51
|
Abstract
Preeclampsia, a leading cause of maternal and perinatal morbidity and mortality worldwide, is accompanied by shallow placentation and deficient remodeling of the uterine spiral arteries by invasive placental trophoblast cells during the first trimester of pregnancy. Here, we generated induced pluripotent stem cells from umbilical cords of normal pregnancies and ones complicated by early onset preeclampsia (EOPE) and converted them to trophoblast to recapitulate events of early pregnancy. Parameters disturbed in EOPE, including trophoblast invasiveness, were assessed. Under low O2, both sets of cells behaved similarly, but, under the more stressful 20% O2 conditions, the invasiveness of EOPE trophoblast was markedly reduced. Gene expression changes in EOPE trophoblast suggested a dysregulation invasion linked to high O2. We describe a model for early onset preeclampsia (EOPE) that uses induced pluripotent stem cells (iPSCs) generated from umbilical cords of EOPE and control (CTL) pregnancies. These iPSCs were then converted to placental trophoblast (TB) representative of early pregnancy. Marker gene analysis indicated that both sets of cells differentiated at comparable rates. The cells were tested for parameters disturbed in EOPE, including invasive potential. Under 5% O2, CTL TB and EOPE TB lines did not differ, but, under hyperoxia (20% O2), invasiveness of EOPE TB was reduced. RNA sequencing analysis disclosed no consistent differences in expression of individual genes between EOPE TB and CTL TB under 20% O2, but, a weighted correlation network analysis revealed two gene modules (CTL4 and CTL9) that, in CTL TB, were significantly linked to extent of TB invasion. CTL9, which was positively correlated with 20% O2 (P = 0.02) and negatively correlated with invasion (P = 0.03), was enriched for gene ontology terms relating to cell adhesion and migration, angiogenesis, preeclampsia, and stress. Two EOPE TB modules, EOPE1 and EOPE2, also correlated positively and negatively, respectively, with 20% O2 conditions, but only weakly with invasion; they largely contained the same sets of genes present in modules CTL4 and CTL9. Our experiments suggest that, in EOPE, the initial step precipitating disease is a reduced capacity of placental TB to invade caused by a dysregulation of O2 response mechanisms and that EOPE is a syndrome, in which unbalanced expression of various combinations of genes affecting TB invasion provoke disease onset.
Collapse
|
52
|
Abstract
Humans develop from a unique group of pluripotent cells in early embryos that can produce all cells of the human body. While pluripotency is only transiently manifest in the embryo, scientists have identified conditions that sustain pluripotency indefinitely in the laboratory. Pluripotency is not a monolithic entity, however, but rather comprises a spectrum of different cellular states. Questions regarding the scientific value of examining the continuum of pluripotent stem (PS) cell states have gained increased significance in light of attempts to generate interspecies chimeras between humans and animals. In this chapter, I review our ever-evolving understanding of the continuum of pluripotency. Historically, the discovery of two different PS cell states in mice fostered a general conception of pluripotency comprised of two distinct attractor states: naïve and primed. Naïve pluripotency has been defined by competence to form germline chimeras and governance by unique KLF-based transcription factor (TF) circuitry, whereas primed state is distinguished by an inability to generate chimeras and alternative TF regulation. However, the discovery of many alternative PS cell states challenges the concept of pluripotency as a binary property. Moreover, it remains unclear whether the current molecular criteria used to classify human naïve-like pluripotency also identify human chimera-competent PS cells. Therefore, I examine the pluripotency continuum more closely in light of recent advances in PS cell research and human interspecies chimera research.
Collapse
|
53
|
Syrett CM, Sierra I, Berry CL, Beiting D, Anguera MC. Sex-Specific Gene Expression Differences Are Evident in Human Embryonic Stem Cells and During In Vitro Differentiation of Human Placental Progenitor Cells. Stem Cells Dev 2018; 27:1360-1375. [PMID: 29993333 DOI: 10.1089/scd.2018.0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The placenta is a short-lived tissue required for embryonic growth and survival, and it is fetal derived. Fetal sex influences gestation, and many sexual dimorphic diseases have origins in utero. There is sex-biased gene expression in third-trimester human placentas, yet the origin of sex-specific expression is unknown. Here, we used an in vitro differentiation model to convert human embryonic stem cells (hESCs) into trophoblastic progenitor cells of the first-trimester placenta, which will eventually become mature extravillous trophoblasts and syncytiotrophoblasts. We observed significant sex differences in transcriptomic profiles of hESCs and trophoblastic progenitors, and also with the differentiation process itself. Male cells had higher dosage of X/Y gene pairs relative to female samples, supporting functions for Y-linked genes beyond spermatogenesis in the hESCs and in the early placenta. Female-specific differentiation altered the expression of several thousand genes compared with male cells, and female cells specifically upregulated numerous autosomal genes with known roles in trophoblast function. Sex-biased upregulation of cellular pathways during trophoblast differentiation was also evident. This study is the first to identify sex differences in trophoblastic progenitor cells of the first-trimester human placenta, and reveal early origins for sexual dimorphism.
Collapse
Affiliation(s)
- Camille M Syrett
- 1 Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Isabel Sierra
- 1 Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Corbett L Berry
- 2 Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Daniel Beiting
- 2 Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Montserrat C Anguera
- 1 Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
54
|
Ju H, Zhang L, Mao L, Wu Y, Liu S, Ruan M, Hu J, Ren G. A comprehensive genome-wide analysis of the long noncoding RNA expression profile in metastatic lymph nodes of oral mucosal melanoma. Gene 2018; 675:44-53. [PMID: 29960071 DOI: 10.1016/j.gene.2018.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/30/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIM Oral mucosal melanoma (OMM) is a kind of malignancy with extremely rare morbidity. It exhibits a poorer biological behavior and clinical outcome compared with cutaneous melanoma. lncRNAs are endogenous cellular RNA transcripts with no protein-coding potential and are associated with oncogenesis through cis- or trans-acting mechanisms. Despite increased evidence that proved lncRNAs have vital roles in tumorigenesis of mucosal melanoma, little is known about their functions in the progress of lymph node dissemination of OMM. METHOD Here, we constructed a lncRNA and mRNA microarray using six metastatic lymph nodes and paired-matched non-metastatic lymph nodes. Then, we performed RT-PCR to validate the microarray data both in primary and metastases. We further constructed lncRNA and mRNA co-expressing networks and analyzed the biological functions by Gene Ontology (GO) and pathway analyses for dysregulated lncRNAs and mRNAs. Cis- and trans-regulation analysis were also performed to explore the specific mechanism of lncRNAs in OMM. RESULT Our results showed that 570 lncRNAs were upregulated with 292 lncRNAs downregulated in the metastatic OMM tissues. The results of RT-PCR were consistent with our microarray dataset both in primary and metastases. Gene Ontology (GO) and pathway analyses indicated that they play an important role in the melanin biosynthetic process, new growing cell tip and lysosomes in metastatic OMM. In the cis-regulation analysis, we observed metastasis-associated gene, PLEKHA5, the cis gene of lnc-AEBP2-1_1 and lnc-AEBP2-2_1, and microphthalmia-associated transcription factor (MITF), the cis gene of SAMMSON_3, SAMMSON_5 and lnc-MITF-5_1. In the trans-regulation analysis, CTBP2 and SUZ12 regulated lncRNA expression in the core TF-lncRNA-gene network. CONCLUSION Our results suggest that lncRNAs may be involved in the metastasis of OMM, and further investigation is needed to focus on the biological functions and the underlining molecular mechanisms exerted by these dysregulated lncRNAs in OMM.
Collapse
Affiliation(s)
- Houyu Ju
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Liming Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Lu Mao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yuteng Wu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Shuli Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Min Ruan
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| | - Guoxin Ren
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| |
Collapse
|
55
|
Cantone I, Fisher AG. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0358. [PMID: 28947657 DOI: 10.1098/rstb.2016.0358] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 11/12/2022] Open
Abstract
X-chromosome inactivation (XCI) is an exemplar of epigenetic regulation that is set up as pluripotent cells differentiate. Once established, XCI is stably propagated, but can be reversed in vivo or by pluripotent reprogramming in vitro Although reprogramming provides a useful model for inactive X (Xi) reactivation in mouse, the relative instability and heterogeneity of human embryonic stem (ES) cells and induced pluripotent stem cells hampers comparable progress in human. Here we review studies aimed at reactivating the human Xi using different reprogramming strategies. We outline our recent results using mouse ES cells to reprogramme female human fibroblasts by cell-cell fusion. We show that pluripotent reprogramming induces widespread and rapid chromatin remodelling in which the human Xi loses XIST and H3K27m3 enrichment and selected Xi genes become reactivated, ahead of mitotic division. Using RNA sequencing to map the extent of human Xi reactivation, and chromatin-modifying drugs to potentiate reactivation, we outline how this approach could be used to better design strategies to re-express human X-linked loci. As cell fusion induces the expression of human pluripotency genes that represent both the 'primed' and 'naive' states, this approach may also offer a fresh opportunity to segregate human pluripotent states with distinct Xi expression profiles, using single-cell-based approaches.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Irene Cantone
- Lymphocyte Development, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK .,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
56
|
Sahakyan A, Plath K, Rougeulle C. Regulation of X-chromosome dosage compensation in human: mechanisms and model systems. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0363. [PMID: 28947660 DOI: 10.1098/rstb.2016.0363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 01/01/2023] Open
Abstract
The human blastocyst forms 5 days after one of the smallest human cells (the sperm) fertilizes one of the largest human cells (the egg). Depending on the sex-chromosome contribution from the sperm, the resulting embryo will either be female, with two X chromosomes (XX), or male, with an X and a Y chromosome (XY). In early development, one of the major differences between XX female and XY male embryos is the conserved process of X-chromosome inactivation (XCI), which compensates gene expression of the two female X chromosomes to match the dosage of the single X chromosome of males. Most of our understanding of the pre-XCI state and XCI establishment is based on mouse studies, but recent evidence from human pre-implantation embryo research suggests that many of the molecular steps defined in the mouse are not conserved in human. Here, we will discuss recent advances in understanding the control of X-chromosome dosage compensation in early human embryonic development and compare it to that of the mouse.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Anna Sahakyan
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Claire Rougeulle
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
57
|
Bouma MJ, van Iterson M, Janssen B, Mummery CL, Salvatori DCF, Freund C. Differentiation-Defective Human Induced Pluripotent Stem Cells Reveal Strengths and Limitations of the Teratoma Assay and In Vitro Pluripotency Assays. Stem Cell Reports 2018; 8:1340-1353. [PMID: 28494940 PMCID: PMC5425621 DOI: 10.1016/j.stemcr.2017.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
The ability to form teratomas in vivo containing multiple somatic cell types is regarded as functional evidence of pluripotency for human pluripotent stem cells (hPSCs). Since the Teratoma assay is animal dependent, laborious, and only qualitative, the PluriTest and the hPSC ScoreCard assay have been developed as in vitro alternatives. Here we compared normal hPSCs, induced hPSCs (hiPSCs) with reactivated reprogramming transgenes, and human embryonal carcinoma cells (hECs) in these assays. While normal hPSCs gave rise to typical teratomas, the xenografts of the hECs and the hiPSCs with reactivated reprogramming transgenes were largely undifferentiated and malignant. The hPSC ScoreCard assay confirmed the line-specific differentiation propensities in vitro. However, when undifferentiated cells were analyzed by the PluriTest, only hECs were identified as abnormal whereas all other cell lines were indistinguishable and resembled normal hPSCs. Our results indicate that pluripotency assays are best selected on the basis of intended downstream applications. Side-by-side comparison of teratomas/TeratoScore, hPSC ScoreCard, and PluriTest hiPSCs with reactivated transgenes form embryonal carcinomas in vivo hiPSCs with reactivated transgenes show impaired differentiation capacity in vitro • PluriTest does not distinguish hiPSCs with reactivated transgenes from normal hPSCs
Collapse
Affiliation(s)
- Marga J Bouma
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Maarten van Iterson
- Department of Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Bart Janssen
- GenomeScan B.V., Plesmanlaan 1D, 2333 BZ Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Christian Freund
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
58
|
Geens M, Chuva De Sousa Lopes SM. X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board? Hum Reprod Update 2018; 23:520-532. [PMID: 28582519 DOI: 10.1093/humupd/dmx015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSC), both embryonic and induced (hESC and hiPSC), are regarded as a valuable in vitro model for early human development. In order to fulfil this promise, it is important that these cells mimic as closely as possible the in vivo molecular events, both at the genetic and epigenetic level. One of the most important epigenetic events during early human development is X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female cells. XCI is important for proper development and aberrant XCI has been linked to several pathologies. Recently, novel data obtained using high throughput single-cell technology during human preimplantation development have suggested that the XCI mechanism is substantially different from XCI in mouse. It has also been suggested that hPSC show higher complexity in XCI than the mouse. Here we compare the available recent data to understand whether XCI during human preimplantation can be properly recapitulated using hPSC. OBJECTIVE AND RATIONALE We will summarize what is known on the timing and mechanisms of XCI during human preimplantation development. We will compare this to the XCI patterns that are observed during hPSC derivation, culture and differentiation, and comment on the cause of the aberrant XCI patterns observed in hPSC. Finally, we will discuss the implications of the aberrant XCI patterns on the applicability of hPSC as an in vitro model for human development and as cell source for regenerative medicine. SEARCH METHODS Combinations of the following keywords were applied as search criteria in the PubMed database: X chromosome inactivation, preimplantation development, embryonic stem cells, induced pluripotent stem cells, primordial germ cells, differentiation. OUTCOMES Recent single-cell RNASeq data have shed new light on the XCI process during human preimplantation development. These indicate a gradual inactivation on both XX chromosomes, starting from Day 4 of development and followed by a random choice to inactivate one of them, instead of the mechanism in mice where imprinted XCI is followed by random XCI. We have put these new findings in perspective using previous data obtained in human (and mouse) embryos. In addition, there is an ongoing discussion whether or not hPSC lines show X chromosome reactivation upon derivation, mimicking the earliest embryonic cells, and the XCI states observed during culture of hPSC are highly variable. Recent studies have shown that hPSC rapidly progress to highly aberrant XCI patterns and that this process is probably driven by suboptimal culture conditions. Importantly, these aberrant XCI states seem to be inherited by the differentiated hPSC-progeny. WIDER IMPLICATIONS The aberrant XCI states (and epigenetic instability) observed in hPSC throw a shadow on their applicability as an in vitro model for development and disease modelling. Moreover, as the aberrant XCI states observed in hPSC seem to shift to a more malignant phenotype, this may also have important consequences for the safety aspect of using hPSC in the clinic.
Collapse
Affiliation(s)
- Mieke Geens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Department of Reproductive Medicine, Ghent-Fertility and Stem Cell Team (G-FaST), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
59
|
Keller A, Dziedzicka D, Zambelli F, Markouli C, Sermon K, Spits C, Geens M. Genetic and epigenetic factors which modulate differentiation propensity in human pluripotent stem cells. Hum Reprod Update 2018; 24:162-175. [PMID: 29377992 DOI: 10.1093/humupd/dmx042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC) lines are known to have a bias in their differentiation. This gives individual cell lines a propensity to preferentially differentiate towards one germ layer or cell type over others. Chromosomal aberrations, mitochondrial mutations, genetic diversity and epigenetic variance are the main drivers of this phenomenon, and can lead to a wide range of phenotypes. OBJECTIVE AND RATIONALE Our aim is to provide a comprehensive overview of the different factors which influence differentiation propensity. Specifically, we sought to highlight known genetic variances and their mechanisms, in addition to more general observations from larger abnormalities. Furthermore, we wanted to provide an up-to-date list of a growing number of predictive indicators which are able to identify differentiation propensity before the initiation of differentiation. As differentiation propensity can lead to difficulties in both research as well as clinical translation, our thorough overview could be a useful tool. SEARCH METHODS Combinations of the following key words were applied as search criteria in the PubMed database: embryonic stem cells, induced pluripotent stem cells, differentiation propensity (also: potential, efficiency, capacity, bias, variability), epigenetics, chromosomal abnormalities, genetic aberrations, X chromosome inactivation, mitochondrial function, mitochondrial metabolism, genetic diversity, reprogramming, predictive marker, residual stem cell, clinic. Only studies in English were included, ranging from 2000 to 2017, with a majority ranging from 2010 to 1017. Further manuscripts were added from cross-references. OUTCOMES Differentiation propensity is affected by a wide variety of (epi)genetic factors. These factors clearly lead to a loss of differentiation capacity, preference towards certain cell types and oftentimes, phenotypes which begin to resemble cancer. Broad changes in (epi)genetics, such as aneuploidies or wide-ranging modifications to the epigenetic landscape tend to lead to extensive, less definite changes in differentiation capacity, whereas more specific abnormalities often have precise ramifications in which certain cell types become more preferential. Furthermore, there appears to be a greater, though often less considered, contribution to differentiation propensity by factors such as mitochondria and inherent genetic diversity. Varied differentiation capacity can also lead to potential consequences in the clinical translation of hPSC, including the occurrence of residual undifferentiated stem cells, and the transplantation of potentially transformed cells. WIDER IMPLICATIONS As hPSC continue to advance towards the clinic, our understanding of them progresses as well. As a result, the challenges faced become more numerous, but also more clear. If the transition to the clinic is to be achieved with a minimum number of potential setbacks, thorough evaluation of the cells will be an absolute necessity. Altered differentiation propensity represents at least one such hurdle, for which researchers and eventually clinicians will need to find solutions. Already, steps are being taken to tackle the issue, though further research will be required to evaluate any long-term risks it poses.
Collapse
Affiliation(s)
- Alexander Keller
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Dominika Dziedzicka
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Filippo Zambelli
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Christina Markouli
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Karen Sermon
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Claudia Spits
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Mieke Geens
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| |
Collapse
|
60
|
Genetically unmatched human iPSC and ESC exhibit equivalent gene expression and neuronal differentiation potential. Sci Rep 2017; 7:17504. [PMID: 29235536 PMCID: PMC5727499 DOI: 10.1038/s41598-017-17882-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/02/2017] [Indexed: 11/08/2022] Open
Abstract
The potential uniformity between differentiation and therapeutic potential of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) remains debatable. We studied the gene expression profiles, pathways analysis and the ability to differentiated into neural progenitor cells (NPCs) and motor neurons (MNs) of genetically unmatched integration-free hiPSC versus hESC to highlight possible differences/similarities between them at the molecular level. We also provided the functional information of the neurons derived from the different hESCs and hiPSCs lines using the Neural Muscular Junction (NMJ) Assay. The hiPSC line was generated by transfecting human epidermal fibroblasts (HEF) with episomal DNAs expressing Oct4, Sox2, Klf4, Nanog, L-Myc and shRNA against p53. For the hESCs line, we used the NIH-approved H9 cell line. Using unsupervised clustering both hESCs and hiPSCs were clustered together implying homogeneous genetic states. The genetic profiles of hiPSCs and hESCs were clearly similar but not identical. Collectively, our data indicate close molecular similarities between genetically unmatched hESCs and hiPS in term of gene expression, and signaling pathways. Moreover, both cell types exhibited similar cholinergic motor neurons differentiation potential with marked ability of the differentiated hESCs and hiPSCs-derived MNs to induce contraction of myotubes after 4 days of co-culture.
Collapse
|
61
|
Syrett CM, Sindhava V, Hodawadekar S, Myles A, Liang G, Zhang Y, Nandi S, Cancro M, Atchison M, Anguera MC. Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells. PLoS Genet 2017; 13:e1007050. [PMID: 28991910 PMCID: PMC5648283 DOI: 10.1371/journal.pgen.1007050] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/19/2017] [Accepted: 09/28/2017] [Indexed: 12/05/2022] Open
Abstract
X-chromosome inactivation (XCI) in female lymphocytes is uniquely regulated, as the inactive X (Xi) chromosome lacks localized Xist RNA and heterochromatin modifications. Epigenetic profiling reveals that Xist RNA is lost from the Xi at the pro-B cell stage and that additional heterochromatic modifications are gradually lost during B cell development. Activation of mature B cells restores Xist RNA and heterochromatin to the Xi in a dynamic two-step process that differs in timing and pattern, depending on the method of B cell stimulation. Finally, we find that DNA binding domain of YY1 is necessary for XCI in activated B cells, as ex-vivo YY1 deletion results in loss of Xi heterochromatin marks and up-regulation of X-linked genes. Ectopic expression of the YY1 zinc finger domain is sufficient to restore Xist RNA localization during B cell activation. Together, our results indicate that Xist RNA localization is critical for maintaining XCI in female lymphocytes, and that chromatin changes on the Xi during B cell development and the dynamic nature of YY1-dependent XCI maintenance in mature B cells predisposes X-linked immunity genes to reactivation. Females are predisposed to develop various autoimmune disorders, and the genetic basis for this susceptibility is the X-chromosome. X-linked genes are dosage compensated between sexes by X-chromosome Inactivation (XCI) during embryogenesis and maintained into adulthood. Here we show that the chromatin of the inactive X loses epigenetic modifications during B cell lineage development. We found that female mature B cells, which are the pathogenic cells in autoimmunity, have a dynamic two-step mechanism of maintaining XCI during stimulation. The transcription factor YY1, which regulates DNA looping during V(D)J recombination in B cells, is necessary for relocalizing Xist RNA back to the inactive X in activated B cells. YY1 deletion ex vivo in mature B cells impairs heterochromatin mark enrichment on the inactive X, and results in increased X-linked gene expression. We demonstrate that the DNA binding domain of YY1 is sufficient for localizing Xist RNA to the inactive X during B cell stimulation. Our study indicates that Xist RNA localization is critical for maintaining XCI in female lymphocytes. We propose that chromatin changes on the Xi during B cell development and the dynamic nature of YY1-dependent XCI maintenance in mature B cells predisposes X-linked immunity genes to reactivation.
Collapse
Affiliation(s)
- Camille M. Syrett
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
| | - Vishal Sindhava
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Suchita Hodawadekar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
| | - Arpita Myles
- Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Guanxiang Liang
- Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Yue Zhang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
| | - Satabdi Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
| | - Michael Cancro
- Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
| | - Montserrat C. Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
- * E-mail:
| |
Collapse
|
62
|
Goversen B, van der Heyden MAG, van Veen TAB, de Boer TP. The immature electrophysiological phenotype of iPSC-CMs still hampers in vitro drug screening: Special focus on I K1. Pharmacol Ther 2017; 183:127-136. [PMID: 28986101 DOI: 10.1016/j.pharmthera.2017.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Preclinical drug screens are not based on human physiology, possibly complicating predictions on cardiotoxicity. Drug screening can be humanised with in vitro assays using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). However, in contrast to adult ventricular cardiomyocytes, iPSC-CMs beat spontaneously due to presence of the pacemaking current If and reduced densities of the hyperpolarising current IK1. In adult cardiomyocytes, IK1 finalises repolarisation by stabilising the resting membrane potential while also maintaining excitability. The reduced IK1 density contributes to proarrhythmic traits in iPSC-CMs, which leads to an electrophysiological phenotype that might bias drug responses. The proarrhythmic traits can be suppressed by increasing IK1 in a balanced manner. We systematically evaluated all studies that report strategies to mature iPSC-CMs and found that only few studies report IK1 current densities. Furthermore, these studies did not succeed in establishing sufficient IK1 levels as they either added too little or too much IK1. We conclude that reduced densities of IK1 remain a major flaw in iPSC-CMs, which hampers their use for in vitro drug screening.
Collapse
Affiliation(s)
- Birgit Goversen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands.
| |
Collapse
|
63
|
Ortmann D, Vallier L. Variability of human pluripotent stem cell lines. Curr Opin Genet Dev 2017; 46:179-185. [DOI: 10.1016/j.gde.2017.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022]
|
64
|
Lin K, Xiao AZ. Quality control towards the application of induced pluripotent stem cells. Curr Opin Genet Dev 2017; 46:164-169. [PMID: 28823985 DOI: 10.1016/j.gde.2017.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 01/27/2023]
Abstract
The advance of iPS technology holds great promise for regenerative medicine. Despite their global similarity to ES cells, fully reprogrammed iPS cells generated by current procedures still display clone-to-clone variations in molecular properties and developmental potentials, which calls for the development of reliable quality control assays. The differences in developmental potentials in iPS cells may be caused by epigenetic variations, such as histone variant H2A.X deposition. In this review, we discuss the current understanding of molecular variations of iPS cells and their implication on quality assessments.
Collapse
Affiliation(s)
- Kaixuan Lin
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Andrew Z Xiao
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
65
|
Hsieh T, Vaickus MH, Remick DG. Enhancing Scientific Foundations to Ensure Reproducibility: A New Paradigm. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:6-10. [PMID: 28958817 DOI: 10.1016/j.ajpath.2017.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 01/31/2023]
Abstract
Progress in science is dependent on a strong foundation of reliable results. The publish or perish paradigm in research, coupled with an increase in retracted articles from the peer-reviewed literature, is beginning to erode the trust of both the scientific community and the public. The NIH is combating errors by requiring investigators to follow new guidelines addressing scientific premise, experimental design, biological variables, and authentication of reagents. Herein, we discuss how implementation of NIH guidelines will help investigators proactively address pitfalls of experimental design and methods. Careful consideration of the variables contributing to reproducibility helps ensure robust results. The NIH, investigators, and journals must collaborate to ensure that quality science is funded, explored, and published.
Collapse
Affiliation(s)
- Terry Hsieh
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Max H Vaickus
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel G Remick
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
66
|
Min B, Park JS, Jeon K, Kang YK. Characterization of X-Chromosome Gene Expression in Bovine Blastocysts Derived by In vitro Fertilization and Somatic Cell Nuclear Transfer. Front Genet 2017; 8:42. [PMID: 28443134 PMCID: PMC5385346 DOI: 10.3389/fgene.2017.00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022] Open
Abstract
To better understand X-chromosome reactivation (XCR) during early development, we analyzed transcriptomic data obtained from bovine male and female blastocysts derived by in-vitro fertilization (IVF) or somatic-cell nuclear transfer (SCNT). We found that X-linked genes were upregulated by almost two-fold in female compared with male IVF blastocysts. The upregulation of X-linked genes in female IVFs indicated a transcriptional dimorphism between the sexes, because the mean autosomal gene expression levels were relatively constant, regardless of sex. X-linked genes were expressed equivalently in the inner-cell mass and the trophectoderm parts of female blastocysts, indicating no imprinted inactivation of paternal X in the trophectoderm. All these features of X-linked gene expression observed in IVFs were also detected in SCNT blastocysts, although to a lesser extent. A heatmap of X-linked gene expression revealed that the initial resemblance of X-linked gene expression patterns between male and female donor cells turned sexually divergent in host SCNTs, ultimately resembling the patterns of male and female IVFs. Additionally, we found that sham SCNT blastocysts, which underwent the same nuclear-transfer procedures, but retained their embryonic genome, closely mimicked IVFs for X-linked gene expression, which indicated that the embryo manipulation procedure itself does not interfere with XCR in SCNT blastocysts. Our findings indicated that female SCNTs have less efficient XCR, suggesting that clonal reprogramming of X chromosomes is incomplete and occurs variably among blastocysts, and even among cells in a single blastocyst.
Collapse
Affiliation(s)
- Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience BiotechnologyDaejeon, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience BiotechnologyDaejeon, South Korea
| | - Kyuheum Jeon
- Development and Differentiation Research Center, Korea Research Institute of Bioscience BiotechnologyDaejeon, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience BiotechnologyDaejeon, South Korea
| |
Collapse
|
67
|
Bastami F, Nazeman P, Moslemi H, Rezai Rad M, Sharifi K, Khojasteh A. Induced pluripotent stem cells as a new getaway for bone tissue engineering: A systematic review. Cell Prolif 2017; 50:e12321. [PMID: 27905670 PMCID: PMC6529104 DOI: 10.1111/cpr.12321] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) are frequently used for bone regeneration, however, they are limited in quantity. Moreover, their proliferation and differentiation capabilities reduce during cell culture expansion. Potential application of induced pluripotent stem cells (iPSCs) has been reported as a promising alternative source for bone regeneration. This study aimed to systematically review the available literature on osteogenic potential of iPSCs and to discuss methods applied to enhance their osteogenic potential. METHODS AND MATERIALS A thorough search of MEDLINE database was performed from January 2006 to September 2016, limited to English-language articles. All in vitro and in vivo studies on application of iPSCs in bone regeneration were included. RESULTS The current review is organized according to the PRISMA statement. Studies were categorized according to three different approaches used for osteo-induction of iPSCs. Data are summarized and reported according to the following variables: types of study, cell sources used for iPSC generation, applied reprogramming methods, applied osteo-induction methods and treatment groups. CONCLUSION According to the articles reviewed, osteo-induced iPSCs revealed osteogenic capability equal to or superior than MSCs; cell sources do not significantly affect osteogenic potential of iPSCs; addition of resveratrol to the osteogenic medium (OM) and irradiatiation after osteogenic induction reduce teratoma formation in animal models; transfection with lentiviral bone morphogenetic protein 2 results in higher mineralization compared to osteo-induction in OM; addition of TGF-β, IGF-1 and FGF-β to OM increases osteogenic capability of iPSCs.
Collapse
Affiliation(s)
- Farshid Bastami
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Pantea Nazeman
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hamidreza Moslemi
- School of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Maryam Rezai Rad
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Kazem Sharifi
- Department of BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Arash Khojasteh
- Department of Tissue EngineeringSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Faculty of MedicineUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
68
|
Postlmayr A, Wutz A. Insights into the Establishment of Chromatin States in Pluripotent Cells from Studies of X Inactivation. J Mol Biol 2017; 429:1521-1531. [PMID: 28315662 DOI: 10.1016/j.jmb.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
Animal development entails the sequential and coordinated specialization of cells. During cell differentiation, transcription factors, cell signaling pathways, and chromatin-associated protein complexes cooperate in regulating the expression of a large number of genes. Here, we review the present understanding of the establishment of chromatin states by focusing on X chromosome inactivation (XCI) as a model for facultative heterochromatin formation in female embryonic cells. The inactive X chromosome is large enough to be investigated by biochemical and microscopy techniques. In addition, the ability to compare the inactivated chromatin to the active X in male cells enables us to differentiate events specific to gene silencing during XCI from gene regulatory effects from changing pathways in the same cell. Findings in XCI are useful as blueprints for investigation of the action of epigenetic pathways in differentiation and lineage commitment. We summarize recent studies that have identified factors that are critical for chromosome-wide gene repression in XCI, and we discuss their implications for epigenetic regulation in pluripotent cells of the early embryo.
Collapse
Affiliation(s)
- Andreas Postlmayr
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Sciences Program, University of Zurich, 8049 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
69
|
Cantone I, Dharmalingam G, Chan YW, Kohler AC, Lenhard B, Merkenschlager M, Fisher AG. Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation. Genome Biol 2017; 18:2. [PMID: 28118853 PMCID: PMC5264468 DOI: 10.1186/s13059-016-1136-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inactivation of one X chromosome is established early in female mammalian development and can be reversed in vivo and in vitro when pluripotency factors are re-expressed. The extent of reactivation along the inactive X chromosome (Xi) and the determinants of locus susceptibility are, however, poorly understood. Here we use cell fusion-mediated pluripotent reprograming to study human Xi reactivation and allele-specific single nucleotide polymorphisms (SNPs) to identify reactivated loci. RESULTS We show that a subset of human Xi genes is rapidly reactivated upon re-expression of the pluripotency network. These genes lie within the most evolutionary recent segments of the human X chromosome that are depleted of LINE1 and enriched for SINE elements, predicted to impair XIST spreading. Interestingly, this cadre of genes displays stochastic Xi expression in human fibroblasts ahead of reprograming. This stochastic variability is evident between clones, by RNA-sequencing, and at the single-cell level, by RNA-FISH, and is not attributable to differences in repressive histone H3K9me3 or H3K27me3 levels. Treatment with the DNA demethylating agent 5-deoxy-azacytidine does not increase Xi expression ahead of reprograming, but instead reveals a second cadre of genes that only become susceptible to reactivation upon induction of pluripotency. CONCLUSIONS Collectively, these data not only underscore the multiple pathways that contribute to maintaining silencing along the human Xi chromosome but also suggest that transcriptional stochasticity among human cells could be useful for predicting and engineering epigenetic strategies to achieve locus-specific or domain-specific human Xi gene reactivation.
Collapse
Affiliation(s)
- Irene Cantone
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Gopuraja Dharmalingam
- Bioinformatics and Computing facility, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Yi-Wah Chan
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anne-Celine Kohler
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
70
|
Differential X Chromosome Inactivation Patterns during the Propagation of Human Induced Pluripotent Stem Cells. Keio J Med 2017; 66:1-8. [PMID: 28111378 DOI: 10.2302/kjm.2016-0015-oa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a potentially useful tool for studying the molecular mechanisms of disease thanks to their ability to generate patient-specific hiPSC clones. However, previous studies have reported that DNA methylation profiles, including those for imprinted genes, may change during passaging of hiPSCs. This is particularly problematic for hiPSC models of X-linked disease, because unstable X chromosome inactivation status may affect the detection of phenotypes. In the present study, we examined the epigenetic status of hiPSCs derived from patients with Rett syndrome, an X-linked disease, during long-term culture. To analyze X chromosome inactivation, we used a methylation-specific polymerase chain reaction (MSP) to assay the human androgen receptor locus (HUMARA). We found that single cell-derived hiPSC clones exhibit various states of X chromosome inactivation immediately after clonal isolation, even when established simultaneously from a single donor. X chromosome inactivation states remain variable in hiPSC clones at early passages, and this variability may affect cellular phenotypes characteristic of X-linked diseases. Careful evaluation of X chromosome inactivation in hiPSC clones, particularly in early passages, by methods such as HUMARA-MSP, is therefore important when using patient-specific hiPSCs to model X-linked disease.
Collapse
|
71
|
Sohrabji F, Park MJ, Mahnke AH. Sex differences in stroke therapies. J Neurosci Res 2017; 95:681-691. [PMID: 27870437 PMCID: PMC5125551 DOI: 10.1002/jnr.23855] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 02/03/2023]
Abstract
Stroke is the fifth leading cause of death and acquired disability in aged populations. Women are disproportionally affected by stroke, having a higher incidence and worse outcomes than men. Numerous preclinical studies have discovered novel therapies for the treatment of stroke, but almost all of these have been shown to be unsuccessful in clinical trials. Despite known sex differences in occurrence and severity of stroke, few preclinical or clinical therapeutics take into account possible sex differences in treatment. Reanalysis of data from studies of tissue plasminogen activator (tPA), the only currently FDA-approved stroke therapy, has shown that tPA improves stroke outcomes for both sexes and also shows sexual dimorphism by more robust improvement in stroke outcome in females. Experimental evidence supports the inclusion of sex as a variable in the study of a number of novel stroke drugs and therapies, including preclinical studies of anti-inflammatory drugs (minocycline), stimulators of cell survival (insulin-like growth factor-1), and inhibitors of cell death pathways (pharmacological inhibition of poly[ADP-ribose] polymerase-1, nitric oxide production, and caspase activation) as well as in current clinical trials of stem cell therapy and cortical stimulation. Overall, study design and analysis in clinical trials as well as in preclinical studies must include both sexes equally, consider possible sex differences in the analyses, and report the differences/similarities in more systematic/structured ways to allow promising therapies for both sexes and increase stroke recovery. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Min Jung Park
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Amanda H Mahnke
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
72
|
Patel S, Bonora G, Sahakyan A, Kim R, Chronis C, Langerman J, Fitz-Gibbon S, Rubbi L, Skelton RJP, Ardehali R, Pellegrini M, Lowry WE, Clark AT, Plath K. Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation. Cell Rep 2016; 18:54-67. [PMID: 27989715 DOI: 10.1016/j.celrep.2016.11.054] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/09/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022] Open
Abstract
Applications of embryonic stem cells (ESCs) require faithful chromatin changes during differentiation, but the fate of the X chromosome state in differentiating ESCs is unclear. Female human ESC lines either carry two active X chromosomes (XaXa), an Xa and inactive X chromosome with or without XIST RNA coating (XiXIST+Xa;XiXa), or an Xa and an eroded Xi (XeXa) where the Xi no longer expresses XIST RNA and has partially reactivated. Here, we established XiXa, XeXa, and XaXa ESC lines and followed their X chromosome state during differentiation. Surprisingly, we found that the X state pre-existing in primed ESCs is maintained in differentiated cells. Consequently, differentiated XeXa and XaXa cells lacked XIST, did not induce X inactivation, and displayed higher X-linked gene expression than XiXa cells. These results demonstrate that X chromosome dosage compensation is not required for ESC differentiation. Our data imply that XiXIST+Xa ESCs are most suited for downstream applications and show that all other X states are abnormal byproducts of our ESC derivation and propagation method.
Collapse
Affiliation(s)
- Sanjeet Patel
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giancarlo Bonora
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Sahakyan
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel Kim
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Constantinos Chronis
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sorel Fitz-Gibbon
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rhys J P Skelton
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William E Lowry
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
73
|
Singh VK, Saini A, Kalsan M, Kumar N, Chandra R. Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Front Cell Dev Biol 2016; 4:134. [PMID: 27921030 PMCID: PMC5118841 DOI: 10.3389/fcell.2016.00134] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Stem cells are defined by their capabilities to self-renew and give rise to various types of differentiated cells depending on their potency. They are classified as pluripotent, multipotent, and unipotent as demonstrated through their potential to generate the variety of cell lineages. While pluripotent stem cells may give rise to all types of cells in an organism, Multipotent and Unipotent stem cells remain restricted to the particular tissue or lineages. The potency of these stem cells can be defined by using a number of functional assays along with the evaluation of various molecular markers. These molecular markers include diagnosis of transcriptional, epigenetic, and metabolic states of stem cells. Many reports are defining the particular set of different functional assays, and molecular marker used to demonstrate the developmental states and functional capacities of stem cells. The careful evaluation of all these methods could help in generating standard identifying procedures/markers for them.
Collapse
Affiliation(s)
- Vimal K Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Manisha Kalsan
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Neeraj Kumar
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi Delhi, India
| |
Collapse
|
74
|
Zhang M, Cheng L, Jia Y, Liu G, Li C, Song S, Bradley A, Huang Y. Aneuploid embryonic stem cells exhibit impaired differentiation and increased neoplastic potential. EMBO J 2016; 35:2285-2300. [PMID: 27558554 DOI: 10.15252/embj.201593103] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 07/27/2016] [Indexed: 11/09/2022] Open
Abstract
Aneuploidy leads to severe developmental defects in mammals and is also a hallmark of cancer. However, whether aneuploidy is a driving cause or a consequence of tumor formation remains controversial. Paradoxically, existing studies based on aneuploid yeast and mouse fibroblasts have shown that aneuploidy is usually detrimental to cellular fitness. Here, we examined the effects of aneuploidy on mouse embryonic stem (ES) cells by generating a series of cell lines that each carries an extra copy of single chromosomes, including trisomy 6, 8, 11, 12, or 15. Most of these aneuploid cell lines had rapid proliferation rates and enhanced colony formation efficiencies. They were less dependent on growth factors for self-renewal and showed a reduced capacity to differentiate in vitro Moreover, trisomic stem cells formed teratomas more efficiently, from which undifferentiated cells can be recovered. Further investigations demonstrated that co-culture of wild-type and aneuploid ES cells or supplementation with extracellular BMP4 rescues the differentiation defects of aneuploid ES cells.
Collapse
Affiliation(s)
- Meili Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Cheng
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuyan Jia
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cuiping Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Shuhui Song
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China .,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
75
|
Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140367. [PMID: 26416678 DOI: 10.1098/rstb.2014.0367] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Growing old is our destiny. However, the mature differentiated cells making up our body can be rejuvenated to an embryo-like fate called pluripotency which is an ability to differentiate into all cell types by enforced expression of defined transcription factors. The discovery of this induced pluripotent stem cell (iPSC) technology has opened up unprecedented opportunities in regenerative medicine, disease modelling and drug discovery. In this review, we introduce the applications and future perspectives of human iPSCs and we also show how iPSC technology has evolved along the way.
Collapse
Affiliation(s)
- Mari Ohnuki
- Department Biology II, Ludwig Maximilians University Munich, 82152 Martinsried Planegg, Germany
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| |
Collapse
|
76
|
lncRHOXF1, a Long Noncoding RNA from the X Chromosome That Suppresses Viral Response Genes during Development of the Early Human Placenta. Mol Cell Biol 2016; 36:1764-75. [PMID: 27066803 DOI: 10.1128/mcb.01098-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/07/2016] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) can regulate gene expression in a cell-specific fashion during development. Here, we identify a novel lncRNA from the X chromosome that we named lncRHOXF1 and which is abundantly expressed in trophectoderm and primitive endoderm cells of human blastocyst-stage embryos. lncRHOXF1 is a spliced and polyadenylated lncRNA about 1 kb in length that is found in both the nuclear and cytoplasmic compartments of in vitro differentiated human trophectoderm progenitor cells. Gain-of-function experiments in human embryonic stem cells, which normally lack lncRHOXF1 RNA, revealed that lncRHOXF1 reduced proliferation and favored cellular differentiation. lncRHOXF1 knockdown using small interfering RNAs (siRNAs) in human trophectoderm progenitors increased expression of viral response genes, including type I interferon. Sendai virus infection of human trophectoderm progenitor cells increased lncRHOXF1 RNA levels, and siRNA-mediated disruption of lncRHOXF1 during infection reduced the expression of viral response genes leading to higher virus replication. Thus, lncRHOXF1 RNA is the first example of a lncRNA that regulates the host response to viral infections in human placental progenitor cells, and we propose that it functions as a repressor of the viral response during early human development.
Collapse
|
77
|
Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc Natl Acad Sci U S A 2016; 113:E2029-38. [PMID: 27001848 DOI: 10.1073/pnas.1520113113] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Females have a greater immunological advantage than men, yet they are more prone to autoimmune disorders. The basis for this sex bias lies in the X chromosome, which contains many immunity-related genes. Female mammals use X chromosome inactivation (XCI) to generate a transcriptionally silent inactive X chromosome (Xi) enriched with heterochromatic modifications and XIST/Xist RNA, which equalizes gene expression between the sexes. Here, we examine the maintenance of XCI in lymphocytes from females in mice and humans. Strikingly, we find that mature naïve T and B cells have dispersed patterns of XIST/Xist RNA, and they lack the typical heterochromatic modifications of the Xi. In vitro activation of lymphocytes triggers the return of XIST/Xist RNA transcripts and some chromatin marks (H3K27me3, ubiquitin-H2A) to the Xi. Single-cell RNA FISH analysis of female T cells revealed that the X-linked immunity genes CD40LG and CXCR3 are biallelically expressed in some cells. Using knockout and knockdown approaches, we find that Xist RNA-binding proteins, YY1 and hnRNPU, are critical for recruitment of XIST/Xist RNA back to the Xi. Furthermore, we examined B cells from patients with systemic lupus erythematosus, an autoimmune disorder with a strong female bias, and observed different XIST RNA localization patterns, evidence of biallelic expression of immunity-related genes, and increased transcription of these genes. We propose that the Xi in female lymphocytes is predisposed to become partially reactivated and to overexpress immunity-related genes, providing the first mechanistic evidence to our knowledge for the enhanced immunity of females and their increased susceptibility for autoimmunity.
Collapse
|
78
|
Briggs SF, Dominguez AA, Chavez SL, Reijo Pera RA. Single-Cell XIST Expression in Human Preimplantation Embryos and Newly Reprogrammed Female Induced Pluripotent Stem Cells. Stem Cells 2016; 33:1771-81. [PMID: 25753947 PMCID: PMC4441606 DOI: 10.1002/stem.1992] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/19/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023]
Abstract
The process of X chromosome inactivation (XCI) during reprogramming to produce human induced pluripotent stem cells (iPSCs), as well as during the extensive programming that occurs in human preimplantation development, is not well‐understood. Indeed, studies of XCI during reprogramming to iPSCs report cells with two active X chromosomes and/or cells with one inactive X chromosome. Here, we examine expression of the long noncoding RNA, XIST, in single cells of human embryos through the oocyte‐to‐embryo transition and in new mRNA reprogrammed iPSCs. We show that XIST is first expressed beginning at the 4‐cell stage, coincident with the onset of embryonic genome activation in an asynchronous manner. Additionally, we report that mRNA reprogramming produces iPSCs that initially express XIST transcript; however, expression is rapidly lost with culture. Loss of XIST and H3K27me3 enrichment at the inactive X chromosome at late passage results in X chromosome expression changes. Our data may contribute to applications in disease modeling and potential translational applications of female stem cells. Stem Cells2015;33:1771–1781
Collapse
Affiliation(s)
- Sharon F Briggs
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Antonia A Dominguez
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Shawn L Chavez
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Renee A Reijo Pera
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
79
|
Geens M, Seriola A, Barbé L, Santalo J, Veiga A, Dée K, Van Haute L, Sermon K, Spits C. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture. Mol Hum Reprod 2016; 22:285-98. [DOI: 10.1093/molehr/gaw004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/13/2016] [Indexed: 12/25/2022] Open
|
80
|
Zarbin M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol Med 2016; 22:115-134. [PMID: 26791247 DOI: 10.1016/j.molmed.2015.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Stem cell-derived retinal pigment epithelium (RPE) and photoreceptors (PRs) have restored vision in preclinical models of human retinal degenerative disease. This review discusses characteristics of stem cell therapy in the eye and the challenges to clinical implementation that are being confronted today. Based on encouraging results from Phase I/II trials, the first Phase II clinical trials of stem cell-derived RPE transplantation are underway. PR transplant experiments have demonstrated restoration of visual function in preclinical models of retinitis pigmentosa and macular degeneration, but also indicate that no single approach is likely to succeed in overcoming PR loss in all cases. A greater understanding of the mechanisms controlling synapse formation as well as the immunoreactivity of transplanted retinal cells is urgently needed.
Collapse
Affiliation(s)
- Marco Zarbin
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
81
|
Cellular Engineering and Disease Modeling with Gene-Editing Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
82
|
Abstract
Induced pluripotency defines the process by which somatic cells are converted into induced pluripotent stem cells (iPSCs) upon overexpression of a small set of transcription factors. In this article, we put transcription factor-induced pluripotency into a historical context, review current methods to generate iPSCs, and discuss mechanistic insights that have been gained into the process of reprogramming. In addition, we focus on potential therapeutic applications of induced pluripotency and emerging technologies to efficiently engineer the genomes of human pluripotent cells for scientific and therapeutic purposes.
Collapse
Affiliation(s)
- Konrad Hochedlinger
- Howard Hughes Medical Institute at Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, Boston, Massachusetts 02114
| | - Rudolf Jaenisch
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|
83
|
Pasque V, Plath K. X chromosome reactivation in reprogramming and in development. Curr Opin Cell Biol 2015; 37:75-83. [PMID: 26540406 DOI: 10.1016/j.ceb.2015.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/29/2022]
Abstract
Dramatic epigenetic changes take place during mammalian differentiation from the naïve pluripotent state including the silencing of one of the two X chromosomes in female cells through X chromosome inactivation. Conversely, reprogramming of somatic cells to naive pluripotency is coupled to X chromosome reactivation (XCR). Recent studies in the mouse system have shed light on the mechanisms of XCR by uncovering the timing and steps of XCR during reprogramming to induced pluripotent stem cells (iPSCs), allowing the generation of testable hypotheses during embryogenesis. In contrast, analyses of the X chromosome in human iPSCs have revealed important differences between mouse and human reprogramming processes that can partially be explained by the establishment of distinct pluripotent states and impact disease modeling and the application of human pluripotent stem cells. Here, we review recent literature on XCR as a readout and determinant of reprogramming to pluripotency.
Collapse
Affiliation(s)
- Vincent Pasque
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
84
|
A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol 2015; 33:1173-81. [PMID: 26501951 PMCID: PMC4847940 DOI: 10.1038/nbt.3388] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022]
Abstract
The equivalence of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) remains controversial. Here we use genetically matched hESC and hiPSC lines to assess the contribution of cellular origin (hESC vs. hiPSC), the Sendai virus (SeV) reprogramming method and genetic background to transcriptional and DNA methylation patterns while controlling for cell line clonality and sex. We find that transcriptional and epigenetic variation originating from genetic background dominates over variation due to cellular origin or SeV infection. Moreover, the 49 differentially expressed genes we detect between genetically matched hESCs and hiPSCs neither predict functional outcome nor distinguish an independently derived, larger set of unmatched hESC and hiPSC lines. We conclude that hESCs and hiPSCs are molecularly and functionally equivalent and cannot be distinguished by a consistent gene expression signature. Our data further imply that genetic background variation is a major confounding factor for transcriptional and epigenetic comparisons of pluripotent cell lines, explaining some of the previously observed differences between genetically unmatched hESCs and hiPSCs.
Collapse
|
85
|
De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, Hochedlinger K, Jaenisch R, Lee S, Leitch HG, Lensch MW, Lujan E, Pei D, Rossant J, Wernig M, Park PJ, Daley GQ. Hallmarks of pluripotency. Nature 2015; 525:469-78. [PMID: 26399828 DOI: 10.1038/nature15515] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/26/2015] [Indexed: 12/20/2022]
Abstract
Stem cells self-renew and generate specialized progeny through differentiation, but vary in the range of cells and tissues they generate, a property called developmental potency. Pluripotent stem cells produce all cells of an organism, while multipotent or unipotent stem cells regenerate only specific lineages or tissues. Defining stem-cell potency relies upon functional assays and diagnostic transcriptional, epigenetic and metabolic states. Here we describe functional and molecular hallmarks of pluripotent stem cells, propose a checklist for their evaluation, and illustrate how forensic genomics can validate their provenance.
Collapse
Affiliation(s)
- Alejandro De Los Angeles
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Children's Hospital Boston, and Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Francesco Ferrari
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ruibin Xi
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Yuko Fujiwara
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Children's Hospital Boston, and Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Nissim Benvenisty
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Hongkui Deng
- College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Konrad Hochedlinger
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, Massachusetts 02114, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Soohyun Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Harry G Leitch
- Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | - M William Lensch
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Children's Hospital Boston, and Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Ernesto Lujan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
| | - Duanqing Pei
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Janet Rossant
- The Hospital for Sick Children Research Institute, Toronto, Ontario ON M5G 0A4, Canada
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Children's Hospital Boston, and Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
86
|
Gao R, Liu X, Gao S. Progress in understanding epigenetic remodeling during induced pluripotency. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0919-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
87
|
Masotti A, Celluzzi A, Petrini S, Bertini E, Zanni G, Compagnucci C. Aged iPSCs display an uncommon mitochondrial appearance and fail to undergo in vitro neurogenesis. Aging (Albany NY) 2015; 6:1094-108. [PMID: 25567319 PMCID: PMC4298368 DOI: 10.18632/aging.100708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reprogramming of human fibroblasts into induced pluripotent stem cells (iPSCs) leads to mitochondrial rejuvenation, making iPSCs a candidate model to study the mitochondrial biology during stemness and differentiation. At present, it is generally accepted that iPSCs can be maintained and propagated indefinitely in culture, but no specific studies have addressed this issue. In our study, we investigated features related to the 'biological age' of iPSCs, culturing and analyzing iPSCs kept for prolonged periods in vitro. We have demonstrated that aged iPSCs present an increased number of mitochondria per cell with an altered mitochondrial membrane potential and fail to properly undergo in vitro neurogenesis. In aged iPSCs we have also found an altered expression of genes relevant to mitochondria biogenesis. Overall, our results shed light on the mitochondrial biology of young and aged iPSCs and explore how an altered mitochondrial status may influence neuronal differentiation. Our work suggests to deepen the understanding of the iPSCs biology before considering their use in clinical applications.
Collapse
|
88
|
Vallot C, Ouimette JF, Makhlouf M, Féraud O, Pontis J, Côme J, Martinat C, Bennaceur-Griscelli A, Lalande M, Rougeulle C. Erosion of X Chromosome Inactivation in Human Pluripotent Cells Initiates with XACT Coating and Depends on a Specific Heterochromatin Landscape. Cell Stem Cell 2015; 16:533-46. [PMID: 25921272 DOI: 10.1016/j.stem.2015.03.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/07/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
Human pluripotent stem cells (hPSCs) display extensive epigenetic instability, particularly on the X chromosome. In this study, we show that, in hPSCs, the inactive X chromosome has a specific heterochromatin landscape that predisposes it to erosion of X chromosome inactivation (XCI), a process that occurs spontaneously in hPSCs. Heterochromatin remodeling and gene reactivation occur in a non-random fashion and are confined to specific H3K27me3-enriched domains, leaving H3K9me3-marked regions unaffected. Using single-cell monitoring of XCI erosion, we show that this instability only occurs in pluripotent cells. We also provide evidence that loss of XIST expression is not the primary cause of XCI instability and that gene reactivation from the inactive X (Xi) precedes loss of XIST coating. Notably, expression and coating by the long non-coding RNA XACT are early events in XCI erosion and, therefore, may play a role in mediating this process.
Collapse
Affiliation(s)
- Céline Vallot
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; CNRS, UMR7216 Epigenetics and Cell Fate, 75013 Paris, France
| | - Jean-François Ouimette
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; CNRS, UMR7216 Epigenetics and Cell Fate, 75013 Paris, France
| | - Mélanie Makhlouf
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; CNRS, UMR7216 Epigenetics and Cell Fate, 75013 Paris, France
| | - Olivier Féraud
- ESTeam Paris Sud, INSERM U935, Université Paris Sud 11, AP-HP, Villejuif 94802, France
| | - Julien Pontis
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; CNRS, UMR7216 Epigenetics and Cell Fate, 75013 Paris, France
| | - Julien Côme
- INSERM/UEVE UMR 861, ISTEM, AFM, 91030 Evry Cedex, France
| | | | | | - Marc Lalande
- Stem Cell and Systems Genomics Institutes, University of Connecticut, Farmington, CT 06030, USA
| | - Claire Rougeulle
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; CNRS, UMR7216 Epigenetics and Cell Fate, 75013 Paris, France.
| |
Collapse
|
89
|
Abstract
In recent years, long noncoding RNAs (lncRNAs) have emerged as an important class of regulators of gene expression. lncRNAs exhibit several distinctive features that confer unique regulatory functions, including exquisite cell- and tissue-specific expression and the capacity to transduce higher-order spatial information. Here we review evidence showing that lncRNAs exert critical functions in adult tissue stem cells, including skin, brain, and muscle, as well as in developmental patterning and pluripotency. We highlight new approaches for ascribing lncRNA functions and discuss mammalian dosage compensation as a classic example of an lncRNA network coupled to stem cell differentiation.
Collapse
Affiliation(s)
- Ryan A Flynn
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
90
|
Nityanandam A, Baldwin KK. Advances in reprogramming-based study of neurologic disorders. Stem Cells Dev 2015; 24:1265-83. [PMID: 25749371 DOI: 10.1089/scd.2015.0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing.
Collapse
Affiliation(s)
- Anjana Nityanandam
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Kristin K Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
91
|
Lin IH, Chen DT, Chang YF, Lee YL, Su CH, Cheng C, Tsai YC, Ng SC, Chen HT, Lee MC, Chen HW, Suen SH, Chen YC, Liu TT, Chang CH, Hsu MT. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes. PLoS One 2015; 10:e0118453. [PMID: 25706888 PMCID: PMC4338251 DOI: 10.1371/journal.pone.0118453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/20/2015] [Indexed: 01/18/2023] Open
Abstract
Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.
Collapse
Affiliation(s)
- I-Hsuan Lin
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Dow-Tien Chen
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Feng Chang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ling Lee
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hsin Su
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ching Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chien Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Swee-Chuan Ng
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Tan Chen
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Chen Lee
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Hong-Wei Chen
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hui Suen
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Cheng Chen
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Tze-Tze Liu
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
| | - Chuan-Hsiung Chang
- Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Ta Hsu
- VGH-YM Genome Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
92
|
Brandl C, Grassmann F, Riolfi J, Weber BHF. Tapping Stem Cells to Target AMD: Challenges and Prospects. J Clin Med 2015; 4:282-303. [PMID: 26239128 PMCID: PMC4470125 DOI: 10.3390/jcm4020282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/13/2015] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly gaining attention in biomedicine as valuable resources to establish patient-derived cell culture models of the cell type known to express the primary pathology. The idea of "a patient in a dish" aims at basic, but also clinical, applications with the promise to mimic individual genetic and metabolic complexities barely reflected in current invertebrate or vertebrate animal model systems. This may particularly be true for the inherited and complex diseases of the retina, as this tissue has anatomical and physiological aspects unique to the human eye. For example, the complex age-related macular degeneration (AMD), the leading cause of blindness in Western societies, can be attributed to a large number of genetic and individual factors with so far unclear modes of mutual interaction. Here, we review the current status and future prospects of utilizing hPSCs, specifically induced pluripotent stem cells (iPSCs), in basic and clinical AMD research, but also in assessing potential treatment options. We provide an outline of concepts for disease modelling and summarize ongoing and projected clinical trials for stem cell-based therapy in late-stage AMD.
Collapse
Affiliation(s)
- Caroline Brandl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
- Department of Ophthalmology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Julia Riolfi
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
93
|
Byrska-Bishop M, VanDorn D, Campbell AE, Betensky M, Arca PR, Yao Y, Gadue P, Costa FF, Nemiroff RL, Blobel GA, French DL, Hardison RC, Weiss MJ, Chou ST. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest 2015; 125:993-1005. [PMID: 25621499 DOI: 10.1172/jci75714] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 12/15/2014] [Indexed: 01/13/2023] Open
Abstract
Germline GATA1 mutations that result in the production of an amino-truncated protein termed GATA1s (where s indicates short) cause congenital hypoplastic anemia. In patients with trisomy 21, similar somatic GATA1s-producing mutations promote transient myeloproliferative disease and acute megakaryoblastic leukemia. Here, we demonstrate that induced pluripotent stem cells (iPSCs) from patients with GATA1-truncating mutations exhibit impaired erythroid potential, but enhanced megakaryopoiesis and myelopoiesis, recapitulating the major phenotypes of the associated diseases. Similarly, in developmentally arrested GATA1-deficient murine megakaryocyte-erythroid progenitors derived from murine embryonic stem cells (ESCs), expression of GATA1s promoted megakaryopoiesis, but not erythropoiesis. Transcriptome analysis revealed a selective deficiency in the ability of GATA1s to activate erythroid-specific genes within populations of hematopoietic progenitors. Although its DNA-binding domain was intact, chromatin immunoprecipitation studies showed that GATA1s binding at specific erythroid regulatory regions was impaired, while binding at many nonerythroid sites, including megakaryocytic and myeloid target genes, was normal. Together, these observations indicate that lineage-specific GATA1 cofactor associations are essential for normal chromatin occupancy and provide mechanistic insights into how GATA1s mutations cause human disease. More broadly, our studies underscore the value of ESCs and iPSCs to recapitulate and study disease phenotypes.
Collapse
|
94
|
Richard JLC, Ogawa Y. Understanding the Complex Circuitry of lncRNAs at the X-inactivation Center and Its Implications in Disease Conditions. Curr Top Microbiol Immunol 2015; 394:1-27. [PMID: 25982976 DOI: 10.1007/82_2015_443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Balanced gene expression is a high priority in order to maintain optimal functioning since alterations and variations could result in acute consequences. X chromosome inactivation (X-inactivation) is one such strategy utilized by mammalian species to silence the extra X chromosome in females to uphold a similar level of expression between the two sexes. A functionally versatile class of molecules called long noncoding RNA (lncRNA) has emerged as key regulators of gene expression and plays important roles during development. An lncRNA that is indispensable for X-inactivation is X-inactive specific transcript (Xist), which induces a repressive epigenetic landscape and creates the inactive X chromosome (Xi). With recent advents in the field of X-inactivation, novel positive and negative lncRNA regulators of Xist such as Jpx and Tsix, respectively, have broadened the regulatory network of X-inactivation. Xist expression failure or dysregulation has been implicated in producing developmental anomalies and disease states. Subsequently, reactivation of the Xi at a later stage of development has also been associated with certain tumors. With the recent influx of information about lncRNA biology and advancements in methods to probe lncRNA, we can now attempt to understand this complex network of Xist regulation in development and disease. It has become clear that the presence of an extra set of genes could be fatal for the organism. Only by understanding the precise ways in which lncRNAs function can treatments be developed to bring aberrations under control. This chapter summarizes our current understanding and knowledge with regard to how lncRNAs are orchestrated at the X-inactivation center (Xic), with a special focus on how genetic diseases come about as a consequence of lncRNA dysregulation.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yuya Ogawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
95
|
Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, Kwok SM, Feldman DA, Bateup HS, Gao Q, Hockemeyer D, Mitalipova M, Lewis CA, Vander Heiden MG, Sur M, Young RA, Jaenisch R. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 2014; 13:446-58. [PMID: 24094325 DOI: 10.1016/j.stem.2013.09.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/12/2013] [Accepted: 09/06/2013] [Indexed: 01/15/2023]
Abstract
Rett syndrome (RTT) is caused by mutations of MECP2, a methyl CpG binding protein thought to act as a global transcriptional repressor. Here we show, using an isogenic human embryonic stem cell model of RTT, that MECP2 mutant neurons display key molecular and cellular features of this disorder. Unbiased global gene expression analyses demonstrate that MECP2 functions as a global activator in neurons but not in neural precursors. Decreased transcription in neurons was coupled with a significant reduction in nascent protein synthesis and lack of MECP2 was manifested as a severe defect in the activity of the AKT/mTOR pathway. Lack of MECP2 also leads to impaired mitochondrial function in mutant neurons. Activation of AKT/mTOR signaling by exogenous growth factors or by depletion of PTEN boosted protein synthesis and ameliorated disease phenotypes in mutant neurons. Our findings indicate a vital function for MECP2 in maintaining active gene transcription in human neuronal cells.
Collapse
Affiliation(s)
- Yun Li
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Xu R, Zhang S, Lei A. Chromatin changes in reprogramming of mammalian somatic cells. Rejuvenation Res 2014; 17:3-10. [PMID: 23987213 DOI: 10.1089/rej.2013.1455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT), cell fusion, and induced pluripotent stem cells (iPSCs) technologies are three strategies that allow reprogramming somatic cells into the pluripotent state; however, the efficiency is low and the mechanisms are not fully clear. In addition, there are reports that changes in chromatin play a critical role in these reprogramming strategies by modulating binding of transcription factors to their targets. In this review, we mainly discuss inactivation of the X chromosome, chromatin decondensation and remodeling, histone modifications, and histone variants in the three strategies. This review will provide an insight for future nuclear reprogramming research.
Collapse
Affiliation(s)
- Rong Xu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Ministry of Agriculture of China, Northwest A&F University , Yangling, Shaanxi, P.R. China
| | | | | |
Collapse
|
97
|
Cancer-like epigenetic derangements of human pluripotent stem cells and their impact on applications in regeneration and repair. Curr Opin Genet Dev 2014; 28:43-9. [PMID: 25461449 DOI: 10.1016/j.gde.2014.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/12/2014] [Accepted: 09/14/2014] [Indexed: 01/27/2023]
Abstract
A growing body of work has raised concern that many human pluripotent stem cell (hPSC) lines possess tumorigenic potential following differentiation to clinically relevant lineages. In this review, we highlight recent work characterizing the spectrum of cancer-like epigenetic derangements in human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) that are associated with reprogramming errors or prolonged culture that may contribute to such tumorigenicity. These aberrations include cancer-like promoter DNA hypermethylation and histone marks associated with pluripotency, as well as aberrant X-chromosome regulation. We also feature recent work that suggests optimized high-fidelity reprogramming derivation methods can minimize cancer-associated epigenetic aberrations in hPSC, and thus ultimately improve the ultimate clinical utility of hiPSC in regenerative medicine.
Collapse
|
98
|
Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, Gao Y, Gao S. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev 2014; 23:2283-96. [PMID: 24805295 DOI: 10.1089/scd.2014.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The deficiency of X-inactive specific transcript (XIST) on the inactive X chromosome affects the behavior of female human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), and further chromosomal erosion can occur with continued passaging of these cells. However, X chromosome instability has not been identified in other species. In the present study, we investigated three female rabbit ESC (rbESC) lines and found that two of them expressed Xist normally and obtained both Xist RNA coating and H3K27me3 foci, thus defined as Xi(Xist)Xa. Interestingly, the third female rbESC line lacked Xist expression during ESC maintenance and differentiation. This line showed H3K27me3 foci but no Xist RNA coating in the early passages and was thus defined as Xi(w/oXist)Xa. Similar to Xi(w/oXist)Xa hESCs or hiPSCs, Xi(w/oXist)Xa rbESCs lose H3K27me3 and undergo Xi erosion (Xe) with passaging. Moreover, Xist-deficient rbESCs also exhibit impaired differentiation ability and upregulation of cancer-related genes. By overexpressing OCT4, SOX2, KLF4, and c-MYC in Xist-deficient rbESCs under optimized culture conditions, we successfully obtained mouse ESC-like (mESC-like) cells. The mESC-like rbESCs displayed dome-shaped colony morphology, activation of the LIF/STAT3-dependent pathway, and conversion of disordered X chromosome. Importantly, the defective differentiation potential was also greatly improved. Our data demonstrate that variations in X chromosome inactivation occur in early passage of rbESCs; thus, Xi disorders are conserved across species and are reversible using the proper epigenetic reprogramming and culture conditions. These findings may be very useful for future efforts toward deriving fully pluripotent rbESCs or rabbit iPSCs (rbiPSCs).
Collapse
Affiliation(s)
- Yonghua Jiang
- 1 College of Biological Sciences, China Agricultural University , Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Briggs SF, Reijo Pera RA. X chromosome inactivation: recent advances and a look forward. Curr Opin Genet Dev 2014; 28:78-82. [PMID: 25461454 PMCID: PMC4339055 DOI: 10.1016/j.gde.2014.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 09/16/2014] [Indexed: 12/21/2022]
Abstract
X chromosome inactivation, the transcriptional inactivation of one X chromosome in somatic cells of female mammals, has revealed important advances in our understanding of development, epigenetic control, and RNA biology. Most of this knowledge comes from extensive studies in the mouse; however, there are some significant differences when compared to human biology. This is especially true in pluripotent cell types and, over the past few years, a significant amount of work has been dedicated to understanding these differences. This review focuses specifically on recent advances in the mechanism of Xist spreading, the role of Xist in cancer, the effects of reprogramming on X chromosome inactivation in human induced pluripotent stem cells, and new tools for studying X chromosome inactivation.
Collapse
Affiliation(s)
- Sharon F Briggs
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA, USA
| | - Renee A Reijo Pera
- Department of Cell Biology and Neurosciences, Montana State University, 207 Montana Hall, Bozeman, MT 59711-2460, USA; Department of Chemistry and Biochemistry, Montana State University, 207 Montana Hall, Bozeman, MT 59711-2460, USA.
| |
Collapse
|
100
|
Payer B, Lee JT. Coupling of X-chromosome reactivation with the pluripotent stem cell state. RNA Biol 2014; 11:798-807. [PMID: 25137047 DOI: 10.4161/rna.29779] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
X-chromosome inactivation (XCI) in female mammals is a dramatic example of epigenetic gene regulation, which entails the silencing of an entire chromosome through a wide range of mechanisms involving noncoding RNAs, chromatin-modifications, and DNA-methylation. While XCI is associated with the differentiated cell state, it is reversed by X-chromosome reactivation (XCR) ex vivo in pluripotent stem cells and in vivo in the early mouse embryo and the germline. Critical in the regulation of XCI vs. XCR is the X-inactivation center, a multigene locus on the X-chromosome harboring several long noncoding RNA genes including, most prominently, Xist and Tsix. These genes, which sit at the top of the XCI hierarchy, are by themselves controlled by pluripotency factors, coupling XCR with the naïve pluripotent stem cell state. In this point-of-view article we review the latest findings regarding this intricate relationship between cell differentiation state and epigenetic control of the X-chromosome. In particular, we discuss the emerging picture of complex multifactorial regulatory mechanisms, ensuring both a fine-tuned and robust X-reactivation process.
Collapse
Affiliation(s)
- Bernhard Payer
- Howard Hughes Medical Institute; Department of Molecular Biology; Massachusetts General Hospital; Department of Genetics; Harvard Medical School; Boston, MA USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology; Massachusetts General Hospital; Department of Genetics; Harvard Medical School; Boston, MA USA
| |
Collapse
|