51
|
Butiaeva LI, Slutzki T, Swick HE, Bourguignon C, Robins SC, Liu X, Storch KF, Kokoeva MV. Leptin receptor-expressing pericytes mediate access of hypothalamic feeding centers to circulating leptin. Cell Metab 2021; 33:1433-1448.e5. [PMID: 34129812 DOI: 10.1016/j.cmet.2021.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Knowledge of how leptin receptor (LepR) neurons of the mediobasal hypothalamus (MBH) access circulating leptin is still rudimentary. Employing intravital microscopy, we found that almost half of the blood-vessel-enwrapping pericytes in the MBH express LepR. Selective disruption of pericytic LepR led to increased food intake, increased fat mass, and loss of leptin-dependent signaling in nearby LepR neurons. When delivered intravenously, fluorescently tagged leptin accumulated at hypothalamic LepR pericytes, which was attenuated upon pericyte-specific LepR loss. Because a paracellular tracer was also preferentially retained at LepR pericytes, we pharmacologically targeted regulators of inter-endothelial junction tightness and found that they affect LepR neuronal signaling and food intake. Optical imaging in MBH slices revealed a long-lasting, tonic calcium increase in LepR pericytes in response to leptin, suggesting pericytic contraction and vessel constriction. Together, our data indicate that LepR pericytes facilitate localized, paracellular blood-brain barrier leaks, enabling MBH LepR neurons to access circulating leptin.
Collapse
Affiliation(s)
- Liliia I Butiaeva
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Tal Slutzki
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Hannah E Swick
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Clément Bourguignon
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Sarah C Robins
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada
| | - Xiaohong Liu
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal QC H4H 1R3, Canada
| | - Maia V Kokoeva
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada.
| |
Collapse
|
52
|
Liu X, Chen W, Zeng Q, Ma B, Li Z, Meng T, Chen J, Yu N, Zhou Z, Long X. Single-cell RNA-seq reveals lineage-specific regulatory changes of fibroblasts and vascular endothelial cells in keloids. J Invest Dermatol 2021; 142:124-135.e11. [PMID: 34242659 DOI: 10.1016/j.jid.2021.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 10/20/2022]
Abstract
Keloids are a benign dermal fibrotic disorder with features similar to malignant tumors. keloids remain a therapeutic challenge and lack medical therapies, which is partially due to the incomplete understanding of the pathogenesis mechanism. We performed single-cell RNA-seq of 28,064 cells from keloid skin tissue and adjacent relatively normal tissue. Unbiased clustering revealed substantial cellular heterogeneity of keloid tissue, which included 21 clusters assigned to 11 cell lineages. We observed significant expansion of fibroblast and vascular endothelial cell subpopulations in keloids, reflecting their strong association with keloid pathogenesis. Comparative analyses were performed to identify the dysregulated pathways, regulators and ligand-receptor interactions in keloid fibroblasts and vascular endothelial cells. Our results highlight the roles of transforming growth factor beta and Eph-ephrin signaling pathways in both the aberrant fibrogenesis and angiogenesis of keloids. Critical regulators probably involved in the fibrogenesis of keloid fibroblasts, such as TWIST1, FOXO3 and SMAD3, were identified. TWIST1 inhibitor harmine could significantly suppress the fibrogenesis of keloid fibroblasts. In addition, tumor-related pathways were activated in keloid fibroblasts and vascular endothelial cells, which may be responsible for the malignant features of keloids. Our study put insights into the pathogenesis of keloids and provides potential targets for medical therapies.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qingyi Zeng
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Baihui Ma
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhujun Li
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Tian Meng
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jie Chen
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Nanze Yu
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
53
|
Yin H, Arpino JM, Lee JJ, Pickering JG. Regenerated Microvascular Networks in Ischemic Skeletal Muscle. Front Physiol 2021; 12:662073. [PMID: 34177614 PMCID: PMC8231913 DOI: 10.3389/fphys.2021.662073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle is the largest organ in humans. The viability and performance of this metabolically demanding organ are exquisitely dependent on the integrity of its microcirculation. The architectural and functional attributes of the skeletal muscle microvasculature are acquired during embryonic and early postnatal development. However, peripheral vascular disease in the adult can damage the distal microvasculature, together with damaging the skeletal myofibers. Importantly, adult skeletal muscle has the capacity to regenerate. Understanding the extent to which the microvascular network also reforms, and acquires structural and functional competence, will thus be critical to regenerative medicine efforts for those with peripheral artery disease (PAD). Herein, we discuss recent advances in studying the regenerating microvasculature in the mouse hindlimb following severe ischemic injury. We highlight new insights arising from real-time imaging of the microcirculation. This includes identifying otherwise hidden flaws in both network microarchitecture and function, deficiencies that could underlie the progressive nature of PAD and its refractoriness to therapy. Recognizing and overcoming these vulnerabilities in regenerative angiogenesis will be important for advancing treatment options for PAD.
Collapse
Affiliation(s)
- Hao Yin
- Robarts Research Institute, Western University, London, ON, Canada
| | | | - Jason J Lee
- Robarts Research Institute, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada.,Department of Biochemistry, Western University, London, ON, Canada
| |
Collapse
|
54
|
Nitta T, Ota A, Iguchi T, Muro R, Takayanagi H. The fibroblast: An emerging key player in thymic T cell selection. Immunol Rev 2021; 302:68-85. [PMID: 34096078 PMCID: PMC8362222 DOI: 10.1111/imr.12985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts have recently attracted attention as a key stromal component that controls the immune responses in lymphoid tissues. The thymus has a unique microenvironment comprised of a variety of stromal cells, including fibroblasts and thymic epithelial cells (TECs), the latter of which is known to be important for T cell development because of their ability to express self‐antigens. Thymic fibroblasts contribute to thymus organogenesis during embryogenesis and form the capsule and medullary reticular network in the adult thymus. However, the immunological significance of thymic fibroblasts has thus far only been poorly elucidated. In this review, we will summarize the current views on the development and functions of thymic fibroblasts as revealed by new technologies such as multicolor flow cytometry and single cell–based transcriptome profiling. Furthermore, the recently discovered role of medullary fibroblasts in the establishment of T cell tolerance by producing a unique set of self‐antigens will be highlighted.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayami Ota
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
55
|
Sbierski-Kind J, Mroz N, Molofsky AB. Perivascular stromal cells: Directors of tissue immune niches. Immunol Rev 2021; 302:10-31. [PMID: 34075598 DOI: 10.1111/imr.12984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Perivascular niches are specialized microenvironments where stromal and immune cells interact with vasculature to monitor tissue status. Adventitial perivascular niches surround larger blood vessels and other boundary sites, supporting collections of immune cells, stromal cells, lymphatics, and neurons. Adventitial fibroblasts (AFs), a subtype of mesenchymal stromal cell, are the dominant constituents in adventitial spaces, regulating vascular integrity while organizing the accumulation and activation of a variety of interacting immune cells. In contrast, pericytes are stromal mural cells that support microvascular capillaries and surround organ-specific parenchymal cells. Here, we outline the unique immune and non-immune composition of perivascular tissue immune niches, with an emphasis on the heterogeneity and immunoregulatory functions of AFs and pericytes across diverse organs. We will discuss how perivascular stromal cells contribute to the regulation of innate and adaptive immune responses and integrate immunological signals to impact tissue health and disease.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas Mroz
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
56
|
Imaging and optogenetic modulation of vascular mural cells in the live brain. Nat Protoc 2020; 16:472-496. [PMID: 33299155 DOI: 10.1038/s41596-020-00425-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Mural cells (smooth muscle cells and pericytes) are integral components of brain blood vessels that play important roles in vascular formation, blood-brain barrier maintenance, and regulation of regional cerebral blood flow (rCBF). These cells are implicated in conditions ranging from developmental vascular disorders to age-related neurodegenerative diseases. Here we present complementary tools for cell labeling with transgenic mice and organic dyes that allow high-resolution intravital imaging of the different mural cell subtypes. We also provide detailed methodologies for imaging of spontaneous and neural activity-evoked calcium transients in mural cells. In addition, we describe strategies for single- and two-photon optogenetics that allow manipulation of the activity of individual and small clusters of mural cells. Together with measurements of diameter and flow in individual brain microvessels, calcium imaging and optogenetics allow the investigation of pericyte and smooth muscle cell physiology and their role in regulating rCBF. We also demonstrate the utility of these tools to investigate mural cells in the context of Alzheimer's disease and cerebral ischemia mouse models. Thus, these methods can be used to reveal the functional and structural heterogeneity of mural cells in vivo, and allow detailed cellular studies of the normal function and pathophysiology of mural cells in a variety of disease models. The implementation of this protocol can take from several hours to days depending on the intended applications.
Collapse
|
57
|
Parthiban SP, He W, Monteiro N, Athirasala A, França CM, Bertassoni LE. Engineering pericyte-supported microvascular capillaries in cell-laden hydrogels using stem cells from the bone marrow, dental pulp and dental apical papilla. Sci Rep 2020; 10:21579. [PMID: 33299005 PMCID: PMC7726569 DOI: 10.1038/s41598-020-78176-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Engineered tissue constructs require the fabrication of highly perfusable and mature vascular networks for effective repair and regeneration. In tissue engineering, stem cells are widely employed to create mature vascularized tissues in vitro. Pericytes are key to the maturity of these vascular networks, and therefore the ability of stem cells to differentiate into pericyte-like lineages should be understood. To date, there is limited information regarding the ability of stem cells from the different tissue sources to differentiate into pericytes and form microvascular capillaries in vitro. Therefore, here we tested the ability of the stem cells derived from bone marrow (BMSC), dental pulp (DPSC) and dental apical papilla (SCAP) to engineer pericyte-supported vascular capillaries when encapsulated along with human umbilical vein endothelial cells (HUVECs) in gelatin methacrylate (GelMA) hydrogel. Our results show that the pericyte differentiation capacity of BMSC was greater with high expression of α-SMA and NG2 positive cells. DPSC had α-SMA positive cells but showed very few NG2 positive cells. Further, SCAP cells were positive for α-SMA while they completely lacked NG2 positive cells. We found the pericyte differentiation ability of these stem cells to be different, and this significantly affected the vasculogenic ability and quality of the vessel networks. In summary, we conclude that, among stem cells from different craniofacial regions, BMSCs appear more suitable for engineering of mature vascularized networks than DPSCs or SCAPs.
Collapse
Affiliation(s)
- S Prakash Parthiban
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Wenting He
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Nelson Monteiro
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Avathamsa Athirasala
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Cristiane Miranda França
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
58
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
59
|
Blank A, Kremenetskaia I, Urbantat RM, Acker G, Turkowski K, Radke J, Schneider UC, Vajkoczy P, Brandenburg S. Microglia/macrophages express alternative proangiogenic factors depending on granulocyte content in human glioblastoma. J Pathol 2020; 253:160-173. [PMID: 33044746 DOI: 10.1002/path.5569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/27/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Myeloid cells are an inherent part of the microenvironment of glioblastoma multiforme (GBM). There is growing evidence for their participation in mechanisms of tumor escape, especially in the development of resistance following initially promising anti-VEGF/VEGFR treatment. Thus, we sought to define the capability of myeloid cells to contribute to the expression of proangiogenic molecules in human GBM. We investigated GBM specimens in comparison with anaplastic astrocytoma (WHO grade III) and epilepsy patient samples freshly obtained from surgery. Flow cytometric analyses revealed two distinct CD11b+ CD45+ cell populations in GBM tissues, which were identified as microglia/macrophages and granulocytes. Due to varied granulocyte influx, GBM samples were subdivided into groups with low (GBM-lPMNL) and high (GBM-hPMNL) numbers of granulocytes (polymorphonuclear leukocytes; PMNL), which were related to activation of the microglia/macrophage population. Microglia/macrophages of the GBM-lPMNL group were similar to those of astrocytoma specimens, but those of GBM-hPMNL tissues revealed an altered phenotype by expressing high levels of CD163, TIE2, HIF1α, VEGF, CXCL2 and CD13. Although microglia/macrophages represented the main source of alternative proangiogenic factors, additionally granulocytes participated by production of IL8 and CD13. Moreover, microglia/macrophages of the GBM-hPMNL specimens were highly associated with tumor blood vessels, accompanied by remodeling of the vascular structure. Our data emphasize that tumor-infiltrating myeloid cells might play a crucial role for limited efficacy of anti-angiogenic therapy bypassing VEGF-mediated pathways through expression of alternative proangiogenic factors. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anne Blank
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ruth M Urbantat
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Güliz Acker
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Kati Turkowski
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josefine Radke
- Berlin Institute of Health, Berlin, Germany.,Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susan Brandenburg
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
60
|
Ujifuku K, Fujimoto T, Sato K, Morofuji Y, Muto H, Masumoto H, Nakagawa S, Niwa M, Matsuo T. Exploration of Pericyte-Derived Factors Implicated in Lung Cancer Brain Metastasis Protection: A Pilot Messenger RNA Sequencing Using the Blood-Brain Barrier In Vitro Model. Cell Mol Neurobiol 2020; 42:997-1004. [PMID: 33136276 DOI: 10.1007/s10571-020-00988-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023]
Abstract
Metastatic brain tumors have poor prognoses and pose unmet clinical problems for the patients. The blood-brain barrier (BBB) implication is supposed to play a major role in brain metastasis. However, the role of pericytes remains to be elucidated in the brain metastasis. This pilot study described the expression profile of interactions between pericytes, endothelial cells, and cancer cells. We applied an in vitro BBB model with rat primary cultured BBB-related cells (endothelial cells and pericytes), and performed the gene expression analyses of pericytes under the lung cancer cells coculture conditions. Pericytes demonstrated inhibition of the cancer cell proliferation significantly (p < 0.05). RNA was extracted from the pericytes, complementary DNA library was prepared, and RNA-seq was performed. The sequence read data were analyzed on the Management and Analysis System for Enormous Reads and Tag Count Comparison-Graphical User Interface platforms. No statistically or biologically significant differentially expressed genes (DEGs) were detected in the explanatory analyses. Lot-specific DEG detection demonstrated significant decreases in the expression of two genes (Wwtr1 and Acin1), and enrichment analyses using Metascape software revealed the inhibition of apoptotic processes in fibroblasts. Our results suggest that the expression profiles of brain pericytes are partially implicated in the prevention of lung cancer metastasis to the brain. Pericytes exerted an anti-metastatic effect in the BBB model, and their neurohumoral factors remain to be elucidated.
Collapse
Affiliation(s)
- Kenta Ujifuku
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Takashi Fujimoto
- Department of Neurosurgery, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kei Sato
- Department of Neurosurgery, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hideki Muto
- Biomedical Research Support Center, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Company Ltd., Dai-ichi-senshu bldg. 2nd floor, 6-19 Chitose-machi, Nagasaki, 852-8135, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
61
|
Rajan AM, Ma RC, Kocha KM, Zhang DJ, Huang P. Dual function of perivascular fibroblasts in vascular stabilization in zebrafish. PLoS Genet 2020; 16:e1008800. [PMID: 33104690 PMCID: PMC7644104 DOI: 10.1371/journal.pgen.1008800] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Blood vessels are vital to sustain life in all vertebrates. While it is known that mural cells (pericytes and smooth muscle cells) regulate vascular integrity, the contribution of other cell types to vascular stabilization has been largely unexplored. Using zebrafish, we identified sclerotome-derived perivascular fibroblasts as a novel population of blood vessel associated cells. In contrast to pericytes, perivascular fibroblasts emerge early during development, express the extracellular matrix (ECM) genes col1a2 and col5a1, and display distinct morphology and distribution. Time-lapse imaging reveals that perivascular fibroblasts serve as pericyte precursors. Genetic ablation of perivascular fibroblasts markedly reduces collagen deposition around endothelial cells, resulting in dysmorphic blood vessels with variable diameters. Strikingly, col5a1 mutants show spontaneous hemorrhage, and the penetrance of the phenotype is strongly enhanced by the additional loss of col1a2. Together, our work reveals dual roles of perivascular fibroblasts in vascular stabilization where they establish the ECM around nascent vessels and function as pericyte progenitors. Blood vessels are essential to sustain life in humans. Defects in blood vessels can lead to serious diseases, such as hemorrhage, tissue ischemia, and stroke. However, how blood vessel stability is maintained by surrounding support cells is still poorly understood. Using the zebrafish model, we identify a new population of blood vessel associated cells termed perivascular fibroblasts, which originate from the sclerotome, an embryonic structure that is previously known to generate the skeleton of the animal. Perivascular fibroblasts are distinct from pericytes, a known population of blood vessel support cells. They become associated with blood vessels much earlier than pericytes and express several collagen genes, encoding main components of the extracellular matrix. Loss of perivascular fibroblasts or mutations in collagen genes result in fragile blood vessels prone to damage. Using cell tracing in live animals, we find that a subset of perivascular fibroblasts can differentiate into pericytes. Together, our work shows that perivascular fibroblasts play two important roles in maintaining blood vessel integrity. Perivascular fibroblasts secrete collagens to stabilize newly formed blood vessels and a sub-population of these cells also functions as precursors to generate pericytes to provide additional vascular support.
Collapse
Affiliation(s)
- Arsheen M. Rajan
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roger C. Ma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Katrinka M. Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dan J. Zhang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
62
|
Navarro R, Tapia‐Galisteo A, Martín‐García L, Tarín C, Corbacho C, Gómez‐López G, Sánchez‐Tirado E, Campuzano S, González‐Cortés A, Yáñez‐Sedeño P, Compte M, Álvarez‐Vallina L, Sanz L. TGF-β-induced IGFBP-3 is a key paracrine factor from activated pericytes that promotes colorectal cancer cell migration and invasion. Mol Oncol 2020; 14:2609-2628. [PMID: 32767843 PMCID: PMC7530788 DOI: 10.1002/1878-0261.12779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/30/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The crosstalk between cancer cells and the tumor microenvironment has been implicated in cancer progression and metastasis. Fibroblasts and immune cells are widely known to be attracted to and modified by cancer cells. However, the role of pericytes in the tumor microenvironment beyond endothelium stabilization is poorly understood. Here, we report that pericytes promoted colorectal cancer (CRC) cell proliferation, migration, invasion, stemness, and chemoresistance in vitro, as well as tumor growth in a xenograft CRC model. We demonstrate that coculture with human CRC cells induced broad transcriptomic changes in pericytes, mostly associated with TGF-β receptor activation. The prognostic value of a TGF-β response signature in pericytes was analyzed in CRC patient data sets. This signature was found to be a good predictor of CRC relapse. Moreover, in response to stimulation by CRC cells, pericytes expressed high levels of TGF-β1, initiating an autocrine activation loop. Investigation of secreted mediators and underlying molecular mechanisms revealed that IGFBP-3 is a key paracrine factor from activated pericytes affecting CRC cell migration and invasion. In summary, we demonstrate that the interplay between pericytes and CRC cells triggers a vicious cycle that stimulates pericyte cytokine secretion, in turn increasing CRC cell tumorigenic properties. Overall, we provide another example of how cancer cells can manipulate the tumor microenvironment.
Collapse
Affiliation(s)
- Rocío Navarro
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Antonio Tapia‐Galisteo
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Laura Martín‐García
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Carlos Tarín
- Bioinformatics UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
- Basic Medical Sciences DepartmentFaculty of MedicineUniversidad San Pablo CEUMadridSpain
| | - Cesáreo Corbacho
- Pathology DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Gonzalo Gómez‐López
- Bioinformatics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Esther Sánchez‐Tirado
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Susana Campuzano
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Araceli González‐Cortés
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Paloma Yáñez‐Sedeño
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Marta Compte
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Luis Álvarez‐Vallina
- Immunotherapy and Cell Engineering LaboratoryDepartment of EngineeringAarhus UniversityAarhusDenmark
- Cancer Immunotherapy Unit (UNICA)Hospital Universitario 12 de OctubreMadridSpain
- Immuno‐oncology and Immunotherapy GroupBiomedical Research Institute 12 de OctubreMadridSpain
| | - Laura Sanz
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| |
Collapse
|
63
|
Felsenstein M, Blank A, Bungert AD, Mueller A, Ghori A, Kremenetskaia I, Rung O, Broggini T, Turkowski K, Scherschinski L, Raggatz J, Vajkoczy P, Brandenburg S. CCR2 of Tumor Microenvironmental Cells Is a Relevant Modulator of Glioma Biology. Cancers (Basel) 2020; 12:cancers12071882. [PMID: 32668709 PMCID: PMC7408933 DOI: 10.3390/cancers12071882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) shows a high influx of tumor-associated macrophages (TAMs). The CCR2/CCL2 pathway is considered a relevant signal for the recruitment of TAMs and has been suggested as a therapeutic target in malignant gliomas. We found that TAMs of human GBM specimens and of a syngeneic glioma model express CCR2 to varying extents. Using a Ccr2-deficient strain for glioma inoculation revealed a 30% reduction of TAMs intratumorally. This diminished immune cell infiltration occurred with augmented tumor volumes likely based on increased cell proliferation. Remaining TAMs in Ccr2-/- mice showed comparable surface marker expression patterns in comparison to wildtype mice, but expression levels of inflammatory transcription factors (Stat3, Irf7, Cox2) and cytokines (Ifnβ, Il1β, Il12α) were considerably affected. Furthermore, we demonstrated an impact on blood vessel integrity, while vascularization of tumors appeared similar between mouse strains. The higher stability and attenuated leakiness of the tumor vasculature imply improved sustenance of glioma tissue in Ccr2-/- mice. Additionally, despite TAMs residing in the perivascular niche in Ccr2-/- mice, their pro-angiogenic activity was reduced by the downregulation of Vegf. In conclusion, lacking CCR2 solely on tumor microenvironmental cells leads to enhanced tumor progression, whereby high numbers of TAMs infiltrate gliomas independently of the CCR2/CCL2 signal.
Collapse
Affiliation(s)
- Matthäus Felsenstein
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Anne Blank
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Alexander D. Bungert
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Annett Mueller
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Adnan Ghori
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Irina Kremenetskaia
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Olga Rung
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Thomas Broggini
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Kati Turkowski
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Lea Scherschinski
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Jonas Raggatz
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
- Department of Neurosurgery Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-560-002
| | - Susan Brandenburg
- Department of Experimental Neurosurgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.F.); (A.B.); (A.D.B.); (A.M.); (A.G.); (I.K.); (O.R.); (T.B.); (K.T.); (L.S.); (J.R.); (S.B.)
| |
Collapse
|
64
|
SM22α + vascular mural cells are essential for vessel stability in tumors and undergo phenotype transition regulated by Notch signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:124. [PMID: 32616053 PMCID: PMC7331127 DOI: 10.1186/s13046-020-01630-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022]
Abstract
Background Malformation of blood vessels represents a hallmark of cancers, but the role and regulation of vascular mural cells (vMCs), including vascular smooth muscle cells (vSMCs) and pericytes, in tumors has not been fully understood. SM22α has been identified as a marker of vSMCs. This study aims at elucidating the function and regulation of SM22α+ mural cells (SM22-MCs) in tumor stroma. Methods Gene-modified mice with a SM22α-CreERT2 transgene were employed to deplete SM22-MCs or activate/block Notch signaling in these cells. vSMCs from mouse dorsal aorta (vSMCs-DA) were cultured in vitro. RNA-seq was used to compare gene expression profiles. qRT-PCR and western blotting were used to determine gene expression level. Immunofluorescence was used to observe morphological alterations in tumors. Results SM22-MCs are essential for stabilizing tumor vasculature. Notch signaling was downregulated in tumor-derived SM22-MCs and vSMCs-DA treated with cancer cell-derived conditioned medium. Notch activation in SM22-MCs normalized tumor vasculature and repressed tumor growth. On the other hand, Notch disruption aggravated abnormal tumor vasculature and promoted growth and metastasis. Gene expression profiling of vSMCs-DA showed that Notch activation enhances their contractile phenotype and suppresses their secretory phenotype, further attenuating the invasion and proliferation of tumor cells. In contrast, Notch blockade in vSMCs-DA mitigated their contractile phenotype while strengthened the secretory phenotype. Conclusion SM22-MCs facilitate vessel stability in tumors, and they gain a secretory phenotype and promote tumor malignancy in the absence of Notch signaling.
Collapse
|
65
|
Bondareva O, Sheikh BN. Vascular Homeostasis and Inflammation in Health and Disease-Lessons from Single Cell Technologies. Int J Mol Sci 2020; 21:E4688. [PMID: 32630148 PMCID: PMC7369864 DOI: 10.3390/ijms21134688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
The vascular system is critical infrastructure that transports oxygen and nutrients around the body, and dynamically adapts its function to an array of environmental changes. To fulfil the demands of diverse organs, each with unique functions and requirements, the vascular system displays vast regional heterogeneity as well as specialized cell types. Our understanding of the heterogeneity of vascular cells and the molecular mechanisms that regulate their function is beginning to benefit greatly from the rapid development of single cell technologies. Recent studies have started to analyze and map vascular beds in a range of organs in healthy and diseased states at single cell resolution. The current review focuses on recent biological insights on the vascular system garnered from single cell analyses. We cover the themes of vascular heterogeneity, phenotypic plasticity of vascular cells in pathologies such as atherosclerosis and cardiovascular disease, as well as the contribution of defective microvasculature to the development of neurodegenerative disorders such as Alzheimer's disease. Further adaptation of single cell technologies to study the vascular system will be pivotal in uncovering the mechanisms that drive the array of diseases underpinned by vascular dysfunction.
Collapse
Affiliation(s)
- Olga Bondareva
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Bilal N. Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| |
Collapse
|
66
|
Kato T, Sekine Y, Nozaki H, Uemura M, Ando S, Hirokawa S, Onodera O. Excessive Production of Transforming Growth Factor β1 Causes Mural Cell Depletion From Cerebral Small Vessels. Front Aging Neurosci 2020; 12:151. [PMID: 32581764 PMCID: PMC7283554 DOI: 10.3389/fnagi.2020.00151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
It is increasingly becoming apparent that cerebrovascular dysfunction contributes to the pathogenic processes involved in vascular dementia, Alzheimer’s disease, and other neurodegenerative disorders. Under these pathologic conditions, the degeneration of cerebral blood vessels is frequently accompanied by a loss of mural cells from the vascular walls. Vascular mural cells play pivotal roles in cerebrovascular functions, such as regulation of cerebral blood flow and maintenance of the blood-brain barrier (BBB). Therefore, cerebrovascular mural cell impairment is involved in the pathophysiology of vascular-related encephalopathies, and protecting these cells is essential for maintaining brain health. However, our understanding of the molecular mechanism underlying mural cell abnormalities is incomplete. Several reports have indicated that dysregulated transforming growth factor β (TGFβ) signaling is involved in the development of cerebral arteriopathies. These studies have specifically suggested the involvement of TGFβ overproduction. Although cerebrovascular toxicity via vascular fibrosis by extracellular matrix accumulation or amyloid deposition is known to occur with enhanced TGFβ production, whether increased TGFβ results in the degeneration of vascular mural cells in vivo remains unknown. Here, we demonstrated that chronic TGFβ1 overproduction causes a dropout of mural cells and reduces their coverage on cerebral vessels in both smooth muscle cells and pericytes. Mural cell degeneration was also accompanied by vascular luminal dilation. TGFβ1 overproduction in astrocytes significantly increased TGFβ1 content in the cerebrospinal fluid (CSF) and increased TGFβ signaling-regulated gene expression in both pial arteries and brain capillaries. These results indicate that TGFβ is an important effector that mediates mural cell abnormalities under pathological conditions related to cerebral arteriopathies.
Collapse
Affiliation(s)
- Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Science Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yumi Sekine
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Nozaki
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Uemura
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shoichiro Ando
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Sachiko Hirokawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
67
|
Figueiredo AM, Villacampa P, Diéguez-Hurtado R, José Lozano J, Kobialka P, Cortazar AR, Martinez-Romero A, Angulo-Urarte A, Franco CA, Claret M, Aransay AM, Adams RH, Carracedo A, Graupera M. Phosphoinositide 3-Kinase-Regulated Pericyte Maturation Governs Vascular Remodeling. Circulation 2020; 142:688-704. [PMID: 32466671 DOI: 10.1161/circulationaha.119.042354] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pericytes regulate vessel stabilization and function, and their loss is associated with diseases such as diabetic retinopathy or cancer. Despite their physiological importance, pericyte function and molecular regulation during angiogenesis remain poorly understood. METHODS To decipher the transcriptomic programs of pericytes during angiogenesis, we crossed Pdgfrb(BAC)-CreERT2 mice into RiboTagflox/flox mice. Pericyte morphological changes were assessed in mural cell-specific R26-mTmG reporter mice, in which low doses of tamoxifen allowed labeling of single-cell pericytes at high resolution. To study the role of phosphoinositide 3-kinase (PI3K) signaling in pericyte biology during angiogenesis, we used genetic mouse models that allow selective inactivation of PI3Kα and PI3Kβ isoforms and their negative regulator phosphate and tensin homolog deleted on chromosome 10 (PTEN) in mural cells. RESULTS At the onset of angiogenesis, pericytes exhibit molecular traits of cell proliferation and activated PI3K signaling, whereas during vascular remodeling, pericytes upregulate genes involved in mature pericyte cell function, together with a remarkable decrease in PI3K signaling. Immature pericytes showed stellate shape and high proliferation, and mature pericytes were quiescent and elongated. Unexpectedly, we demonstrate that PI3Kβ, but not PI3Kα, regulates pericyte proliferation and maturation during vessel formation. Genetic PI3Kβ inactivation in pericytes triggered early pericyte maturation. Conversely, unleashing PI3K signaling by means of PTEN deletion delayed pericyte maturation. Pericyte maturation was necessary to undergo vessel remodeling during angiogenesis. CONCLUSIONS Our results identify new molecular and morphological traits associated with pericyte maturation and uncover PI3Kβ activity as a checkpoint to ensure appropriate vessel formation. In turn, our results may open new therapeutic opportunities to regulate angiogenesis in pathological processes through the manipulation of pericyte PI3Kβ activity.
Collapse
Affiliation(s)
- Ana M Figueiredo
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Pilar Villacampa
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Rodrigo Diéguez-Hurtado
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Germany (R.D.-H., R.H.A.)
| | - Juan José Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain (J.J.L.)
| | - Piotr Kobialka
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Ana Rosa Cortazar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain (A.R.C., A.M.A., A.C.)
| | - Anabel Martinez-Romero
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Ana Angulo-Urarte
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Claudio A Franco
- CIBERONC (A.R.C., A.M.A., A.C., M.G.) and CIBERehd (A.M.A.), Instituto de Salud Carlos III, Madrid, Spain. Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal (C.A.F.)
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (M.C.)
| | - Ana María Aransay
- CIBERONC (A.R.C., A.M.A., A.C., M.G.) and CIBERehd (A.M.A.), Instituto de Salud Carlos III, Madrid, Spain. Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal (C.A.F.)
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Germany (R.D.-H., R.H.A.)
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain (A.R.C., A.M.A., A.C.)
| | - Mariona Graupera
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| |
Collapse
|
68
|
Benabid A, Peduto L. Mesenchymal perivascular cells in immunity and disease. Curr Opin Immunol 2020; 64:50-55. [PMID: 32387900 PMCID: PMC7597593 DOI: 10.1016/j.coi.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/13/2022]
Abstract
The mesenchymal microenvironment is increasingly recognized as a major player in immunity. Here we focus on mesenchymal cells located within or in proximity to the blood vessels wall, which include pericytes, adventitial fibroblasts and mesenchymal stromal cells. We discuss recent evidence that these cells play a role in tissue homeostasis, immunity and inflammatory pathologies by multiple mechanisms, including vascular modulation, leucocyte migration, activation or survival in the perivascular space and differentiation into specialized 'effector' mesenchymal cells essential for tissue repair and immunity, such as myofibroblasts and lymphoid stromal cells. When dysregulated, these responses contribute to inflammatory and fibrotic diseases.
Collapse
Affiliation(s)
- Adam Benabid
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Inserm U1224, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lucie Peduto
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Inserm U1224, Paris, France.
| |
Collapse
|
69
|
Markou M, Kouroupis D, Badounas F, Katsouras A, Kyrkou A, Fotsis T, Murphy C, Bagli E. Tissue Engineering Using Vascular Organoids From Human Pluripotent Stem Cell Derived Mural Cell Phenotypes. Front Bioeng Biotechnol 2020; 8:278. [PMID: 32363181 PMCID: PMC7182037 DOI: 10.3389/fbioe.2020.00278] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Diffusion is a limiting factor in regenerating large tissues (100–200 μm) due to reduced nutrient supply and waste removal leading to low viability of the regenerating cells as neovascularization of the implant by the host is a slow process. Thus, generating prevascularized tissue engineered constructs, in which endothelial (ECs) and mural (MCs) cells, such as smooth muscle cells (SMCs), and pericytes (PCs), are preassembled into functional in vitro vessels capable of rapidly connecting to the host vasculature could overcome this obstacle. Toward this purpose, using feeder-free and low serum conditions, we developed a simple, efficient and rapid in vitro approach to induce the differentiation of human pluripotent stem cells-hPSCs (human embryonic stem cells and human induced pluripotent stem cells) to defined SMC populations (contractile and synthetic hPSC-SMCs) by extensively characterizing the cellular phenotype (expression of CD44, CD73, CD105, NG2, PDGFRβ, and contractile proteins) and function of hPSC-SMCs. The latter were phenotypically and functionally stable for at least 8 passages, and could stabilize vessel formation and inhibit vessel network regression, when co-cultured with ECs in vitro. Subsequently, using a methylcellulose-based hydrogel system, we generated spheroids consisting of EC/hPSC-SMC (vascular organoids), which were extensively phenotypically characterized. Moreover, the vascular organoids served as focal starting points for the sprouting of capillary-like structures in vitro, whereas their delivery in vivo led to rapid generation of a complex functional vascular network. Finally, we investigated the vascularization potential of these vascular organoids, when embedded in hydrogels composed of defined extracellular components (collagen/fibrinogen/fibronectin) that can be used as scaffolds in tissue engineering applications. In summary, we developed a robust method for the generation of defined SMC phenotypes from hPSCs. Fabrication of vascularized tissue constructs using hPSC-SMC/EC vascular organoids embedded in chemically defined matrices is a significant step forward in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Maria Markou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece.,Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Dimitrios Kouroupis
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Fotios Badounas
- Transgenic Technology Laboratory, Inflammation Group, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Athanasios Katsouras
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Athena Kyrkou
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Theodore Fotsis
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece.,Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Carol Murphy
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Eleni Bagli
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| |
Collapse
|
70
|
Pradhan S, Banda OA, Farino CJ, Sperduto JL, Keller KA, Taitano R, Slater JH. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Adv Healthc Mater 2020; 9:e1901255. [PMID: 32100473 PMCID: PMC8579513 DOI: 10.1002/adhm.201901255] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The vascular system is integral for maintaining organ-specific functions and homeostasis. Dysregulation in vascular architecture and function can lead to various chronic or acute disorders. Investigation of the role of the vascular system in health and disease has been accelerated through the development of tissue-engineered constructs and microphysiological on-chip platforms. These in vitro systems permit studies of biochemical regulation of vascular networks and parenchymal tissue and provide mechanistic insights into the biophysical and hemodynamic forces acting in organ-specific niches. Detailed understanding of these forces and the mechanotransductory pathways involved is necessary to develop preventative and therapeutic strategies targeting the vascular system. This review describes vascular structure and function, the role of hemodynamic forces in maintaining vascular homeostasis, and measurement approaches for cell and tissue level mechanical properties influencing vascular phenomena. State-of-the-art techniques for fabricating in vitro microvascular systems, with varying degrees of biological and engineering complexity, are summarized. Finally, the role of vascular mechanobiology in organ-specific niches and pathophysiological states, and efforts to recapitulate these events using in vitro microphysiological systems, are explored. It is hoped that this review will help readers appreciate the important, but understudied, role of vascular-parenchymal mechanotransduction in health and disease toward developing mechanotherapeutics for treatment strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Omar A. Banda
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Ryan Taitano
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
71
|
Alpha-Smooth Muscle Actin-Positive Perivascular Cells in Diabetic Retina and Choroid. Int J Mol Sci 2020; 21:ijms21062158. [PMID: 32245120 PMCID: PMC7139401 DOI: 10.3390/ijms21062158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
Structural alterations of pericytes in microvessels are important features of diabetic retinopathy. Although capillary pericytes had been known not to have α-smooth muscle actin (αSMA), a recent study revealed that a specific fixation method enabled the visualization of αSMA along retinal capillaries. In this study, we applied snap-fixation in wild type and streptozotocin-induced diabetic mice to evaluate the differences in vascular smooth muscle cells of the retina and the choroid. Mice eyeballs were fixed in ice-cold methanol to prevent the depolymerization of filamentous actin. Snap-fixated retina showed αSMA expression in higher-order branches along the capillaries as well as the arterioles and venules, which were not detected by paraformaldehyde fixation. In contrast, most choriocapillaris, except those close to the arterioles, were not covered with αSMA-positive perivascular mural cells. Large choroidal vessels were covered with more αSMA-positive cells in the snap-fixated eyes. Diabetes induced less coverage of αSMA-positive perivascular mural cells overall, but they reached higher-order branches of the retinal capillaries, which was prominent in the aged mice. More αSMA-positive pericytes were observed in the choroid of diabetic mice, but the αSMA-positive expression reduced with aging. This study suggests the potential role of smooth muscle cells in the pathogenesis of age-related diabetic retinopathy and choroidopathy.
Collapse
|
72
|
Nwadozi E, Rudnicki M, Haas TL. Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications. Front Cell Dev Biol 2020; 8:77. [PMID: 32117997 PMCID: PMC7033550 DOI: 10.3389/fcell.2020.00077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Pericytes are mural vascular cells found predominantly on the abluminal wall of capillaries, where they contribute to the maintenance of capillary structural integrity and vascular permeability. Generally quiescent cells in the adult, pericyte activation and proliferation occur during both physiological and pathological vascular and tissue remodeling. A considerable body of research indicates that pericytes possess attributes of a multipotent adult stem cell, as they are capable of self-renewal as well as commitment and differentiation into multiple lineages. However, pericytes also display phenotypic heterogeneity and recent studies indicate that lineage potential differs between pericyte subpopulations. While numerous microenvironmental cues and cell signaling pathways are known to regulate pericyte functions, the roles that metabolic pathways play in pericyte quiescence, self-renewal or differentiation have been given limited consideration to date. This review will summarize existing data regarding pericyte metabolism and will discuss the coupling of signal pathways to shifts in metabolic pathway preferences that ultimately regulate pericyte quiescence, self-renewal and trans-differentiation. The association between dysregulated metabolic processes and development of pericyte pathologies will be highlighted. Despite ongoing debate regarding pericyte classification and their functional capacity for trans-differentiation in vivo, pericytes are increasingly exploited as a cell therapy tool to promote tissue healing and regeneration. Ultimately, the efficacy of therapeutic approaches hinges on the capacity to effectively control/optimize the fate of the implanted pericytes. Thus, we will identify knowledge gaps that need to be addressed to more effectively harness the opportunity for therapeutic manipulation of pericytes to control pathological outcomes in tissue remodeling.
Collapse
Affiliation(s)
| | | | - Tara L. Haas
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
73
|
Chen J, Zhou S, Kang Z, Wen Q. Locality-constrained group lasso coding for microvessel image classification. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
74
|
Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. ACTA ACUST UNITED AC 2020; 2. [PMID: 34308105 DOI: 10.1088/2516-1091/ab5637] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascularization is among the top challenges that impede the clinical application of engineered tissues. This challenge has spurred tremendous research endeavor, defined as vascular tissue engineering (VTE) in this article, to establish a pre-existing vascular network inside the tissue engineered graft prior to implantation. Ideally, the engineered vasculature can be integrated into the host vasculature via anastomosis to supply nutrient to all cells instantaneously after surgery. Moreover, sufficient vascularization is of great significance in regenerative medicine from many other perspectives. Due to the critical role of vascularization in successful tissue engineering, we aim to provide an up-to-date overview of the fundamentals and VTE strategies in this article, including angiogenic cells, biomaterial/bio-scaffold design and bio-fabrication approaches, along with the reported utility of vascularized tissue complex in regenerative medicine. We will also share our opinion on the future perspective of this field.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Ji Young Choi
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
75
|
Laredo F, Plebanski J, Tedeschi A. Pericytes: Problems and Promises for CNS Repair. Front Cell Neurosci 2019; 13:546. [PMID: 31866833 PMCID: PMC6908836 DOI: 10.3389/fncel.2019.00546] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Microvascular complications are often associated with slow and progressive damage of various organs. Pericytes are multi-functional mural cells of the microcirculation that control blood flow, vascular permeability and homeostasis. Whereas accumulating evidence suggests that these cells are also implicated in a variety of diseases, pericytes represent promising targets that can be manipulated for therapeutic gain. Here, we review the role of pericytes in angiogenesis, blood-brain barrier (BBB) function, neuroinflammation, tissue fibrosis, axon regeneration failure, and neurodegeneration. In addition, we outline strategies altering pericyte behavior to point out problems and promises for axon regeneration and central nervous system (CNS) repair following injury or disease.
Collapse
Affiliation(s)
- Fabio Laredo
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Julia Plebanski
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
76
|
Lendahl U, Nilsson P, Betsholtz C. Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes. EMBO Rep 2019; 20:e48070. [PMID: 31617312 PMCID: PMC6831996 DOI: 10.15252/embr.201948070] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative and cerebrovascular diseases cause considerable human suffering, and therapy options for these two disease categories are limited or non-existing. It is an emerging notion that neurodegenerative and cerebrovascular diseases are linked in several ways, and in this review, we discuss the current status regarding vascular dysregulation in neurodegenerative disease, and conversely, how cerebrovascular diseases are associated with central nervous system (CNS) degeneration and dysfunction. The emerging links between neurodegenerative and cerebrovascular diseases are reviewed with a particular focus on pericytes-important cells that ensheath the endothelium in the microvasculature and which are pivotal for blood-brain barrier function and cerebral blood flow. Finally, we address how novel molecular and cellular insights into pericytes and other vascular cell types may open new avenues for diagnosis and therapy development for these important diseases.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
- Department of Immunology, Genetics and PathologyRudbeck LaboratoryUppsala UniversityUppsalaSweden
- Department of MedicineKarolinska InstitutetHuddingeSweden
| |
Collapse
|
77
|
Szaraz P, Mander P, Gasner N, Librach M, Iqbal F, Librach C. Glucose withdrawal induces Endothelin 1 release with significant angiogenic effect from first trimester (FTM), but not term human umbilical cord perivascular cells (HUCPVC). Angiogenesis 2019; 23:131-144. [PMID: 31576475 DOI: 10.1007/s10456-019-09682-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Perivascular cells (PVC) and their "progeny," mesenchymal stromal cells (MSC), have high therapeutic potential for ischemic diseases. While hypoxia can increase their angiogenic properties, the other aspect of ischemic conditions-glucose shortage-is deleterious for MSC and limits their therapeutic applicability. Regenerative cells in developing vascular tissues, however, can adapt to varying glucose environment and react in a tissue-protective manner. Placental development and fetal insulin production generate different glucose fluxes in early and late extraembryonic tissues. We hypothesized that FTM HUCPVC, which are isolated from a developing vascular tissue with varying glucose availability react to low-glucose conditions in a pro-angiogenic manner in vitro. METHODS Xeno-free (Human Platelet Lysate 2.5%) expanded FTM (n = 3) and term (n = 3) HUCPVC lines were cultured in low (2 mM) and regular (4 mM) glucose conditions. After 72 h, the expression (Next Generation Sequencing) and secretion (Proteome Profiler) of angiogenic factors and the functional angiogenic effect (rat aortic ring assay and Matrigel™ plug) of the conditioned media were quantified and statistically compared between all cultures. RESULTS Low-glucose conditions had a significant post-transcriptional inductive effect on FTM HUCPVC angiogenic factor secretion, resulting in significantly higher VEGFc and Endothelin 1 release in 3 days compared to term counterparts. Conditioned media from low-glucose FTM HUCPVC cultures had a significantly higher endothelial network enhancing effect compared to all other experimental groups both in vitro aortic ring assay and in subcutan Matrigel™ plugs. Endothelin 1 depletion of the low-glucose FTM HUCPVC conditioned media significantly diminished its angiogenic effect CONCLUSIONS: FTM HUCPVC isolated from an early extraembryonic tissue show significant pro-angiogenic paracrine reaction in low-glucose conditions at least in part through the excess release of Endothelin 1. This can be a substantial advantage in cell therapy applications for ischemic injuries.
Collapse
Affiliation(s)
- Peter Szaraz
- Research Department, Create Program Inc., Suite 412, Toronto, ON, M5G 1N8, Canada.
| | - Poonam Mander
- Research Department, Create Program Inc., Suite 412, Toronto, ON, M5G 1N8, Canada
| | - Nadav Gasner
- Research Department, Create Program Inc., Suite 412, Toronto, ON, M5G 1N8, Canada
| | - Max Librach
- Research Department, Create Program Inc., Suite 412, Toronto, ON, M5G 1N8, Canada
| | - Farwah Iqbal
- Department Physiology, University of Toronto, Toronto, ON, Canada
| | - Clifford Librach
- Research Department, Create Program Inc., Suite 412, Toronto, ON, M5G 1N8, Canada.,Department Physiology, University of Toronto, Toronto, ON, Canada.,Department Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
78
|
Potiron V, Clément-Colmou K, Jouglar E, Pietri M, Chiavassa S, Delpon G, Paris F, Supiot S. Tumor vasculature remodeling by radiation therapy increases doxorubicin distribution and efficacy. Cancer Lett 2019; 457:1-9. [PMID: 31078733 DOI: 10.1016/j.canlet.2019.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023]
Abstract
The tumor microenvironment regulates cancer initiation, progression and response to treatment. In particular, the immature tumor vasculature may impede drugs from reaching tumor cells at a lethal concentration. We and others have shown that radiation therapy (RT) induces pericyte recruitment, resembling vascular normalization. Here, we asked whether radiation-induced vascular remodeling translates into improved tissue distribution and efficacy of chemotherapy. First, RT induced vascular remodeling, accompanied by decreased hypoxia and/or increased Hoechst perfusion in prostate PC3 and LNCaP and Lewis lung carcinoma. These results were independent of the RT regimen, respectively 10 × 2 Gy and 2 × 12 Gy, suggesting a common effect. Next, using doxorubicin as a fluorescent reporter, we observed that RT improves intra-tumoral chemotherapy distribution. These effects were not hindered by anti-angiogenic sunitinib. Moreover, sub-optimal doses of doxorubicin had almost no effect alone, but significantly delayed tumor growth after RT. These data demonstrate that RT favors the efficacy of chemotherapy by improving tissue distribution, and could be an alternative chemosensitizing strategy.
Collapse
Affiliation(s)
- Vincent Potiron
- CRCINA, INSERM, Université de Nantes, Université D'Angers, Nantes, France; Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Karen Clément-Colmou
- CRCINA, INSERM, Université de Nantes, Université D'Angers, Nantes, France; Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Emmanuel Jouglar
- CRCINA, INSERM, Université de Nantes, Université D'Angers, Nantes, France; Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Manon Pietri
- CRCINA, INSERM, Université de Nantes, Université D'Angers, Nantes, France; Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Sophie Chiavassa
- CRCINA, INSERM, Université de Nantes, Université D'Angers, Nantes, France; Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Grégory Delpon
- CRCINA, INSERM, Université de Nantes, Université D'Angers, Nantes, France; Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - François Paris
- CRCINA, INSERM, Université de Nantes, Université D'Angers, Nantes, France; Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Stéphane Supiot
- CRCINA, INSERM, Université de Nantes, Université D'Angers, Nantes, France; Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France.
| |
Collapse
|
79
|
Alabi RO, Farber G, Blobel CP. Intriguing Roles for Endothelial ADAM10/Notch Signaling in the Development of Organ-Specific Vascular Beds. Physiol Rev 2019; 98:2025-2061. [PMID: 30067156 DOI: 10.1152/physrev.00029.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vasculature is a remarkably interesting, complex, and interconnected organ. It provides a conduit for oxygen and nutrients, filtration of waste products, and rapid communication between organs. Much remains to be learned about the specialized vascular beds that fulfill these diverse, yet vital functions. This review was prompted by the discovery that Notch signaling in mouse endothelial cells is crucial for the development of specialized vascular beds found in the heart, kidneys, liver, intestines, and bone. We will address the intriguing questions raised by the role of Notch signaling and that of its regulator, the metalloprotease ADAM10, in the development of specialized vascular beds. We will cover fundamentals of ADAM10/Notch signaling, the concept of Notch-dependent cell fate decisions, and how these might govern the development of organ-specific vascular beds through angiogenesis or vasculogenesis. We will also consider common features of the affected vessels, including the presence of fenestra or sinusoids and their occurrence in portal systems with two consecutive capillary beds. We hope to stimulate further discussion and study of the role of ADAM10/Notch signaling in the development of specialized vascular structures, which might help uncover new targets for the repair of vascular beds damaged in conditions like coronary artery disease and glomerulonephritis.
Collapse
Affiliation(s)
- Rolake O Alabi
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Gregory Farber
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Carl P Blobel
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| |
Collapse
|
80
|
Gauthier-Fisher A, Szaraz P, Librach CL. Pericytes in the Umbilical Cord. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:211-233. [DOI: 10.1007/978-3-030-11093-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
81
|
Moyle LA, Tedesco FS, Benedetti S. Pericytes in Muscular Dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:319-344. [PMID: 31147885 DOI: 10.1007/978-3-030-16908-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The muscular dystrophies are an heterogeneous group of inherited myopathies characterised by the progressive wasting of skeletal muscle tissue. Pericytes have been shown to make muscle in vitro and to contribute to skeletal muscle regeneration in several animal models, although recent data has shown this to be controversial. In fact, some pericyte subpopulations have been shown to contribute to fibrosis and adipose deposition in muscle. In this chapter, we explore the identity and the multifaceted role of pericytes in dystrophic muscle, potential therapeutic applications and the current need to overcome the hurdles of characterisation (both to identify pericyte subpopulations and track cell fate), to prevent deleterious differentiation towards myogenic-inhibiting subpopulations, and to improve cell proliferation and engraftment efficacy.
Collapse
Affiliation(s)
- Louise Anne Moyle
- Institute of Biomaterials and Biomedical Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.
- Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Sara Benedetti
- Great Ormond Street Institute of Child Health, University College London, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
82
|
Microvascular Mural Cells in Cancer. Trends Cancer 2018; 4:838-848. [PMID: 30470305 DOI: 10.1016/j.trecan.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
Abstract
Microvascular mural cells (MMCs) are important regulators of tumor vessel properties, such as endothelial cell differentiation and vessel permeability, and are recognized as modulators of tumor angiogenesis and growth. Emerging experimental studies suggest impact of MMCs on additional aspects of tumor biology, exerted by functionally distinct subsets. These have been shown to control metastasis both in primary tumors and in the premetastatic niche. Other studies link marker-defined MMCs to tumor immune surveillance and drug sensitivity. In parallel, recent efforts to profile MMCs in clinical samples are confirming the existence of clinically relevant marker-defined MMC subsets which show marker- and tumor-type- specific associations with prognosis and response to treatment. Collectively, findings encourage to continued analyses of MMC subsets as candidate biomarkers and drug targets.
Collapse
|
83
|
Castro PR, Barbosa AS, Pereira JM, Ranfley H, Felipetto M, Gonçalves CAX, Paiva IR, Berg BB, Barcelos LS. Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6740408. [PMID: 30406137 PMCID: PMC6199857 DOI: 10.1155/2018/6740408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
The microvasculature heterogeneity is a complex subject in vascular biology. The difficulty of building a dynamic and interactive view among the microenvironments, the cellular and molecular heterogeneities, and the basic aspects of the vessel formation processes make the available knowledge largely fragmented. The neovascularisation processes, termed vasculogenesis, angiogenesis, arteriogenesis, and lymphangiogenesis, are important to the formation and proper functioning of organs and tissues both in the embryo and the postnatal period. These processes are intrinsically related to microvascular cells, such as endothelial and mural cells. These cells are able to adjust their activities in response to the metabolic and physiological requirements of the tissues, by displaying a broad plasticity that results in a significant cellular and molecular heterogeneity. In this review, we intend to approach the microvasculature heterogeneity in an integrated view considering the diversity of neovascularisation processes and the cellular and molecular heterogeneity that contribute to microcirculatory homeostasis. For that, we will cover their interactions in the different blood-organ barriers and discuss how they cooperate in an integrated regulatory network that is controlled by specific molecular signatures.
Collapse
Affiliation(s)
- Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Alan Sales Barbosa
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Jousie Michel Pereira
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Hedden Ranfley
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Mariane Felipetto
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Carlos Alberto Xavier Gonçalves
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Isabela Ribeiro Paiva
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Bárbara Betônico Berg
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Luciola Silva Barcelos
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
84
|
Berthiaume AA, Hartmann DA, Majesky MW, Bhat NR, Shih AY. Pericyte Structural Remodeling in Cerebrovascular Health and Homeostasis. Front Aging Neurosci 2018; 10:210. [PMID: 30065645 PMCID: PMC6057109 DOI: 10.3389/fnagi.2018.00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
The biology of brain microvascular pericytes is an active area of research and discovery, as their interaction with the endothelium is critical for multiple aspects of cerebrovascular function. There is growing evidence that pericyte loss or dysfunction is involved in the pathogenesis of Alzheimer’s disease, vascular dementia, ischemic stroke and brain injury. However, strategies to mitigate or compensate for this loss remain limited. In this review, we highlight a novel finding that pericytes in the adult brain are structurally dynamic in vivo, and actively compensate for loss of endothelial coverage by extending their far-reaching processes to maintain contact with regions of exposed endothelium. Structural remodeling of pericytes may present an opportunity to foster pericyte-endothelial communication in the adult brain and should be explored as a potential means to counteract pericyte loss in dementia and cerebrovascular disease. We discuss the pathophysiological consequences of pericyte loss on capillary function, and the biochemical pathways that may control pericyte remodeling. We also offer guidance for observing pericytes in vivo, such that pericyte structural remodeling can be more broadly studied in mouse models of cerebrovascular disease.
Collapse
Affiliation(s)
- Andrée-Anne Berthiaume
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - David A Hartmann
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Mark W Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States.,Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, United States
| | - Narayan R Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Andy Y Shih
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States.,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
85
|
Neeman M. Perspectives: MRI of angiogenesis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:99-105. [PMID: 29705037 PMCID: PMC6542363 DOI: 10.1016/j.jmr.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 05/07/2023]
Abstract
Angiogenesis, the expansion of the vascular bed, is an important component in remodeling of tissues and organs. Such remodeling is essential for coping with substantial and sustained increase in the demands for supply of oxygen and nutrients and the timely removal of waste products. The vasculature, and its effectiveness in systemic delivery to all parts of the body, regulates the distribution of immune cells and the delivery of therapeutics as well as the dissemination of disease. Therefore, the vascular bed is possibly one of the key organs involved in homeostasis, in health and disease. The critical role of the vasculature in health, and the accessibility to non invasive probing by MRI, renders MRI as a modality of choice for monitoring the vasculature and its adaption to challenges.
Collapse
Affiliation(s)
- Michal Neeman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
86
|
Smyth LCD, Rustenhoven J, Scotter EL, Schweder P, Faull RLM, Park TIH, Dragunow M. Markers for human brain pericytes and smooth muscle cells. J Chem Neuroanat 2018; 92:48-60. [PMID: 29885791 DOI: 10.1016/j.jchemneu.2018.06.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/20/2018] [Accepted: 06/06/2018] [Indexed: 01/24/2023]
Abstract
Brain pericytes and vascular smooth muscle cells (vSMCs) are a critical component of the neurovascular unit and are important in regulating cerebral blood flow and blood-brain barrier integrity. Identification of subtypes of mural cells in tissue and in vitro is important to any study of their function, therefore we identified distinct mural cell morphologies in neurologically normal post-mortem human brain. Further, the distribution of mural cell markers platelet-derived growth factor receptor-β (PDGFRβ), α-smooth muscle actin (αSMA), CD13, neural/glial antigen-2 (NG2), CD146 and desmin was examined. We determined that PDGFRβ, NG2, CD13, and CD146 were expressed in capillary-associated pericytes. NG2, and CD13 were also present on vSMCs in large vessels, however abundant CD146 and desmin staining was also detected in vSMCs on large vessels, co-labelling with αSMA. To determine whether cultures recapitulated observations from tissue, primary human brain pericytes derived from neurologically normal autopsies were analysed for the presence of pericyte markers by immunocytochemistry, western blotting and qPCR. The proteins observed in brain pericytes in tissue (PDGFRβ, αSMA, desmin, CD146, CD13, and NG2) were present in vitro, validating a panel of proteins that can be used to label brain pericytes and vSMCs in tissue and in vitro. Finally, we showed that the proteins CD146 and desmin that are expressed on large vessels in situ, are also selective markers of a smooth muscle cell phenotype in vitro.
Collapse
Affiliation(s)
- Leon C D Smyth
- Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand; Centre for Brain Research, Auckland, New Zealand
| | - Justin Rustenhoven
- Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand; Centre for Brain Research, Auckland, New Zealand
| | - Emma L Scotter
- Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand; Centre for Brain Research, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, Auckland, New Zealand; Auckland City Hospital, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Auckland, New Zealand
| | - Thomas I H Park
- Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand; Centre for Brain Research, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand; Centre for Brain Research, Auckland, New Zealand.
| |
Collapse
|