51
|
Abstract
It has been nearly 15 years since the discovery of human-induced pluripotent stem cells (iPSCs). During this time, differentiation methods to targeted cells have dramatically improved, and many types of cells in the human body can be currently generated at high efficiency. In the cardiovascular field, the ability to generate human cardiomyocytes in vitro with the same genetic background as patients has provided a great opportunity to investigate human cardiovascular diseases at the cellular level to clarify the molecular mechanisms underlying the diseases and discover potential therapeutics. Additionally, iPSC-derived cardiomyocytes have provided a powerful platform to study drug-induced cardiotoxicity and identify patients at high risk for the cardiotoxicity; thus, accelerating personalized precision medicine. Moreover, iPSC-derived cardiomyocytes can be sources for cardiac cell therapy. Here, we review these achievements and discuss potential improvements for the future application of iPSC technology in cardiovascular diseases.
Collapse
|
52
|
Guo J, Jiang H, Oguntuyo K, Rios B, Boodram Z, Huebsch N. Interplay of Genotype and Substrate Stiffness in Driving the Hypertrophic Cardiomyopathy Phenotype in iPSC-Micro-Heart Muscle Arrays. Cell Mol Bioeng 2021; 14:409-425. [PMID: 34777601 PMCID: PMC8548480 DOI: 10.1007/s12195-021-00684-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION In clinical and animal studies, Hypertrophic Cardiomyopathy (HCM) shares many similarities with non-inherited cardiac hypertrophy induced by pressure overload (hypertension). This suggests a potential role for mechanical stress in priming tissues with mutation-induced changes in the sarcomere to develop phenotypes associated with HCM, including hypercontractility and aberrant calcium handling. Here, we tested the hypothesis that heterozygous loss of function of Myosin Binding Protein C (MYBCP3 +/- , mutations in which account for almost 50% of inherited HCM) combines with environmental stiffness to drive HCM phenotypes. METHODS We differentiated isogenic control (WTC) and MYBPC3 +/- iPSC into cardiomyocytes using small molecule manipulation of Wnt signaling, and then purified them using lactate media. The purified cardiomyocytes were seeded into "dog bone" shaped stencil molds to form micro-heart muscle arrays (μHM). To mimic changes in myocardial stiffness stemming from pressure overload, we varied the rigidity of the substrates μHM contract against. Stiffness levels ranged from those corresponding to fetal (5 kPa), healthy (15 kPa), pre-fibrotic (30 kPa) to fibrotic (65 kPa) myocardium. Substrates were embedded with a thin layer of fluorescent beads to track contractile force, and parent iPSC were engineered to express the genetic calcium indicator, GCaMP6f. High speed video microscopy and image analysis were used to quantify calcium handling and contractility of μHM. RESULTS Substrate rigidity triggered physiological adaptation for both genotypes. However, MYBPC3 +/- μHM showed a lower tolerance to substrate stiffness with the peak traction on 15 kPa, while WTC μHM had peak traction on 30 kPa. MYBPC3 +/- μHM exhibited hypercontractility, which was exaggerated by substrate rigidity. MYBPC3 +/- μHM hypercontractility was associated with longer rise times for calcium uptake and force development, along with higher overall Ca2+ intake. CONCLUSION We found MYBPC3 +/- mutations cause iPSC-μHM to exhibit hypercontractility, and also a lower tolerance for mechanical stiffness. Understanding how genetics work in combination with mechanical stiffness to trigger and/or exacerbate pathophysiology may lead to more effective therapies for HCM. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s12195-021-00684-x).
Collapse
Affiliation(s)
- Jingxuan Guo
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, Saint Louis, USA
| | - Huanzhu Jiang
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Brandon Rios
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Zoë Boodram
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
- NSF Science and Technology Center for Engineering Mechanobiology, McKelvey School of Engineering, Saint Louis, USA
- Center for Cardiovascular Research, Center for Regenerative Medicine, Center for Investigation of Membrane Excitability Diseases, Washington University in Saint Louis, Saint Louis, USA
| |
Collapse
|
53
|
Atmanli A, Chai AC, Cui M, Wang Z, Nishiyama T, Bassel-Duby R, Olson EN. Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy. Circ Res 2021; 129:602-616. [PMID: 34372664 PMCID: PMC8416801 DOI: 10.1161/circresaha.121.319579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ayhan Atmanli
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andreas C. Chai
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miao Cui
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhaoning Wang
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takahiko Nishiyama
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
54
|
Ladha FA, Thakar K, Pettinato AM, Legere N, Ghahremani S, Cohn R, Romano R, Meredith E, Chen YS, Hinson JT. Actinin BioID reveals sarcomere crosstalk with oxidative metabolism through interactions with IGF2BP2. Cell Rep 2021; 36:109512. [PMID: 34380038 PMCID: PMC8447243 DOI: 10.1016/j.celrep.2021.109512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/16/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023] Open
Abstract
Actinins are strain-sensing actin cross-linkers that are ubiquitously expressed and harbor mutations in human diseases. We utilize CRISPR, pluripotent stem cells, and BioID to study actinin interactomes in human cardiomyocytes. We identify 324 actinin proximity partners, including those that are dependent on sarcomere assembly. We confirm 19 known interactors and identify a network of RNA-binding proteins, including those with RNA localization functions. In vivo and biochemical interaction studies support that IGF2BP2 localizes electron transport chain transcripts to actinin neighborhoods through interactions between its K homology (KH) domain and actinin’s rod domain. We combine alanine scanning mutagenesis and metabolic assays to disrupt and functionally interrogate actinin-IGF2BP2 interactions, which reveal an essential role in metabolic responses to pathological sarcomere activation using a hypertrophic cardiomyopathy model. This study expands our functional knowledge of actinin, uncovers sarcomere interaction partners, and reveals sarcomere crosstalk with IGF2BP2 for metabolic adaptation relevant to human disease. Ladha et al. combine BioID, human cardiomyocytes, and CRISPR-Cas9 to interrogate the actinin interactome. This reveals 324 actinin proximity partners, including RNA-binding proteins that bind transcripts encoding ETC functional components. Among these RNA-binding proteins, IGF2BP2 directly binds actinin, and actinin-IGF2BP2 interactions regulate ETC transcript localization and metabolic adaptation to sarcomere function.
Collapse
Affiliation(s)
- Feria A Ladha
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Rachel Cohn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Robert Romano
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Emily Meredith
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yu-Sheng Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - J Travis Hinson
- University of Connecticut Health Center, Farmington, CT 06030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Cardiology Center, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
55
|
Sewanan LR, Park J, Rynkiewicz MJ, Racca AW, Papoutsidakis N, Schwan J, Jacoby DL, Moore JR, Lehman W, Qyang Y, Campbell SG. Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation. J Gen Physiol 2021; 153:212516. [PMID: 34319370 PMCID: PMC8321830 DOI: 10.1085/jgp.202012640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited disorder caused primarily by mutations to thick and thinfilament proteins. Although thin filament mutations are less prevalent than their oft-studied thick filament counterparts, they are frequently associated with severe patient phenotypes and can offer important insight into fundamental disease mechanisms. We have performed a detailed study of tropomyosin (TPM1) E192K, a variant of uncertain significance associated with HCM. Molecular dynamics revealed that E192K results in a more flexible TPM1 molecule, which could affect its ability to regulate crossbridges. In vitro motility assays of regulated actin filaments containing TPM1 E192K showed an overall loss of Ca2+ sensitivity. To understand these effects, we used multiscale computational models that suggested a subtle phenotype in which E192K leads to an inability to completely inhibit actin-myosin crossbridge activity at low Ca2+. To assess the physiological impact of the mutation, we generated patient-derived engineered heart tissues expressing E192K. These tissues showed disease features similar to those of the patients, including cellular hypertrophy, hypercontractility, and diastolic dysfunction. We hypothesized that excess residual crossbridge activity could be triggering cellular hypertrophy, even if the overall Ca2+ sensitivity was reduced by E192K. To test this hypothesis, the cardiac myosin-specific inhibitor mavacamten was applied to patient-derived engineered heart tissues for 4 d followed by 24 h of washout. Chronic mavacamten treatment abolished contractile differences between control and TPM1 E192K engineered heart tissues and reversed hypertrophy in cardiomyocytes. These results suggest that the TPM1 E192K mutation triggers cardiomyocyte hypertrophy by permitting excess residual crossbridge activity. These studies also provide direct evidence that myosin inhibition by mavacamten can counteract the hypertrophic effects of mutant tropomyosin.
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Jinkyu Park
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT.,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA
| | - Alice W Racca
- Department of Biological Sciences, University of Massachusetts, Lowell, MA
| | - Nikolaos Papoutsidakis
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Daniel L Jacoby
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts, Lowell, MA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA
| | - Yibing Qyang
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT.,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program, Yale University, New Haven, CT.,Department of Pathology, Yale University, New Haven, CT
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
56
|
Sewanan LR, Jacoby DL. Novel Myosin-Based Therapies in Hypertrophic Cardiomyopathy. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2021. [DOI: 10.1007/s11936-021-00921-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
57
|
Pettinato AM, Yoo D, VanOudenhove J, Chen YS, Cohn R, Ladha FA, Yang X, Thakar K, Romano R, Legere N, Meredith E, Robson P, Regnier M, Cotney JL, Murry CE, Hinson JT. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Rep 2021; 35:109088. [PMID: 33951429 PMCID: PMC8161465 DOI: 10.1016/j.celrep.2021.109088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/11/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
Human cardiac regeneration is limited by low cardiomyocyte replicative rates and progressive polyploidization by unclear mechanisms. To study this process, we engineer a human cardiomyocyte model to track replication and polyploidization using fluorescently tagged cyclin B1 and cardiac troponin T. Using time-lapse imaging, in vitro cardiomyocyte replication patterns recapitulate the progressive mononuclear polyploidization and replicative arrest observed in vivo. Single-cell transcriptomics and chromatin state analyses reveal that polyploidization is preceded by sarcomere assembly, enhanced oxidative metabolism, a DNA damage response, and p53 activation. CRISPR knockout screening reveals p53 as a driver of cell-cycle arrest and polyploidization. Inhibiting sarcomere function, or scavenging ROS, inhibits cell-cycle arrest and polyploidization. Finally, we show that cardiomyocyte engraftment in infarcted rat hearts is enhanced 4-fold by the increased proliferation of troponin-knockout cardiomyocytes. Thus, the sarcomere inhibits cell division through a DNA damage response that can be targeted to improve cardiomyocyte replacement strategies.
Collapse
Affiliation(s)
- Anthony M Pettinato
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Dasom Yoo
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | | | - Yu-Sheng Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Rachel Cohn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Feria A Ladha
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Xiulan Yang
- Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Robert Romano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Nicolas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Emily Meredith
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - J Travis Hinson
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
58
|
Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation. Genet Med 2021; 23:1281-1287. [PMID: 33782553 PMCID: PMC8257482 DOI: 10.1038/s41436-021-01134-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Variants in MYBPC3 causing loss of function are the most common cause of hypertrophic cardiomyopathy (HCM). However, a substantial number of patients carry missense variants of uncertain significance (VUS) in MYBPC3. We hypothesize that a structural-based algorithm, STRUM, which estimates the effect of missense variants on protein folding, will identify a subgroup of HCM patients with a MYBPC3 VUS associated with increased clinical risk. Methods Among 7,963 patients in the multicenter Sarcomeric Human Cardiomyopathy Registry (SHaRe), 120 unique missense VUS in MYBPC3 were identified. Variants were evaluated for their effect on subdomain folding and a stratified time-to-event analysis for an overall composite endpoint (first occurrence of ventricular arrhythmia, heart failure, all-cause mortality, atrial fibrillation, and stroke) was performed for patients with HCM and a MYBPC3 missense VUS. Results We demonstrated that patients carrying a MYBPC3 VUS predicted to cause subdomain misfolding (STRUM+, ΔΔG ≤ −1.2 kcal/mol) exhibited a higher rate of adverse events compared with those with a STRUM- VUS (hazard ratio = 2.29, P = 0.0282). In silico saturation mutagenesis of MYBPC3 identified 4,943/23,427 (21%) missense variants that were predicted to cause subdomain misfolding. Conclusion STRUM identifies patients with HCM and a MYBPC3 VUS who may be at higher clinical risk and provides supportive evidence for pathogenicity.
Collapse
|
59
|
Hnatiuk AP, Briganti F, Staudt DW, Mercola M. Human iPSC modeling of heart disease for drug development. Cell Chem Biol 2021; 28:271-282. [PMID: 33740432 PMCID: PMC8054828 DOI: 10.1016/j.chembiol.2021.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have emerged as a promising platform for pharmacogenomics and drug development. In cardiology, they make it possible to produce unlimited numbers of patient-specific human cells that reproduce hallmark features of heart disease in the culture dish. Their potential applications include the discovery of mechanism-specific therapeutics, the evaluation of safety and efficacy in a human context before a drug candidate reaches patients, and the stratification of patients for clinical trials. Although this new technology has the potential to revolutionize drug discovery, translational hurdles have hindered its widespread adoption for pharmaceutical development. Here we discuss recent progress in overcoming these hurdles that should facilitate the use of hiPSCs to develop new medicines and individualize therapies for heart disease.
Collapse
Affiliation(s)
- Anna P Hnatiuk
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Francesca Briganti
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David W Staudt
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
60
|
Guo W, Feng W, Fan X, Huang J, Ou C, Chen M. Osteomodulin is a Potential Genetic Target for Hypertrophic Cardiomyopathy. Biochem Genet 2021; 59:1185-1202. [PMID: 33715137 DOI: 10.1007/s10528-021-10050-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic heart diseases. Its features include abnormal cardiomyocyte hypertrophy, microvascular dysfunction, and increased accumulation of intercellular matrix. We aim to unravel genes associated with the pathogenesis of HCM and provide a potential target for diagnosis and treatment. Key modules were identified by weighted gene co-expression network analysis (WGCNA). A miRNA-mRNA network was constructed with the predicted miRNA and the most likely hub gene was screened out for gene set enrichment analysis (GSEA). The diagnostic capacity of hub gene was verified by receiver operating characteristic (ROC) curves. Single-cell sequencing (sc-RNA seq) data of normal adult hearts were used to further predict the specific cell types expressing the hub gene. WGCNA assigned genes into different modules and found that the genes contained in the red module had the strongest positive correlation with HCM disease. 2.5% of the genes were common between DEG and hub genes. With the miRNA-mRNA network, osteomodulin (OMD) was identified as the most potential hub gene. GSEA showed that OMD was mainly involved in the synthesis of extracellular matrix and had a certain inhibitory effect on the immune system. The expression of OMD in HCM was validated and ROC curve analysis showed that OMD could distinguish HCM from controls with the area under the curve (AUC) > 0.7. The sc-RNA seq revealed that OMD was mainly expressed in the later stages of cardiac fibroblasts, suggesting that OMD may have an effect on fibroblasts, participating in the pathogenesis of HCM. OMD may serve as a biomarker and therapeutic target for HCM in the future.
Collapse
Affiliation(s)
- Wenjie Guo
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China
| | - Weijing Feng
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China
| | - Xianglin Fan
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China
| | - Jing Huang
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China
| | - Caiwen Ou
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China. .,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China.
| | - Minsheng Chen
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China. .,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, No. 253 Industrial Boulevard Central, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
61
|
Genetic Cardiomyopathies: The Lesson Learned from hiPSCs. J Clin Med 2021; 10:jcm10051149. [PMID: 33803477 PMCID: PMC7967174 DOI: 10.3390/jcm10051149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic cardiomyopathies represent a wide spectrum of inherited diseases and constitute an important cause of morbidity and mortality among young people, which can manifest with heart failure, arrhythmias, and/or sudden cardiac death. Multiple underlying genetic variants and molecular pathways have been discovered in recent years; however, assessing the pathogenicity of new variants often needs in-depth characterization in order to ascertain a causal role in the disease. The application of human induced pluripotent stem cells has greatly helped to advance our knowledge in this field and enabled to obtain numerous in vitro patient-specific cellular models useful to study the underlying molecular mechanisms and test new therapeutic strategies. A milestone in the research of genetically determined heart disease was the introduction of genomic technologies that provided unparalleled opportunities to explore the genetic architecture of cardiomyopathies, thanks to the generation of isogenic pairs. The aim of this review is to provide an overview of the main research that helped elucidate the pathophysiology of the most common genetic cardiomyopathies: hypertrophic, dilated, arrhythmogenic, and left ventricular noncompaction cardiomyopathies. A special focus is provided on the application of gene-editing techniques in understanding key disease characteristics and on the therapeutic approaches that have been tested.
Collapse
|
62
|
Oldach MS, Ueda Y, Ontiveros ES, Fousse SL, Visser LC, Stern JA. Acute pharmacodynamic effects of pimobendan in client-owned cats with subclinical hypertrophic cardiomyopathy. BMC Vet Res 2021; 17:89. [PMID: 33622315 PMCID: PMC7903657 DOI: 10.1186/s12917-021-02799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Prior studies have suggested that pimobendan is associated with several positive effects in cats, including improved survival in cats with congestive heart failure and improved left atrial function in research colony cats with hypertrophic cardiomyopathy (HCM) and normal cats. However, there is still a paucity of pharmacodynamic data refuting or supporting the use of pimobendan in a clinical cat population. This clinical trial aimed to evaluate the pharmacodynamic effects and tolerability of a single dose of pimobendan in cats with HCM. Echocardiograms and Doppler-derived systolic blood pressures were performed in 21 client-owned cats with subclinical HCM at baseline and 90-min after oral administration of 1.25 mg of pimobendan (Vetmedin). Seven additional cats were evaluated post-placebo administration to account for intra-day variability. RESULTS Heart rate, systolic blood pressure, and murmur grade were not significantly different between baseline and post-pimobendan evaluations. Left auricular blood flow velocity, left atrial size, and left ventricular fractional shortening were not significantly different between baseline and post-pimobendan evaluations. Mean (± standard deviation) tissue Doppler peak systolic velocity of the mitral annulus was significantly higher following pimobendan (7.4 cm/s ± 1.5 vs 8.5 ± 1.6; p = 0.02). Median (min, max) left-ventricular outflow tract maximum velocity was significantly higher following pimobendan [1.9 m/sec (1.5, 3.4) vs 2.6 m/sec (2.0, 4.0); p = 0.01]. Mean right-ventricular outflow tract maximum velocity was also significantly higher following pimobendan (1.5 m/s ± 0.51 vs 2.0 ± 0.53; p = 0.004). Mean left atrial fractional shortening was significantly higher following pimobendan (28% ± 6 vs 32% ± 7; p = 0.02). No adverse events were observed following pimobendan administration. Right ventricular outflow tract velocity was significantly higher following placebo in control cats (1.02 ± 0.21 versus 1.31 ± 0.31; p = 0.01). No other significant differences were detected. CONCLUSIONS In client-owned cats with HCM, pimobendan acutely increased left atrial function and mildly increased left ventricular systolic function. Left ventricular outflow tract velocity was increased after pimobendan. Pimobendan was well tolerated in the acute setting in cats with HCM. The findings of this prospective, acute-dosing study confirm previous findings in research animals and retrospective analyses and suggest that chronic dosing studies are safe and warranted.
Collapse
Affiliation(s)
- Maureen S Oldach
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yu Ueda
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Eric S Ontiveros
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Samantha L Fousse
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Lance C Visser
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
63
|
Fujiwara Y, Deguchi K, Miki K, Nishimoto T, Yoshida Y. A Method for Contraction Force Measurement of hiPSC-Derived Engineered Cardiac Tissues. Methods Mol Biol 2021; 2320:171-180. [PMID: 34302658 DOI: 10.1007/978-1-0716-1484-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Engineered cardiac tissue (ECT) derived from human induced pluripotent stem cells (iPSCs) can replicate human heart in vitro and be applied to drug discovery and heart disease models. The contraction force of ECT is an important indicator of its function and of the disease phenotype. Here we describe a construction method of ECT using the Flexcell® Tissue Train® culture system and a contraction force measurement method based on the Frank-Starling law.
Collapse
Affiliation(s)
- Yuya Fujiwara
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Kohei Deguchi
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
- T-CiRA discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kenji Miki
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tomoyuki Nishimoto
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
- T-CiRA discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
64
|
Javor J, Ewoldt JK, Cloonan PE, Chopra A, Luu RJ, Freychet G, Zhernenkov M, Ludwig K, Seidman JG, Seidman CE, Chen CS, Bishop DJ. Probing the subcellular nanostructure of engineered human cardiomyocytes in 3D tissue. MICROSYSTEMS & NANOENGINEERING 2021; 7:10. [PMID: 34567727 PMCID: PMC8433147 DOI: 10.1038/s41378-020-00234-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 05/15/2023]
Abstract
The structural and functional maturation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is essential for pharmaceutical testing, disease modeling, and ultimately therapeutic use. Multicellular 3D-tissue platforms have improved the functional maturation of hiPSC-CMs, but probing cardiac contractile properties in a 3D environment remains challenging, especially at depth and in live tissues. Using small-angle X-ray scattering (SAXS) imaging, we show that hiPSC-CMs matured and examined in a 3D environment exhibit a periodic spatial arrangement of the myofilament lattice, which has not been previously detected in hiPSC-CMs. The contractile force is found to correlate with both the scattering intensity (R 2 = 0.44) and lattice spacing (R 2 = 0.46). The scattering intensity also correlates with lattice spacing (R 2 = 0.81), suggestive of lower noise in our structural measurement than in the functional measurement. Notably, we observed decreased myofilament ordering in tissues with a myofilament mutation known to lead to hypertrophic cardiomyopathy (HCM). Our results highlight the progress of human cardiac tissue engineering and enable unprecedented study of structural maturation in hiPSC-CMs.
Collapse
Affiliation(s)
- Josh Javor
- Department of Mechanical Engineering, Boston University, Boston, MA 02215 USA
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - Paige E. Cloonan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - Rebeccah J. Luu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | | | | | - Karl Ludwig
- Department of Physics, Boston University, Boston, MA 02215 USA
- Division of Materials Science, Boston University, Boston, Massachusetts 02215 USA
| | | | | | - Christopher S. Chen
- Department of Mechanical Engineering, Boston University, Boston, MA 02215 USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - David J. Bishop
- Department of Mechanical Engineering, Boston University, Boston, MA 02215 USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
- Department of Physics, Boston University, Boston, MA 02215 USA
- Division of Materials Science, Boston University, Boston, Massachusetts 02215 USA
- Department of Electrical Engineering, Boston University, Boston, MA 02215 USA
| |
Collapse
|
65
|
Leclair NK, Brugiolo M, Urbanski L, Lawson SC, Thakar K, Yurieva M, George J, Hinson JT, Cheng A, Graveley BR, Anczuków O. Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression during Differentiation and Tumorigenesis. Mol Cell 2020; 80:648-665.e9. [PMID: 33176162 PMCID: PMC7680420 DOI: 10.1016/j.molcel.2020.10.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
The RNA isoform repertoire is regulated by splicing factor (SF) expression, and alterations in SF levels are associated with disease. SFs contain ultraconserved poison exon (PE) sequences that exhibit greater identity across species than nearby coding exons, but their physiological role and molecular regulation is incompletely understood. We show that PEs in serine-arginine-rich (SR) proteins, a family of 14 essential SFs, are differentially spliced during induced pluripotent stem cell (iPSC) differentiation and in tumors versus normal tissues. We uncover an extensive cross-regulatory network of SR proteins controlling their expression via alternative splicing coupled to nonsense-mediated decay. We define sequences that regulate PE inclusion and protein expression of the oncogenic SF TRA2β using an RNA-targeting CRISPR screen. We demonstrate location dependency of RS domain activity on regulation of TRA2β-PE using CRISPR artificial SFs. Finally, we develop splice-switching antisense oligonucleotides to reverse the increased skipping of TRA2β-PE detected in breast tumors, altering breast cancer cell viability, proliferation, and migration.
Collapse
Affiliation(s)
- Nathan K Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Shane C Lawson
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - John Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Albert Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
66
|
Guo J, Simmons DW, Ramahdita G, Munsell MK, Oguntuyo K, Kandalaft B, Rios B, Pear M, Schuftan D, Jiang H, Lake SP, Genin GM, Huebsch N. Elastomer-Grafted iPSC-Derived Micro Heart Muscles to Investigate Effects of Mechanical Loading on Physiology. ACS Biomater Sci Eng 2020; 7:2973-2989. [PMID: 34275296 DOI: 10.1021/acsbiomaterials.0c00318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mechanical loading plays a critical role in cardiac pathophysiology. Engineered heart tissues derived from human induced pluripotent stem cells (iPSCs) allow rigorous investigations of the molecular and pathophysiological consequences of mechanical cues. However, many engineered heart muscle models have complex fabrication processes and require large cell numbers, making it difficult to use them together with iPSC-derived cardiomyocytes to study the influence of mechanical loading on pharmacology and genotype-phenotype relationships. To address this challenge, simple and scalable iPSC-derived micro-heart-muscle arrays (μHM) have been developed. "Dog-bone-shaped" molds define the boundary conditions for tissue formation. Here, we extend the μHM model by forming these tissues on elastomeric substrates with stiffnesses spanning from 5 to 30 kPa. Tissue assembly was achieved by covalently grafting fibronectin to the substrate. Compared to μHM formed on plastic, elastomer-grafted μHM exhibited a similar gross morphology, sarcomere assembly, and tissue alignment. When these tissues were formed on substrates with different elasticity, we observed marked shifts in contractility. Increased contractility was correlated with increases in calcium flux and a slight increase in cell size. This afterload-enhanced μHM system enables mechanical control of μHM and real-time tissue traction force microscopy for cardiac physiology measurements, providing a dynamic tool for studying pathophysiology and pharmacology.
Collapse
Affiliation(s)
- Jingxuan Guo
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States
| | - Daniel W Simmons
- Department of Biomedical Engineering, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States.,NSF Science and Technology Center for Engineering Mechanobiology, McKelvey School of Engineering, 1 Brookings Dr., St. Louis, Missouri 63130, United States
| | - Ghiska Ramahdita
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States.,NSF Science and Technology Center for Engineering Mechanobiology, McKelvey School of Engineering, 1 Brookings Dr., St. Louis, Missouri 63130, United States
| | - Mary K Munsell
- Department of Biomedical Engineering, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States
| | - Brennan Kandalaft
- Department of Biomedical Engineering, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States
| | - Brandon Rios
- Department of Biomedical Engineering, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States
| | - Missy Pear
- Department of Biomedical Engineering, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States
| | - David Schuftan
- Department of Biomedical Engineering, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States
| | - Huanzhu Jiang
- Department of Biomedical Engineering, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States.,NSF Science and Technology Center for Engineering Mechanobiology, McKelvey School of Engineering, 1 Brookings Dr., St. Louis, Missouri 63130, United States
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States.,NSF Science and Technology Center for Engineering Mechanobiology, McKelvey School of Engineering, 1 Brookings Dr., St. Louis, Missouri 63130, United States.,Center for Cardiovascular Research, Center for Regenerative Medicine, Center for Investigation of Membrane Excitability Diseases, Washington University in Saint Louis, University City, St. Louis, Missouri 63130, United States
| |
Collapse
|
67
|
Pettinato AM, Ladha FA, Mellert DJ, Legere N, Cohn R, Romano R, Thakar K, Chen YS, Hinson JT. Development of a Cardiac Sarcomere Functional Genomics Platform to Enable Scalable Interrogation of Human TNNT2 Variants. Circulation 2020; 142:2262-2275. [PMID: 33025817 DOI: 10.1161/circulationaha.120.047999] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pathogenic TNNT2 variants are a cause of hypertrophic and dilated cardiomyopathies, which promote heart failure by incompletely understood mechanisms. The precise functional significance for 87% of TNNT2 variants remains undetermined, in part, because of a lack of functional genomics studies. The knowledge of which and how TNNT2 variants cause hypertrophic and dilated cardiomyopathies could improve heart failure risk determination, treatment efficacy, and therapeutic discovery, and provide new insights into cardiomyopathy pathogenesis, as well. METHODS We created a toolkit of human induced pluripotent stem cell models and functional assays using CRISPR/Cas9 to study TNNT2 variant pathogenicity and pathophysiology. Using human induced pluripotent stem cell-derived cardiomyocytes in cardiac microtissue and single-cell assays, we functionally interrogated 51 TNNT2 variants, including 30 pathogenic/likely pathogenic variants and 21 variants of uncertain significance. We used RNA sequencing to determine the transcriptomic consequences of pathogenic TNNT2 variants and adapted CRISPR/Cas9 to engineer a transcriptional reporter assay to assist prediction of TNNT2 variant pathogenicity. We also studied variant-specific pathophysiology using a thin filament-directed calcium reporter to monitor changes in myofilament calcium affinity. RESULTS Hypertrophic cardiomyopathy-associated TNNT2 variants caused increased cardiac microtissue contraction, whereas dilated cardiomyopathy-associated variants decreased contraction. TNNT2 variant-dependent changes in sarcomere contractile function induced graded regulation of 101 gene transcripts, including MAPK (mitogen-activated protein kinase) signaling targets, HOPX, and NPPB. We distinguished pathogenic TNNT2 variants from wildtype controls using a sarcomere functional reporter engineered by inserting tdTomato into the endogenous NPPB locus. On the basis of a combination of NPPB reporter activity and cardiac microtissue contraction, our study provides experimental support for the reclassification of 2 pathogenic/likely pathogenic variants and 2 variants of uncertain significance. CONCLUSIONS Our study found that hypertrophic cardiomyopathy-associated TNNT2 variants increased cardiac microtissue contraction, whereas dilated cardiomyopathy-associated variants decreased contraction, both of which paralleled changes in myofilament calcium affinity. Transcriptomic changes, including NPPB levels, directly correlated with sarcomere function and can be used to predict TNNT2 variant pathogenicity.
Collapse
Affiliation(s)
| | - Feria A Ladha
- University of Connecticut Health Center (A.M.P., F.A.L., R.R., J.T.H.)
| | - David J Mellert
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Rachel Cohn
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Robert Romano
- University of Connecticut Health Center (A.M.P., F.A.L., R.R., J.T.H.)
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Yu-Sheng Chen
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - J Travis Hinson
- University of Connecticut Health Center (A.M.P., F.A.L., R.R., J.T.H.).,The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.).,Calhoun Cardiology Center, UConn Health (J.T.H.), Farmington
| |
Collapse
|
68
|
Abstract
The extracellular matrix (ECM) is needed to maintain the structural integrity of tissues and to mediate cellular dynamics. Its main components are fibrous proteins and glycosaminoglycans, which provide a suitable environment for biological functions. Thus, biomaterials with ECM-like properties have been extensively developed by modulating their key components and properties. In the field of cardiac tissue engineering, the use of biomaterials offers several advantages in that biophysical and biochemical cues can be designed to mediate cardiac cells, which is critical for maturation and regeneration. This suggests that understanding biomaterials and their use in vivo and in vitro is beneficial in terms of advancing cardiac engineering. The current review provides an overview of both natural and synthetic biomaterials and their use in cardiac engineering. In addition, we focus on different strategies to recapitulate the cardiac tissue in 2D and 3D approaches, which is an important step for the maturation of cardiac tissues toward regeneration of the adult heart.
Collapse
|
69
|
Robinson P, Sparrow AJ, Patel S, Malinowska M, Reilly SN, Zhang YH, Casadei B, Watkins H, Redwood C. Dilated cardiomyopathy mutations in thin-filament regulatory proteins reduce contractility, suppress systolic Ca 2+, and activate NFAT and Akt signaling. Am J Physiol Heart Circ Physiol 2020; 319:H306-H319. [PMID: 32618513 PMCID: PMC7473929 DOI: 10.1152/ajpheart.00272.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dilated cardiomyopathy (DCM) is clinically characterized by dilated ventricular cavities and reduced ejection fraction, leading to heart failure and increased thromboembolic risk. Mutations in thin-filament regulatory proteins can cause DCM and have been shown in vitro to reduce contractility and myofilament Ca2+-affinity. In this work we have studied the functional consequences of mutations in cardiac troponin T (R131W), cardiac troponin I (K36Q) and α-tropomyosin (E40K) using adenovirally transduced isolated guinea pig left ventricular cardiomyocytes. We find significantly reduced fractional shortening with reduced systolic Ca2+. Contraction and Ca2+ reuptake times were slowed, which contrast with some findings in murine models of myofilament Ca2+ desensitization. We also observe increased sarcoplasmic reticulum (SR) Ca2+ load and smaller fractional SR Ca2+ release. This corresponds to a reduction in SR Ca2+-ATPase activity and increase in sodium-calcium exchanger activity. We also observe dephosphorylation and nuclear translocation of the nuclear factor of activated T cells (NFAT), with concordant RAC-α-serine/threonine protein kinase (Akt) phosphorylation but no change to extracellular signal-regulated kinase activation in chronically paced cardiomyocytes expressing DCM mutations. These changes in Ca2+ handling and signaling are common to all three mutations, indicating an analogous pathway of disease pathogenesis in thin-filament sarcomeric DCM. Previous work has shown that changes to myofilament Ca2+ sensitivity caused by DCM mutations are qualitatively opposite from hypertrophic cardiomyopathy (HCM) mutations in the same genes. However, we find several common pathways such as increased relaxation times and NFAT activation that are also hallmarks of HCM. This suggests more complex intracellular signaling underpinning DCM, driven by the primary mutation.NEW & NOTEWORTHY Dilated cardiomyopathy (DCM) is a frequently occurring cardiac disorder with a degree of genetic inheritance. We have found that DCM mutations in proteins that regulate the contractile machinery cause alterations to contraction, calcium-handling, and some new signaling pathways that provide stimuli for disease development. We have used guinea pig cells that recapitulate human calcium-handling and introduced the mutations using adenovirus gene transduction to look at the initial triggers of disease before remodeling.
Collapse
Affiliation(s)
- Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Alexander J Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Suketu Patel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Marta Malinowska
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Svetlana N Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Yin-Hua Zhang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
70
|
Peng Y, Miao J, Zhai Y, Fang G, Wang C, Wang Y, Zhao X, Dong J. Identification of Novel TTN Mutations in Three Chinese Familial Dilated Cardiomyopathy Pedigrees by Whole Exome Sequencing. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2020. [DOI: 10.15212/cvia.2019.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM) is associated with numerous genes, especially those of the sarcomere family. The titin gene (TTN) consists of 365 exons and encodes the largest sarcomere protein (titin) in our bodies. Titin is associated with many diseases, such as hypertrophic
cardiomyopathy and DCM. Here we screened three Chinese families affected by DCM, and found that each harbors a stop-gain or splice site mutation in TTN (c.G20137T,c. G52522T,c.44610-2A>C). Assessment of the probands by electrocardiogram, B-mode echocardiography, and cardiac magnetic
resonance imaging revealed impaired cardiac function, arrhythmia, or abnormal cardiac structure. In conclusion, using whole exome sequencing, we found three unreported TTN mutations associated with DCM. This has expanded the TTN mutation spectrum of Chinese DCM patients, especially
in Henan, the most populous province. These data provide new genetic targets for the diagnosis and treatment of DCM, and will increase our understanding of the relationship between TTN mutation and DCM clinical symptoms.
Collapse
Affiliation(s)
- Ying Peng
- Department of Cardiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P. R. China
| | - Yafei Zhai
- Department of Cardiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Guangming Fang
- Department of Cardiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Chuchu Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| |
Collapse
|
71
|
Hildebrandt MR, Reuter MS, Wei W, Tayebi N, Liu J, Sharmin S, Mulder J, Lesperance LS, Brauer PM, Mok RSF, Kinnear C, Piekna A, Romm A, Howe J, Pasceri P, Meng G, Rozycki M, Rodrigues DC, Martinez EC, Szego MJ, Zúñiga-Pflücker JC, Anderson MK, Prescott SA, Rosenblum ND, Kamath BM, Mital S, Scherer SW, Ellis J. Precision Health Resource of Control iPSC Lines for Versatile Multilineage Differentiation. Stem Cell Reports 2020; 13:1126-1141. [PMID: 31813827 PMCID: PMC6915802 DOI: 10.1016/j.stemcr.2019.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons, cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids, T lymphocytes, and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly, nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac, neurological, or other disease associations. Overall, PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling, and variant-preferred healthy control lines were identified for specific disease settings.
Collapse
Affiliation(s)
- Matthew R Hildebrandt
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miriam S Reuter
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wei
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Naeimeh Tayebi
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jiajie Liu
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sazia Sharmin
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jaap Mulder
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - L Stephen Lesperance
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Patrick M Brauer
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Rebecca S F Mok
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Caroline Kinnear
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alina Piekna
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Asli Romm
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jennifer Howe
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Peter Pasceri
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Guoliang Meng
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Matthew Rozycki
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Deivid C Rodrigues
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elisa C Martinez
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Michael J Szego
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON M5C 2T2, Canada; The Joint Centre for Bioethics, University of Toronto, Toronto, ON, Canada; Unity Health Toronto, Toronto, ON M5T 3M6, Canada
| | - Juan C Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Michele K Anderson
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Norman D Rosenblum
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Binita M Kamath
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Seema Mital
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; McLaughlin Centre, University of Toronto, Toronto, ON M5G 0A4, Canada.
| | - James Ellis
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
72
|
Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S, Cuda G. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. Int J Mol Sci 2020; 21:E4354. [PMID: 32575374 PMCID: PMC7352327 DOI: 10.3390/ijms21124354] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a class of disorders affecting the heart or blood vessels. Despite progress in clinical research and therapy, CVDs still represent the leading cause of mortality and morbidity worldwide. The hallmarks of cardiac diseases include heart dysfunction and cardiomyocyte death, inflammation, fibrosis, scar tissue, hyperplasia, hypertrophy, and abnormal ventricular remodeling. The loss of cardiomyocytes is an irreversible process that leads to fibrosis and scar formation, which, in turn, induce heart failure with progressive and dramatic consequences. Both genetic and environmental factors pathologically contribute to the development of CVDs, but the precise causes that trigger cardiac diseases and their progression are still largely unknown. The lack of reliable human model systems for such diseases has hampered the unraveling of the underlying molecular mechanisms and cellular processes involved in heart diseases at their initial stage and during their progression. Over the past decade, significant scientific advances in the field of stem cell biology have literally revolutionized the study of human disease in vitro. Remarkably, the possibility to generate disease-relevant cell types from induced pluripotent stem cells (iPSCs) has developed into an unprecedented and powerful opportunity to achieve the long-standing ambition to investigate human diseases at a cellular level, uncovering their molecular mechanisms, and finally to translate bench discoveries into potential new therapeutic strategies. This review provides an update on previous and current research in the field of iPSC-driven cardiovascular disease modeling, with the aim of underlining the potential of stem-cell biology-based approaches in the elucidation of the pathophysiology of these life-threatening diseases.
Collapse
|
73
|
Bhagwan JR, Mosqueira D, Chairez-Cantu K, Mannhardt I, Bodbin SE, Bakar M, Smith JGW, Denning C. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics. J Mol Cell Cardiol 2020; 145:43-53. [PMID: 32531470 PMCID: PMC7487780 DOI: 10.1016/j.yjmcc.2020.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular condition. Despite being strongly associated with genetic alterations, wide variation of disease penetrance, expressivity and hallmarks of progression complicate treatment. We aimed to characterize different human isogenic cellular models of HCM bearing patient-relevant mutations to clarify genetic causation and disease mechanisms, hence facilitating the development of effective therapeutics. METHODS We directly compared the p.β-MHC-R453C and p.ACTC1-E99K HCM-associated mutations in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and their healthy isogenic counterparts, generated using CRISPR/Cas9 genome editing technology. By harnessing several state-of-the-art HCM phenotyping techniques, these mutations were investigated to identify similarities and differences in disease progression and hypertrophic signaling pathways, towards establishing potential targets for pharmacological treatment. CRISPR/Cas9 knock-in of the genetically-encoded calcium indicator R-GECO1.0 to the AAVS1 locus into these disease models resulted in calcium reporter lines. RESULTS Confocal line scan analysis identified calcium transient arrhythmias and intracellular calcium overload in both models. The use of optogenetics and 2D/3D contractility assays revealed opposing phenotypes in the two mutations. Gene expression analysis highlighted upregulation of CALM1, CASQ2 and CAMK2D, and downregulation of IRF8 in p.β-MHC-R453C mutants, whereas the opposite changes were detected in p.ACTC1-E99K mutants. Contrasting profiles of nuclear translocation of NFATc1 and MEF2 between the two HCM models suggest differential hypertrophic signaling pathway activation. Calcium transient abnormalities were rescued with combination of dantrolene and ranolazine, whilst mavacamten reduced the hyper-contractile phenotype of p.ACTC1-E99K hiPSC-CMs. CONCLUSIONS Our data show that hypercontractility and molecular signaling within HCM are not uniform between different gene mutations, suggesting that a 'one-size fits all' treatment underestimates the complexity of the disease. Understanding where the similarities (arrhythmogenesis, bioenergetics) and differences (contractility, molecular profile) lie will allow development of therapeutics that are directed towards common mechanisms or tailored to each disease variant, hence providing effective patient-specific therapy.
Collapse
Affiliation(s)
- Jamie R Bhagwan
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Karolina Chairez-Cantu
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sara E Bodbin
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Mine Bakar
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - James G W Smith
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK; Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia,NR4 7UQ, UK
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
74
|
Wang C, Koo S, Park M, Vangelatos Z, Hoang P, Conklin B, Grigoropoulos CP, Healy KE, Ma Z. Maladaptive Contractility of 3D Human Cardiac Microtissues to Mechanical Nonuniformity. Adv Healthc Mater 2020; 9:e1901373. [PMID: 32090507 PMCID: PMC7274862 DOI: 10.1002/adhm.201901373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/01/2020] [Indexed: 01/29/2023]
Abstract
Cardiac tissues are able to adjust their contractile behavior to adapt to the local mechanical environment. Nonuniformity of the native tissue mechanical properties contributes to the development of heart dysfunctions, yet the current in vitro cardiac tissue models often fail to recapitulate the mechanical nonuniformity. To address this issue, a 3D cardiac microtissue model is developed with engineered mechanical nonuniformity, enabled by 3D-printed hybrid matrices composed of fibers with different diameters. When escalating the complexity of tissue mechanical environments, cardiac microtissues start to develop maladaptive hypercontractile phenotypes, demonstrated in both contractile motion analysis and force-power analysis. This novel hybrid system could potentially facilitate the establishment of "pathologically-inspired" cardiac microtissue models for deeper understanding of heart pathology due to nonuniformity of the tissue mechanical environment.
Collapse
Affiliation(s)
- Chenyan Wang
- Department of Biomedical & Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University
| | - Sangmo Koo
- Department of Mechanical Engineering, University of California, Berkeley
| | - Minok Park
- Department of Mechanical Engineering, University of California, Berkeley
| | | | - Plansky Hoang
- Department of Biomedical & Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University
| | - Bruce Conklin
- Gladstone Institute of Cardiovascular Diseases, University of California, San Francisco
| | | | - Kevin E. Healy
- Department of Bioengineering, University of California, Berkeley
- Department of Material Science & Engineering, University of California, Berkeley
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University
| |
Collapse
|
75
|
Wijnker PJM, van der Velden J. Mutation-specific pathology and treatment of hypertrophic cardiomyopathy in patients, mouse models and human engineered heart tissue. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165774. [PMID: 32217077 DOI: 10.1016/j.bbadis.2020.165774] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/04/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy and is characterized by asymmetric left ventricular hypertrophy and diastolic dysfunction, and a frequent cause of sudden cardiac death at young age. Pharmacological treatment to prevent or reverse HCM is lacking. This may be partly explained by the variety of underlying disease causes. Over 1500 mutations have been associated with HCM, of which the majority reside in genes encoding sarcomere proteins, the cardiac contractile building blocks. Several mutation-mediated disease mechanisms have been identified, with proof for gene- and mutation-specific cellular perturbations. In line with mutation-specific changes in cellular pathology, the response to treatment may depend on the underlying sarcomere gene mutation. In this review, we will discuss evidence for mutation-specific pathology and treatment responses in HCM patients, mouse models and engineered heart tissue. The pros and cons of these experimental models for studying mutation-specific HCM pathology and therapies will be outlined.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands.
| |
Collapse
|
76
|
Brill AL, Fischer TT, Walters JM, Marlier A, Sewanan LR, Wilson PC, Johnson EK, Moeckel G, Cantley LG, Campbell SG, Nerbonne JM, Chung HJ, Robert ME, Ehrlich BE. Polycystin 2 is increased in disease to protect against stress-induced cell death. Sci Rep 2020; 10:386. [PMID: 31941974 PMCID: PMC6962458 DOI: 10.1038/s41598-019-57286-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Polycystin 2 (PC2 or TRPP1, formerly TRPP2) is a calcium-permeant Transient Receptor Potential (TRP) cation channel expressed primarily on the endoplasmic reticulum (ER) membrane and primary cilia of all cell and tissue types. Despite its ubiquitous expression throughout the body, studies of PC2 have focused primarily on its role in the kidney, as mutations in PC2 lead to the development of autosomal dominant polycystic kidney disease (ADPKD), a debilitating condition for which there is no cure. However, the endogenous role that PC2 plays in the regulation of general cellular homeostasis remains unclear. In this study, we measure how PC2 expression changes in different pathological states, determine that its abundance is increased under conditions of cellular stress in multiple tissues including human disease, and conclude that PC2-deficient cells have increased susceptibility to cell death induced by stress. Our results offer new insight into the normal function of PC2 as a ubiquitous stress-sensitive protein whose expression is up-regulated in response to cell stress to protect against pathological cell death in multiple diseases.
Collapse
Affiliation(s)
- Allison L Brill
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06510, United States of America
| | - Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, CT, 06510, United States of America.,Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Jennifer M Walters
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Arnaud Marlier
- Department of Internal Medicine, Yale University, New Haven, CT, 06510, United States of America
| | - Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, United States of America
| | - Parker C Wilson
- Department of Pathology, Yale University, New Haven, CT, 06510, United States of America.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, 63110, United States of America
| | - Eric K Johnson
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, United States of America
| | - Gilbert Moeckel
- Department of Pathology, Yale University, New Haven, CT, 06510, United States of America
| | - Lloyd G Cantley
- Department of Internal Medicine, Yale University, New Haven, CT, 06510, United States of America
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, United States of America
| | - Jeanne M Nerbonne
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, United States of America.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, United States of America
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Marie E Robert
- Department of Pathology, Yale University, New Haven, CT, 06510, United States of America
| | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06510, United States of America. .,Department of Pharmacology, Yale University, New Haven, CT, 06510, United States of America.
| |
Collapse
|
77
|
High-Throughput Phenotyping Toolkit for Characterizing Cellular Models of Hypertrophic Cardiomyopathy In Vitro. Methods Protoc 2019; 2:mps2040083. [PMID: 31717790 PMCID: PMC6961126 DOI: 10.3390/mps2040083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular disease characterised by multifarious hallmarks, a heterogeneous set of clinical manifestations, and several molecular mechanisms. Various disease models have been developed to study this condition, but they often show contradictory results, due to technical constraints and/or model limitations. Therefore, new tools are needed to better investigate pathological features in an unbiased and technically refined approach, towards improving understanding of disease progression. Herein, we describe three simple protocols to phenotype cellular models of HCM in vitro, in a high-throughput manner where technical artefacts are minimized. These are aimed at investigating: (1) Hypertrophy, by measuring cell volume by flow cytometry; (2) HCM molecular features, through the analysis of a hypertrophic marker, multinucleation, and sarcomeric disarray by high-content imaging; and (3) mitochondrial respiration and content via the Seahorse™ platform. Collectively, these protocols comprise straightforward tools to evaluate molecular and functional parameters of HCM phenotypes in cardiomyocytes in vitro. These facilitate greater understanding of HCM and high-throughput drug screening approaches and are accessible to all researchers of cardiac disease modelling. Whilst HCM is used as an exemplar, the approaches described are applicable to other cellular models where the investigation of identical biological changes is paramount.
Collapse
|
78
|
Elovic E, Etzion S, Cohen S. MiR-499 Responsive Lethal Construct for Removal of Human Embryonic Stem Cells after Cardiac Differentiation. Sci Rep 2019; 9:14490. [PMID: 31601830 PMCID: PMC6787023 DOI: 10.1038/s41598-019-50899-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/19/2019] [Indexed: 01/26/2023] Open
Abstract
Deriving cell populations from human embryonic stem cells (hESCs) for cell-based therapy is considered a promising strategy to achieve functional cells, yet its translation to clinical practice depends on achieving fully defined differentiated cells. In this work, we generated a miRNA-responsive lethal mRNA construct that selectively induces rapid apoptosis in hESCs by expressing a mutant (S184del) Bax variant. Insertion of miR-499 target sites in the construct enabled to enrich hESC-derived cardiomyocytes (CMs) in culture. A deterministic non-linear model was developed and validated with experimental data, to predict the outcome for each treatment cycle and the number of treatment cycle repetitions required to achieve completely purified cTNT-positive cells. The enriched hESC-CMs displayed physiological sarcomere orientation, functional calcium handling and after transplantation into SCID-NOD mice did not form teratomas. The modular miRNA responsive lethal mRNA construct could be employed in additional directed differentiation protocols, by adjusting the miRNA to the specific cells of choice.
Collapse
Affiliation(s)
- Edan Elovic
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sharon Etzion
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. .,Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. .,The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
79
|
Li J, Rozwadowska N, Clark A, Fil D, Napierala JS, Napierala M. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich's ataxia cardiomyocytes. Stem Cell Res 2019; 40:101529. [PMID: 31446150 PMCID: PMC6853280 DOI: 10.1016/j.scr.2019.101529] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Friedreich's ataxia is caused by large homozygous, intronic expansions of GAA repeats in the frataxin (FXN) gene, resulting in severe downregulation of its expression. Pathogenic repeats are located in intron one, hence patients express unaffected FXN protein, albeit in low quantities. Although FRDA symptoms typically afflict the nervous system, hypertrophic cardiomyopathy is the predominant cause of death. Our studies were conducted using cardiomyocytes differentiated from induced pluripotent stem cells derived from control individuals, FRDA patients, and isogenic cells corrected by zinc finger nucleases-mediated excision of pathogenic expanded GAA repeats. This correction of the FXN gene removed the primary trigger of the transcription defect, upregulated frataxin expression, reduced pathological lipid accumulation observed in patient cardiomyocytes, and reversed gene expression signatures of FRDA cardiomyocytes. Transcriptome analyses revealed hypertrophy-specific expression signatures unique to FRDA cardiomyocytes, and emphasized similarities between unaffected and ZFN-corrected FRDA cardiomyocytes. Thus, the iPSC-derived FRDA cardiomyocytes exhibit various molecular defects characteristic for cellular models of cardiomyopathy that can be corrected by genome editing of the expanded GAA repeats. These results underscore the utility of genome editing in generating isogenic cellular models of FRDA and the potential of this approach as a future therapy for this disease.
Collapse
Affiliation(s)
- Jixue Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Natalia Rozwadowska
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Amanda Clark
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Daniel Fil
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA.
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA.
| |
Collapse
|
80
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
81
|
Mosqueira D, Smith JGW, Bhagwan JR, Denning C. Modeling Hypertrophic Cardiomyopathy: Mechanistic Insights and Pharmacological Intervention. Trends Mol Med 2019; 25:775-790. [PMID: 31324451 DOI: 10.1016/j.molmed.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular disease where cardiac dysfunction often associates with mutations in sarcomeric genes. Various models based on tissue explants, isolated cardiomyocytes, skinned myofibrils, and purified actin/myosin preparations have uncovered disease hallmarks, enabling the development of putative therapeutics, with some reaching clinical trials. Newly developed human pluripotent stem cell (hPSC)-based models could be complementary by overcoming some of the inconsistencies of earlier systems, whilst challenging and/or clarifying previous findings. In this article we compare recent progress in unveiling multiple HCM mechanisms in different models, highlighting similarities and discrepancies. We explore how insight is facilitating the design of new HCM therapeutics, including those that regulate metabolism, contraction and heart rhythm, providing a future perspective for treatment of HCM.
Collapse
Affiliation(s)
- Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - James G W Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
82
|
Affiliation(s)
- Stuart G Campbell
- From the Department of Biomedical Engineering (S.G.C.), Yale University, New Haven, CT.,Department of Cellular and Molecular Physiology (S.G.C.), Yale School of Medicine, New Haven, CT
| | - Yibing Qyang
- From the Department of Biomedical Engineering (S.G.C.), Yale University, New Haven, CT.,Yale Stem Cell Center (Y.Q.), Yale University, New Haven, CT.,Vascular Biology and Therapeutics Program (Y.Q.), Yale University, New Haven, CT.,Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (Y.Q.), Yale School of Medicine, New Haven, CT
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT (J.T.H.).,Department of Cardiology, UConn Health, Farmington, CT (J.T.H.)
| |
Collapse
|
83
|
Sewanan LR, Campbell SG. Modelling sarcomeric cardiomyopathies with human cardiomyocytes derived from induced pluripotent stem cells. J Physiol 2019; 598:2909-2922. [PMID: 30624779 DOI: 10.1113/jp276753] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) provide a unique opportunity to understand the pathophysiological effects of genetic cardiomyopathy mutations. In particular, these cells hold the potential to unmask the effects of mutations on contractile behaviour in vitro, providing new insights into genotype-phenotype relationships. With this goal in mind, several groups have established iPSC lines that contain sarcomeric gene mutations linked to cardiomyopathy in patient populations. Their studies have employed diverse systems and methods for performing mechanical measurements of contractility, ranging from single cell techniques to multicellular tissue-like constructs. Here, we review published results to date within the growing field of iPSC-based sarcomeric cardiomyopathy disease models. We devote special attention to the methods of mechanical characterization selected in each case, and how these relate to the paradigms of classical muscle mechanics. An appreciation of these somewhat subtle paradigms can inform efforts to compare the results of different studies and possibly reconcile discrepancies. Although more work remains to be done to improve and possibly standardize methods for producing, maturing, and mechanically interrogating iPSC-derived cardiomyocytes, the initial results indicate that this approach to modelling cardiomyopathies will continue to provide critical insights into these devastating diseases.
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
84
|
Ramachandra CJ, Mai Ja KPM, Lin YH, Shim W, Boisvert WA, Hausenloy DJ. INDUCED PLURIPOTENT STEM CELLS FOR MODELLING ENERGETIC ALTERATIONS IN HYPERTROPHIC CARDIOMYOPATHY. CONDITIONING MEDICINE 2019; 2:142-151. [PMID: 32457935 PMCID: PMC7250397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most commonly inherited cardiac disorders that manifests with increased ventricular wall thickening, cardiomyocyte hypertrophy, disarrayed myofibers and interstitial fibrosis. The major pathophysiological features include, diastolic dysfunction, obstruction of the left ventricular outflow tract and cardiac arrhythmias. Mutations in genes that encode mostly for sarcomeric proteins have been associated with HCM but, despite the abundant research conducted to decipher the molecular mechanisms underlying the disease, it remains unclear as to how a primary defect in the sarcomere could lead to secondary phenotypes such as cellular hypertrophy. Mounting evidence suggests energy deficiency could be an important contributor of disease pathogenesis as well. Various animal models of HCM have been generated for gaining deeper insight into disease pathogenesis, however species variation between animals and humans, as well as the limited availability of human myocardial samples, has encouraged researchers to seek alternative 'humanized' models. Using induced pluripotent stem cells (iPSCs), human cardiomyocytes (CMs) have been generated from patients with HCM for investigating disease mechanisms. While these HCM-iPSC models demonstrate most of the phenotypic traits, it is important to ascertain if they recapitulate all pathophysiological features, especially that of energy deficiency. In this review we discuss the currently established HCM-iPSC models with emphasis on altered energetics.
Collapse
Affiliation(s)
- Chrishan J.A. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - K P Myu Mai Ja
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Ying-Hsi Lin
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore
| | - William A. Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| |
Collapse
|