51
|
Bernaudat F, Gustems M, Günther J, Oliva MF, Buschle A, Göbel C, Pagniez P, Lupo J, Signor L, Müller CW, Morand P, Sattler M, Hammerschmidt W, Petosa C. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Res 2021; 50:490-511. [PMID: 34893887 PMCID: PMC8754650 DOI: 10.1093/nar/gkab1183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
In infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter. ZEBRA recognizes the CpG methylation marks through a ZEBRA-specific serine and a methylcytosine-arginine-guanine triad resembling that found in canonical methyl-CpG binding proteins. ZEBRA preferentially binds the meZRE over the AP-1 site but mutating the ZEBRA-specific serine to alanine inverts this selectivity and abrogates viral replication. Our findings elucidate a DNA methylation-dependent switch in ZEBRA's transactivation function that enables ZEBRA to bind AP-1 sites and promote viral latency early during infection and subsequently, under appropriate conditions, to trigger EBV lytic replication by binding meZREs.
Collapse
Affiliation(s)
- Florent Bernaudat
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Montse Gustems
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Johannes Günther
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Mizar F Oliva
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Christine Göbel
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Priscilla Pagniez
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Julien Lupo
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Patrice Morand
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Carlo Petosa
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
52
|
Malat P, Ekalaksananan T, Heawchaiyaphum C, Suebsasana S, Roytrakul S, Yingchutrakul Y, Pientong C. Andrographolide Inhibits Lytic Reactivation of Epstein-Barr Virus by Modulating Transcription Factors in Gastric Cancer. Microorganisms 2021; 9:microorganisms9122561. [PMID: 34946164 PMCID: PMC8708910 DOI: 10.3390/microorganisms9122561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Andrographolide is the principal bioactive chemical constituent of Andrographis paniculata and exhibits activity against several viruses, including Epstein–Barr virus (EBV). However, the particular mechanism by which andrographolide exerts an anti-EBV effect in EBV-associated gastric cancer (EBVaGC) cells remains unclear. We investigated the molecular mechanism by which andrographolide inhibits lytic reactivation of EBV in EBVaGC cells (AGS-EBV cell line) using proteomics and bioinformatics approaches. An andrographolide treatment altered EBV protein-expression patterns in AGS-EBV cells by suppressing the expression of EBV lytic protein. Interestingly cellular transcription factors (TFs), activators for EBV lytic reactivation, such as MEF2D and SP1, were significantly abolished in AGS-EBV cells treated with andrographolide and sodium butyrate (NaB) compared with NaB-treated cells. In contrast, the suppressors of EBV lytic reactivation, such as EZH2 and HDAC6, were significantly up-regulated in cells treated with both andrographolide and NaB compared with NaB treatment alone. In addition, bioinformatics predicted that HDAC6 could interact directly with MEF2D and SP1. Furthermore, andrographolide significantly induced cell cytotoxicity and apoptosis of AGS-EBV cells by induction of apoptosis-related protein expression. Our results suggest that andrographolide inhibits EBV lytic reactivation by inhibition of host TFs, partially through the interaction of HDAC6 with TFs, and induces apoptosis of EBVaGC cells.
Collapse
Affiliation(s)
- Praphatson Malat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (T.E.); (C.H.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (T.E.); (C.H.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (T.E.); (C.H.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supawadee Suebsasana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Bangkok 10200, Thailand;
| | - Sittiruk Roytrakul
- Genome Technology Research Unit, Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (S.R.); (Y.Y.)
| | - Yodying Yingchutrakul
- Genome Technology Research Unit, Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (S.R.); (Y.Y.)
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (T.E.); (C.H.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
53
|
Epstein-Barr virus miR-BHRF1-3 targets the BZLF1 3'UTR and regulates the lytic cycle. J Virol 2021; 96:e0149521. [PMID: 34878852 DOI: 10.1128/jvi.01495-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Suppression of lytic viral gene expression is a key aspect of the Epstein-Barr virus (EBV) life cycle to facilitate the establishment of latent infection. Molecular mechanisms regulating transitions between EBV lytic replication and latency are not fully understood. Here, we investigated the impact of viral microRNAs on the EBV lytic cycle. Through functional assays, we found that miR-BHRF1-3 attenuates EBV lytic gene expression following reactivation. To understand the miRNA targets contributing to this activity, we performed Ago PAR-CLIP analysis on EBV-positive, reactivated Burkitt's lymphoma cells and identified multiple miR-BHRF1-3 interactions with viral transcripts. Using luciferase reporter assays, we confirmed a miRNA interaction site within the 3'UTR of BZLF1 which encodes the essential immediate early (IE) transactivator Zta. Comparison of >850 published EBV genomes identified sequence polymorphisms within the miR-BHRF1-3 locus that deleteriously affect miRNA expression and function. Molecular interactions between the homologous viral miRNA, miR-rL1-17, and IE transcripts encoded by rhesus lymphocryptovirus were further identified. Our data demonstrate that regulation of IE gene expression by a BHRF1 miRNA is conserved amongst lymphocryptoviruses, and further reveal virally-encoded genetic elements that orchestrate viral antigen expression during the lytic cycle. Importance Epstein-Barr virus infection is predominantly latent in healthy individuals, while periodic cycles of reactivation are thought to facilitate persistent lifelong infection. Lytic infection has been linked to development of certain EBV-associated diseases. Here, we demonstrate that EBV miR-BHRF1-3 can suppress lytic replication by directly inhibiting Zta expression. Moreover, we identify nucleotide variants that impact the function of miR-BHRF1-3, which may contribute to specific EBV pathologies.
Collapse
|
54
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
55
|
Van Sciver N, Ohashi M, Nawandar DM, Pauly NP, Lee D, Makielski KR, Bristol JA, Tsao SW, Lambert PF, Johannsen EC, Kenney SC. ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathog 2021; 17:e1010045. [PMID: 34748616 PMCID: PMC8601603 DOI: 10.1371/journal.ppat.1010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/18/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Dhananjay M. Nawandar
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Currently at Ring Therapeutics, Cambridge, Massachusetts, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Kathleen R. Makielski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
56
|
Xue WQ, Wang TM, Huang JW, Zhang JB, He YQ, Wu ZY, Liao Y, Yuan LL, Mu J, Jia WH. A comprehensive analysis of genetic diversity of EBV reveals potential high-risk subtypes associated with nasopharyngeal carcinoma in China. Virus Evol 2021; 7:veab010. [PMID: 34567789 PMCID: PMC8458747 DOI: 10.1093/ve/veab010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr virus (EBV), a widespread oncovirus, is associated with multiple cancers including nasopharyngeal carcinoma (NPC), gastric cancer and diverse lymphoid malignancies. Recent studies reveal that specific EBV strains or subtypes are associated with NPC development in endemic regions. However, these NPC specific subtypes were only identified in a portion of infected individuals due possibly to the limited samples size studied or the complicated population structures of the virus. To identify additional high-risk EBV subtypes, we conducted a comprehensive genetic analysis of 22 critical viral proteins by using the largest dataset of 628 EBV genomes and 792 sequences of single target genes/proteins from GenBank. The phylogenetic, principal component and genetic structure analyses of these viral proteins were performed through worldwide populations. In addition to the general Asia-Western/Africa geographic segregation, population structure analysis showed a 'Chinese-unique' cluster (96.57% isolates from China) was highly enriched in the NPC patients, compared to the healthy individuals (89.6% vs. 44.5%, P < 0.001). The newly identified EBV subtypes, which contains four Chinese-specific NPC-associated amino acid substitutions (BALF2 V317M, BNRF1 G696R, V1222I and RPMS1 D51E), showed a robust positive association with the risk of NPC in China (Odds Ratio = 4.80, 20.00, 18.24 and 32.00 for 1, 2, 3 and 4 substitutions, respectively, P trend <0.001). Interestingly, the coincidence of positively selected sites with NPC-associated substitutions suggests that adaptive nonsynonymous mutation on critical proteins, such as BNRF1, may interact with host immune system and contribute to the carcinogenesis of NPC. Our findings provide a comprehensive overview of EBV genetic structure for worldwide populations and offer novel clues to EBV carcinogenesis from the aspect of evolution.
Collapse
Affiliation(s)
- Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jing-Wen Huang
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zi-Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Lei-Lei Yuan
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville 20852, MD, USA
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Corresponding author: E-mail:
| |
Collapse
|
57
|
Caspases Switch off the m 6A RNA Modification Pathway to Foster the Replication of a Ubiquitous Human Tumor Virus. mBio 2021; 12:e0170621. [PMID: 34425696 PMCID: PMC8406275 DOI: 10.1128/mbio.01706-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The methylation of RNA at the N6 position of adenosine (m6A) orchestrates multiple biological processes to control development, differentiation, and cell cycle, as well as various aspects of the virus life cycle. How the m6A RNA modification pathway is regulated to finely tune these processes remains poorly understood. Here, we discovered the m6A reader YTHDF2 as a caspase substrate via proteome-wide prediction, followed by in vitro and in vivo validations. We further demonstrated that cleavage-resistant YTHDF2 blocks, while cleavage-mimicking YTHDF2 fragments promote, the replication of a common human oncogenic virus, Epstein-Barr virus (EBV). Intriguingly, our study revealed a feedback regulation between YTHDF2 and caspase-8 via m6A modification of CASP8 mRNA and YTHDF2 cleavage during EBV replication. Further, we discovered that caspases cleave multiple components within the m6A RNA modification pathway to benefit EBV replication. Our study establishes that caspase disarming of the m6A RNA modification machinery fosters EBV replication. IMPORTANCE The discovery of an N6-methyladenosine (m6A) RNA modification pathway has fundamentally altered our understanding of the central dogma of molecular biology. This pathway is controlled by methyltransferases (writers), demethylases (erasers), and specific m6A binding proteins (readers). Emerging studies have linked the m6A RNA modification pathway to the life cycle of various viruses. However, very little is known regarding how this pathway is subverted to benefit viral replication. In this study, we established an unexpected linkage between cellular caspases and the m6A modification pathway, which is critical to drive the reactivation of a common tumor virus, Epstein-Barr virus (EBV).
Collapse
|
58
|
Lee SH, Choi SJ, Choi W, Cho S, Cho M, Kim DS, Kang BW, Kim JG, Lee YM, Cho H, Kang H. Cisplatin Resistance in Epstein-Barr-Virus-Associated Gastric Carcinoma Acquired through ATM Methylation. Cancers (Basel) 2021; 13:cancers13174252. [PMID: 34503060 PMCID: PMC8428228 DOI: 10.3390/cancers13174252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Gastric cancer (GC) is the fifth-leading type of cancer and the third –leading cause of death from cancer. Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is recently accountable for 10% of all the GC worldwide. Platinum drugs such as cisplatin and oxaliplatin are the first-line choice in GC chemotherapy. The widespread use of cisplatin leads to make tumor cells develop single or multiple drug resistance via various mechanisms. DNA hypermethylation on tumor suppressor genes is one of causes leading to drug resistances. 5-Azacytidine (5-AZA) is a chemical analogue of cytidine and inhibits DNA methyltransferase, resulting in DNA hypomethylation. Our main objective was to identify synergistic effect of two important GC drugs whose mechanisms may be in complementary cooperation. We found that cisplatin enhances its anticancer activity with 5-AZA through DNA demethylation in EBVaGC. Identifying this synergistic effect of two important GC drugs can be useful to treat EBVaGC which shows resistance to platinum-based chemotherapy. Abstract Epstein–Barr-virus-associated gastric carcinoma (EBVaGC), first reported in 1992, currently accounts for 10% of all gastric carcinoma worldwide. EBVaGC has unique DNA hypermethylation phenotypes that allow for higher proportions of DNA methylation than any other gastric cancer. CpG islands in the gene promoter region are one of the major regions in which DNA methylation controls gene transcription. Despite cisplatin-based chemotherapy being one of the standard treatment regimens for advanced gastric cancer, including EBVaGC, cisplatin alone or in combination with 5-fluorouracil has been limited by its less potent anticancer activity and the occurrence of cisplatin resistance. Accordingly, the current study evaluated the anticancer activities of a combination of cisplatin and 5-Azacytidine (5-AZA) against EBVaGC. Our findings showed that cisplatin upregulated the DNMT3A gene, whereas shRNA-targeted removal of DNMT3A mRNA contributed to cisplatin-mediated EBV lytic reactivation. Moreover, the removal of DNMT3A mRNA upregulated the ATM gene through DNA demethylation on the ATM promoter. Furthermore, CRISPR/Cas9-targeted removal of the ATM gene resulted in significantly reduced cell susceptibility and EBV lytic reactivation by a combination of cisplatin and DNMT3A inhibitor 5-AZA. Finally, 5-AZA exhibited a synergistic effect with cisplatin in anti-EBV and anti-EBVaGC activities by increasing drug susceptibility and EBV lytic reactivation. The aforementioned results suggest that cisplatin combined with DNA methylation inhibitors could be a novel therapeutic approach for EBVaGC.
Collapse
Affiliation(s)
- Sun Hee Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Su Jin Choi
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Wonhyeok Choi
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Subin Cho
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Miyeon Cho
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Byung Woog Kang
- Department of Oncology/Hematology, Cancer Research Institute, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41405, Korea; (B.W.K.); (J.G.K.)
| | - Jong Gwang Kim
- Department of Oncology/Hematology, Cancer Research Institute, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41405, Korea; (B.W.K.); (J.G.K.)
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
- Correspondence: (H.C.); (H.K.); Tel.: +82-02-901-8678 (H.C.); +82-053-950-8569 (H.K.); Fax: +82-02-901-8386 (H.C.); +82-053-950-8557 (H.K.)
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
- Correspondence: (H.C.); (H.K.); Tel.: +82-02-901-8678 (H.C.); +82-053-950-8569 (H.K.); Fax: +82-02-901-8386 (H.C.); +82-053-950-8557 (H.K.)
| |
Collapse
|
59
|
Frey TR, Akinyemi IA, Burton EM, Bhaduri-McIntosh S, McIntosh MT. An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles. Front Microbiol 2021; 12:708404. [PMID: 34434177 PMCID: PMC8381357 DOI: 10.3389/fmicb.2021.708404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist as life-long infections alternating between latency and lytic replication. Human endogenous retroviruses (HERVs), via integration into the host genome, represent genetic remnants of ancient retroviral infections. Both show similar epigenetic silencing while dormant, but can reactivate in response to cell signaling cues or triggers that, for gammaherpesviruses, result in productive lytic replication. Given their co-existence with humans and shared epigenetic silencing, we asked if HERV expression might be linked to lytic activation of human gammaherpesviruses. We found ERVW-1 mRNA, encoding the functional HERV-W envelope protein Syncytin-1, along with other repeat class elements, to be elevated upon lytic activation of EBV. Knockdown/knockout of ERVW-1 reduced lytic activation of EBV and KSHV in response to various lytic cycle triggers. In this regard, reduced expression of immediate early proteins ZEBRA and RTA for EBV and KSHV, respectively, places Syncytin-1's influence on lytic activation mechanistically upstream of the latent-to-lytic switch. Conversely, overexpression of Syncytin-1 enhanced lytic activation of EBV and KSHV in response to lytic triggers, though this was not sufficient to induce lytic activation in the absence of such triggers. Syncytin-1 is expressed in replicating B cell blasts and lymphoma-derived B cell lines where it appears to contribute to cell cycle progression. Together, human gammaherpesviruses and B cells appear to have adapted a dependency on Syncytin-1 that facilitates the ability of EBV and KSHV to activate lytic replication from latency, while promoting viral persistence during latency by contributing to B cell proliferation.
Collapse
Affiliation(s)
- Tiffany R. Frey
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Ibukun A. Akinyemi
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Michael T. McIntosh
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
60
|
Van Sciver N, Ohashi M, Pauly NP, Bristol JA, Nelson SE, Johannsen EC, Kenney SC. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathog 2021; 17:e1009783. [PMID: 34339458 PMCID: PMC8360610 DOI: 10.1371/journal.ppat.1009783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/12/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
61
|
Suppression of JAK-STAT signaling by Epstein-Barr virus tegument protein BGLF2 through recruitment of SHP1 phosphatase and promotion of STAT2 degradation. J Virol 2021; 95:e0102721. [PMID: 34319780 DOI: 10.1128/jvi.01027-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Some lytic proteins encoded by Epstein-Barr virus (EBV) suppress host interferon (IFN) signaling to facilitate viral replication. In this study we sought to identify and characterize EBV proteins antagonizing IFN signaling. The induction of IFN-stimulated genes (ISGs) by IFN-β was effectively suppressed by EBV. A functional screen was therefore performed to identify IFN-antagonizing proteins encoded by EBV. EBV tegument protein BGLF2 was identified as a potent suppressor of JAK-STAT signaling. This activity was found to be independent of its stimulatory effect on p38 and JNK pathways. Association of BGLF2 with STAT2 resulted in more pronounced K48-linked polyubiquitination and proteasomal degradation of the latter. Mechanistically, BGLF2 promoted the recruitment of SHP1 phosphatase to STAT1 to inhibit its tyrosine phosphorylation. In addition, BGLF2 associated with cullin 1 E3 ubiquitin ligase to facilitate its recruitment to STAT2. Consequently, BGLF2 suppressed ISG induction by IFN-β. Furthermore, BGLF2 also suppressed type II and type III IFN signaling, although the suppressive effect on type II IFN response was milder. When pre-treated with IFN-β, host cells became less susceptible to primary infection of EBV. This phenotype was reversed when expression of BGLF2 was enforced. Finally, genetic disruption of BGLF2 in EBV led to more pronounced induction of ISGs. Taken together, our study unveils the roles of BGLF2 not only in the subversion of innate IFN response but also in lytic infection and reactivation of EBV. Importance Epstein-Barr virus (EBV) is an oncogenic virus associated with the development of lymphoid and epithelial malignancies. EBV has to subvert interferon-mediated host antiviral response to replicate and cause diseases. It is therefore of great interest to identify and characterize interferon-antagonizing proteins produced by EBV. In this study we perform a screen to search for EBV proteins that suppress the action of interferons. We further show that BGLF2 protein of EBV is particularly strong in this suppression. This is achieved by inhibiting two key proteins STAT1 and STAT2 that mediate the antiviral activity of interferons. BGLF2 recruits a host enzyme to remove the phosphate group from STAT1 thereby inactivating its activity. BGLF2 also redirects STAT2 for degradation. A recombinant virus in which BGLF2 gene has been disrupted can activate host interferon response more robustly. Our findings reveal a novel mechanism by which EBV BGLF2 protein suppresses interferon signaling.
Collapse
|
62
|
Abstract
Epstein-Barr virus (EBV) is associated with 200,000 cancers annually, including B-cell lymphomas in immunosuppressed hosts. Hypomorphic mutations of the de novo pyrimidine synthesis pathway enzyme cytidine 5′ triphosphate synthase 1 (CTPS1) suppress cell-mediated immunity, resulting in fulminant EBV infection and EBV+ central nervous system (CNS) lymphomas. Since CTP is a critical precursor for DNA, RNA, and phospholipid synthesis, this observation raises the question of whether the isozyme CTPS2 or cytidine salvage pathways help meet CTP demand in EBV-infected B cells. Here, we found that EBV upregulated CTPS1 and CTPS2 with distinct kinetics in newly infected B cells. While CRISPR CTPS1 knockout caused DNA damage and proliferation defects in lymphoblastoid cell lines (LCLs), which express the EBV latency III program observed in CNS lymphomas, double CTPS1/2 knockout caused stronger phenotypes. EBNA2, MYC, and noncanonical NF-κB positively regulated CTPS1 expression. CTPS1 depletion impaired EBV lytic DNA synthesis, suggesting that latent EBV may drive pathogenesis with CTPS1 deficiency. Cytidine rescued CTPS1/2 deficiency phenotypes in EBV-transformed LCLs and Burkitt B cells, highlighting CTPS1/2 as a potential therapeutic target for EBV-driven lymphoproliferative disorders. Collectively, our results suggest that CTPS1 and CTPS2 have partially redundant roles in EBV-transformed B cells and provide insights into EBV pathogenesis with CTPS1 deficiency.
Collapse
|
63
|
Yuan L, Deng C, Xue W, He Y, Wang T, Zhang J, Yang D, Zhou T, Wu Z, Liao Y, Zheng M, Li D, Cao L, Jia Y, Zhang W, Xiao R, Luo L, Tong X, Wu Y, Huang J, Jia W. Association between HLA alleles and Epstein-Barr virus Zta-IgA serological status in healthy males from southern China. J Gene Med 2021; 23:e3375. [PMID: 34164868 PMCID: PMC8596395 DOI: 10.1002/jgm.3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/22/2021] [Indexed: 11/12/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC), an Epstein–Barr virus (EBV) associated cancer, exhibits an extremely high incidence in southern Chinese. Given that human leukocyte antigen (HLA) plays critical roles in antigen presentation and relates to NPC susceptibility, it is speculated that certain HLA variants may affect EBV reactivation, which is a key pathogenic factor of NPC. Therefore, we attempted to identify HLA alleles associated with the indicator of EBV reactivation, Zta‐IgA, in healthy males from NPC endemic area. Methods HLA alleles of 1078 healthy males in southern China from the 21‐RCCP study were imputed using genome‐wide single nucleotide polymorphism data. EBV Zta‐IgA in blood samples were measured using an enzyme‐linked immunosorbent assay. Multiple logistic regression analysis was used to evaluate the effect of HLA allele on Zta‐IgA serological status and its potential joint association with smoking. The binding affinity for Zta‐peptide was predicted using NetMHCIIpan 4.0. Results HLA‐DRB1*09:01 was found to be associated with a higher risk of Zta‐IgA seropositivity (odds ratio = 1.80, 95% confidence interval = 1.32–2.45; p = 1.82 × 10−4). Compared with non‐smokers without HLA‐DRB1*09:01, the effect size increased to 2.19‐ and 3.70‐fold for the light and heavy smokers carrying HLA‐DRB1*09:01, respectively. Furthermore, HLA‐DRB1*09:01 showed a stronger binding affinity to Zta peptide than other HLA‐DRB1 alleles. Conclusions Our study highlighted the pivotal role of genetic HLA variants in EBV reactivation and the etiology of NPC. Smokers with HLA‐DRB1*09:01 have a significantly higher risk of being Zta‐IgA seropositive, which indicates the necessity of smoking cessation in certain high‐risk populations and also provide clues for further research on the etiology of NPC.
Collapse
Affiliation(s)
- Lei‐Lei Yuan
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chang‐Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yong‐Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Tong‐Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jiang‐Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Da‐Wei Yang
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zi‐Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Mei‐Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dan‐Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lian‐Jing Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yi‐Jing Jia
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ruo‐Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lu‐Ting Luo
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xia‐Ting Tong
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yan‐Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing‐Wen Huang
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wei‐Hua Jia
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
64
|
Jean-Pierre V, Lupo J, Buisson M, Morand P, Germi R. Main Targets of Interest for the Development of a Prophylactic or Therapeutic Epstein-Barr Virus Vaccine. Front Microbiol 2021; 12:701611. [PMID: 34239514 PMCID: PMC8258399 DOI: 10.3389/fmicb.2021.701611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV) is one of the most widespread viruses in the world; more than 90% of the planet's adult population is infected. Symptomatic primary infection by this Herpesviridae corresponds to infectious mononucleosis (IM), which is generally a benign disease. While virus persistence is often asymptomatic, it is responsible for 1.5% of cancers worldwide, mainly B cell lymphomas and carcinomas. EBV may also be associated with autoimmune and/or inflammatory diseases. However, no effective treatment or anti-EBV vaccine is currently available. Knowledge of the proteins and mechanisms involved in the different steps of the viral cycle is essential to the development of effective vaccines. The present review describes the main actors in the entry of the virus into B cells and epithelial cells, which are targets of interest in the development of prophylactic vaccines aimed at preventing viral infection. This review also summarizes the first vaccinal approaches tested in humans, all of which are based on the gp350/220 glycoprotein; while they have reduced the risk of IM, they have yet to prevent EBV infection. The main proteins involved in the EBV latency cycle and some of the proteins involved in the lytic cycle have essential roles in the oncogenesis of EBV. For that reason, these proteins are of interest for the development of therapeutic vaccines of which the objective is the stimulation of T cell immunity against EBV-associated cancers. New strategies aimed at broadening the antigenic spectrum, are currently being studied and will contribute to the targeting of the essential steps of the viral cycle, the objective being to prevent or treat the diseases associated with EBV.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| | - Julien Lupo
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| | - Marlyse Buisson
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
- Institut de Biologie Structurale, UMR 5075, CEA, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Patrice Morand
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| | - Raphaële Germi
- Laboratoire de Virologie, Institut de Biologie et de Pathologie, CHU de Grenoble Alpes, Grenoble, France
| |
Collapse
|
65
|
Münz C. Immune Escape by Non-coding RNAs of the Epstein Barr Virus. Front Microbiol 2021; 12:657387. [PMID: 34234755 PMCID: PMC8257079 DOI: 10.3389/fmicb.2021.657387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023] Open
Abstract
Epstein Barr virus (EBV) is one of the most successful pathogens of humans, persistently colonizing more than 95% of the adult human population. At the same time EBV encodes oncogenes that can readily transform human B cells in culture and threaten healthy virus carriers with lymphomagenesis. Cytotoxic lymphocytes have been identified in experimental models and by primary immunodeficiencies as the main protective immune compartments controlling EBV. EBV has reached a stalemate with these cytotoxic T and innate lymphocytes to ensure persistence in most infected humans. Recent evidence suggests that the non-coding RNAs of the virus contribute to viral immune escape to prevent immune eradication. This knowledge might be used in the future to attenuate EBV for vaccine development against this human tumor virus that was discovered more than 55 years ago.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
66
|
Epstein-Barr Virus Lytic Replication Induces ACE2 Expression and Enhances SARS-CoV-2 Pseudotyped Virus Entry in Epithelial Cells. J Virol 2021; 95:e0019221. [PMID: 33853968 DOI: 10.1128/jvi.00192-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding factors that affect the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is central to combatting coronavirus disease 2019 (COVID-19). The virus surface spike protein of SARS-CoV-2 mediates viral entry into cells by binding to the ACE2 receptor on epithelial cells and promoting fusion. We found that Epstein-Barr virus (EBV) induces ACE2 expression when it enters the lytic replicative cycle in epithelial cells. By using vesicular stomatitis virus (VSV) particles pseudotyped with the SARS-CoV-2 spike protein, we showed that lytic EBV replication enhances ACE2-dependent SARS-CoV-2 pseudovirus entry. We found that the ACE2 promoter contains response elements for Zta, an EBV transcriptional activator that is essential for EBV entry into the lytic cycle of replication. Zta preferentially acts on methylated promoters, allowing it to reactivate epigenetically silenced EBV promoters from latency. By using promoter assays, we showed that Zta directly activates methylated ACE2 promoters. Infection of normal oral keratinocytes with EBV leads to lytic replication in some of the infected cells, induces ACE2 expression, and enhances SARS-CoV-2 pseudovirus entry. These data suggest that subclinical EBV replication and lytic gene expression in epithelial cells, which is ubiquitous in the human population, may enhance the efficiency and extent of SARS-CoV-2 infection of epithelial cells by transcriptionally activating ACE2 and increasing its cell surface expression. IMPORTANCE SARS-CoV-2, the coronavirus responsible for COVID-19, has caused a pandemic leading to millions of infections and deaths worldwide. Identifying the factors governing susceptibility to SARS-CoV-2 is important in order to develop strategies to prevent SARS-CoV-2 infection. We show that Epstein-Barr virus, which infects and persists in >90% of adult humans, increases susceptibility of epithelial cells to infection by SARS-CoV-2. EBV, when it reactivates from latency or infects epithelial cells, increases expression of ACE2, the cellular receptor for SARS-CoV-2, enhancing infection by SARS-CoV-2. Inhibiting EBV replication with antivirals may therefore decrease susceptibility to SARS-CoV-2 infection.
Collapse
|
67
|
Buschle A, Mrozek-Gorska P, Cernilogar FM, Ettinger A, Pich D, Krebs S, Mocanu B, Blum H, Schotta G, Straub T, Hammerschmidt W. Epstein-Barr virus inactivates the transcriptome and disrupts the chromatin architecture of its host cell in the first phase of lytic reactivation. Nucleic Acids Res 2021; 49:3217-3241. [PMID: 33675667 PMCID: PMC8034645 DOI: 10.1093/nar/gkab099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), a herpes virus also termed HHV 4 and the first identified human tumor virus, establishes a stable, long-term latent infection in human B cells, its preferred host. Upon induction of EBV's lytic phase, the latently infected cells turn into a virus factory, a process that is governed by EBV. In the lytic, productive phase, all herpes viruses ensure the efficient induction of all lytic viral genes to produce progeny, but certain of these genes also repress the ensuing antiviral responses of the virally infected host cells, regulate their apoptotic death or control the cellular transcriptome. We now find that EBV causes previously unknown massive and global alterations in the chromatin of its host cell upon induction of the viral lytic phase and prior to the onset of viral DNA replication. The viral initiator protein of the lytic cycle, BZLF1, binds to >105 binding sites with different sequence motifs in cellular chromatin in a concentration dependent manner implementing a binary molar switch probably to prevent noise-induced erroneous induction of EBV's lytic phase. Concomitant with DNA binding of BZLF1, silent chromatin opens locally as shown by ATAC-seq experiments, while previously wide-open cellular chromatin becomes inaccessible on a global scale within hours. While viral transcripts increase drastically, the induction of the lytic phase results in a massive reduction of cellular transcripts and a loss of chromatin-chromatin interactions of cellular promoters with their distal regulatory elements as shown in Capture-C experiments. Our data document that EBV's lytic cycle induces discrete early processes that disrupt the architecture of host cellular chromatin and repress the cellular epigenome and transcriptome likely supporting the efficient de novo synthesis of this herpes virus.
Collapse
Affiliation(s)
- Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21 D-81377 Munich, Germany
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Bianca Mocanu
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| |
Collapse
|
68
|
Inflammasome, the Constitutive Heterochromatin Machinery, and Replication of an Oncogenic Herpesvirus. Viruses 2021; 13:v13050846. [PMID: 34066537 PMCID: PMC8148530 DOI: 10.3390/v13050846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
The success of long-term host–virus partnerships is predicated on the ability of the host to limit the destructive potential of the virus and the virus’s skill in manipulating its host to persist undetected yet replicate efficiently when needed. By mastering such skills, herpesviruses persist silently in their hosts, though perturbations in this host–virus equilibrium can result in disease. The heterochromatin machinery that tightly regulates endogenous retroviral elements and pericentromeric repeats also silences invading genomes of alpha-, beta-, and gammaherpesviruses. That said, how these viruses disrupt this constitutive heterochromatin machinery to replicate and spread, particularly in response to disparate lytic triggers, is unclear. Here, we review how the cancer-causing gammaherpesvirus Epstein–Barr virus (EBV) uses the inflammasome as a security system to alert itself of threats to its cellular home as well as to flip the virus-encoded lytic switch, allowing it to replicate and escape in response to a variety of lytic triggers. EBV provides the first example of an infectious agent able to actively exploit the inflammasome to spark its replication. Revealing an unexpected link between the inflammasome and the epigenome, this further brings insights into how the heterochromatin machinery uses differential strategies to maintain the integrity of the cellular genome whilst guarding against invading pathogens. These recent insights into EBV biology and host–viral epigenetic regulation ultimately point to the NLRP3 inflammasome as an attractive target to thwart herpesvirus reactivation.
Collapse
|
69
|
Naughton P, Healy M, Enright F, Lucey B. Infectious Mononucleosis: diagnosis and clinical interpretation. Br J Biomed Sci 2021; 78:107-116. [PMID: 33721513 DOI: 10.1080/09674845.2021.1903683] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
EBV is the sole causative agent of the acute illness in humans described either as infectious mononucleosis (IM), or glandular fever. IM, when not clinically silent, can present in patients with at least two of the classic triad of symptoms of fever, pharyngitis, and lymphadenopathy. Challenges for the clinician arise when atypical cases present. Early, accurate and informed laboratory test results are vital for diagnosis, appropriate treatment, and management. A key challenge for the practitioner, particularly in cases where the illness can present atypically, is distinguishing bacterial tonsillitis infections from early acute IM. The ability to draw on timely, clear, and insightful laboratory results to distinguish viral from bacterial infection is vital. Correct and prompt diagnosis of IM can help prevent the unnecessary administration of antibiotics and mitigate the need for other expensive exploratory tests in cases of IM that present with splenomegaly, lymphadenopathy, or suspect haematological conditions. Good communication between the requesting clinician and those carrying out the investigative process, and between the different laboratory departments involved, is good practice and would ultimately benefit the patient. This communication will comprehensively review the aetiology, clinical presentation, and laboratory findings in IM with a view to promoting further research and so derive a standard diagnostic algorithm of the condition.
Collapse
Affiliation(s)
- P Naughton
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.,Department of Haematology, Mercy University Hospital, Cork, Ireland
| | - M Healy
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland
| | - F Enright
- Department of Paediatrics, Mercy University Hospital, Cork, Ireland
| | - B Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland
| |
Collapse
|
70
|
Abstract
Antigen recognition by the B cell receptor (BCR) is a physiological trigger for reactivation of Epstein-Barr virus (EBV) and can be recapitulated in vitro by cross-linking of surface immunoglobulins. Previously, we identified a subset of EBV microRNAs (miRNAs) that attenuate BCR signal transduction and subsequently dampen lytic reactivation in B cells. The roles of host miRNAs in the EBV lytic cycle are not completely understood. Here, we profiled the small RNAs in reactivated Burkitt lymphoma cells and identified several miRNAs, such as miR-141, that are induced upon BCR cross-linking. Notably, EBV encodes a viral miRNA, miR-BART9, with sequence homology to miR-141. To better understand the functions of these two miRNAs, we examined their molecular targets and experimentally validated multiple candidates commonly regulated by both miRNAs. Targets included B cell transcription factors and known regulators of EBV immediate-early genes, leading us to hypothesize that these miRNAs modulate kinetics of the lytic cascade in B cells. Through functional assays, we identified roles for miR-141 and EBV miR-BART9 and one specific target, FOXO3, in progression of the lytic cycle. Our data support a model whereby EBV exploits BCR-responsive miR-141 and further mimics activity of this miRNA family via a viral miRNA to promote productive lytic replication. IMPORTANCE EBV is a human pathogen associated with several malignancies. A key aspect of lifelong virus persistence is the ability to switch between latent and lytic replication modes. The mechanisms governing latency, reactivation, and progression of the lytic cycle are only partly understood. This study reveals that specific miRNAs can act to support the EBV lytic phase following BCR-mediated reactivation triggers. Furthermore, this study identifies a role for FOXO3, commonly suppressed by both host and viral miRNAs, in modulating progression of the EBV lytic cycle.
Collapse
|
71
|
Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection? Viruses 2021; 13:v13040669. [PMID: 33924398 PMCID: PMC8069280 DOI: 10.3390/v13040669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023] Open
Abstract
The emergence of the Zika virus (ZIKV) mirrors its evolutionary nature and, thus, its ability to grow in diversity or complexity (i.e., related to genome, host response, environment changes, tropism, and pathogenicity), leading to it recently joining the circle of closed congenital pathogens. The causal relation of ZIKV to microcephaly is still a much-debated issue. The identification of outbreak foci being in certain endemic urban areas characterized by a high-density population emphasizes that mixed infections might spearhead the recent appearance of a wide range of diseases that were initially attributed to ZIKV. Globally, such coinfections may have both positive and negative effects on viral replication, tropism, host response, and the viral genome. In other words, the possibility of coinfection may necessitate revisiting what is considered to be known regarding the pathogenesis and epidemiology of ZIKV diseases. ZIKV viral coinfections are already being reported with other arboviruses (e.g., chikungunya virus (CHIKV) and dengue virus (DENV)) as well as congenital pathogens (e.g., human immunodeficiency virus (HIV) and cytomegalovirus (HCMV)). However, descriptions of human latent viruses and their impacts on ZIKV disease outcomes in hosts are currently lacking. This review proposes to select some interesting human latent viruses (i.e., herpes simplex virus 2 (HSV-2), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), human parvovirus B19 (B19V), and human papillomavirus (HPV)), whose virological features and co-exposition with ZIKV may provide evidence of the syndemism process, shedding some light on the emergence of the ZIKV-induced global congenital syndrome in South America.
Collapse
|
72
|
Li X, Zhang W. Expression of PD-L1 in EBV-associated malignancies. Int Immunopharmacol 2021; 95:107553. [PMID: 33765613 DOI: 10.1016/j.intimp.2021.107553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus infection is closely related to the occurrence and development of a variety of malignant tumors. Tumor immunotherapy has been combined with modern biological high-tech technology, and has become the fourth cancer treatment mode after surgery, chemotherapy and radiotherapy. In 2013, immunotherapy was named the first of ten scientific breakthroughs by science. It aims to control and destroy tumor cells by stimulating and enhancing autoimmune function. In recent years, immune checkpoint inhibitors (ICIs) targeting PD-L1 have become a research hotspot in the field of cancer. Recent studies have shown that EBV infection can upregulate PD-L1 through complex mechanisms. Further understanding of these mechanisms and prevention of hyperprogressive disease (HPD) can make PD-L1 immune checkpoint inhibitors an effective way of immunotherapy for EBV related malignant tumors.
Collapse
Affiliation(s)
- Xiaoxu Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China; Clinical Laboratory, The Second People's Hospital of Wuhu City, Wuhu 241001, Anhui, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
73
|
Kim JH, Kim WS, Park C. Sildenafil prevents HDACi-induced Epstein-Barr virus reactivation through the PKG pathway in NK/T cell lymphoma; potential implications for HDACi-mediated fatal complications. Antiviral Res 2021; 189:105063. [PMID: 33741394 DOI: 10.1016/j.antiviral.2021.105063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Romidepsin, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of relapsed and refractory peripheral T-cell lymphoma. However the use of romidepsin reportedly causes potent EBV (Epstein-Barr virus) reactivation leading to severe adverse events in patients with natural killer (NK)/T-cell lymphoma (NKTL). As inhibition of EBV lytic cycle reactivation may help prevent romidepsin-induced adverse events in NKTL, we herein set out to identify a safe and effective drug for inhibiting EBV reactivation and examine its mechanism of inhibition. EBV reactivation was evaluated by qRT-PCR of BZLF1 and BRLF1 mRNA expression, qPCR of EBV DNA, and immunoblotting of viral EA-D protein. High-throughput screening of FDA-approved drugs was performed to identify safe and effective molecules and test their effect on romidepsin-induced EBV reactivation in the EBV-positive NKTL cell lines, SNK6 and NK92MI. We found that phosphodiesterase 5 (PDE5) inhibitors, including sildenafil (Viagra; Pfizer), appeared to be nontoxic and effective inhibitors of romidepsin-induced EBV reactivation. Clinical relevance was investigated by qPCR of EBV in two primary effusion samples of NKTL patients. We also investigated the molecular consequences downstream of sildenafil-induced PDE5 inhibition in NKTL cells. A negative correlation was established between the cGMP/PKG pathway and EBV reactivation in NKTL cells. On a molecular level, PDE5 inhibition downregulates BZLF1 and BRLF1 through cGMP/PKG signaling-induced ZNF overexpression. Co-treatment with romidepsin and sildenafil (inhibiting HDAC and PDE5, respectively) showed a synergistic inhibitory effect on NKTL cells, highlighting PDE5 as an attractive target for future therapy in NKTL.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea
| | - Won Seog Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
| | - Chaehwa Park
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
| |
Collapse
|
74
|
Tognarelli EI, Reyes A, Corrales N, Carreño LJ, Bueno SM, Kalergis AM, González PA. Modulation of Endosome Function, Vesicle Trafficking and Autophagy by Human Herpesviruses. Cells 2021; 10:cells10030542. [PMID: 33806291 PMCID: PMC7999576 DOI: 10.3390/cells10030542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Human herpesviruses are a ubiquitous family of viruses that infect individuals of all ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening encephalitis, and some of them, such as Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some herpesviruses may be associated with developing neurodegenerative diseases. These viruses can establish lifelong infections in the host and remain in a latent state with periodic reactivations. To achieve infection and yield new infectious viral particles, these viruses require and interact with molecular host determinants for supporting their replication and spread. Important sets of cellular factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular processes are required by these viruses for cell entry and exit steps. Here, we review and discuss recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components by using both host and viral gene products to promote the import and export of infectious viral particles from and to the extracellular environment. Understanding how herpesviruses modulate autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and counteract their negative health effects.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence:
| |
Collapse
|
75
|
Li Y, Shi F, Hu J, Xie L, Zhao L, Tang M, Luo X, Ye M, Zheng H, Zhou M, Liu N, Bode AM, Fan J, Zhou J, Gao Q, Qiu S, Wu W, Zhang X, Liao W, Cao Y. Stabilization of p18 by deubiquitylase CYLD is pivotal for cell cycle progression and viral replication. NPJ Precis Oncol 2021; 5:14. [PMID: 33654169 PMCID: PMC7925679 DOI: 10.1038/s41698-021-00153-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
p18 is a key negative regulator of cell cycle progression and mediates cell cycle arrest at the G1/S phase. Ubiquitination is the prime mechanism in regulating p18 protein abundance. However, so far no post- translational regulator, especially DUBs, has been identified to regulate the protein stability of p18. In this paper, we identified CYLD as a deubiquitinase of p18, which binds to and removes the K48-linked polyubiquitylation chains conjugated onto p18, thus stabilizing the p18 protein. Loss of CYLD causes the degradation of p18 and induces the G1/S transition. Epstein-Barr virus (EBV), is the human oncovirus etiologically linked to nasopharyngeal carcinoma (NPC). Here we found that EBV drives a replication passive environment by deregulating the CYLD-p18 axis. Functionally, CYLD inhibits cell proliferation and tumorigenesis through p18 in vivo. Restoring CYLD prevents EBV induced viral replication and tumor growth. Collectively, our results identify CYLD directly stabilizes p18 to regulate the cellular G1/S transition. The reconstitution of CYLD-p18 axis could be a promising approach for EBV-positive cancer therapy.
Collapse
Affiliation(s)
- Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Min Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jia Fan
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jian Zhou
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Qiang Gao
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Shuangjian Qiu
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Weizhong Wu
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China.
- Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha, China.
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, China.
| |
Collapse
|
76
|
Li H, Li Y, Hu J, Liu S, Luo X, Tang M, Bode AM, Dong Z, Liu X, Liao W, Cao Y. (-)-Epigallocatechin-3-gallate inhibits EBV lytic replication via targeting LMP1-mediated MAPK signal axes. Oncol Res 2021; 28:763-778. [PMID: 33629943 PMCID: PMC8420900 DOI: 10.3727/096504021x16135618512563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) plays an important oncogenic role in the viral latent infection. Recently, increasing evidence indicates that the high expression of LMP1 during EBV lytic cycle is related to the viral lytic replication. However, the mechanism by which LMP1 regulates EBV lytic replication remains unclear. (−)-Epigallocatechin-3-gallate (EGCG) prevents carcinogenesis by directly targeting numerous membrane proteins and effectively inhibits EBV lytic cascade. Here, we demonstrated that LMP1 promotes EBV lytic replication through the downstream signal molecules MAPKs, including ERKs, p38, and JNKs. LMP1 induces the phosphorylation of p53 through MAPKs to enhance the ability of wild-type p53 (wt-p53) to activate expression of BZLF1 gene, while the JNKs/c-Jun signal axis appears to be involved in EBV lytic replication induced by LMP1 in p53 mutant manner. We provided the first evidence that EGCG directly targets the viral membrane LMP1 (Kd = 0.36 μM, n = 1) using fluorescence quenching, isothermal titration calorimetry (ITC) assay, and CNBR-activated Sepharose 4B pull-down affinity chromatography. Furthermore, we revealed that EGCG inhibits EBV lytic replication via suppressing LMP1 and thus blocking the downstream MAPKs/wt-p53 signal axis in AGS-EBV cells and JNKs/c-Jun signal axis in p53 mutant B95.8 cells. Our study, for the first time, reports the binding and inhibitory efficacy of EGCG to the LMP1, which is a key oncoprotein encoded by EBV. These findings suggest the novel function of LMP1 in the regulation of EBV lytic cycle and reveal the new role of EGCG in EBV-associated malignancies through suppressing viral reactivation.
Collapse
Affiliation(s)
- Hongde Li
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Yueshuo Li
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianmin Hu
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, the Second Xiangya 13 Hospital, Central South University at Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Min Tang
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University at Tianjin, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University at Changsha, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China.,Research Center for Technologies of Nucleic Acid Based Diagnostics and Therapeutics, Hunan Province, Changsha, China.,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| |
Collapse
|
77
|
Epigenetic reprogramming sensitizes immunologically silent EBV+ lymphomas to virus-directed immunotherapy. Blood 2021; 135:1870-1881. [PMID: 32157281 DOI: 10.1182/blood.2019004126] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 12/31/2022] Open
Abstract
Despite advances in T-cell immunotherapy against Epstein-Barr virus (EBV)-infected lymphomas that express the full EBV latency III program, a critical barrier has been that most EBV+ lymphomas express the latency I program, in which the single Epstein-Barr nuclear antigen (EBNA1) is produced. EBNA1 is poorly immunogenic, enabling tumors to evade immune responses. Using a high-throughput screen, we identified decitabine as a potent inducer of immunogenic EBV antigens, including LMP1, EBNA2, and EBNA3C. Induction occurs at low doses and persists after removal of decitabine. Decitabine treatment of latency I EBV+ Burkitt lymphoma (BL) sensitized cells to lysis by EBV-specific cytotoxic T cells (EBV-CTLs). In latency I BL xenografts, decitabine followed by EBV-CTLs results in T-cell homing to tumors and inhibition of tumor growth. Collectively, these results identify key epigenetic factors required for latency restriction and highlight a novel therapeutic approach to sensitize EBV+ lymphomas to immunotherapy.
Collapse
|
78
|
van Gent M, Reich A, Velu SE, Gack MU. Nonsense-mediated decay controls the reactivation of the oncogenic herpesviruses EBV and KSHV. PLoS Biol 2021; 19:e3001097. [PMID: 33596193 PMCID: PMC7888593 DOI: 10.1371/journal.pbio.3001097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The oncogenic human herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are the causative agents of multiple malignancies. A hallmark of herpesviruses is their biphasic life cycle consisting of latent and lytic infection. In this study, we identified that cellular nonsense-mediated decay (NMD), an evolutionarily conserved RNA degradation pathway, critically regulates the latent-to-lytic switch of EBV and KSHV infection. The NMD machinery suppresses EBV and KSHV Rta transactivator expression and promotes maintenance of viral latency by targeting the viral polycistronic transactivator transcripts for degradation through the recognition of features in their 3' UTRs. Treatment with a small-molecule NMD inhibitor potently induced reactivation in a variety of EBV- and KSHV-infected cell types. In conclusion, our results identify NMD as an important host process that controls oncogenic herpesvirus reactivation, which may be targeted for the therapeutic induction of lytic reactivation and the eradication of tumor cells.
Collapse
Affiliation(s)
- Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Adrian Reich
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
79
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
80
|
Epstein-Barr Virus Reactivation-Induced Immunoglobulin Production: Significance on Autoimmunity. Microorganisms 2020; 8:microorganisms8121875. [PMID: 33260824 PMCID: PMC7760294 DOI: 10.3390/microorganisms8121875] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/29/2022] Open
Abstract
Epstein–Barr virus (EBV) mainly persists in B cells, which differentiate into antibody-producing cells, and thus, EBV has been implicated in autoimmune diseases. We aimed to describe the EBV reactivation and its relevance to autoimmune disease, focusing on Graves’ disease, which is an autoimmune hyperthyroidism caused by thyrotropin receptor antibodies. Circulating autoreactive B cells that have evaded from the selection have difficulties differentiating to produce antibodies. However, once EBV infects such B cells and reactivates, the B cells may become plasma cells and produce autoantibody. We herein proposed an EBV reactivation-induced Ig production system, which is a distinct pathway from the antibody production system through germinal centers and bone marrow and has the following characteristics: 1. IgM dominance, 2. ubiquitous Ig production, and 3. the rescue of autoreactive B cells, which skews Ig production toward autoantigens. IgM autoantibodies induced by EBV reactivation may activate the classical complement pathway and injure healthy tissue, which supply autoantigens for the production of affinity-matured IgG autoantibodies. Antibodies induced by EBV reactivation may play important roles in the development and exacerbation of autoimmune diseases.
Collapse
|
81
|
Márquez AC, Shanina I, Horwitz MS. Multiple Sclerosis-Like Symptoms in Mice Are Driven by Latent γHerpesvirus-68 Infected B Cells. Front Immunol 2020; 11:584297. [PMID: 33329556 PMCID: PMC7711133 DOI: 10.3389/fimmu.2020.584297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is caused by a combination of genetic and environmental factors. It is believed that previous infection with Epstein Barr Virus (EBV) plays an important role in the development of MS. Previously, we developed a murine model where latent infection with gamma herpesvirus 68 (γHV-68), a murine homolog to EBV, enhanced the symptoms of experimental autoimmune encephalomyelitis (EAE), resulting in disease that more closely resembles MS in humans. Here, we explored the conditions that were necessary for EAE enhancement. We showed that latently infected CD19+IgD− B cells were capable of enhancing EAE symptoms when transferred from mice previously infected with γHV-68 into uninfected mice. We also observed a prevention of enhancement when B cells were depleted before infection. However, depletion after the establishment of latency only partially reduced EAE. This indicated the existence of a mechanism where B cells play an important role as antigen presenting cells (APCs) prior to EAE induction for the priming of Th1 cells. It is possible that these signals persist even after B cell depletion, strongly suggesting a paracrine signaling modulation of non-B cell APCs. These results strongly support the concept that EBV contributes to the development of autoimmunity and highlights the need for a vaccine against EBV that could limit or prevent multiple sclerosis development.
Collapse
Affiliation(s)
- Ana Citlali Márquez
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Marc Steven Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
82
|
Abstract
Epstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis. EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, posttransplant lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells, EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently performed a human genome-wide CRISPR screen that identified the chromatin assembly factor CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto newly synthesized host DNA, though its roles in EBV genome chromatin assembly are uncharacterized. Here, we found that CAF1 depletion triggered lytic reactivation and virion secretion from Burkitt cells, despite also strongly inducing interferon-stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1 and 3.3 and of repressive histone 3 lysine 9 and 27 trimethyl (H3K9me3 and H3K27me3) marks at multiple viral genome lytic cycle regulatory elements. Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1 expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and 3.3 were loaded on the EBV genome by this time point. Knockout of CAF1 subunit CHAF1B impaired establishment of latency in newly EBV-infected Burkitt cells. A nonredundant latency maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader histone regulatory homologue A (HIRA). Since EBV latency also requires histone chaperones alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX) and death domain-associated protein (DAXX), EBV coopts multiple host histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic approaches.IMPORTANCE Epstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, during which lytic cycle factors are silenced. This property complicated EBV's discovery and facilitates tumor immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene silencing. Here, we identified histone chaperones CAF1 and HIRA, which have key roles in host DNA replication-dependent and replication-independent pathways, respectively, as important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV coopts multiple histone pathways to reprogram viral genomes and highlight targets for lytic induction therapeutic strategies.
Collapse
|
83
|
Hu J, Li Y, Li H, Shi F, Xie L, Zhao L, Tang M, Luo X, Jia W, Fan J, Zhou J, Gao Q, Qiu S, Wu W, Zhang X, Liao W, Bode AM, Cao Y. Targeting Epstein-Barr virus oncoprotein LMP1-mediated high oxidative stress suppresses EBV lytic reactivation and sensitizes tumors to radiation therapy. Theranostics 2020; 10:11921-11937. [PMID: 33204320 PMCID: PMC7667690 DOI: 10.7150/thno.46006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Generating oxidative stress is a critical mechanism by which host cells defend against infection by pathogenic microorganisms. Radiation resistance is a critical problem in radiotherapy against cancer. Epstein-Barr virus (EBV) is a cancer-causing virus and its reactivation plays an important role in the development of EBV-related tumors. This study aimed to explore the inner relationship and regulatory mechanism among oxidative stress, EBV reactivation, and radioresistance and to identify new molecular subtyping models and treatment strategies to improve the therapeutic effects of radiotherapy. Methods: ROS, NADP+/NADPH, and GSSG/GSH were detected to evaluate the oxidative stress of cells. 8-OHdG is a reliable oxidative stress marker to evaluate the oxidative stress in patients. Its concentration in serum was detected using an ELISA method and in biopsies was detected using IHC. qPCR array was performed to evaluate the expression of essential oxidative stress genes. qPCR, Western blot, and IHC were used to measure the level of EBV reactivation in vitro and in vivo. A Rta-IgG ELISA kit and EBV DNA detection kit were used to analyze the reactivation of EBV in serum from NPC patients. NPC tumor tissue microarrays was used to investigate the prognostic role of oxidative stress and EBV reactivation. Radiation resistance was evaluated by a colony formation assay. Xenografts were treated with NAC, radiation, or a combination of NAC and radiation. EBV DNA load of tumor tissue was evaluated using an EBV DNA detection kit. Oxidative stress, EBV reactivation, and the apoptosis rate in tumor tissues were detected by using 8-OHdG, EAD, and TUNEL assays, respectively. Results: We found that EBV can induce high oxidative stress, which promotes its reactivation and thus leads to radioresistance. Basically, EBV caused NPC cells to undergo a process of 'Redox Resetting' to acquire a new redox status with higher levels of ROS accumulation and stronger antioxidant systems by increasing the expression of the ROS-producing enzyme, NOX2, and the cellular master antioxidant regulator, Nrf2. Also, EBV encoded driving protein LMP1 promotes EBV reactivation through production of ROS. Furthermore, high oxidative stress and EBV reactivation were positively associated with poor overall survival of patients following radiation therapy and were significant related to NPC patients' recurrence and clinical stage. By decreasing oxidative stress using an FDA approved antioxidant drug, NAC, sensitivity of tumors to radiation was increased. Additionally, 8-OHdG and EBV DNA could be dual prognostic markers for NPC patients. Conclusions: Oxidative stress mediates EBV reactivation and leads to radioresistance. Targeting oxidative stress can provide therapeutic benefits to cancer patients with radiation resistance. Clinically, we, for the first time, generated a molecular subtyping model for NPC relying on 8-OHdG and EBV DNA level. These dual markers could identify patients who are at a high risk of poor outcomes but who might benefit from the sequential therapy of reactive oxygen blockade followed by radiation therapy, which provides novel perspectives for the precise treatment of NPC.
Collapse
|
84
|
Abstract
Epstein-Barr virus (EBV) infects human B cells and reprograms them to allow virus replication and persistence. One key viral factor in this process is latent membrane protein 2A (LMP2A), which has been described as a B cell receptor (BCR) mimic promoting malignant transformation. However, how LMP2A signaling contributes to tumorigenesis remains elusive. By comparing LMP2A and BCR signaling in primary human B cells using phosphoproteomics and transcriptome profiling, we identified molecular mechanisms through which LMP2A affects B cell biology. Consistent with the literature, we found that LMP2A mimics a subset of BCR signaling events, including tyrosine phosphorylation of the kinase SYK, the calcium initiation complex consisting of BLNK, BTK, and PLCγ2, and its downstream transcription factor NFAT. However, the majority of LMP2A-induced signaling events markedly differed from those induced by BCR stimulation. These included differential phosphorylation of kinases, phosphatases, adaptor proteins, transcription factors such as nuclear factor κB (NF-κB) and TCF3, as well as widespread changes in the transcriptional output of LMP2A-expressing B cells. LMP2A affected apoptosis and cell-cycle checkpoints by dysregulating the expression of apoptosis regulators such as BCl-xL and the tumor suppressor retinoblastoma-associated protein 1 (RB1). LMP2A cooperated with MYC and mutant cyclin D3, two oncogenic drivers of Burkitt lymphoma, to promote proliferation and survival of primary human B cells by counteracting MYC-induced apoptosis and by inhibiting RB1 function, thereby promoting cell-cycle progression. Our results indicate that LMP2A is not a pure BCR mimic but rather rewires intracellular signaling in EBV-infected B cells that optimizes cell survival and proliferation, setting the stage for oncogenic transformation.
Collapse
|
85
|
Kraus RJ, Cordes BLA, Sathiamoorthi S, Patel P, Yuan X, Iempridee T, Yu X, Lee DL, Lambert PF, Mertz JE. Reactivation of Epstein-Barr Virus by HIF-1α Requires p53. J Virol 2020; 94:e00722-20. [PMID: 32641480 PMCID: PMC7459560 DOI: 10.1128/jvi.00722-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
We previously reported that the cellular transcription factor hypoxia-inducible factor 1α (HIF-1α) binds a hypoxia response element (HRE) located within the promoter of Epstein-Barr virus's (EBV's) latent-lytic switch BZLF1 gene, Zp, inducing viral reactivation. In this study, EBV-infected cell lines derived from gastric cancers and Burkitt lymphomas were incubated with HIF-1α-stabilizing drugs: the iron chelator deferoxamine (Desferal [DFO]), a neddylation inhibitor (pevonedistat [MLN-4924]), and a prolyl hydroxylase inhibitor (roxadustat [FG-4592]). DFO and MLN-4924, but not FG-4592, induced accumulation of both lytic EBV proteins and phosphorylated p53 in cell lines that contain a wild-type p53 gene. FG-4592 also failed to activate transcription from Zp in a reporter assay despite inducing accumulation of HIF-1α and transcription from another HRE-containing promoter. Unexpectedly, DFO failed to induce EBV reactivation in cell lines that express mutant or no p53 or when p53 expression was knocked down with short hairpin RNAs (shRNAs). Likewise, HIF-1α failed to activate transcription from Zp when p53 was knocked out by CRISPR-Cas9. Importantly, DFO induced binding of p53 as well as HIF-1α to Zp in chromatin immunoprecipitation (ChIP) assays, but only when the HRE was present. Nutlin-3, a drug known to induce accumulation of phosphorylated p53, synergized with DFO and MLN-4924 in inducing EBV reactivation. Conversely, KU-55933, a drug that inhibits ataxia telangiectasia mutated, thereby preventing p53 phosphorylation, inhibited DFO-induced EBV reactivation. Lastly, activation of Zp transcription by DFO and MLN-4924 mapped to its HRE. Thus, we conclude that induction of BZLF1 gene expression by HIF-1α requires phosphorylated, wild-type p53 as a coactivator, with HIF-1α binding recruiting p53 to Zp.IMPORTANCE EBV, a human herpesvirus, is latently present in most nasopharyngeal carcinomas, Burkitt lymphomas, and some gastric cancers. To develop a lytic-induction therapy for treating patients with EBV-associated cancers, we need a way to efficiently reactivate EBV into lytic replication. EBV's BZLF1 gene product, Zta, usually controls this reactivation switch. We previously showed that HIF-1α binds the BZLF1 gene promoter, inducing Zta synthesis, and HIF-1α-stabilizing drugs can induce EBV reactivation. In this study, we determined which EBV-positive cell lines are reactivated by classes of HIF-1α-stabilizing drugs. We found, unexpectedly, that HIF-1α-stabilizing drugs only induce reactivation when they also induce accumulation of phosphorylated, wild-type p53. Fortunately, p53 phosphorylation can also be provided by drugs such as nutlin-3, leading to synergistic reactivation of EBV. These findings indicate that some HIF-1α-stabilizing drugs may be helpful as part of a lytic-induction therapy for treating patients with EBV-positive malignancies that contain wild-type p53.
Collapse
MESH Headings
- Cell Line, Tumor
- Cyclopentanes/pharmacology
- Deferoxamine/pharmacology
- Enzyme Inhibitors/pharmacology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/virology
- Gene Expression Regulation
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/growth & development
- Herpesvirus 4, Human/metabolism
- Host-Pathogen Interactions/drug effects
- Host-Pathogen Interactions/genetics
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/agonists
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Imidazoles/pharmacology
- Iron Chelating Agents/pharmacology
- Isoquinolines/pharmacology
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Lymphocytes/virology
- Morpholines/pharmacology
- Piperazines/pharmacology
- Prolyl-Hydroxylase Inhibitors/pharmacology
- Promoter Regions, Genetic
- Protein Binding/drug effects
- Pyrimidines/pharmacology
- Pyrones/pharmacology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Response Elements
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Virus Activation/drug effects
Collapse
Affiliation(s)
- Richard J Kraus
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Blue-Leaf A Cordes
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Saraniya Sathiamoorthi
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Parita Patel
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Xueying Yuan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tawin Iempridee
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Xianming Yu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Denis L Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Janet E Mertz
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
86
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
87
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020; 12:E1479. [PMID: 32517128 PMCID: PMC7352903 DOI: 10.3390/cancers12061479] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.
Collapse
Affiliation(s)
- Diego Germini
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Fatimata Bintou Sall
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Laboratory of Hematology, Aristide Le Dantec Hospital, Cheikh Anta Diop University, Dakar 12900, Senegal
| | - Anna Shmakova
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Joëlle Wiels
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Emmanuel Drouet
- CIBB-IBS UMR 5075 Université Grenoble Alpes, 38044 Grenoble, France;
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
88
|
Hau PM, Lung HL, Wu M, Tsang CM, Wong KL, Mak NK, Lo KW. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:600. [PMID: 32528868 PMCID: PMC7247807 DOI: 10.3389/fonc.2020.00600] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) infection in regions in which it is endemic, including Southern China and Southeast Asia. The high mortality rates of NPC patients with advanced and recurrent disease highlight the urgent need for effective treatments. While recent genomic studies have revealed few druggable targets, the unique interaction between the EBV infection and host cells in NPC strongly implies that targeting EBV may be an efficient approach to cure this virus-associated cancer. Key features of EBV-associated NPC are the persistence of an episomal EBV genome and the requirement for multiple viral latent gene products to enable malignant transformation. Many translational studies have been conducted to exploit these unique features to develop pharmaceutical agents and therapeutic strategies that target EBV latent proteins and induce lytic reactivation in NPC. In particular, inhibitors of the EBV latent protein EBNA1 have been intensively explored, because of this protein's essential roles in maintaining EBV latency and viral genome replication in NPC cells. In addition, recent advances in chemical bioengineering are driving the development of therapeutic agents targeting the critical functional regions of EBNA1. Promising therapeutic effects of the resulting EBNA1-specific inhibitors have been shown in EBV-positive NPC tumors. The efficacy of multiple classes of EBV lytic inducers for NPC cytolytic therapy has also been long investigated. However, the lytic-induction efficiency of these compounds varies among different EBV-positive NPC models in a cell-context-dependent manner. In each tumor, NPC cells can evolve and acquire somatic changes to maintain EBV latency during cancer progression. Unfortunately, the poor understanding of the cellular mechanisms regulating EBV latency-to-lytic switching in NPC cells limits the clinical application of EBV cytolytic treatment. In this review, we discuss the potential approaches for improvement of the above-mentioned EBV-targeting strategies.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Man Wu
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
89
|
MSI and EBV Positive Gastric Cancer's Subgroups and Their Link With Novel Immunotherapy. J Clin Med 2020; 9:jcm9051427. [PMID: 32403403 PMCID: PMC7291039 DOI: 10.3390/jcm9051427] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancers have been historically classified based on histomorphologic features. The Cancer Genome Atlas network reported the comprehensive identification of genetic alterations associated with gastric cancer, identifying four distinct subtypes- Epstein-Barr virus (EBV)-positive, microsatellite-unstable/instability (MSI), genomically stable and chromosomal instability. In particular, EBV-positive and MSI gastric cancers seem responsive to novel immunotherapies drugs. The aim of this review is to describe MSI and EBV positive gastric cancer's subgroups and their relationship with novel immunotherapy.
Collapse
|
90
|
Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, Fry CJ, Puri R, Wolinsky E, Schineller M, Frost TC, Gebre M, Zhao B, Giulino-Roth L, Doench JG, Teng M, Gewurz BE. MYC Controls the Epstein-Barr Virus Lytic Switch. Mol Cell 2020; 78:653-669.e8. [PMID: 32315601 DOI: 10.1016/j.molcel.2020.03.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is associated with multiple human malignancies. To evade immune detection, EBV switches between latent and lytic programs. How viral latency is maintained in tumors or in memory B cells, the reservoir for lifelong EBV infection, remains incompletely understood. To gain insights, we performed a human genome-wide CRISPR/Cas9 screen in Burkitt lymphoma B cells. Our analyses identified a network of host factors that repress lytic reactivation, centered on the transcription factor MYC, including cohesins, FACT, STAGA, and Mediator. Depletion of MYC or factors important for MYC expression reactivated the lytic cycle, including in Burkitt xenografts. MYC bound the EBV genome origin of lytic replication and suppressed its looping to the lytic cycle initiator BZLF1 promoter. Notably, MYC abundance decreases with plasma cell differentiation, a key lytic reactivation trigger. Our results suggest that EBV senses MYC abundance as a readout of B cell state and highlights Burkitt latency reversal therapeutic targets.
Collapse
Affiliation(s)
- Rui Guo
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Chang Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuchen Zhang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Apurva Govande
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Stephen J Trudeau
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Fang Chen
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA
| | | | - Rishi Puri
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emma Wolinsky
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Molly Schineller
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas C Frost
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Makda Gebre
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Giulino-Roth
- Division of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA.
| |
Collapse
|
91
|
Buschle A, Hammerschmidt W. Epigenetic lifestyle of Epstein-Barr virus. Semin Immunopathol 2020; 42:131-142. [PMID: 32232535 PMCID: PMC7174264 DOI: 10.1007/s00281-020-00792-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) is a model of herpesvirus latency and epigenetic changes. The virus preferentially infects human B-lymphocytes (and also other cell types) but does not turn them straight into virus factories. Instead, it establishes a strictly latent infection in them and concomitantly induces the activation and proliferation of infected B cells. How the virus establishes latency in its target cells is only partially understood, but its latent state has been studied intensively by many. During latency, several copies of the viral genome are maintained as minichromosomes in the nucleus. In latently infected cells, most viral genes are epigenetically repressed by cellular chromatin constituents and DNA methylation, but certain EBV genes are spared and remain expressed to support the latent state of the virus in its host cell. Latency is not a dead end, but the virus can escape from this state and reactivate. Reactivation is a coordinated process that requires the removal of repressive chromatin components and a gain in accessibility for viral and cellular factors and machines to support the entire transcriptional program of EBV's ensuing lytic phase. We have a detailed picture of the initiating events of EBV's lytic phase, which are orchestrated by a single viral protein - BZLF1. Its induced expression can lead to the expression of all lytic viral proteins, but initially it fosters the non-licensed amplification of viral DNA that is incorporated into preformed capsids. In the virions, the viral DNA is free of histones and lacks methylated cytosine residues which are lost during lytic DNA amplification. This review provides an overview of EBV's dynamic epigenetic changes, which are an integral part of its ingenious lifestyle in human host cells.
Collapse
Affiliation(s)
- Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Partner site Munich, Marchioninistr. 25, D-81377, Munich, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Partner site Munich, Marchioninistr. 25, D-81377, Munich, Germany.
| |
Collapse
|
92
|
Nascent Transcriptomics Reveal Cellular Prolytic Factors Upregulated Upstream of the Latent-to-Lytic Switch Protein of Epstein-Barr Virus. J Virol 2020; 94:JVI.01966-19. [PMID: 31941784 DOI: 10.1128/jvi.01966-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Lytic activation from latency is a key transition point in the life cycle of herpesviruses. Epstein-Barr virus (EBV) is a human herpesvirus that can cause lymphomas, epithelial cancers, and other diseases, most of which require the lytic cycle. While the lytic cycle of EBV can be triggered by chemicals and immunologic ligands, the lytic cascade is activated only when expression of the EBV latent-to-lytic switch protein ZEBRA is turned on. ZEBRA then transcriptionally activates other EBV genes and, together with some of those gene products, ensures completion of the lytic cycle. However, not every latently infected cell exposed to a lytic trigger turns on the expression of ZEBRA, resulting in responsive and refractory subpopulations. What governs this dichotomy? By examining the nascent transcriptome following exposure to a lytic trigger, we find that several cellular genes are transcriptionally upregulated temporally upstream of ZEBRA. These genes regulate lytic susceptibility to various degrees in latently infected cells that respond to mechanistically distinct lytic triggers. While increased expression of these cellular genes defines a prolytic state, such upregulation also runs counter to the well-known mechanism of viral-nuclease-mediated host shutoff that is activated downstream of ZEBRA. Furthermore, a subset of upregulated cellular genes is transcriptionally repressed temporally downstream of ZEBRA, indicating an additional mode of virus-mediated host shutoff through transcriptional repression. Thus, increased transcription of a set of host genes contributes to a prolytic state that allows a subpopulation of cells to support the EBV lytic cycle.IMPORTANCE Transition from latency to the lytic phase is necessary for herpesvirus-mediated pathology as well as viral spread and persistence in the population at large. Yet, viral genomes in only some cells in a population of latently infected cells respond to lytic triggers, resulting in subpopulations of responsive/lytic and refractory cells. Our investigations into this partially permissive phenotype of the herpesvirus Epstein-Barr virus (EBV) indicate that upon exposure to lytic triggers, certain cellular genes are transcriptionally upregulated, while viral latency genes are downregulated ahead of expression of the viral latent-to-lytic switch protein. These cellular genes contribute to lytic susceptibility to various degrees. Apart from indicating that there may be a cellular "prolytic" state, our findings indicate that (i) early transcriptional upregulation of cellular genes counters the well-known viral-nuclease-mediated host shutoff and (ii) subsequent transcriptional downregulation of a subset of early upregulated cellular genes is a previously undescribed mode of host shutoff.
Collapse
|
93
|
Olivieri CV, Raybaud H, Tonoyan L, Abid S, Marsault R, Chevalier M, Doglio A, Vincent-Bugnas S. Epstein-Barr virus-infected plasma cells in periodontitis lesions. Microb Pathog 2020; 143:104128. [PMID: 32165332 DOI: 10.1016/j.micpath.2020.104128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence supports that the Epstein-Barr virus (EBV) is a putative periodontal pathogen, but little is known regarding EBV behavior in periodontitis. Here, EBV infection was monitored in saliva and periodontal pocket (PP), at baseline and 3 months after periodontal non-surgical therapy (p-NST) in 20 patients diagnosed with periodontitis. After the treatment, the patients with the improved periodontal condition (good responders) showed a significant decrease in salivary EBV load. In contrast, in poor responders, EBV load was slightly increased. Moreover, after the therapy, most patients showed clear signs of EBV infection in a deep PP (≥5 mm) selected as a study site. To investigate how EBV can persist in a PP, we further investigate cellular sites of viral replication in PP. We identified large amounts of infiltrated EBV-infected cells, mostly overlapping with CD138+ plasma cells (PC). EBV-infected PCs formed high-density clusters within the infiltrate and along the periodontal epithelium which were commonly associated with CD3+ T-cells and CD20+ B-cells to evoke diffuse ectopic lymphoid-like structures. Taking together, this study provides new insights to support a model where the periodontal condition may play a major role in oral EBV shedding. Since PC harbors the late productive phases of EBV replication, the periodontal condition may favor B-cell differentiation with possible amplification of periodontal EBV infection and viral spreading. PCs have long been recognized as pathogenic markers in inflammatory lesions. Our finding sheds new light on the role of EBV infection and PC in periodontitis.
Collapse
Affiliation(s)
- Charles V Olivieri
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D'Azur, 5 Rue Du 22ième BCA, 06353, Nice, France
| | - Hélène Raybaud
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D'Azur, 5 Rue Du 22ième BCA, 06353, Nice, France; Pôle Odontologie, Centre Hospitalier Universitaire de Nice, 06000, Nice, France
| | - Lilit Tonoyan
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D'Azur, 5 Rue Du 22ième BCA, 06353, Nice, France
| | - Sarah Abid
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D'Azur, 5 Rue Du 22ième BCA, 06353, Nice, France
| | - Robert Marsault
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D'Azur, 5 Rue Du 22ième BCA, 06353, Nice, France
| | - Marlène Chevalier
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D'Azur, 5 Rue Du 22ième BCA, 06353, Nice, France
| | - Alain Doglio
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D'Azur, 5 Rue Du 22ième BCA, 06353, Nice, France; Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, 06101, Nice, France.
| | - Séverine Vincent-Bugnas
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D'Azur, 5 Rue Du 22ième BCA, 06353, Nice, France; Pôle Odontologie, Centre Hospitalier Universitaire de Nice, 06000, Nice, France.
| |
Collapse
|
94
|
The Viral SUMO–Targeted Ubiquitin Ligase ICP0 is Phosphorylated and Activated by Host Kinase Chk2. J Mol Biol 2020; 432:1952-1977. [DOI: 10.1016/j.jmb.2020.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
|
95
|
Lupia T, Milia MG, Atzori C, Gianella S, Audagnotto S, Imperiale D, Mighetto L, Pirriatore V, Gregori G, Lipani F, Ghisetti V, Bonora S, Di Perri G, Calcagno A. Presence of Epstein-Barr virus DNA in cerebrospinal fluid is associated with greater HIV RNA and inflammation. AIDS 2020; 34:373-380. [PMID: 31764071 PMCID: PMC7773520 DOI: 10.1097/qad.0000000000002442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The current study aimed to investigate whether cerebrospinal fluid (CSF) Epstein-Barr virus (EBV) or cytomegalovirus (CMV) DNA was associated with viral, inflammatory and neuronal damage biomarkers in people living with HIV (PLWH). DESIGN A cross-sectional diagnostic study on CSF fluid samples in patients undergoing lumbar punctures for clinical reasons, to better understand the role of EBV and CMV in the CNS on HIV RNA replication, blood-brain-barrier (BBB) damage and biomarkers of neuronal damage/inflammation. METHODS EBV, CMV DNA and HIV RNA were measured on CSF, through real time (RT)-PCR, from PLWHs undergoing lumbar punctures for clinical reasons (excluding oncho-haematological comorbidities). Immune-enzymatic assays evaluated blood-brain barrier inflammation and damage. Patients were stratified according to plasma HIV RNA levels in viremic (≥50 copies/ml) and aviremic (<50 copies/ml). RESULTS We included 297 participants. Among 167 viremic patients CSF EBV and CMV DNA were detectable in 42 (25.1%) and 10 (6.3%) participants; among 130 aviremic individuals CSF EBV and CMV DNA were detectable in 12 (9.2%) and 0 (0%) participants, respectively. In viremic group detectable CSF EBV DNA was associated with CSF pleocytosis (P < 0.001), higher CSF HIV RNA (P < 0.001) and neopterin levels (P = 0.002). In aviremic participants detectable EBV DNA was associated with pleocytosis (P = 0.056), higher neopterin (P = 0.027) and immune globulins (P = 0.016) in the CSF; CSF escape was more common in those with detectable EBV DNA (50 vs. 21.2%, P = 0.036). CONCLUSION EBV DNA was frequently detected in the CSF of viremic and fewer aviremic patients on antiretroviral treatment. In PLWH without clinical evidence of encephalitis CSF EBV DNA was associated with higher biomarkers levels of neuronal damage/inflammation. The role of EBV reactivation in HIV-associated central nervous system disorders warrants further studies.
Collapse
Affiliation(s)
- Tommaso Lupia
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Maria Grazia Milia
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Cristiana Atzori
- Unit of Neurology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Sara Gianella
- University of California San Diego, La Jolla, California, USA
| | - Sabrina Audagnotto
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Daniele Imperiale
- Unit of Neurology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Lorenzo Mighetto
- Laboratory of Immunology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Veronica Pirriatore
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Gabriella Gregori
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Filippo Lipani
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Valeria Ghisetti
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| |
Collapse
|
96
|
Romero-Masters JC, Huebner SM, Ohashi M, Bristol JA, Benner BE, Barlow EA, Turk GL, Nelson SE, Baiu DC, Van Sciver N, Ranheim EA, Gumperz J, Sherer NM, Farrell PJ, Johannsen EC, Kenney SC. B cells infected with Type 2 Epstein-Barr virus (EBV) have increased NFATc1/NFATc2 activity and enhanced lytic gene expression in comparison to Type 1 EBV infection. PLoS Pathog 2020; 16:e1008365. [PMID: 32059024 PMCID: PMC7046292 DOI: 10.1371/journal.ppat.1008365] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/27/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
Humans are infected with two distinct strains (Type 1 (T1) and Type 2 (T2)) of Epstein-Barr virus (EBV) that differ substantially in their EBNA2 and EBNA 3A/B/C latency genes and the ability to transform B cells in vitro. While most T1 EBV strains contain the "prototype" form of the BZLF1 immediate-early promoter ("Zp-P"), all T2 strains contain the "Zp-V3" variant, which contains an NFAT binding motif and is activated much more strongly by B-cell receptor signalling. Whether B cells infected with T2 EBV are more lytic than cells infected with T1 EBV is unknown. Here we show that B cells infected with T2 EBV strains (AG876 and BL5) have much more lytic protein expression compared to B cells infected with T1 EBV strains (M81, Akata, and Mutu) in both a cord blood-humanized (CBH) mouse model and EBV-transformed lymphoblastoid cell lines (LCLs). Although T2 LCLs grow more slowly than T1 LCLs, both EBV types induce B-cell lymphomas in CBH mice. T1 EBV strains (M81 and Akata) containing Zp-V3 are less lytic than T2 EBV strains, suggesting that Zp-V3 is not sufficient to confer a lytic phenotype. Instead, we find that T2 LCLs express much higher levels of activated NFATc1 and NFATc2, and that cyclosporine (an NFAT inhibitor) and knockdown of NFATc2 attenuate constitutive lytic infection in T2 LCLs. Both NFATc1 and NFATc2 induce lytic EBV gene expression when combined with activated CAMKIV (which is activated by calcium signaling and activates MEF2D) in Burkitt Akata cells. Together, these results suggest that B cells infected with T2 EBV are more lytic due to increased activity of the cellular NFATc1/c2 transcription factors in addition to the universal presence of the Zp-V3 form of BZLF1 promoter.
Collapse
Affiliation(s)
- James C. Romero-Masters
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shane M. Huebner
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bayleigh E. Benner
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth A. Barlow
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gail L. Turk
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dana C. Baiu
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erik A. Ranheim
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jenny Gumperz
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nathan M. Sherer
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul J. Farrell
- Section of Virology, Imperial College Faculty of Medicine, Norfolk Place, London, United Kingdom
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
97
|
Mishra R, Kumar A, Ingle H, Kumar H. The Interplay Between Viral-Derived miRNAs and Host Immunity During Infection. Front Immunol 2020; 10:3079. [PMID: 32038626 PMCID: PMC6989438 DOI: 10.3389/fimmu.2019.03079] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are short non-coding RNAs that play a crucial role in the regulation of gene expression during cellular processes. The host-encoded miRNAs are known to modulate the antiviral defense during viral infection. In the last decade, multiple DNA and RNA viruses have been shown to produce miRNAs known as viral miRNAs (v-miRNAs) so as to evade the host immune response. In this review, we highlight the origin and biogenesis of viral miRNAs during the viral lifecycle. We also explore the role of viral miRNAs in immune evasion and hence in maintaining chronic infection and disease. Finally, we offer insights into the underexplored role of viral miRNAs as potential targets for developing therapeutics for treating complex viral diseases.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Harshad Ingle
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
98
|
Identifying the Cellular Interactome of Epstein-Barr Virus Lytic Regulator Zta Reveals Cellular Targets Contributing to Viral Replication. J Virol 2020; 94:JVI.00927-19. [PMID: 31694936 DOI: 10.1128/jvi.00927-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The human gammaherpesvirus Epstein-Barr virus (EBV) (human herpesvirus 4 [HHV4]) infects most adults and is an important contributor to the development of many types of lymphoid and epithelial cancers. Essential contributions of viral genes to viral replication are known, but the potential contributions of cell genes are less well delineated. A key player is the viral protein Zta (BZLF1, ZEBRA, or Z). This sequence-specific DNA-binding protein can disrupt EBV latency by driving the transcription of target genes and by interacting with the EBV lytic origin of replication. Here, we used an unbiased proteomics approach to identify the Zta-interactome in cells derived from Burkitt's lymphoma. Isolating Zta and associated proteins from Burkitt's lymphoma cells undergoing EBV replication, followed by tandem mass tag (TMT) mass spectrometry, resulted in the identification of 39 viral and cellular proteins within the Zta interactome. An association of Zta with the cellular protein NFATc2 was validated in independent experiments. Furthermore, the ability of Zta to attenuate the activity of an NFAT-dependent promoter was shown, which suggests a functional consequence for the association. The expression of Zta is itself regulated through NFAT activity, suggesting that Zta may contribute to a feedback loop that would limit its own expression, thus aiding viral replication by preventing the known toxic effects of Zta overexpression.IMPORTANCE Epstein-Barr virus infects most people across the world and causes several kinds of cancer. Zta is an important viral protein that makes the virus replicate by binding to its DNA and turning on the expression of some genes. We used a sensitive, unbiased approach to isolate and identify viral and cellular proteins that physically interact with Zta. This revealed 39 viral and cellular proteins. We found that one protein, termed NFATc2, was already known to be important for a very early step in viral replication. We identify that once this step has occurred, Zta reduces the effectiveness of NFATc2, and we suggest that this is important to prevent cells from dying before viral replication is complete and the mature virus is released from the cells.
Collapse
|
99
|
Thirty years of Epstein-Barr virus-associated gastric carcinoma. Virchows Arch 2019; 476:353-365. [PMID: 31836926 DOI: 10.1007/s00428-019-02724-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Thirty years have passed since a possible association of Epstein-Barr virus (EBV) with gastric carcinoma was reported. We now know EBV-associated gastric carcinoma to be a specific subtype of gastric carcinoma. Global epigenetic methylation and counteraction of the antitumour microenvironment are two major characteristics of this subtype of gastric carcinoma. Recent development of therapeutic modalities for gastric carcinoma, such as endoscopic mucosal dissection and immune checkpoint inhibitor therapy, has made the presence of EBV infection a biomarker for the treatment of gastric carcinoma. This review presents a portrait of EBV-associated gastric carcinoma from initiation to maturity that we define as the 'gastritis-infection-cancer sequence', followed by its molecular abnormalities and interactions with immune checkpoint molecules and the microenvironment. EBV non-coding RNAs (microRNA and circular RNA) and exosomes derived from EBV-infected cells that were previously behind the scenes are now recognized for their roles in EBV-associated gastric carcinoma. The virus utilizes cellular machinery skilfully to control infected cells and their microenvironment. We should thus strive to understand virus-host interactions more fully in the following years to overcome this virus-driven subtype of gastric carcinoma.
Collapse
|
100
|
Cheng AZ, Moraes SN, Attarian C, Yockteng-Melgar J, Jarvis MC, Biolatti M, Galitska G, Dell'Oste V, Frappier L, Bierle CJ, Rice SA, Harris RS. A Conserved Mechanism of APOBEC3 Relocalization by Herpesviral Ribonucleotide Reductase Large Subunits. J Virol 2019; 93:e01539-19. [PMID: 31534038 PMCID: PMC6854502 DOI: 10.1128/jvi.01539-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023] Open
Abstract
An integral part of the antiviral innate immune response is the APOBEC3 family of single-stranded DNA cytosine deaminases, which inhibits virus replication through deamination-dependent and -independent activities. Viruses have evolved mechanisms to counteract these enzymes, such as HIV-1 Vif-mediated formation of a ubiquitin ligase to degrade virus-restrictive APOBEC3 enzymes. A new example is Epstein-Barr virus (EBV) ribonucleotide reductase (RNR)-mediated inhibition of cellular APOBEC3B (A3B). The large subunit of the viral RNR, BORF2, causes A3B relocalization from the nucleus to cytoplasmic bodies and thereby protects viral DNA during lytic replication. Here, we use coimmunoprecipitation and immunofluorescence microscopy approaches to ask whether this mechanism is shared with the closely related gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) and the more distantly related alphaherpesvirus herpes simplex virus 1 (HSV-1). The large RNR subunit of KSHV, open reading frame 61 (ORF61), coprecipitated multiple APOBEC3s, including A3B and APOBEC3A (A3A). KSHV ORF61 also caused relocalization of these two enzymes to perinuclear bodies (A3B) and to oblong cytoplasmic structures (A3A). The large RNR subunit of HSV-1, ICP6, also coprecipitated A3B and A3A and was sufficient to promote the relocalization of these enzymes from nuclear to cytoplasmic compartments. HSV-1 infection caused similar relocalization phenotypes that required ICP6. However, unlike the infectivity defects previously reported for BORF2-null EBV, ICP6 mutant HSV-1 showed normal growth rates and plaque phenotypes. Combined, these results indicate that both gamma- and alphaherpesviruses use a conserved RNR-dependent mechanism to relocalize A3B and A3A and furthermore suggest that HSV-1 possesses at least one additional mechanism to neutralize these antiviral enzymes.IMPORTANCE The APOBEC3 family of DNA cytosine deaminases constitutes a vital innate immune defense against a range of different viruses. A novel counterrestriction mechanism has recently been uncovered for the gammaherpesvirus EBV, in which a subunit of the viral protein known to produce DNA building blocks (ribonucleotide reductase) causes A3B to relocalize from the nucleus to the cytosol. Here, we extend these observations with A3B to include a closely related gammaherpesvirus, KSHV, and a more distantly related alphaherpesvirus, HSV-1. These different viral ribonucleotide reductases also caused relocalization of A3A, which is 92% identical to A3B. These studies are important because they suggest a conserved mechanism of APOBEC3 evasion by large double-stranded DNA herpesviruses. Strategies to block this host-pathogen interaction may be effective for treating infections caused by these herpesviruses.
Collapse
Affiliation(s)
- Adam Z Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sofia N Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Claire Attarian
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jaime Yockteng-Melgar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Craig J Bierle
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen A Rice
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|