51
|
Bae HE, Du Y, Hariharan P, Mortensen JS, Kumar KK, Ha B, Das M, Lee HS, Loland CJ, Guan L, Kobilka BK, Chae PS. Asymmetric maltose neopentyl glycol amphiphiles for a membrane protein study: effect of detergent asymmetricity on protein stability. Chem Sci 2018; 10:1107-1116. [PMID: 30774908 PMCID: PMC6346398 DOI: 10.1039/c8sc02560f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022] Open
Abstract
An asymmetric MNG, MNG-8,12, provided enhanced stability to human G protein-coupled receptors (GPCRs) compared to the symmetric MNG, MNG-3.
Maintaining protein stability in an aqueous solution is a prerequisite for protein structural and functional studies, but conventional detergents have increasingly showed limited ability to maintain protein integrity. A representative novel agent, maltose neopentyl glycol-3 (MNG-3), has recently substantially contributed to membrane protein structural studies. Motivated by the popular use of this novel agent, we prepared asymmetric versions of MNG-3 and evaluated these agents with several membrane proteins including two G protein-coupled receptors in this study. We found that some new MNGs were significantly more effective than MNG-3 at preserving protein integrity in the long term, suggesting that these asymmetric MNGs will find a wide use in membrane protein studies. In addition, this is the first study addressing the favorable effect of detergent asymmetric nature on membrane protein stability.
Collapse
Affiliation(s)
- Hyoung Eun Bae
- Department of Bionanotechnology , Hanyang University , Ansan , 15588 Korea .
| | - Yang Du
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center Lubbock , TX 79430 , USA .
| | - Jonas S Mortensen
- Department of Neuroscience , University of Copenhagen , DK-2200 Copenhagen , Denmark .
| | - Kaavya K Kumar
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Betty Ha
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Manabendra Das
- Department of Bionanotechnology , Hanyang University , Ansan , 15588 Korea .
| | - Hyun Sung Lee
- Department of Bionanotechnology , Hanyang University , Ansan , 15588 Korea .
| | - Claus J Loland
- Department of Neuroscience , University of Copenhagen , DK-2200 Copenhagen , Denmark .
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center Lubbock , TX 79430 , USA .
| | - Brian K Kobilka
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan , 15588 Korea .
| |
Collapse
|
52
|
Oshima A. Structure of an innexin gap junction channel and cryo-EM sample preparation. Microscopy (Oxf) 2018; 66:371-379. [PMID: 29036409 PMCID: PMC6084585 DOI: 10.1093/jmicro/dfx035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023] Open
Abstract
Gap junction channels are essential for mediating intercellular communication in most multicellular organisms. Two gene families encode gap junction channels, innexin and connexin. Although the sequence similarity between these two families based on bioinformatics is not conclusively determined, the gap junction channels encoded by these two gene families are structurally and functionally analogous. We recently reported an atomic structure of an invertebrate innexin gap junction channel using single-particle cryo-electron microscopy. Our findings revealed that connexin and innexin families share several structural properties with regard to their monomeric and oligomeric structures, while simultaneously suggesting a diversity of gap junction channels in nature. This review summarizes cutting-edge progress toward determining an innexin gap junction channel structure, as well as essential tips for preparing cryo-electron microscopy samples for high-resolution structural analysis of an innexin gap junction channel.
Collapse
Affiliation(s)
- Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
53
|
Reboul CF, Kiesewetter S, Eager M, Belousoff M, Cui T, De Sterck H, Elmlund D, Elmlund H. Rapid near-atomic resolution single-particle 3D reconstruction with SIMPLE. J Struct Biol 2018; 204:172-181. [PMID: 30092280 DOI: 10.1016/j.jsb.2018.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) and single-particle analysis enables determination of near-atomic resolution structures of biological molecules. However, large computational requirements limit throughput and rapid testing of new image processing tools. We developed PRIME, an algorithm part of the SIMPLE software suite, for determination of the relative 3D orientations of single-particle projection images. PRIME has primarily found use for generation of an initial ab initio 3D reconstruction. Here we show that the strategy behind PRIME, iterative estimation of per-particle orientation distributions with stochastic hill climbing, provides a competitive approach to near-atomic resolution single-particle 3D reconstruction. A number of mathematical techniques for accelerating the convergence rate are introduced, leading to a speedup of nearly two orders of magnitude. We benchmarked our developments on numerous publicly available data sets and conclude that near-atomic resolution ab initio 3D reconstructions can be obtained with SIMPLE in a matter of hours, using standard over-the-counter CPU workstations.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Simon Kiesewetter
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; School of Mathematical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael Eager
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Matthew Belousoff
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tiangang Cui
- School of Mathematical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hans De Sterck
- School of Mathematical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia.
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
54
|
Ehsan M, Ghani L, Du Y, Hariharan P, Mortensen JS, Ribeiro O, Hu H, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies. Analyst 2018; 142:3889-3898. [PMID: 28913526 DOI: 10.1039/c7an01168g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Integral membrane proteins either alone or as complexes carry out a range of key cellular functions. Detergents are indispensable tools in the isolation of membrane proteins from biological membranes for downstream studies. Although a large number of techniques and tools, including a wide variety of detergents, are available, purification and structural characterization of many membrane proteins remain challenging. In the current study, a new class of tripod amphiphiles bearing two different penta-saccharide head groups, designated TPSs, were developed and evaluated for their ability to extract and stabilize a range of diverse membrane proteins. Variations in the structures of the detergent head and tail groups allowed us to prepare three sets of the novel agents with distinctive structures. Some TPSs (TPS-A8 and TPS-E7) were efficient at extracting two proteins in a functional state while others (TPS-E8 and TPS-E10L) conferred marked stability to all membrane proteins (and membrane protein complexes) tested here compared to a conventional detergent. Use of TPS-E10L led to clear visualization of a receptor-Gs complex using electron microscopy, indicating profound potential in membrane protein research.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
|
56
|
Drulyte I, Johnson RM, Hesketh EL, Hurdiss DL, Scarff CA, Porav SA, Ranson NA, Muench SP, Thompson RF. Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallogr D Struct Biol 2018; 74:560-571. [PMID: 29872006 PMCID: PMC6096488 DOI: 10.1107/s2059798318006496] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/26/2018] [Indexed: 11/23/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) can now be used to determine high-resolution structural information on a diverse range of biological specimens. Recent advances have been driven primarily by developments in microscopes and detectors, and through advances in image-processing software. However, for many single-particle cryo-EM projects, major bottlenecks currently remain at the sample-preparation stage; obtaining cryo-EM grids of sufficient quality for high-resolution single-particle analysis can require the careful optimization of many variables. Common hurdles to overcome include problems associated with the sample itself (buffer components, labile complexes), sample distribution (obtaining the correct concentration, affinity for the support film), preferred orientation, and poor reproducibility of the grid-making process within and between batches. This review outlines a number of methodologies used within the electron-microscopy community to address these challenges, providing a range of approaches which may aid in obtaining optimal grids for high-resolution data collection.
Collapse
Affiliation(s)
- Ieva Drulyte
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Rachel M. Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
- School of Chemistry, Faculty of Mathematics and Physical Chemistry and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Emma L. Hesketh
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Daniel L. Hurdiss
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Charlotte A. Scarff
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Sebastian A. Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Neil A. Ranson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Rebecca F. Thompson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| |
Collapse
|
57
|
Gewering T, Januliene D, Ries AB, Moeller A. Know your detergents: A case study on detergent background in negative stain electron microscopy. J Struct Biol 2018; 203:242-246. [PMID: 29852220 DOI: 10.1016/j.jsb.2018.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/15/2022]
Abstract
Electron cryo-microscopy (cryo-EM) of purified macromolecular complexes is now providing 3D-structures at near-atomic resolution (Kühlbrandt, 2014). Cryo-EM can tolerate heterogeneous specimens, however, high-resolution efforts demand highly optimized samples. Therefore, significant pre-screening and evaluation is essential before a final dataset can be obtained. While cryo-EM is comparably slow and requires access to expensive high-end electron microscopes, room temperature negative stain EM is fast, inexpensive and provides immediate feedback. This has made it a popular approach for sample quality control in the early phases of a project. Optimization in negative stain can be critical not only for cryo-EM, but also for X-ray crystallography, as highlighted for example by studies on GPCR complexes (Kang et al., 2015; Rasmussen et al., 2012). However, when not done carefully and interpreted correctly, negative stain can be prone to artifacts. A typical problem, which is often overlooked in the interpretation of EM data of small membrane proteins, is the background, caused by empty detergent micelles, as it can be easily confused with detergent embedded protein samples. To counteract this ubiquitous problem, we present a case study on commonly used detergents.We show that most detergents produce significant background in negative stain EM, even below nominal critical micelle concentration (CMC). Unawareness of such artefacts can lead to misinterpretation of sample quality and homogeneity. We hope that this study can serve as a template to evaluate images in the early phases of a project.
Collapse
Affiliation(s)
- Theresa Gewering
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt/Main, Germany
| | - Dovile Januliene
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt/Main, Germany
| | - Anne B Ries
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt/Main, Germany
| | - Arne Moeller
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
58
|
Shimada S, Maeda S, Hikita M, Mieda-Higa K, Uene S, Nariai Y, Shinzawa-Itoh K. Solubilization conditions for bovine heart mitochondrial membranes allow selective purification of large quantities of respiratory complexes I, III, and V. Protein Expr Purif 2018; 150:33-43. [PMID: 29702187 DOI: 10.1016/j.pep.2018.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022]
Abstract
Ascertaining the structure and functions of mitochondrial respiratory chain complexes is essential to understanding the biological mechanisms of energy conversion; therefore, numerous studies have examined these complexes. A fundamental part of that research involves devising a method for purifying samples with good reproducibility; the samples obtained need to be stable and their constituents need to retain the same structure and functions they possess when in mitochondrial membranes. Submitochondrial bovine heart particles were isolated using differential centrifugation to adjust to a membrane concentration of 46.0% (w/v) or 31.5% (w/v) based on weight. After 0.7% (w/v) deoxycholic acid, 0.4% (w/v) decyl maltoside, and 7.2% (w/v) potassium chloride were added to the mitochondrial membranes, those membranes were solubilized. At a membrane concentration of 46%, complex V was selectively solubilized, whereas at a concentration of 31.5% (w/v), complexes I and III were solubilized. Two steps-sucrose density gradient centrifugation and anion-exchange chromatography on a POROS HQ 20 μm column-enabled selective purification of samples that retained their structure and functions. These two steps enabled complexes I, III, and V to be purified in two days with a high yield. Complexes I, III, and V were stabilized with n-decyl-β-D-maltoside. A total of 200 mg-300 mg of those complexes from one bovine heart (1.1 kg muscle) was purified with good reproducibility, and the complexes retained the same functions they possessed while in mitochondrial membranes.
Collapse
Affiliation(s)
- Satoru Shimada
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Shintaro Maeda
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Masahide Hikita
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Kaoru Mieda-Higa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Shigefumi Uene
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Yukiko Nariai
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Kyoko Shinzawa-Itoh
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo, 678-1297, Japan.
| |
Collapse
|
59
|
Mio K, Sato C. Lipid environment of membrane proteins in cryo-EM based structural analysis. Biophys Rev 2018; 10:307-316. [PMID: 29256118 PMCID: PMC5899730 DOI: 10.1007/s12551-017-0371-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022] Open
Abstract
Cryoelectron microscopy (cryo-EM) in association with a single particle analysis method (SPA) is now a promising tool to determine the structures of proteins and their macromolecular complexes. The development of direct electron detection cameras and image processing technologies has allowed the structures of many important proteins to be solved at near-atomic resolution or, in some cases, at atomic resolution, by overcoming difficulties in crystallization or low yield of protein production. In the case of membrane-integrated proteins, the proteins were traditionally solubilized and stabilized with various kind of detergents. However, the density of detergent micelles diminished the contrast of membrane proteins in cryo-EM studies and made it difficult to obtain high-resolution structures. To improve the resolution of membrane protein structures in cryo-EM studies, major improvements have been made both in sample preparation techniques and in hardware and software developments. The focus of our review is on improvements which have been made in the various techniques for sample preparation for cryo-EM studies, with a specific interest placed on techniques for mimicking the lipid environment of membrane proteins.
Collapse
Affiliation(s)
- Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan.
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - Chikara Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
| |
Collapse
|
60
|
Abstract
Transmembrane protein 16F (TMEM16F) is a Ca2+-dependent phospholipid scramblase that translocates phospholipids bidirectionally between the leaflets of the plasma membrane. Phospholipid scrambling of TMEM16F causes exposure of phosphatidylserine in activated platelets to induce blood clotting and in differentiated osteoblasts to promote bone mineralization. Despite the importance of TMEM16F-mediated phospholipid scrambling in various biological reactions, the fundamental features of the scrambling reaction remain elusive due to technical difficulties in the preparation of a platform for assaying scramblase activity in vitro. Here, we established a method to express and purify mouse TMEM16F as a dimeric molecule by constructing a stable cell line and developed a microarray containing membrane bilayers with asymmetrically distributed phospholipids as a platform for single-molecule scramblase assays. The purified TMEM16F was integrated into the microarray, and monitoring of phospholipid translocation showed that a single TMEM16F molecule transported phospholipids nonspecifically between the membrane bilayers in a Ca2+-dependent manner. Thermodynamic analysis of the reaction indicated that TMEM16F transported 4.5 × 104 lipids per second at 25 °C, with an activation free energy of 47 kJ/mol. These biophysical features were similar to those observed with channels, which transport substrates by facilitating diffusion, and supported the stepping-stone model for the TMEM16F phospholipid scramblase.
Collapse
|
61
|
Cryo EM structure of intact rotary H +-ATPase/synthase from Thermus thermophilus. Nat Commun 2018; 9:89. [PMID: 29311594 PMCID: PMC5758568 DOI: 10.1038/s41467-017-02553-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022] Open
Abstract
Proton translocating rotary ATPases couple ATP hydrolysis/synthesis, which occurs in the soluble domain, with proton flow through the membrane domain via a rotation of the common central rotor complex against the surrounding peripheral stator apparatus. Here, we present a large data set of single particle cryo-electron micrograph images of the V/A type H+-rotary ATPase from the bacterium Thermus thermophilus, enabling the identification of three rotational states based on the orientation of the rotor subunit. Using masked refinement and classification with signal subtractions, we obtain homogeneous reconstructions for the whole complexes and soluble V1 domains. These reconstructions are of higher resolution than any EM map of intact rotary ATPase reported previously, providing a detailed molecular basis for how the rotary ATPase maintains structural integrity of the peripheral stator apparatus, and confirming the existence of a clear proton translocation path from both sides of the membrane.
Collapse
|
62
|
Miura K. An Overview of Current Methods to Confirm Protein-Protein Interactions. Protein Pept Lett 2018; 25:728-733. [PMID: 30129399 PMCID: PMC6204658 DOI: 10.2174/0929866525666180821122240] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The research field of protein-protein interactions is interdisciplinary and specialized field that spans all aspects of biology, physics and chemistry. Therefore, in order to discuss the protein-protein interaction in detail and rigorously, it is desirable to integrate knowledge and methods of many related fields including boundary areas such as biochemistry, biophysics and physical chemistry in addition to biology, physics and chemistry. OBJECTIVE The purpose of this review is to overview current methods to confirm protein-protein interactions. Furthermore, I discuss future prospects of methodology based on current status. RESULTS It is often necessary to integrate, combine and validate multiple results from various methods to understand protein-protein interactions in detail. CONCLUSION It might be desirable for the addition of tags, labeling, and immobilization to solid phases to be unnecessary, and to obtain information on affinity, kinetics, and structure via the analytical method for protein-protein interactions. Therefore, I argue that novel methods based on principles that have already been sufficiently studied in physics or chemistry, but insufficiently applied to the life sciences, should be established to further develop the study of protein-protein interactions.
Collapse
Affiliation(s)
- Kenji Miura
- Address correspondence to this author at the Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan; Tel: +81 4 2995 1754; E-mail:
| |
Collapse
|
63
|
Aduri NG, Ernst HA, Prabhala BK, Bhatt S, Boesen T, Gajhede M, Mirza O. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state. Biochem Biophys Res Commun 2017; 495:1738-1743. [PMID: 29208467 DOI: 10.1016/j.bbrc.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/01/2017] [Indexed: 01/23/2023]
Abstract
The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer.
Collapse
Affiliation(s)
- Nanda G Aduri
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heidi A Ernst
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bala K Prabhala
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shweta Bhatt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
64
|
A unique respiratory adaptation in Drosophila independent of supercomplex formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:154-163. [PMID: 29191512 DOI: 10.1016/j.bbabio.2017.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 01/06/2023]
Abstract
Large assemblies of respiratory chain complexes, known as supercomplexes, are present in the mitochondrial membrane in mammals and yeast, as well as in some bacterial membranes. The formation of supercomplexes is thought to contribute to efficient electron transfer, stabilization of each enzyme complex, and inhibition of reactive oxygen species (ROS) generation. In this study, mitochondria from various organisms were solubilized with digitonin, and then the solubilized complexes were separated by blue native PAGE (BN-PAGE). The results revealed a supercomplex consisting of complexes I, III, and IV in mitochondria from bovine and porcine heart, and a supercomplex consisting primarily of complexes I and III in mitochondria from mouse heart and liver. However, supercomplexes were barely detectable in Drosophila flight-muscle mitochondria, and only dimeric complex V was present. Drosophila mitochondria exhibited the highest rates of oxygen consumption and NADH oxidation, and the concentrations of the electron carriers, cytochrome c and quinone were higher than in other species. Respiratory chain complexes were tightly packed in the mitochondrial membrane containing abundant phosphatidylethanolamine with the fatty acid palmitoleic acid (C16:1), which is relatively high oxidation-resistant as compared to poly-unsaturated fatty acid. These properties presumably allow efficient electron transfer in Drosophila. These findings reveal the existence of a new mechanism of biological adaptation independent of supercomplex formation.
Collapse
|
65
|
Sadaf A, Du Y, Santillan C, Mortensen JS, Molist I, Seven AB, Hariharan P, Skiniotis G, Loland CJ, Kobilka BK, Guan L, Byrne B, Chae PS. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study. Chem Sci 2017; 8:8315-8324. [PMID: 29619178 PMCID: PMC5858085 DOI: 10.1039/c7sc03700g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/14/2017] [Indexed: 01/07/2023] Open
Abstract
A novel amphiphile with a dendronic hydrophobic group (DTM-A6) was markedly effective at stabilizing and visualizing a GPCR-Gs complex.
The critical contribution of membrane proteins in normal cellular function makes their detailed structure and functional analysis essential. Detergents, amphipathic agents with the ability to maintain membrane proteins in a soluble state in aqueous solution, have key roles in membrane protein manipulation. Structural and functional stability is a prerequisite for biophysical characterization. However, many conventional detergents are limited in their ability to stabilize membrane proteins, making development of novel detergents for membrane protein manipulation an important research area. The architecture of a detergent hydrophobic group, that directly interacts with the hydrophobic segment of membrane proteins, is a key factor in dictating their efficacy for both membrane protein solubilization and stabilization. In the current study, we developed two sets of maltoside-based detergents with four alkyl chains by introducing dendronic hydrophobic groups connected to a trimaltoside head group, designated dendronic trimaltosides (DTMs). Representative DTMs conferred enhanced stabilization to multiple membrane proteins compared to the benchmark conventional detergent, DDM. One DTM (i.e., DTM-A6) clearly outperformed DDM in stabilizing human β2 adrenergic receptor (β2AR) and its complex with Gs protein. A further evaluation of this DTM led to a clear visualization of β2AR-Gs complex via electron microscopic analysis. Thus, the current study not only provides novel detergent tools useful for membrane protein study, but also suggests that the dendronic architecture has a role in governing detergent efficacy for membrane protein stabilization.
Collapse
Affiliation(s)
- Aiman Sadaf
- Department of Bionanotechnology , Hanyang University , Ansan , 155-88 , Korea .
| | - Yang Du
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Claudia Santillan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Jonas S Mortensen
- Center of Neuroscience , University of Copenhagen , DK 2200 Copenhagen , Denmark .
| | - Iago Molist
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Alpay B Seven
- Structural Biology & Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Georgios Skiniotis
- Structural Biology & Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Claus J Loland
- Center of Neuroscience , University of Copenhagen , DK 2200 Copenhagen , Denmark .
| | - Brian K Kobilka
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Bernadette Byrne
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan , 155-88 , Korea .
| |
Collapse
|
66
|
Lacabanne D, Lends A, Danis C, Kunert B, Fogeron ML, Jirasko V, Chuilon C, Lecoq L, Orelle C, Chaptal V, Falson P, Jault JM, Meier BH, Böckmann A. Gradient reconstitution of membrane proteins for solid-state NMR studies. JOURNAL OF BIOMOLECULAR NMR 2017; 69:81-91. [PMID: 28900789 DOI: 10.1007/s10858-017-0135-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
We here adapted the GRecon method used in electron microscopy studies for membrane protein reconstitution to the needs of solid-state NMR sample preparation. We followed in detail the reconstitution of the ABC transporter BmrA by dialysis as a reference, and established optimal reconstitution conditions using the combined sucrose/cyclodextrin/lipid gradient characterizing GRecon. We established conditions under which quantitative reconstitution of active protein at low lipid-to-protein ratios can be obtained, and also how to upscale these conditions in order to produce adequate amounts for NMR. NMR spectra recorded on a sample produced by GRecon showed a highly similar fingerprint as those recorded previously on samples reconstituted by dialysis. GRecon sample preparation presents a gain in time of nearly an order of magnitude for reconstitution, and shall represent a valuable alternative in solid-state NMR membrane protein sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Alons Lends
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Clément Danis
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Britta Kunert
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Vlastimil Jirasko
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Claire Chuilon
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Pierre Falson
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
67
|
Elmlund D, Le SN, Elmlund H. High-resolution cryo-EM: the nuts and bolts. Curr Opin Struct Biol 2017; 46:1-6. [DOI: 10.1016/j.sbi.2017.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/02/2017] [Indexed: 01/27/2023]
|
68
|
Earl LA, Falconieri V, Milne JL, Subramaniam S. Cryo-EM: beyond the microscope. Curr Opin Struct Biol 2017; 46:71-78. [PMID: 28646653 PMCID: PMC5683925 DOI: 10.1016/j.sbi.2017.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023]
Abstract
The pace at which cryo-EM is being adopted as a mainstream tool in structural biology has continued unabated over the past year. Initial successes in obtaining near-atomic resolution structures with cryo-EM were enabled to a large extent by advances in microscope and detector technology. Here, we review some of the complementary technical improvements that are helping sustain the cryo-EM revolution. We highlight advances in image processing that permit high resolution structure determination even in the presence of structural and conformational heterogeneity. We also review selected examples where biochemical strategies for membrane protein stabilization facilitate cryo-EM structure determination, and discuss emerging approaches for further improving the preparation of reliable plunge-frozen specimens.
Collapse
Affiliation(s)
- Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacqueline Ls Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
69
|
Jayakanthan S, Braiterman LT, Hasan NM, Unger VM, Lutsenko S. Human copper transporter ATP7B (Wilson disease protein) forms stable dimers in vitro and in cells. J Biol Chem 2017; 292:18760-18774. [PMID: 28842499 DOI: 10.1074/jbc.m117.807263] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/21/2017] [Indexed: 11/06/2022] Open
Abstract
ATP7B is a copper-transporting P1B-type ATPase (Cu-ATPase) with an essential role in human physiology. Mutations in ATP7B cause the potentially fatal Wilson disease, and changes in ATP7B expression are observed in several cancers. Despite its physiologic importance, the biochemical information about ATP7B remains limited because of a complex multidomain organization of the protein. By analogy with the better characterized prokaryotic Cu-ATPases, ATP7B is assumed to be a single-chain monomer. We show that in eukaryotic cells, human ATP7B forms dimers that can be purified following solubilization. Deletion of the four N-terminal metal-binding domains, characteristic for human ATP7B, does not disrupt dimerization, i.e. the dimer interface is formed by the domains that are conserved among Cu-ATPases. Unlike the full-length ATP7B, which is targeted to the trans-Golgi network, 1-4ΔMBD-7B is targeted primarily to vesicles. This result and the analysis of differentially tagged ATP7B variants indicate that the dimeric structure is retained during ATP7B trafficking between the intracellular compartments. Purified dimeric species of 1-4ΔMBD-7B were characterized by a negative stain electron microscopy in the presence of ADP/MgCl2 Single-particle analysis yielded a low-resolution 3D model that provides the first insight into an overall architecture of a human Cu-ATPase, positions of the main domains, and a dimer interface.
Collapse
Affiliation(s)
| | - Lelita T Braiterman
- Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | | | - Vinzenz M Unger
- the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
70
|
Rehan S, Paavilainen VO, Jaakola VP. Functional reconstitution of human equilibrative nucleoside transporter-1 into styrene maleic acid co-polymer lipid particles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1059-1065. [DOI: 10.1016/j.bbamem.2017.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/30/2017] [Accepted: 02/26/2017] [Indexed: 12/14/2022]
|
71
|
Quantification of Detergents Complexed with Membrane Proteins. Sci Rep 2017; 7:41751. [PMID: 28176812 PMCID: PMC5297245 DOI: 10.1038/srep41751] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/23/2016] [Indexed: 01/20/2023] Open
Abstract
Most membrane proteins studies require the use of detergents, but because of the lack of a general, accurate and rapid method to quantify them, many uncertainties remain that hamper proper functional and structural data analyses. To solve this problem, we propose a method based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) that allows quantification of pure or mixed detergents in complex with membrane proteins. We validated the method with a wide variety of detergents and membrane proteins. We automated the process, thereby allowing routine quantification for a broad spectrum of usage. As a first illustration, we show how to obtain information of the amount of detergent in complex with a membrane protein, essential for liposome or nanodiscs reconstitutions. Thanks to the method, we also show how to reliably and easily estimate the detergent corona diameter and select the smallest size, critical for favoring protein-protein contacts and triggering/promoting membrane protein crystallization, and to visualize the detergent belt for Cryo-EM studies.
Collapse
|
72
|
Kawamoto A, Namba K. Structural Study of the Bacterial Flagellar Basal Body by Electron Cryomicroscopy and Image Analysis. Methods Mol Biol 2017; 1593:119-131. [PMID: 28389949 DOI: 10.1007/978-1-4939-6927-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bacterial flagellum is a large assembly of about 30 different proteins and is divided into three parts: filament, hook, and basal body. The machineries for its crucial functions, such as torque generation, rotational switch regulation, protein export, and assembly initiation, are all located around the basal body. Although high-resolution structures of the filament and hook have already been revealed, the structure of the basal body remains elusive. Recently, the purification protocol for the MS ring, which is the core ring of the basal body, has been improved for the structural study of the MS ring by electron cryomicroscopy (cryoEM) and single particle image analysis. The structure of intact basal body has also been revealed in situ at a resolution of a few nanometers by electron cryotomography (ECT) of minicells. Here, we describe the methods for the MS ring purification, Salmonella minicell culture, and cryoEM/ECT data collection and image analysis.
Collapse
Affiliation(s)
- Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
73
|
Oshima A, Tani K, Fujiyoshi Y. Atomic structure of the innexin-6 gap junction channel determined by cryo-EM. Nat Commun 2016; 7:13681. [PMID: 27905396 PMCID: PMC5146279 DOI: 10.1038/ncomms13681] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/24/2016] [Indexed: 01/01/2023] Open
Abstract
Innexins, a large protein family comprising invertebrate gap junction channels, play an essential role in nervous system development and electrical synapse formation. Here we report the cryo-electron microscopy structures of Caenorhabditis elegans innexin-6 (INX-6) gap junction channels at atomic resolution. We find that the arrangements of the transmembrane helices and extracellular loops of the INX-6 monomeric structure are highly similar to those of connexin-26 (Cx26), despite the lack of significant sequence similarity. The INX-6 gap junction channel comprises hexadecameric subunits but reveals the N-terminal pore funnel, consistent with Cx26. The helix-rich cytoplasmic loop and C-terminus are intercalated one-by-one through an octameric hemichannel, forming a dome-like entrance that interacts with N-terminal loops in the pore. These observations suggest that the INX-6 cytoplasmic domains are cooperatively associated with the N-terminal funnel conformation, and an essential linkage of the N-terminal with channel activity is presumably preserved across gap junction families.
Collapse
Affiliation(s)
- Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
74
|
Cho KH, Ribeiro O, Du Y, Tikhonova E, Mortensen JS, Markham K, Hariharan P, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Mesitylene-Cored Glucoside Amphiphiles (MGAs) for Membrane Protein Studies: Importance of Alkyl Chain Density in Detergent Efficacy. Chemistry 2016; 22:18833-18839. [PMID: 27743406 DOI: 10.1002/chem.201603338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 01/14/2023]
Abstract
Detergents serve as useful tools for membrane protein structural and functional studies. Their amphipathic nature allows detergents to associate with the hydrophobic regions of membrane proteins whilst maintaining the proteins in aqueous solution. However, widely used conventional detergents are limited in their ability to maintain the structural integrity of membrane proteins and thus there are major efforts underway to develop novel agents with improved properties. We prepared mesitylene-cored glucoside amphiphiles (MGAs) with three alkyl chains and compared these agents with previously developed xylene-linked maltoside agents (XMAs) with two alkyl chains and a conventional detergent (DDM). When these agents were evaluated for four membrane proteins including a G protein-coupled receptor (GPCR), some agents such as MGA-C13 and MGA-C14 resulted in markedly enhanced stability of membrane proteins compared to both DDM and the XMAs. This favourable behaviour is due likely to the increased hydrophobic density provided by the extra alkyl chain. Thus, this study not only describes new glucoside agents with potential for membrane protein research, but also introduces a new detergent design principle for future development.
Collapse
Affiliation(s)
- Kyung Ho Cho
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Orquidea Ribeiro
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA, 94305, USA
| | - Elena Tikhonova
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jonas S Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Kelsey Markham
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Claus J Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | | | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
75
|
Letts JA, Degliesposti G, Fiedorczuk K, Skehel M, Sazanov LA. Purification of Ovine Respiratory Complex I Results in a Highly Active and Stable Preparation. J Biol Chem 2016; 291:24657-24675. [PMID: 27672209 DOI: 10.1074/jbc.m116.735142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/15/2016] [Indexed: 01/06/2023] Open
Abstract
NADH-ubiquinone oxidoreductase (complex I) is the largest (∼1 MDa) and the least characterized complex of the mitochondrial electron transport chain. Because of the ease of sample availability, previous work has focused almost exclusively on bovine complex I. However, only medium resolution structural analyses of this complex have been reported. Working with other mammalian complex I homologues is a potential approach for overcoming these limitations. Due to the inherent difficulty of expressing large membrane protein complexes, screening of complex I homologues is limited to large mammals reared for human consumption. The high sequence identity among these available sources may preclude the benefits of screening. Here, we report the characterization of complex I purified from Ovis aries (ovine) heart mitochondria. All 44 unique subunits of the intact complex were identified by mass spectrometry. We identified differences in the subunit composition of subcomplexes of ovine complex I as compared with bovine, suggesting differential stability of inter-subunit interactions within the complex. Furthermore, the 42-kDa subunit, which is easily lost from the bovine enzyme, remains tightly bound to ovine complex I. Additionally, we developed a novel purification protocol for highly active and stable mitochondrial complex I using the branched-chain detergent lauryl maltose neopentyl glycol. Our data demonstrate that, although closely related, significant differences exist between the biochemical properties of complex I prepared from ovine and bovine mitochondria and that ovine complex I represents a suitable alternative target for further structural studies.
Collapse
Affiliation(s)
- James A Letts
- From the Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Gianluca Degliesposti
- the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom, and
| | - Karol Fiedorczuk
- From the Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria,; the Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom
| | - Mark Skehel
- the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom, and
| | - Leonid A Sazanov
- From the Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria,.
| |
Collapse
|
76
|
Gerle C. On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1191-1196. [PMID: 26968896 DOI: 10.1016/j.bbabio.2016.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
The mitochondrial permeability transition is an inner mitochondrial membrane event involving the opening of the permeability transition pore concomitant with a sudden efflux of matrix solutes and breakdown of membrane potential. The mitochondrial F(o)F(1) ATP synthase has been proposed as the molecular identity of the permeability transition pore. The likeliness of potential pore-forming sites in the mitochondrial F(o)F(1) ATP synthase is discussed and a new model, the death finger model, is described. In this model, movement of a p-side density that connects the lipid-plug of the c-ring with the distal membrane bending Fo domain allows reversible opening of the c-ring and structural cross-talk with OSCP and the catalytic (αβ)(3) hexamer. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
77
|
Abe K, Fujiyoshi Y. Cryo-electron microscopy for structure analyses of membrane proteins in the lipid bilayer. Curr Opin Struct Biol 2016; 39:71-78. [DOI: 10.1016/j.sbi.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
|
78
|
Abstract
Structural characterization of integral membrane proteins (MPs) demands that the samples be pure, monodisperse, and stable. Detergents are required to extract MPs from the lipid bilayer in which they reside and to stabilize them for downstream biophysical analyses. Some of the best MP-stabilizing detergents pose problems for cryo-EM studies, but in this issue of Structure, Hauer et al. (2015) now offer a solution called GraDeR.
Collapse
Affiliation(s)
- Satinder K Singh
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Fred J Sigworth
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
79
|
Ehsan M, Du Y, Scull NJ, Tikhonova E, Tarrasch J, Mortensen JS, Loland CJ, Skiniotis G, Guan L, Byrne B, Kobilka BK, Chae PS. Highly Branched Pentasaccharide-Bearing Amphiphiles for Membrane Protein Studies. J Am Chem Soc 2016; 138:3789-96. [PMID: 26966956 DOI: 10.1021/jacs.5b13233] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Detergents are essential tools for membrane protein manipulation. Micelles formed by detergent molecules have the ability to encapsulate the hydrophobic domains of membrane proteins. The resulting protein-detergent complexes (PDCs) are compatible with the polar environments of aqueous media, making structural and functional analysis feasible. Although a number of novel agents have been developed to overcome the limitations of conventional detergents, most have traditional head groups such as glucoside or maltoside. In this study, we introduce a class of amphiphiles, the PSA/Es with a novel highly branched pentasaccharide hydrophilic group. The PSA/Es conferred markedly increased stability to a diverse range of membrane proteins compared to conventional detergents, indicating a positive role for the new hydrophilic group in maintaining the native protein integrity. In addition, PDCs formed by PSA/Es were smaller and more suitable for electron microscopic analysis than those formed by DDM, indicating that the new agents have significant potential for the structure-function studies of membrane proteins.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University , Ansan, 426-791, Korea
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University , Stanford, California 94305, United States
| | - Nicola J Scull
- Department of Life Sciences, Imperial College London , London, SW7 2AZ, U.K
| | - Elena Tikhonova
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas 79430, United States
| | - Jeffrey Tarrasch
- Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jonas S Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, DK-2200, Denmark
| | - Claus J Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, DK-2200, Denmark
| | - Georgios Skiniotis
- Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas 79430, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London , London, SW7 2AZ, U.K
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University , Stanford, California 94305, United States
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University , Ansan, 426-791, Korea
| |
Collapse
|
80
|
Oshima A, Matsuzawa T, Murata K, Tani K, Fujiyoshi Y. Hexadecameric structure of an invertebrate gap junction channel. J Mol Biol 2016; 428:1227-1236. [DOI: 10.1016/j.jmb.2016.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
|
81
|
Rawson S, Davies S, Lippiat JD, Muench SP. The changing landscape of membrane protein structural biology through developments in electron microscopy. Mol Membr Biol 2016; 33:12-22. [PMID: 27608730 PMCID: PMC5206964 DOI: 10.1080/09687688.2016.1221533] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022]
Abstract
Membrane proteins are ubiquitous in biology and are key targets for therapeutic development. Despite this, our structural understanding has lagged behind that of their soluble counterparts. This review provides an overview of this important field, focusing in particular on the recent resurgence of electron microscopy (EM) and the increasing role it has to play in the structural studies of membrane proteins, and illustrating this through several case studies. In addition, we examine some of the challenges remaining in structural determination, and what steps are underway to enhance our knowledge of these enigmatic proteins.
Collapse
Affiliation(s)
- Shaun Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| | - Simon Davies
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| | - Jonathan D. Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| |
Collapse
|
82
|
Stark H, Chari A. Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy. Microscopy (Oxf) 2015; 65:23-34. [PMID: 26671943 DOI: 10.1093/jmicro/dfv367] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/05/2015] [Indexed: 01/04/2023] Open
Abstract
Single particle cryo-EM has recently developed into a powerful tool to determine the 3D structure of macromolecular complexes at near-atomic resolution, which allows structural biologists to build atomic models of proteins. All technical aspects of cryo-EM technology have been considerably improved over the last two decades, including electron microscopic hardware, image processing software and the ever growing speed of computers. This leads to a more widespread use of the technique, and it can be anticipated that further automation of electron microscopes and image processing tools will soon fully shift the focus away from the technological aspects, onto biological questions that can be answered. In single particle cryo-EM, no crystals of a macromolecule are required. In contrast to X-ray crystallography, this significantly facilitates structure determination by cryo-EM. Nevertheless, a relatively high level of biochemical control is still essential to obtain high-resolution structures by cryo-EM, and it can be anticipated that the success of the cryo-EM technology goes hand in hand with further developments of sample purification and preparation techniques. This will allow routine high-resolution structure determination of the many macromolecular complexes of the cell that until now represent evasive targets for X-ray crystallographers. Here we discuss the various biochemical tools that are currently available and the existing sample purification and preparation techniques for cryo-EM grid preparation that are needed to obtain high-resolution images for structure determination.
Collapse
Affiliation(s)
- Holger Stark
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen D-37070, Germany
| | - Ashwin Chari
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen D-37070, Germany
| |
Collapse
|