SARS-CoV-2 infection induced a mild phenotype in NECs, with some cell death, upregulation of the antiviral cytokine IFN-β, but had little effect on intracellular pathways or oxidative defense enzymes. Prior exposure to EPFR-DCB230 increased SARS-CoV-2 replication, upregulated TMPRSS2 expression, increased secretion of the proinflammatory cytokine TNF-α, inhibited expression of the mucus producing MUC5AC gene, upregulated expression of p21 (apoptosis pathway), PINK1 (mitophagy pathway), and reduced levels of antioxidant enzymes. Pretreatment with astaxanthin reduced SARS-CoV-2 replication, downregulated ACE2 expression, and prevented most, but not all EPFR-DCB230 effects. Our data suggest that oxidant damage to the respiratory epithelium may underly the link between poor air quality and increased COVID-19. The apparent protection by antioxidants warrants further research.
Collapse
Affiliation(s)
- Ayaho Yamamoto
- Child Health Research Centre, The
University of Queensland, South Brisbane, QLD 4101, Australia
| | - Peter D Sly
- Child Health Research Centre, The
University of Queensland, South Brisbane, QLD 4101, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular
Biosciences, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana
State University, Baton Rouge, LA 70803, USA
| | - Nelufa Begum
- Child Health Research Centre, The
University of Queensland, South Brisbane, QLD 4101, Australia
| | - Abrey J Yeo
- Child Health Research Centre, The
University of Queensland, South Brisbane, QLD 4101, Australia
- Centre for Clinical Research, The
University of Queensland, Herston, QLD 4006, Australia
| | - Luan D Vu
- Department of Biological Sciences, and
Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
70803, USA
| | - Kirsty R Short
- School of Chemistry and Molecular
Biosciences, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Stephania A Cormier
- Department of Biological Sciences, and
Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
70803, USA
| | - Emmanuelle Fantino
- Child Health Research Centre, The
University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
77
|
Burbank AJ. Risk Factors for Respiratory Viral Infections: A Spotlight on Climate Change and Air Pollution. J Asthma Allergy 2023; 16:183-194. [PMID: 36721739 PMCID: PMC9884560 DOI: 10.2147/jaa.s364845] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Climate change has both direct and indirect effects on human health, and some populations are more vulnerable to these effects than others. Viral respiratory infections are most common illnesses in humans, with estimated 17 billion incident infections globally in 2019. Anthropogenic drivers of climate change, chiefly the emission of greenhouse gases and toxic pollutants from burning of fossil fuels, and the consequential changes in temperature, precipitation, and frequency of extreme weather events have been linked with increased susceptibility to viral respiratory infections. Air pollutants like nitrogen dioxide, particulate matter, diesel exhaust particles, and ozone have been shown to impact susceptibility and immune responses to viral infections through various mechanisms, including exaggerated or impaired innate and adaptive immune responses, disruption of the airway epithelial barrier, altered cell surface receptor expression, and impaired cytotoxic function. An estimated 90% of the world's population is exposed to air pollution, making this a topic with high relevance to human health. This review summarizes the available epidemiologic and experimental evidence for an association between climate change, air pollution, and viral respiratory infection.
Collapse
Affiliation(s)
- Allison J Burbank
- Division of Pediatric Allergy and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Correspondence: Allison J Burbank, 5008B Mary Ellen Jones Building, 116 Manning Dr, CB#7231, Chapel Hill, NC, 27599, USA, Tel +1 919 962 5136, Fax +1 919 962 4421, Email
| |
Collapse
|
78
|
Liang Y, Gui K, Che H, Li L, Zheng Y, Zhang X, Zhang X, Zhang P, Zhang X. Changes in aerosol loading before, during and after the COVID-19 pandemic outbreak in China: Effects of anthropogenic and natural aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159435. [PMID: 36244490 PMCID: PMC9558773 DOI: 10.1016/j.scitotenv.2022.159435] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 06/03/2023]
Abstract
Anthropogenic emissions reduced sharply in the short-term during the coronavirus disease pandemic (COVID-19). As COVID-19 is still ongoing, changes in atmospheric aerosol loading over China and the factors of their variations remain unclear. In this study, we used multi-source satellite observations and reanalysis datasets to synergistically analyze the spring (February-May) evolution of aerosol optical depth (AOD) for multiple aerosol types over Eastern China (EC) before, during and after the COVID-19 lockdown period. Regional meteorological effects and the radiative response were also quantitatively assessed. Compared to the same period before COVID-19 (i.e., in 2019), a total decrease of -14.6 % in tropospheric TROPOMI nitrogen dioxide (NO2) and a decrease of -6.8 % in MODIS AOD were observed over EC during the lockdown period (i.e., in 2020). After the lockdown period (i.e., in 2021), anthropogenic emissions returned to previous levels and there was a slight increase (+2.3 %) in AOD over EC. Moreover, changes in aerosol loading have spatial differences. AOD decreased significantly in the North China Plain (-14.0 %, NCP) and Yangtze River Delta (-9.4 %) regions, where anthropogenic aerosol dominated the aerosol loading. Impacted by strong wildfires in Southeast Asia during the lockdown period, carbonaceous AOD increased by +9.1 % in South China, which partially offset the emission reductions. Extreme dust storms swept through the northern region in the period after COVID-19, with an increase of +23.5 % in NCP and + 42.9 % in Northeast China (NEC) for dust AOD. However, unfavorable meteorological conditions overwhelmed the benefits of emission reductions, resulting in a +20.1 % increase in AOD in NEC during the lockdown period. Furthermore, the downward shortwave radiative flux showed a positive anomaly due to the reduced aerosol loading in the atmosphere during the lockdown period. This study highlights that we can benefit from short-term controls for the improvement of air pollution, but we also need to seriously considered the cross-regional transport of natural aerosol and meteorological drivers.
Collapse
Affiliation(s)
- Yuanxin Liang
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Ke Gui
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Huizheng Che
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Lei Li
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yu Zheng
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xutao Zhang
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xindan Zhang
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Peng Zhang
- Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites (LRCVES), FengYun Meteorological Satellite Innovation Center (FY-MSIC), National Satellite Meteorological Center, Beijing 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| |
Collapse
|
79
|
Mathys T, Souza FTD, Barcellos DDS, Molderez I. The relationship among air pollution, meteorological factors and COVID-19 in the Brussels Capital Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:158933. [PMID: 36179850 PMCID: PMC9514957 DOI: 10.1016/j.scitotenv.2022.158933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 06/01/2023]
Abstract
In great metropoles, there is a need for a better understanding of the spread of COVID-19 in an outdoor context with environmental parameters. Many studies on this topic have been carried out worldwide. However, there is conflicting evidence regarding the influence of environmental variables on the transmission, hospitalizations and deaths from COVID-19, even though there are plausible scientific explanations that support this, especially air quality and meteorological factors. Different urban contexts, methodological approaches and even the limitations of ecological studies are some possible explanations for this issue. That is why methodological experimentations in different regions of the world are important so that scientific knowledge can advance in this aspect. This research analyses the relationship between air pollution, meteorological factors and COVID-19 in the Brussels Capital Region. We use a data mining approach that is capable of extracting patterns in large databases with diverse taxonomies. Data on air pollution, meteorological, and epidemiological variables were processed in time series for the multivariate analysis and the classification based on association. The environmental variables associated with COVID-19-related deaths, cases and hospitalization were PM2.5, O3, NO2, black carbon, radiation, air pressure, wind speed, dew point, temperature and precipitation. These environmental variables combined with epidemiological factors were able to predict intervals of hospitalization, cases and deaths from COVID-19. These findings confirm the influence of meteorological and air quality variables in the Brussels region on deaths and cases of COVID-19 and can guide public policies and provide useful insights for high-level governmental decision-making concerning COVID-19. However, it is necessary to consider intrinsic elements of this study that may have influenced our results, such as the use of air quality aggregated data, ecological fallacy, focus on acute effects in the time-series study, the underreporting of COVID-19, and the lack of behavioral factors.
Collapse
Affiliation(s)
- Timo Mathys
- Centre for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, Brussels, Belgium.
| | - Fábio Teodoro de Souza
- Centre for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, Brussels, Belgium; Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Demian da Silveira Barcellos
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Ingrid Molderez
- Centre for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, Brussels, Belgium.
| |
Collapse
|
80
|
Ma R, Zhang Y, Zhang Y, Li X, Ji Z. The Relationship between the Transmission of Different SARS-CoV-2 Strains and Air Quality: A Case Study in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20031943. [PMID: 36767307 PMCID: PMC9916065 DOI: 10.3390/ijerph20031943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/11/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) has been a global public health concern for almost three years, and the transmission characteristics vary among different virus variants. Previous studies have investigated the relationship between air pollutants and COVID-19 infection caused by the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, it is unclear whether individuals might be more susceptible to COVID-19 due to exposure to air pollutants, with the SARS-CoV-2 mutating faster and faster. This study aimed to explore the relationship between air pollutants and COVID-19 infection caused by three major SARS-CoV-2 strains (the original strain, Delta variant, and Omicron variant) in China. A generalized additive model was applied to investigate the associations of COVID-19 infection with six air pollutants (PM2.5, PM10, SO2, CO, NO2, and O3). A positive correlation might be indicated between air pollutants (PM2.5, PM10, and NO2) and confirmed cases of COVID-19 caused by different SARS-CoV-2 strains. It also suggested that the mutant variants appear to be more closely associated with air pollutants than the original strain. This study could provide valuable insight into control strategies that limit the concentration of air pollutants at lower levels and would better control the spread of COVID-19 even as the virus continues to mutate.
Collapse
Affiliation(s)
- Ruiqing Ma
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Yeyue Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Yini Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Xi Li
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Zheng Ji
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| |
Collapse
|
81
|
Bonilla JA, Lopez-Feldman A, Pereda PC, Rivera NM, Ruiz-Tagle JC. Association between long-term air pollution exposure and COVID-19 mortality in Latin America. PLoS One 2023; 18:e0280355. [PMID: 36649353 PMCID: PMC9844883 DOI: 10.1371/journal.pone.0280355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Recent studies have shown a relationship between air pollution and increased vulnerability and mortality due to COVID-19. Most of these studies have looked at developed countries. This study examines the relationship between long-term exposure to air pollution and COVID-19-related deaths in four countries of Latin America that have been highly affected by the pandemic: Brazil, Chile, Colombia, and Mexico. Our results suggest that an increase in long-term exposure of 1 μg/m3 of fine particles is associated with a 2.7 percent increase in the COVID-19 mortality rate. This relationship is found primarily in municipalities of metropolitan areas, where urban air pollution sources dominate, and air quality guidelines are usually exceeded. By focusing the analysis on Latin America, we provide a first glimpse on the role of air pollution as a risk factor for COVID-19 mortality within a context characterized by weak environmental institutions, limited health care capacity and high levels of inequality.
Collapse
Affiliation(s)
- Jorge A. Bonilla
- Department of Economics, Universidad de Los Andes, Bogota, Colombia
| | - Alejandro Lopez-Feldman
- Environment for Development, University of Gothenburg, Göteborg, Sweden
- Department of Economics, Centro de Investigacion y Docencia Economicas, Mexico City, Mexico
| | - Paula C. Pereda
- Department of Economics, University of São Paulo, São Paulo, Brazil
| | | | - J. Cristobal Ruiz-Tagle
- Department of Geography & Environment, London School of Economics and Political Science, London, United Kingdom
| |
Collapse
|
82
|
Gu Z, Han J, Zhang L, Wang H, Luo X, Meng X, Zhang Y, Niu X, Lan Y, Wu S, Cao J, Lichtfouse E. Unanswered questions on the airborne transmission of COVID-19. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:725-739. [PMID: 36628267 PMCID: PMC9816530 DOI: 10.1007/s10311-022-01557-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Policies and measures to control pandemics are often failing. While biological factors controlling transmission are usually well explored, little is known about the environmental drivers of transmission and infection. For instance, respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the airborne transmission of the novel coronavirus. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01557-z.
Collapse
Affiliation(s)
- Zhaolin Gu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Liyuan Zhang
- School of Water and Environment, Chang’an University, Xi’an, 710064 People’s Republic of China
| | - Hongliang Wang
- Health Science Center, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xilian Luo
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xiangzhao Meng
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yue Zhang
- School of Architecture, Chang’an University, Xi’an, 710064 People’s Republic of China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yang Lan
- School of Public Health, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Shaowei Wu
- School of Public Health, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
- CNRS, IRD, INRAE, CEREGE, Aix-Marseille University, 13100, Aix-en-Provence, France
| |
Collapse
|
83
|
Jerrett M, Nau CL, Young DR, Butler RK, Batteate CM, Su J, Burnett RT, Kleeman MJ. Air pollution and meteorology as risk factors for COVID-19 death in a cohort from Southern California. ENVIRONMENT INTERNATIONAL 2023; 171:107675. [PMID: 36565571 PMCID: PMC9715495 DOI: 10.1016/j.envint.2022.107675] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Recent evidence links ambient air pollution to COVID-19 incidence, severity, and death, but few studies have analyzed individual-level mortality data with high quality exposure models. METHODS We sought to assess whether higher air pollution exposures led to greater risk of death during or after hospitalization in confirmed COVID-19 cases among patients who were members of the Kaiser Permanente Southern California (KPSC) healthcare system (N=21,415 between 06-01-2020 and 01-31-2022 of whom 99.85 % were unvaccinated during the study period). We used 1 km resolution chemical transport models to estimate ambient concentrations of several common air pollutants, including ozone, nitrogen dioxide, and fine particle matter (PM2.5). We also derived estimates of pollutant exposures from ultra-fine particulate matter (PM0.1), PM chemical species, and PM sources. We employed Cox proportional hazards models to assess associations between air pollution exposures and death from COVID-19 among hospitalized patients. FINDINGS We found significant associations between COVID-19 death and several air pollution exposures, including: PM2.5 mass, PM0.1 mass, PM2.5 nitrates, PM2.5 elemental carbon, PM2.5 on-road diesel, and PM2.5 on-road gasoline. Based on the interquartile (IQR) exposure increment, effect sizes ranged from hazard ratios (HR) = 1.12 for PM2.5 mass and PM2.5 nitrate to HR ∼ 1.06-1.07 for other species or source markers. Humidity and temperature in the month of diagnosis were also significant negative predictors of COVID-19 death and negative modifiers of the air pollution effects. INTERPRETATION Air pollution exposures and meteorology were associated the risk of COVID-19 death in a cohort of patients from Southern California. These findings have implications for prevention of death from COVID-19 and for future pandemics.
Collapse
Affiliation(s)
- Michael Jerrett
- Department of Environmental Health Sciences, University of California, Los Angeles 650 Charles Young Dr. S., 56-070 CHS Box 951772, Los Angeles, CA, 90095, United States.
| | - Claudia L Nau
- Department of Research & Evaluation, Kaiser Permanente Southern California 100 S. Los Robles Ave., 5th Floor, Pasadena, CA 91101, United States
| | - Deborah R Young
- Department of Research & Evaluation, Kaiser Permanente Southern California 100 S. Los Robles Ave., 5th Floor, Pasadena, CA 91101, United States
| | - Rebecca K Butler
- Department of Research & Evaluation, Kaiser Permanente Southern California 100 S. Los Robles Ave., 5th Floor, Pasadena, CA 91101, United States
| | - Christina M Batteate
- Department of Environmental Health Sciences, University of California, Los Angeles 650 Charles Young Dr. S., 56-070 CHS Box 951772, Los Angeles, CA, 90095, United States
| | - Jason Su
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 2121 Berkeley Way, Room 5302, Berkeley, CA 94720, United States
| | - Richard T Burnett
- Population Studies Division, Environmental Health Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis 1 Sheilds Avenue, Davis, CA 95616, United States
| |
Collapse
|
84
|
Sun S, Chang Q, He J, Wei X, Sun H, Xu Y, Soares Magalhaes RJ, Guo Y, Cui Z, Zhang W. The association between air pollutants, meteorological factors and tuberculosis cases in Beijing, China: A seven-year time series study. ENVIRONMENTAL RESEARCH 2023; 216:114581. [PMID: 36244443 DOI: 10.1016/j.envres.2022.114581] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tuberculosis (TB) is a severe public health problem globally. Previous studies have revealed insufficient and inconsistent associations between air pollutants, meteorological factors and TB cases. Yet few studies have examined the associations between air pollutants, meteorological factors and TB cases in Beijing. OBJECTIVE The purpose of this study was to explore the impact of air pollutants and meteorological factors on TB in Beijing, and to provide novel insights into public health managers to formulate control strategies of TB. METHODS Data on the daily case of TB in Beijing during 2014-2020 were obtained from Chinese tuberculosis information management system. Concurrent data on the daily PM10, PM2.5, SO2, NO2, CO and O3, were obtained from the online publication platform of the Chinese National Environmental Monitoring Center. Daily average temperature, average wind speed, relative humidity, sunshine duration and total precipitation were collected from the China Meteorological Science Data Sharing Service System. A distributed lag non-linear model was fitted to identify the non-linear exposure-response relationship and the lag effects between air pollutions, meteorological factors and TB cases in Beijing. RESULTS In the single-factor model, the excess risk (ER) of TB was significantly positively associated with every 10 μg/m3 increase in NO2 in lag 1 week (ER: 1.3%; 95% confidence interval [CI]: 0.4%, 2.3%) and every 0.1 m/s increase in average wind speed in lag 5 weeks (ER: 0.3%; 95% CI: 0.1%, 0.5%), and was negatively associated with every 10 μg/m3 increase in O3 in lag 1 week (ER: -1.2%; 95% CI: -1.8%, -0.5%), every 5 °C increase in average temperature (ER: -1.7%; 95% CI: -2.9%, -0.4%) and every 10% increase in average relative humidity (ER: -0.4%; 95% CI: -0.8%, -0.1%) in lag 10 weeks, respectively. In the multi-factor model, the lag effects between TB cases and air pollutants, meteorological factors were similar. The subgroup analysis suggests that the effects of NO2, O3, average wind speed and relative humidity on TB were greater in male or labor age subgroup, while the effect of CO was greater in the elderly. In addition, no significant associations were found between PM2.5, SO2, sunshine duration and TB cases. CONCLUSION Our findings provide a better understanding of air pollutants and meteorological factors driving tuberculosis occurrence in Beijing, which enhances the capacity of public health manager to target early warning and disease control policy-making.
Collapse
Affiliation(s)
- Shanhua Sun
- Beijing Institute of Tuberculosis Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Qinxue Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Junyu He
- Ocean College, Zhejiang University, Zhoushan, China; Ocean Academy, Zhejiang University, Zhoushan, China
| | - Xianyu Wei
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hailong Sun
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yuanyong Xu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ricardo J Soares Magalhaes
- Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Brisbane, Australia; Child Health Research Center, The University of Queensland, Brisbane, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhuang Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
85
|
Suligowski R, Ciupa T. Five waves of the COVID-19 pandemic and green-blue spaces in urban and rural areas in Poland. ENVIRONMENTAL RESEARCH 2023; 216:114662. [PMID: 36374652 PMCID: PMC9617687 DOI: 10.1016/j.envres.2022.114662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 05/19/2023]
Abstract
Several waves of COVID-19 caused by different SARS-CoV-2 variants have been recorded worldwide. During this period, many publications were released describing the influence of various factors, such as environmental, social and economic factors, on the spread of COVID-19. This paper presents the results of a detailed spatiotemporal analysis of the course of COVID-19 cases and deaths in five waves in Poland in relation to green‒blue spaces. The results, based on 380 counties, reveal that the negative correlation between the indicator of green‒blue space per inhabitant and the average daily number of COVID-19 cases and deaths was clearly visible during all waves. These relationships were described by a power equation (coefficient of determination ranging from 0.83 to 0.88) with a high level of significance. The second important discovery was the fact that the rates of COVID-19 cases and deaths were significantly higher in urban counties (low values of the green-blue space indicator in m2/people) than in rural areas. The developed models can be used in decision-making by local government authorities to organize anti-COVID-19 prevention measures, including local lockdowns, especially in urban areas.
Collapse
Affiliation(s)
- Roman Suligowski
- Institute of Geography and Environmental Sciences, Jan Kochanowski University in Kielce, Poland.
| | - Tadeusz Ciupa
- Institute of Geography and Environmental Sciences, Jan Kochanowski University in Kielce, Poland.
| |
Collapse
|
86
|
Beloconi A, Vounatsou P. Long-term air pollution exposure and COVID-19 case-severity: An analysis of individual-level data from Switzerland. ENVIRONMENTAL RESEARCH 2023; 216:114481. [PMID: 36206929 PMCID: PMC9531360 DOI: 10.1016/j.envres.2022.114481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 05/05/2023]
Abstract
Several studies are pointing out that exposure to elevated air pollutants could contribute to increased COVID-19 mortality. However, literature on the associations between air pollution exposure and COVID-19 severe morbidity is rather sparse. In addition, the majority of the studies used an ecological study design and were applied in regions with rather high air pollution levels. Here, we study the differential effects of long-term exposure to air pollution on severe morbidity and mortality risks from COVID-19 in various population subgroups in Switzerland, a country known for clean air. We perform individual-level analyses using data covering the first two major waves of COVID-19 between February 2020 and May 2021. High-resolution maps of particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations were produced for the 6 years preceding the pandemic using Bayesian geostatistical models. Air pollution exposure for each patient was measured by the long-term average concentration across the municipality of residence. The models were adjusted for the effects of individual characteristics, socio-economic, health-system, and climatic factors. The variables with an important association to COVID-19 case-severity were identified using Bayesian spatial variable selection. The results have shown that the individual-level characteristics are important factors related to COVID-19 morbidity and mortality in all the models. Long-term exposure to air pollution appears to influence the severity of the disease only when analyzing data during the first wave; this effect is attenuated upon adjustment for health-system related factors during the entire study period. Our findings suggest that the burden of air pollution increased the risks of COVID-19 in Switzerland during the first wave of the pandemic, but not during the second wave, when the national health system was better prepared.
Collapse
Affiliation(s)
- Anton Beloconi
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Penelope Vounatsou
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
87
|
Alaniz AJ, Carvajal MA, Carvajal JG, Vergara PM. Effects of air pollution and weather on the initial COVID-19 outbreaks in United States, Italy, Spain, and China: A comparative study. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:8-18. [PMID: 36509703 PMCID: PMC9877606 DOI: 10.1111/risa.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Contrasting effects have been identified in association of weather (temperature and humidity) and pollutant gases with COVID-19 infection, which could be derived from the influence of lockdowns and season change. The influence of pollutant gases and climate during the initial phases of the pandemic, before the closures and the change of season in the northern hemisphere, is unknown. Here, we used a spatial-temporal Bayesian zero-inflated-Poisson model to test for short-term associations of weather and pollutant gases with the relative risk of COVID-19 disease in China (first outbreak) and the countries with more cases during the initial pandemic (the United States, Spain and Italy), considering also the effects of season and lockdown. We found contrasting association between pollutant gases and COVID-19 risk in the United States, Italy, and Spain, while in China it was negatively associated (except for SO2 ). COVID-19 risk was positively associated with specific humidity in all countries, while temperature presented a negative effect. Our findings showed that short-term associations of air pollutants with COVID-19 infection vary strongly between countries, while generalized effects of temperature (negative) and humidity (positive) with COVID-19 was found. Our results show novel information about the influence of pollution and weather on the initial outbreaks, which contribute to unravel the mechanisms during the beginning of the pandemic.
Collapse
Affiliation(s)
- Alberto J. Alaniz
- Departamento de Ingeniería Geoespacial y Ambiental, Facultad de IngenieríaUniversidad de Santiago de ChileSantiagoChile
- Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Departamento de Gestión Agraria, Facultad TecnológicaUniversidad de Santiago de ChileSantiagoChile
- Centro de Estudios en Ecología Espacial y Medio AmbienteEcogeografíaSantiagoChile
| | - Mario A. Carvajal
- Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Departamento de Gestión Agraria, Facultad TecnológicaUniversidad de Santiago de ChileSantiagoChile
| | - Jorge G. Carvajal
- Departamento de Gestión Agraria, Facultad TecnológicaUniversidad de Santiago de ChileSantiagoChile
- Centro de Estudios en Ecología Espacial y Medio AmbienteEcogeografíaSantiagoChile
| | - Pablo M. Vergara
- Departamento de Gestión Agraria, Facultad TecnológicaUniversidad de Santiago de ChileSantiagoChile
| |
Collapse
|
88
|
Mehta SK, Ananthavel A, Reddy TVR, Ali S, Mehta SB, Kakkanattu SP, Purushotham P, Betsy KB. Indirect Response of the Temperature, Humidity, and Rainfall on the Spread of COVID-19 over the Indian Monsoon Region. PURE AND APPLIED GEOPHYSICS 2022; 180:383-404. [PMID: 36590883 PMCID: PMC9792162 DOI: 10.1007/s00024-022-03205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This article examines the role of the meteorological variable in the spread of the ongoing pandemic coronavirus disease 2019 (COVID-19) across India. COVID-19 has created an unprecedented situation for public health and brought the world to a standstill. COVID-19 had caused more than 1,523,242 deaths out of 66,183,029 confirmed cases worldwide till the first week of December 2020. We have examined the surface temperature, relative humidity, and rainfall over five cities: Delhi, Mumbai, Kolkata, Bengaluru, and Chennai, which were severely affected by COVID-19. It is found that the prevailing southwest (SW) monsoon during the pandemic has acted as a natural sanitizer in limiting the spread of the virus. The mean rainfall is ~ 20-40 mm over the selected cities, resulting in an average decrease in COVID cases by ~ 18-26% for the next 3 days after the rainfall. The day-to-day variations of the meteorological parameters and COVID-19 cases clearly demonstrate that both surface temperature and relative humidity play a vital role in the indirect transport of the virus. Our analysis reveals that most COVID-19 cases fall within the surface temperature range from 24 to 30 °C and relative humidity range from 50% to 80%. At a given temperature, COVID-19 cases show a large dependency on the relative humidity; therefore, the coastal environments were more prone to infections. Wavelet transforms coherence analysis of the daily COVID-19 cases with temperature and relative humidity reveals a significant coherence within 8 days.
Collapse
Affiliation(s)
- Sanjay Kumar Mehta
- Atmospheric Observations and Modelling Laboratory (AOML), Department of Physics, SRM Institute of Science and Technology, Kattankulathur, 603203 Tamil Nadu India
| | - Aravindhavel Ananthavel
- Atmospheric Observations and Modelling Laboratory (AOML), Department of Physics, SRM Institute of Science and Technology, Kattankulathur, 603203 Tamil Nadu India
- Indian Institute of Tropical Meteorology, Pune, India
| | - T. V. Ramesh Reddy
- Atmospheric Observations and Modelling Laboratory (AOML), Department of Physics, SRM Institute of Science and Technology, Kattankulathur, 603203 Tamil Nadu India
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Saleem Ali
- Atmospheric Observations and Modelling Laboratory (AOML), Department of Physics, SRM Institute of Science and Technology, Kattankulathur, 603203 Tamil Nadu India
- Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Shyam Bihari Mehta
- Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata, 700091 India
| | - Sachin Philip Kakkanattu
- Atmospheric Observations and Modelling Laboratory (AOML), Department of Physics, SRM Institute of Science and Technology, Kattankulathur, 603203 Tamil Nadu India
| | - Pooja Purushotham
- Atmospheric Observations and Modelling Laboratory (AOML), Department of Physics, SRM Institute of Science and Technology, Kattankulathur, 603203 Tamil Nadu India
| | - K. B. Betsy
- Atmospheric Observations and Modelling Laboratory (AOML), Department of Physics, SRM Institute of Science and Technology, Kattankulathur, 603203 Tamil Nadu India
| |
Collapse
|
89
|
Sielski J, Jóźwiak MA, Kaziród-Wolski K, Siudak Z, Jóźwiak M. Impact of Air Pollution and COVID-19 Infection on Periprocedural Death in Patients with Acute Coronary Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16654. [PMID: 36554535 PMCID: PMC9778735 DOI: 10.3390/ijerph192416654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Air pollution and COVID-19 infection affect the pathogenesis of cardiovascular disease. The impact of these factors on the course of ACS treatment is not well defined. The purpose of this study was to evaluate the effects of air pollution, COVID-19 infection, and selected clinical factors on the occurrence of perioperative death in patients with acute coronary syndrome (ACS) by developing a neural network model. This retrospective study included 53,076 patients with ACS from the ORPKI registry (National Registry of Invasive Cardiology Procedures) including 2395 COVID-19 (+) patients and 34,547 COVID-19 (-) patients. The neural network model developed included 57 variables, had high performance in predicting perioperative patient death, and had an error risk of 0.03%. Based on the analysis of the effect of permutation on the variable, the variables with the greatest impact on the prediction of perioperative death were identified to be vascular access, critical stenosis of the left main coronary artery (LMCA) or left anterior descending coronary artery (LAD). Air pollutants and COVID-19 had weaker effects on end-point prediction. The neural network model developed has high performance in predicting the occurrence of perioperative death. Although COVID-19 and air pollutants affect the prediction of perioperative death, the key predictors remain vascular access and critical LMCA or LAD stenosis.
Collapse
Affiliation(s)
- Janusz Sielski
- Collegium Medicum, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19A, 25-369 Kielce, Poland
| | | | - Karol Kaziród-Wolski
- Collegium Medicum, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19A, 25-369 Kielce, Poland
| | - Zbigniew Siudak
- Collegium Medicum, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19A, 25-369 Kielce, Poland
| | - Marek Jóźwiak
- Institute of Geography and Environmental Sciences, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
90
|
Jiang B, Yang Y, Chen L, Liu X, Wu X, Chen B, Webster C, Sullivan WC, Larsen L, Wang J, Lu Y. Green spaces, especially nearby forest, may reduce the SARS-CoV-2 infection rate: A nationwide study in the United States. LANDSCAPE AND URBAN PLANNING 2022; 228:104583. [PMID: 36158763 PMCID: PMC9485427 DOI: 10.1016/j.landurbplan.2022.104583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/10/2023]
Abstract
The coronavirus pandemic is an ongoing global crisis that has profoundly harmed public health. Although studies found exposure to green spaces can provide multiple health benefits, the relationship between exposure to green spaces and the SARS-CoV-2 infection rate is unclear. This is a critical knowledge gap for research and practice. In this study, we examined the relationship between total green space, seven types of green space, and a year of SARS-CoV-2 infection data across 3,108 counties in the contiguous United States, after controlling for spatial autocorrelation and multiple types of covariates. First, we examined the association between total green space and SARS-CoV-2 infection rate. Next, we examined the association between different types of green space and SARS-CoV-2 infection rate. Then, we examined forest-infection rate association across five time periods and five urbanicity levels. Lastly, we examined the association between infection rate and population-weighted exposure to forest at varying buffer distances (100 m to 4 km). We found that total green space was negative associated with the SARS-CoV-2 infection rate. Furthermore, two forest variables (forest outside park and forest inside park) had the strongest negative association with the infection rate, while open space variables had mixed associations with the infection rate. Forest outside park was more effective than forest inside park. The optimal buffer distances associated with lowest infection rate are within 1,200 m for forest outside park and within 600 m for forest inside park. Altogether, the findings suggest that green spaces, especially nearby forest, may significantly mitigate risk of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bin Jiang
- Urban Environments and Human Health Lab, HKUrbanLabs, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
- Division of Landscape Architecture, Department of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yuwen Yang
- Urban Environments and Human Health Lab, HKUrbanLabs, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
- Division of Landscape Architecture, Department of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Long Chen
- Department of Architecture and Civil Engineering, College of Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Xueming Liu
- Urban Environments and Human Health Lab, HKUrbanLabs, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
- Division of Landscape Architecture, Department of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Xueying Wu
- Department of Architecture and Civil Engineering, College of Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Bin Chen
- Future Urbanity & Sustainable Environment (FUSE) Lab, Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
- Urban Systems Institute, The University of Hong Kong, Hong Kong Special Administrative Region
- HKU Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chris Webster
- HKUrbanLabs, Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region
| | - William C Sullivan
- Smart, Healthy Communities Initiative, University of Illinois at Urbana-Champaign, USA
- Department of Landscape Architecture, University of Illinois at Urbana-Champaign, USA
| | - Linda Larsen
- Smart Energy Design Assistance Center, University of Illinois at Urbana-Champaign, USA
| | - Jingjing Wang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Yi Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
91
|
Jin L, Li Z, Zhang X, Li J, Zhu F. CoronaVac: A review of efficacy, safety, and immunogenicity of the inactivated vaccine against SARS-CoV-2. Hum Vaccin Immunother 2022; 18:2096970. [PMID: 35878789 DOI: 10.1080/21645515.2022.2096970] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CoronaVac, also known as the Sinovac inactivated SARS-CoV-2 vaccine, has been widely implemented in combating the COVID-19 pandemic. We summarized the results of clinical trials and real-world studies of CoronaVac in this review. The overall efficacy for the prevention of symptomatic COVID-19 (before the emergence of variants of concern) using two doses of 3 μg CoronaVac was 67.7% (95% CI, 35.9% to 83.7%). Effectiveness in preventing hospitalizations, ICU admissions, and deaths was more prominent than that in preventing COVID-19. A third dose inherited the effectiveness against non-variants of concern and increased effectiveness against severe COVID-19 outcomes caused by omicron variants compared to two doses. Most adverse reactions were mild. Few vaccine-related serious adverse reactions have been reported. Moreover, three-dose regimen significantly increased the seroconversion levels of neutralizing antibodies against omicron as compared to two-dose regimen. This review of CoronaVac may provide a scientific basis for optimizing global immunization strategies.
Collapse
Affiliation(s)
- Lairun Jin
- School of Public Health, Southeast University, Nanjing, P.R. China
| | - Zhuopei Li
- School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Xiaoyin Zhang
- School of Public Health, Southeast University, Nanjing, P.R. China
| | - Jingxin Li
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P.R. China
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing, P.R. China.,National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P.R. China
| |
Collapse
|
92
|
Gupta N, Yadav VK, Gacem A, Al-Dossari M, Yadav KK, Abd El-Gawaad NS, Ben Khedher N, Choudhary N, Kumar P, Cavalu S. Deleterious Effect of Air Pollution on Human Microbial Community and Bacterial Flora: A Short Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315494. [PMID: 36497569 PMCID: PMC9738139 DOI: 10.3390/ijerph192315494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 05/10/2023]
Abstract
A balanced microbiota composition is requisite for normal physiological functions of the human body. However, several environmental factors such as air pollutants may perturb the human microbiota composition. It is noticeable that currently around 99% of the world's population is breathing polluted air. Air pollution's debilitating health impacts have been studied scrupulously, including in the human gut microbiota. Nevertheless, air pollution's impact on other microbiotas of the human body is less understood so far. In the present review, the authors have summarized and discussed recent studies' outcomes related to air pollution-driven microbiotas' dysbiosis (including oral, nasal, respiratory, gut, skin, and thyroid microbiotas) and its potential multi-organ health risks.
Collapse
Affiliation(s)
- Nishant Gupta
- Department of Medical Research & Development, River Engineering, Toy City, Ecotech-III, Greater Noida 201305, India
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science & Technology, Lakshmangarh, Sikar 332311, India
- Correspondence: (V.K.Y.); (S.C.)
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - M. Al-Dossari
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad 462044, India
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Nidhal Ben Khedher
- Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il 81451, Saudi Arabia
- Laboratory of Thermal and Energy Systems Studies, National School of Engineering of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Nisha Choudhary
- Department of Environmental Sciences, School of Sciences, P P Savani University, Surat 394125, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (V.K.Y.); (S.C.)
| |
Collapse
|
93
|
Sharifi A. An overview and thematic analysis of research on cities and the COVID-19 pandemic: Toward just, resilient, and sustainable urban planning and design. iScience 2022; 25:105297. [PMID: 36246575 PMCID: PMC9540689 DOI: 10.1016/j.isci.2022.105297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/11/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022] Open
Abstract
Since early 2020, researchers have made efforts to study various issues related to cities and the pandemic. Despite the wealth of research on this topic, there are only a few review articles that explore multiple issues related to it. This is partly because of the rapid pace of publications that makes systematic literature review challenging. To address this issue, in the present study, we rely on bibliometric analysis techniques to gain an overview of the knowledge structure and map key themes and trends of research on cities and the pandemic. Results of the analysis of 2,799 articles show that research mainly focuses on six broad themes: air quality, meteorological factors, built environment factors, transportation, socio-economic disparities, and smart cities, with the first three being dominant. Based on the findings, we discuss major lessons that can be learned from the pandemic and highlight key areas that need further research.
Collapse
Affiliation(s)
- Ayyoob Sharifi
- Hiroshima University, Graduate School of Humanities and Social Science, Higashi-Hiroshima, Hiroshima, Japan
- Network for Education and Research on Peace and Sustainability (NERPS)
- Center for Peaceful and Sustainable Futures (CEPEAS), The IDEC Institute, Hiroshima University
| |
Collapse
|
94
|
Papagerakis S, Said R, Ketabat F, Mahmood R, Pundir M, Lobanova L, Guenther G, Pannone G, Lavender K, McAlpin BR, Moreau A, Chen X, Papagerakis P. When the clock ticks wrong with COVID-19. Clin Transl Med 2022; 12:e949. [PMID: 36394205 PMCID: PMC9670202 DOI: 10.1002/ctm2.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronavirus family that causes the novel coronavirus disease first diagnosed in 2019 (COVID-19). Although many studies have been carried out in recent months to determine why the disease clinical presentations and outcomes can vary significantly from asymptomatic to severe or lethal, the underlying mechanisms are not fully understood. It is likely that unique individual characteristics can strongly influence the broad disease variability; thus, tailored diagnostic and therapeutic approaches are needed to improve clinical outcomes. The circadian clock is a critical regulatory mechanism orchestrating major physiological and pathological processes. It is generally accepted that more than half of the cell-specific genes in any given organ are under circadian control. Although it is known that a specific role of the circadian clock is to coordinate the immune system's steady-state function and response to infectious threats, the links between the circadian clock and SARS-CoV-2 infection are only now emerging. How inter-individual variability of the circadian profile and its dysregulation may play a role in the differences noted in the COVID-19-related disease presentations, and outcome remains largely underinvestigated. This review summarizes the current evidence on the potential links between circadian clock dysregulation and SARS-CoV-2 infection susceptibility, disease presentation and progression, and clinical outcomes. Further research in this area may contribute towards novel circadian-centred prognostic, diagnostic and therapeutic approaches for COVID-19 in the era of precision health.
Collapse
Affiliation(s)
- Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Biochemistry, Microbiology and Immunology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Otolaryngology – Head and Neck Surgery, Medical SchoolThe University of MichiganAnn ArborMichiganUSA
| | - Raed Said
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Anatomy, Physiology and Pharmacology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Razi Mahmood
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Greg Guenther
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental MedicineUniversity of FoggiaFoggiaItaly
| | - Kerry Lavender
- Department of Biochemistry, Microbiology and Immunology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Blake R. McAlpin
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal DiseasesCentre Hospitalier Universitaire (CHU) Sainte‐Justine Research CenterMontrealQuebecCanada,Department of Stomatology, Faculty of Dentistry and Department of Biochemistry and Molecular Medicine, Faculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Xiongbiao Chen
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Mechanical Engineering, School of EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Petros Papagerakis
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
95
|
Singh A. Ambient air pollution and COVID-19 in Delhi, India: a time-series evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2575-2588. [PMID: 34538153 DOI: 10.1080/09603123.2021.1977258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to explore the short-term health effects of ambient air pollutants PM2.5, PM10, SO2, NO2, O3, and CO on COVID-19 daily new cases and COVID-19 daily new deaths. A time-series design used in this study. Data were obtained from 1 April 2020 to 31 December 2020 in the National Capital Territory (NCT) of Delhi, India. The generalized additive models (GAMs) were applied to explore the associations of six air pollutants with COVID-19 daily new cases and COVID-19 daily new deaths. The GAMs revealed statistically significant associations of ambient air pollutants with COVID-19 daily new cases and COVID-19 daily new deaths. These findings suggest that governments need to give greater considerations to regions with higher concentrations of PM2.5, PM10, SO2, NO2, O3, and CO, since these areas may experience a more serious COVID-19 pandemic or, in general, any respiratory disease.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Mathematics and Scientific Computing, National Institute of Technology Hamirpur, Hamirpur, Himchal Pradesh, India
| |
Collapse
|
96
|
Meskher H, Belhaouari SB, Thakur AK, Sathyamurthy R, Singh P, Khelfaoui I, Saidur R. A review about COVID-19 in the MENA region: environmental concerns and machine learning applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82709-82728. [PMID: 36223015 PMCID: PMC9554385 DOI: 10.1007/s11356-022-23392-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has delayed global economic growth, which has affected the economic life globally. On the one hand, numerous elements in the environment impact the transmission of this new coronavirus. Every country in the Middle East and North Africa (MENA) area has a different population density, air quality and contaminants, and water- and land-related conditions, all of which influence coronavirus transmission. The World Health Organization (WHO) has advocated fast evaluations to guide policymakers with timely evidence to respond to the situation. This review makes four unique contributions. One, many data about the transmission of the new coronavirus in various sorts of settings to provide clear answers to the current dispute over the virus's transmission were reviewed. Two, highlight the most significant application of machine learning to forecast and diagnose severe acute respiratory syndrome coronavirus (SARS-CoV-2). Three, our insights provide timely and accurate information along with compelling suggestions and methodical directions for investigators. Four, the present study provides decision-makers and community leaders with information on the effectiveness of environmental controls for COVID-19 dissemination.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Process Engineering, College of Applied Science, Kasdi-Merbah University, 30000, Ouargla, Algeria
| | - Samir Brahim Belhaouari
- Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu, 641407, India
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dammam, Saudi Arabia.
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Mathura, Uttar Pradesh, 281406, India
| | - Issam Khelfaoui
- School of Insurance and Economics, University of International Business and Economics, Beijing, China
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Malaysia
| |
Collapse
|
97
|
Di Ciaula A, Moshammer H, Lauriola P, Portincasa P. Environmental health, COVID-19, and the syndemic: internal medicine facing the challenge. Intern Emerg Med 2022; 17:2187-2198. [PMID: 36181580 PMCID: PMC9525944 DOI: 10.1007/s11739-022-03107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Internists are experts in complexity, and the COVID-19 pandemic is disclosing complex and unexpected interactions between communicable and non-communicable diseases, environmental factors, and socio-economic disparities. The medicine of complexity cannot be limited to facing comorbidities and to the clinical management of multifaceted diseases. Evidence indicates how climate change, pollution, demographic unbalance, and inequalities can affect the spreading and outcomes of COVID-19 in vulnerable communities. These elements cannot be neglected, and a wide view of public health aspects by a "one-health" approach is strongly and urgently recommended. According to World Health Organization, 35% of infectious diseases involving the lower respiratory tract depend on environmental factors, and infections from SARS-Cov-2 is not an exception. Furthermore, environmental pollution generates a large burden of non-communicable diseases and disabilities, increasing the individual vulnerability to COVID-19 and the chance for the resilience of large communities worldwide. In this field, the awareness of internists must increase, as privileged healthcare providers. They need to gain a comprehensive knowledge of elements characterizing COVID-19 as part of a syndemic. This is the case when pandemic events hit vulnerable populations suffering from the increasing burden of chronic diseases, disabilities, and social and economic inequalities. Mastering the interplay of such events requires a change in overall strategy, to adequately manage not only the SARS-CoV-2 infection but also the growing burden of non-communicable diseases by a "one health" approach. In this context, experts in internal medicine have the knowledge and skills to drive this change.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- International Society of Doctors for Environment (ISDE), Geneva, Switzerland
| | - Hanns Moshammer
- International Society of Doctors for Environment (ISDE), Geneva, Switzerland
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Vienna, Austria
- Department of Hygiene, Medical University of Karakalpakstan, Nukus, Uzbekistan 230100
| | - Paolo Lauriola
- International Society of Doctors for Environment (ISDE), Geneva, Switzerland
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
98
|
Allouche J, Cremoni M, Brglez V, Graça D, Benzaken S, Zorzi K, Fernandez C, Esnault V, Levraut M, Oppo S, Jacquinot M, Armengaud A, Pradier C, Bailly L, Seitz-Polski B. Air pollution exposure induces a decrease in type II interferon response: A paired cohort study. EBioMedicine 2022; 85:104291. [PMID: 36183487 PMCID: PMC9525814 DOI: 10.1016/j.ebiom.2022.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
Background While air pollution is a major issue due to its harmful effects on human health, few studies focus on its impact on the immune system and vulnerability to viral infections. The lockdown declared following the COVID-19 pandemic represents a unique opportunity to study the large-scale impact of variations in air pollutants in real life. We hypothesized that variations in air pollutants modify Th1 response represented by interferon (IFN) γ production. Methods We conducted a single center paired pilot cohort study of 58 participants, and a confirmation cohort of 320 participants in Nice (France), with for each cohort two samplings at six months intervals. We correlated the variations in the production of IFNγ after non-specific stimulation of participants’ immune cells with variations in key regulated pollutants: NO2, O3, PM2.5, and PM10 and climate variables. Using linear regression, we studied the effects of variations of each pollutant on the immune response. Findings In the pilot cohort, IFNγ production significantly decreased by 25.7% post-lockdown compared to during lockdown, while NO2 increased significantly by 46.0%. After the adjustment for climate variations during the study period (sunshine and temperature), we observed a significant effect of NO2 variation on IFNγ production (P=0.03). In the confirmation cohort IFNγ decreased significantly by 47.8% and after adjustment for environmental factors and intrinsic characteristics we observed a significant effect of environmental factors: NO2, PM10, O3, climatic conditions (sunshine exposure, relative humidity) on variation in IFNγ production (P=0.005, P<0.001, P=0.001, P=0.002 and P<0.001 respectively) but not independently from the BMI at inclusion and the workplace P=0.007 and P<0.001 respectively). Interpretation We show a weakening of the antiviral cellular response in correlation with an increase of pollutants exposition. Funding Agence Nationale de la Recherche, Conseil Départemental des Alpes-Maritimes and Region Sud.
Collapse
Affiliation(s)
- Jonathan Allouche
- Department of Public Health, University Hospital of Nice, University Côte, France; Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Marion Cremoni
- Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France; Immunology Department, University Hospital of Nice, Université Côte d'Azur, Nice, France
| | - Vesna Brglez
- Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France; Immunology Department, University Hospital of Nice, Université Côte d'Azur, Nice, France
| | - Daisy Graça
- Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France; Immunology Department, University Hospital of Nice, Université Côte d'Azur, Nice, France
| | - Sylvia Benzaken
- Immunology Department, University Hospital of Nice, Université Côte d'Azur, Nice, France
| | - Kévin Zorzi
- Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Céline Fernandez
- Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France; Immunology Department, University Hospital of Nice, Université Côte d'Azur, Nice, France
| | - Vincent Esnault
- Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Michaël Levraut
- Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Sonia Oppo
- AtmoSud, Air Quality Observatory for Southern Region, Marseille, France
| | - Morgan Jacquinot
- AtmoSud, Air Quality Observatory for Southern Region, Marseille, France
| | | | - Christian Pradier
- Department of Public Health, University Hospital of Nice, University Côte, France; Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Laurent Bailly
- Department of Public Health, University Hospital of Nice, University Côte, France; Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Barbara Seitz-Polski
- Clinical Research Unit of the Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France; Immunology Department, University Hospital of Nice, Université Côte d'Azur, Nice, France.
| |
Collapse
|
99
|
Stephan T, Al-Turjman F, Ravishankar M, Stephan P. Machine learning analysis on the impacts of COVID-19 on India's renewable energy transitions and air quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79443-79465. [PMID: 35715677 PMCID: PMC9205654 DOI: 10.1007/s11356-022-20997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 05/12/2023]
Abstract
India is severely affected by the COVID-19 pandemic and is facing an unprecedented public health emergency. While the country's immediate measures focus on combating the coronavirus spread, it is important to investigate the impacts of the current crisis on India's renewable energy transition and air quality. India's economic slowdown is mainly compounded by the collapse of global oil prices and the erosion of global energy demand. A clean energy transition is a key step in enabling the integration of energy and climate. Millions in India are affected owing to fossil fuel pollution and the increasing climate heating that has led to inconceivable health impacts. This paper attempts to study the impact of COVID-19 on India's climate and renewable energy transitions through machine learning algorithms. India is observing a massive collapse in energy demand during the lockdown as its coal generation is suffering the worst part of the ongoing pandemic. During this current COVID-19 crisis, the renewable energy sector benefits from its competitive cost and the Indian government's must-run status to run generators based on renewable energy sources. In contrast to fossil fuel-based power plants, renewable energy sources are not exposed to the same supply chain disruptions in this current pandemic situation. India has the definite potential to surprise the global community and contribute to cost-effective decarbonization. Moreover, the country has a good chance of building more flexibility into the renewable energy sector to avoid an unstable future.
Collapse
Affiliation(s)
- Thompson Stephan
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka India 560054
| | - Fadi Al-Turjman
- Artificial Intelligence Engineering Dept., AI and Robotics Institute, Near East University, Mersin 10, Turkey
| | - Monica Ravishankar
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka India 560054
| | - Punitha Stephan
- Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu India 641114
| |
Collapse
|
100
|
Association Between Air Pollution, Climate Change, and COVID-19 Pandemic: A Review of the Recent Scientific Evidence. HEALTH SCOPE 2022. [DOI: 10.5812/jhealthscope-122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Background: Recent studies indicated the possible relationship between climate change, environmental pollution, and Coronavirus Disease 2019 (COVID-19) pandemic. This study reviewed the effects of air pollution, climate parameters, and lockdown on the number of cases and deaths related to COVID-19. Methods: The present review was performed to determine the effects of weather and air pollution on the number of cases and deaths related to COVID-19 during the lockdown. Articles were collected by searching the existing online databases, such as PubMed, Science Direct, and Google Scholar, with no limitations on publication dates. Afterwards, this review focused on outdoor air pollution, including PM2.5, PM10, NO2, SO2, and O3, and weather conditions affecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19. Results: Most reviewed investigations in the present study showed that exposure to air pollutants, particularly PM2.5 and NO2, is positively related to COVID-19 patients and mortality. Moreover, these studies showed that air pollution could be essential in transmitting COVID-19. Local meteorology plays a vital role in coronavirus spread and mortality. Temperature and humidity variables are negatively correlated with virus transmission. The evidence demonstrated that air pollution could lead to COVID-19 transmission. These results support decision-makers in curbing potential new outbreaks. Conclusions: Overall, in environmental perspective-based COVID-19 studies, efforts should be accelerated regarding effective policies for reducing human emissions, bringing about air pollution and weather change. Therefore, using clean and renewable energy sources will increase public health and environmental quality by improving global air quality.
Collapse
|