51
|
OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis. Biochem J 2017; 474:3871-3886. [PMID: 29025976 DOI: 10.1042/bcj20170642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022]
Abstract
In the interest of decreasing dependence on fossil fuels, microbial hydrocarbon biosynthesis pathways are being studied for renewable, tailored production of specialty chemicals and biofuels. One candidate is long-chain olefin biosynthesis, a widespread bacterial pathway that produces waxy hydrocarbons. Found in three- and four-gene clusters, oleABCD encodes the enzymes necessary to produce cis-olefins that differ by alkyl chain length, degree of unsaturation, and alkyl chain branching. The first enzyme in the pathway, OleA, catalyzes the Claisen condensation of two fatty acyl-coenzyme A (CoA) molecules to form a β-keto acid. In this report, the mechanistic role of Xanthomonas campestris OleA Glu117 is investigated through mutant enzymes. Crystal structures were determined for each mutant as well as their complex with the inhibitor cerulenin. Complemented by substrate modeling, these structures suggest that Glu117 aids in substrate positioning for productive carbon-carbon bond formation. Analysis of acyl-CoA substrate hydrolysis shows diminished activity in all mutants. When the active site lacks an acidic residue in the 117 position, OleA cannot form condensed product, demonstrating that Glu117 has a critical role upstream of the essential condensation reaction. Profiling of pH dependence shows that the apparent pKa for Glu117 is affected by mutagenesis. Taken together, we propose that Glu117 is the general base needed to prime condensation via deprotonation of the second, non-covalently bound substrate during turnover. This is the first example of a member of the thiolase superfamily of condensing enzymes to contain an active site base originating from the second monomer of the dimer.
Collapse
|
52
|
Blaisse MR, Dong H, Fu B, Chang MCY. Discovery and Engineering of Pathways for Production of α-Branched Organic Acids. J Am Chem Soc 2017; 139:14526-14532. [PMID: 28990776 DOI: 10.1021/jacs.7b07400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell-based synthesis offers many opportunities for preparing small molecules from simple renewable carbon sources by telescoping multiple reactions into a single fermentation step. One challenge in this area is the development of enzymatic carbon-carbon bond forming cycles that enable a modular disconnection of a target structure into cellular building blocks. In this regard, synthetic pathways based on thiolase enzymes to catalyze the initial carbon-carbon bond forming step between acyl coenzyme A (CoA) substrates offer a versatile route for biological synthesis, but the substrate diversity of such pathways is currently limited. In this report, we describe the identification and biochemical characterization of a thiolase-ketoreductase pair involved in production of branched acids in the roundworm, Ascaris suum, that demonstrates selectivity for forming products with an α-methyl branch using a propionyl-CoA extender unit. Engineering synthetic pathways for production of α-methyl acids in Escherichia coli using these enzymes allows the construction of microbial strains that produce either chiral 2-methyl-3-hydroxy acids (1.1 ± 0.2 g L-1) or branched enoic acids (1.12 ± 0.06 g L-1) in the presence of a dehydratase at 44% and 87% yield of fed propionate, respectively. In vitro characterization along with in vivo analysis indicates that the ketoreductase is the key driver for selectivity, forming predominantly α-branched products even when paired with a thiolase that highly prefers unbranched linear products. Our results expand the utility of thiolase-based pathways and provide biosynthetic access to α-branched compounds as precursors for polymers and other chemicals.
Collapse
Affiliation(s)
- Michael R Blaisse
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Hongjun Dong
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Beverly Fu
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Michelle C Y Chang
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States.,Department of Molecular and Cell Biology, University of California, Berkeley , Berkeley, California 94720-1460, United States
| |
Collapse
|
53
|
Lu R, Schaefer CM, Nesbitt NM, Kuper J, Kisker C, Sampson NS. Catabolism of the Cholesterol Side Chain in Mycobacterium tuberculosis Is Controlled by a Redox-Sensitive Thiol Switch. ACS Infect Dis 2017; 3:666-675. [PMID: 28786661 PMCID: PMC5595149 DOI: 10.1021/acsinfecdis.7b00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Mycobacterium
tuberculosis (Mtb), the causative agent
of tuberculosis (TB), is a highly successful human pathogen and has
infected approximately one-third of the world’s population.
Multiple drug resistant (MDR) and extensively drug resistant (XDR)
TB strains and coinfection with HIV have increased the challenges
of successfully treating this disease pandemic. The metabolism of
host cholesterol by Mtb is an important factor for
both its virulence and pathogenesis. In Mtb, the
cholesterol side chain is degraded through multiple cycles of β-oxidation
and FadA5 (Rv3546) catalyzes side chain thiolysis in the first two
cycles. Moreover, FadA5 is important during the chronic stage of infection
in a mouse model of Mtb infection. Here, we report
the redox control of FadA5 catalytic activity that results from reversible
disulfide bond formation between Cys59-Cys91 and Cys93-Cys377. Cys93
is the thiolytic nucleophile, and Cys377 is the general acid catalyst
for cleavage of the β-keto-acyl-CoA substrate. The disulfide
bond formed between the two catalytic residues Cys93 and Cys377 blocks
catalysis. The formation of the disulfide bonds is accompanied by
a large domain swap at the FadA5 dimer interface that serves to bring
Cys93 and Cys377 in close proximity for disulfide bond formation.
The catalytic activity of FadA5 has a midpoint potential of −220
mV, which is close to the Mtb mycothiol potential
in the activated macrophage. The redox profile of FadA5 suggests that
FadA5 is fully active when Mtb resides in the unactivated
macrophage to maximize flux into cholesterol catabolism. Upon activation
of the macrophage, the oxidative shift in the mycothiol potential
will decrease the thiolytic activity by 50%. Thus, the FadA5 midpoint
potential is poised to rapidly restrict cholesterol side chain degradation
in response to oxidative stress from the host macrophage environment.
Collapse
Affiliation(s)
- Rui Lu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Christin M. Schaefer
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Str. 2, Würzburg, D-97080, Germany
| | - Natasha M. Nesbitt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Str. 2, Würzburg, D-97080, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Str. 2, Würzburg, D-97080, Germany
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
54
|
Singh A, Venugopala KN, Khedr MA, Pillay M, Nwaeze KU, Coovadia Y, Shode F, Odhav B. Antimycobacterial, docking and molecular dynamic studies of pentacyclic triterpenes from Buddleja saligna leaves. J Biomol Struct Dyn 2017; 35:2654-2664. [PMID: 28278765 DOI: 10.1080/07391102.2016.1227725] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Buddleja saligna (family Buddlejaceae) is a medicinal plant endemic to South Africa. Two isomeric pentacyclic triterpenes, oleanolic acid and ursolic acid, were isolated from the leaves of B. saligna using silica gel column chromatography. Compounds oleanolic acid and ursolic acid were subjected to derivatization with acetic anhydride in the presence of pyridine to obtain oleanolic acid-3-acetate and ursolic acid-3-acetate, respectively. The structures of these compounds were fully characterized by detailed nuclear magnetic resonance (NMR) investigations, which included 1H and 13C NMR. Molecular docking studies predicted the free binding energy of the four triterpenes inside the steroid binding pocket of Mycobacterium tuberculosis fadA5 thiolase compared to a reported inhibitor. Thus, their ability to inhibit the growth of M. tuberculosis was predicted and was confirmed to possess significant antimycobacterial activity when tested against Mycobacterium smegmatis, M. tuberculosis H37Rv (ATCC 25177), clinical isolates of multi-drug-resistant M. tuberculosis (MDR-TB) and extensively drug-resistant M. tuberculosis (XDR-TB) using the Micro Alamar Blue Assay. Ursolic acid was isolated from this plant for the first time.
Collapse
Affiliation(s)
- Alveera Singh
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
| | - Katharigatta N Venugopala
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
- b Department of Pharmaceutical Sciences , College of Clinical Pharmacy, King Faisal University , Al-Ahsa 31982 , Saudi Arabia
| | - Mohammed A Khedr
- b Department of Pharmaceutical Sciences , College of Clinical Pharmacy, King Faisal University , Al-Ahsa 31982 , Saudi Arabia
- c Faculty of Pharmacy, Department of Pharmaceutical Chemistry , Helwan University , Ein Helwan, Cairo 11795 , Egypt
| | - Mellendran Pillay
- d Department of Microbiology, NHLS , Inkosi Albert Luthuli Hospital , Durban , South Africa
| | - Kenneth U Nwaeze
- e Faculty of Pharmacy, Department of Pharmaceutical Chemistry , University of Lagos , Lagos 100213 , Nigeria
| | - Yacoob Coovadia
- d Department of Microbiology, NHLS , Inkosi Albert Luthuli Hospital , Durban , South Africa
| | - Francis Shode
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
| | - Bharti Odhav
- a Department of Biotechnology and Food Technology , Durban University of Technology , Durban 4001 , South Africa
| |
Collapse
|
55
|
Harijan RK, Kiema TR, Syed SM, Qadir I, Mazet M, Bringaud F, Michels PAM, Wierenga RK. Crystallographic substrate binding studies of Leishmania mexicana SCP2-thiolase (type-2): unique features of oxyanion hole-1. Protein Eng Des Sel 2017; 30:225-233. [PMID: 28062645 DOI: 10.1093/protein/gzw080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022] Open
Abstract
C Structures of the C123A variant of the dimeric Leishmania mexicana SCP2-thiolase (type-2) (Lm-thiolase), complexed with acetyl-CoA and acetoacetyl-CoA, respectively, are reported. The catalytic site of thiolase contains two oxyanion holes, OAH1 and OAH2, which are important for catalysis. The two structures reveal for the first time the hydrogen bond interactions of the CoA-thioester oxygen atom of the substrate with the hydrogen bond donors of OAH1 of a CHH-thiolase. The amino acid sequence fingerprints ( xS, EAF, G P) of three catalytic loops identify the active site geometry of the well-studied CNH-thiolases, whereas SCP2-thiolases (type-1, type-2) are classified as CHH-thiolases, having as corresponding fingerprints xS, DCF and G P. In all thiolases, OAH2 is formed by the main chain NH groups of two catalytic loops. In the well-studied CNH-thiolases, OAH1 is formed by a water (of the Wat-Asn(NEAF) dyad) and NE2 (of the GHP-histidine). In the two described liganded Lm-thiolase structures, it is seen that in this CHH-thiolase, OAH1 is formed by NE2 of His338 (HDCF) and His388 (GHP). Analysis of the OAH1 hydrogen bond networks suggests that the GHP-histidine is doubly protonated and positively charged in these complexes, whereas the HDCF histidine is neutral and singly protonated.
Collapse
Affiliation(s)
- Rajesh K Harijan
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014, Finland.,Present address: Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Tiila-Riikka Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014, Finland
| | - Shahan M Syed
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014, Finland
| | - Imran Qadir
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014, Finland
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France.,Present address: Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), UMR5234, Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France.,Present address: Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), UMR5234, Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The King's Buildings, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014, Finland
| |
Collapse
|
56
|
Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks. Metab Eng 2017; 42:33-42. [PMID: 28550000 DOI: 10.1016/j.ymben.2017.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022]
Abstract
β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical β-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several β-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways.
Collapse
|
57
|
Counihan JL, Duckering M, Dalvie E, Ku WM, Bateman LA, Fisher KJ, Nomura DK. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation. ACS Chem Biol 2017; 12:635-642. [PMID: 28094496 DOI: 10.1021/acschembio.6b01001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.
Collapse
Affiliation(s)
- Jessica L. Counihan
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Megan Duckering
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Esha Dalvie
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Wan-min Ku
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Leslie A. Bateman
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Karl J. Fisher
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
58
|
Kallscheuer N, Vogt M, Marienhagen J. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism. ACS Synth Biol 2017; 6:410-415. [PMID: 27936616 DOI: 10.1021/acssynbio.6b00291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Numerous plant polyphenols have potential applications as pharmaceuticals or nutraceuticals. Stilbenes and flavonoids as most abundant polyphenols are synthesized from phenylpropanoids, which are exclusively derived from aromatic amino acids in nature. Several microorganisms were engineered for the synthesis of biotechnologically interesting plant polyphenols; however, low activity of heterologous ammonia lyases, linking endogenous microbial aromatic amino acid biosynthesis to phenylpropanoid synthesis, turned out to be the limiting step during microbial synthesis. We here developed an alternative strategy for polyphenol production from cheap benzoic acids by reversal of a β-oxidative phenylpropanoid degradation pathway avoiding any ammonia lyase activity. The synthetic pathway running in the non-natural direction is feasible with respect to thermodynamics and involved reaction mechanisms. Instantly, product titers of 5 mg/L resveratrol could be achieved in recombinant Corynebacterium glutamicum strains indicating that phenylpropanoid synthesis from 4-hydroxybenzoic acid can in principle be implemented independently from aromatic amino acids and ammonia lyase activity.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Michael Vogt
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
59
|
Ford B, Bateman LA, Gutierrez-Palominos L, Park R, Nomura DK. Mapping Proteome-wide Targets of Glyphosate in Mice. Cell Chem Biol 2017; 24:133-140. [PMID: 28132892 DOI: 10.1016/j.chembiol.2016.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/14/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022]
Abstract
Glyphosate, the active ingredient in the herbicide Roundup, is one of the most widely used pesticides in agriculture and home garden use. Whether glyphosate causes any mammalian toxicity remains highly controversial. While many studies have associated glyphosate with numerous adverse health effects, the mechanisms underlying glyphosate toxicity in mammals remain poorly understood. Here, we used activity-based protein profiling to map glyphosate targets in mice. We show that glyphosate at high doses can be metabolized in vivo to reactive metabolites such as glyoxylate and react with cysteines across many proteins in mouse liver. We show that glyoxylate inhibits liver fatty acid oxidation enzymes and glyphosate treatment in mice increases the levels of triglycerides and cholesteryl esters, likely resulting from diversion of fatty acids away from oxidation and toward other lipid pathways. Our study highlights the utility of using chemoproteomics to identify novel toxicological mechanisms of environmental chemicals such as glyphosate.
Collapse
Affiliation(s)
- Breanna Ford
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Leslie A Bateman
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Leilani Gutierrez-Palominos
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Robin Park
- Integrated Proteomics Applications, Inc., 12707 High Bluff Drive Suite 200, San Diego, CA 92130, USA
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
60
|
Ikon N, Ryan RO. Barth Syndrome: Connecting Cardiolipin to Cardiomyopathy. Lipids 2017; 52:99-108. [PMID: 28070695 DOI: 10.1007/s11745-016-4229-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
Abstract
The Barth syndrome (BTHS) is caused by an inborn error of metabolism that manifests characteristic phenotypic features including altered mitochondrial membrane phospholipids, lactic acidosis, organic acid-uria, skeletal muscle weakness and cardiomyopathy. The underlying cause of BTHS has been definitively traced to mutations in the tafazzin (TAZ) gene locus on chromosome X. TAZ encodes a phospholipid transacylase that promotes cardiolipin acyl chain remodeling. Absence of tafazzin activity results in cardiolipin molecular species heterogeneity, increased levels of monolysocardiolipin and lower cardiolipin abundance. In skeletal muscle and cardiac tissue mitochondria these alterations in cardiolipin perturb the inner membrane, compromising electron transport chain function and aerobic respiration. Decreased electron flow from fuel metabolism via NADH ubiquinone oxidoreductase activity leads to a buildup of NADH in the matrix space and product inhibition of key TCA cycle enzymes. As TCA cycle activity slows pyruvate generated by glycolysis is diverted to lactic acid. In turn, Cori cycle activity increases to supply muscle with glucose for continued ATP production. Acetyl CoA that is unable to enter the TCA cycle is diverted to organic acid waste products that are excreted in urine. Overall, reduced ATP production efficiency in BTHS is exacerbated under conditions of increased energy demand. Prolonged deficiency in ATP production capacity underlies cell and tissue pathology that ultimately is manifest as dilated cardiomyopathy.
Collapse
Affiliation(s)
- Nikita Ikon
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Robert O Ryan
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.
| |
Collapse
|
61
|
Habich M, Riemer J. Detection of Cysteine Redox States in Mitochondrial Proteins in Intact Mammalian Cells. Methods Mol Biol 2017; 1567:105-138. [PMID: 28276016 DOI: 10.1007/978-1-4939-6824-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Import, folding, and activity regulation of mitochondrial proteins are important for mitochondrial function. Cysteine residues play crucial roles in these processes as their thiol groups can undergo (reversible) oxidation reactions. For example, during import of many intermembrane space (IMS) proteins, cysteine oxidation drives protein folding and translocation over the outer membrane. Mature mitochondrial proteins can undergo changes in the redox state of specific cysteine residues, for example, as part of their enzymatic reaction cycle or as adaptations to changes of the local redox environment which might influence their activity. Here we describe methods to study changes in cysteine residue redox states in intact cells. These approaches allow to monitor oxidation-driven protein import as well as changes of cysteine redox states in mature proteins during oxidative stress or during the reaction cycle of thiol-dependent enzymes like oxidoreductases.
Collapse
Affiliation(s)
- Markus Habich
- Institute for Biochemistry, University of Cologne, Zuelpicher Str 47a, 50674, Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Zuelpicher Str 47a, 50674, Cologne, Germany.
| |
Collapse
|
62
|
Kallscheuer N, Gätgens J, Lübcke M, Pietruszka J, Bott M, Polen T. Improved production of adipate with Escherichia coli by reversal of β-oxidation. Appl Microbiol Biotechnol 2016; 101:2371-2382. [PMID: 27933454 DOI: 10.1007/s00253-016-8033-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/23/2016] [Accepted: 11/26/2016] [Indexed: 11/28/2022]
Abstract
The linear C6 dicarboxylic acid adipic acid is an important bulk chemical in the petrochemical industry as precursor of the polymer nylon-6,6-polyamide. In recent years, efforts were made towards the biotechnological production of adipate from renewable carbon sources using microbial cells. One strategy is to produce adipate via a reversed β-oxidation pathway. Hitherto, the adipate titers were very low due to limiting enzyme activities for this pathway. In most cases, the CoA intermediates are non-natural substrates for the tested enzymes and were therefore barely converted. We here tested heterologous enzymes in Escherichia coli to overcome these limitations and to improve the production of adipate via a reverse β-oxidation pathway. We tested in vitro selected enzymes for the efficient reduction of the enoyl-CoA and in the final reaction for the thioester cleavage. The genes encoding the enzymes which showed in vitro the highest activity were then used to construct an expression plasmid for a synthetic adipate pathway. Expression of paaJ, paaH, paaF, dcaA, and tesB in E. coli BL21(DE3) resulted in the production of up to 36 mg/L of adipate after 30 h of cultivation. Beside the activities of the pathway enzymes, the availability of metabolic precursors may limit the synthesis of adipate, providing another key target for further strain engineering towards high-yield production of adipate with E. coli.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | - Jochem Gätgens
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Marvin Lübcke
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität, Düsseldorf, 52425, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität, Düsseldorf, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
63
|
Fan B, Li YL, Li L, Peng XJ, Bu C, Wu XQ, Borriss R. Malonylome analysis of rhizobacterium Bacillus amyloliquefaciens FZB42 reveals involvement of lysine malonylation in polyketide synthesis and plant-bacteria interactions. J Proteomics 2016; 154:1-12. [PMID: 27939684 DOI: 10.1016/j.jprot.2016.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
Using the combination of affinity enrichment and high-resolution LC-MS/MS analysis, we performed a large-scale lysine malonylation analysis in the model representative of Gram-positive plant growth-promoting rhizobacteria (PGPR), Bacillus amyloliquefaciens FZB42. Altogether, 809 malonyllysine sites in 382 proteins were identified. The bioinformatic analysis revealed that lysine malonylation occurs on the proteins involved in a variety of biological functions including central carbon metabolism, fatty acid biosynthesis and metabolism, NAD(P) binding and translation machinery. A group of proteins known to be implicated in rhizobacterium-plant interaction were also malonylated; especially, the enzymes responsible for antibiotic production including polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) were highly malonylated. Furthermore, our analysis showed malonylation occurred on proteins structure with higher surface accessibility and appeared to be conserved in many bacteria but not in archaea. The results provide us valuable insights into the potential roles of lysine malonylation in governing bacterial metabolism and cellular processes. BIOLOGICAL SIGNIFICANCE Although in mammalian cells some important findings have been discovered that protein malonylation is related to basic metabolism and chronic disease, few studies have been performed on prokaryotic malonylome. In this study, we determined the malonylation profiles of Bacillus amyloliquefaciens FZB42, a model organism of Gram-positive plant growth-promoting rhizobacteria. FZB42 is known for the extensive investigations on its strong ability of producing antimicrobial polyketides and its potent activities of stimulating plant growth. Our analysis shows that malonylation is highly related to the polyketide synthases and the proteins involved bacterial interactions with plants. The results not only provide one of the first malonylomes for exploring the biochemical nature of bacterial proteins, but also shed light on the better understanding of bacterial antibiotic biosynthesis and plant-microbe interaction.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China.
| | - Yu-Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China.
| | - Lei Li
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany.
| | - Xiao-Jun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou 310018, China.
| | - Chen Bu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou 310018, China.
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China.
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Albrecht Daniel Thaer Institut für Agrar- und Gartenbauwissenschaften, Lebenswissenschaftliche Fakultät, Humboldt Universität zu Berlin, 14195 Berlin, Germany.
| |
Collapse
|
64
|
Shimizu Y, Ogata H, Goto S. Type III Polyketide Synthases: Functional Classification and Phylogenomics. Chembiochem 2016; 18:50-65. [DOI: 10.1002/cbic.201600522] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yugo Shimizu
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Hiroyuki Ogata
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Susumu Goto
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
65
|
Werner N, Gómez M, Baeza M, Cifuentes V, Alcaíno J. Functional characterization of thiolase-encoding genes from Xanthophyllomyces dendrorhous and their effects on carotenoid synthesis. BMC Microbiol 2016; 16:278. [PMID: 27871246 PMCID: PMC5117609 DOI: 10.1186/s12866-016-0893-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/11/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The basidiomycetous yeast Xanthophyllomyces dendrorhous has been described as a potential biofactory for terpenoid-derived compounds due to its ability to synthesize astaxanthin. Functional knowledge of the genes involved in terpenoid synthesis would create opportunities to enhance carotenoid production. A thiolase enzyme catalyzes the first step in terpenoid synthesis. RESULTS Two potential thiolase-encoding genes were found in the yeast genome; bioinformatically, one was identified as an acetyl-CoA C-acetyltransferase (ERG10), and the other was identified as a 3-ketoacyl Co-A thiolase (POT1). Heterologous complementation assays in Saccharomyces cerevisiae showed that the ERG10 gene from X. dendrorhous could complement the lack of the endogenous ERG10 gene in S. cerevisiae, thereby allowing cellular growth and sterol synthesis. X. dendrorhous heterozygous mutants for each gene were created, and a homozygous POT1 mutant was also obtained. This mutant exhibited changes in pigment composition and higher ERG10 transcript levels than the wild type strain. CONCLUSIONS The results support the notion that the ERG10 gene in X. dendrorhous is a functional acetyl-CoA C-acetyltransferase essential for the synthesis of mevalonate in yeast. The POT1 gene would encode a functional 3-ketoacyl Co-A thiolase that is non-essential for cell growth, but its mutation indirectly affects pigment production.
Collapse
Affiliation(s)
- Nicole Werner
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Melissa Gómez
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| |
Collapse
|
66
|
Fan J, Lin R, Xia S, Chen D, Elf SE, Liu S, Pan Y, Xu H, Qian Z, Wang M, Shan C, Zhou L, Lei QY, Li Y, Mao H, Lee BH, Sudderth J, DeBerardinis RJ, Zhang G, Owonikoko T, Gaddh M, Arellano ML, Khoury HJ, Khuri FR, Kang S, Doetsch PW, Lonial S, Boggon TJ, Curran WJ, Chen J. Tetrameric Acetyl-CoA Acetyltransferase 1 Is Important for Tumor Growth. Mol Cell 2016; 64:859-874. [PMID: 27867011 DOI: 10.1016/j.molcel.2016.10.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) regulates pyruvate dehydrogenase complex (PDC) by acetylating pyruvate dehydrogenase (PDH) and PDH phosphatase. How ACAT1 is "hijacked" to contribute to the Warburg effect in human cancer remains unclear. We found that active, tetrameric ACAT1 is commonly upregulated in cells stimulated by EGF and in diverse human cancer cells, where ACAT1 tetramers, but not monomers, are phosphorylated and stabilized by enhanced Y407 phosphorylation. Moreover, we identified arecoline hydrobromide (AH) as a covalent ACAT1 inhibitor that binds to and disrupts only ACAT1 tetramers. The resultant AH-bound ACAT1 monomers cannot reform tetramers. Inhibition of tetrameric ACAT1 by abolishing Y407 phosphorylation or AH treatment results in decreased ACAT1 activity, leading to increased PDC flux and oxidative phosphorylation with attenuated cancer cell proliferation and tumor growth. These findings provide a mechanistic understanding of how oncogenic events signal through distinct acetyltransferases to regulate cancer metabolism and suggest ACAT1 as an anti-cancer target.
Collapse
Affiliation(s)
- Jun Fan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Ruiting Lin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dong Chen
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shannon E Elf
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shuangping Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yaozhu Pan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haidong Xu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhiyu Qian
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mei Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changliang Shan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lu Zhou
- Fudan University, Shanghai 201203, China
| | | | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Benjamin H Lee
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jessica Sudderth
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Taofeek Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Manila Gaddh
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Martha L Arellano
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hanna J Khoury
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Walter J Curran
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
67
|
Goblirsch BR, Jensen MR, Mohamed FA, Wackett LP, Wilmot CM. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis. J Biol Chem 2016; 291:26698-26706. [PMID: 27815501 DOI: 10.1074/jbc.m116.760892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/31/2016] [Indexed: 12/29/2022] Open
Abstract
Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety-unusual for a thiolase-are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.
Collapse
Affiliation(s)
- Brandon R Goblirsch
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Matthew R Jensen
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Fatuma A Mohamed
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Lawrence P Wackett
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Carrie M Wilmot
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
68
|
Marfil-Santana MD, O'Connor-Sánchez A, Ramírez-Prado JH, De Los Santos-Briones C, López-Aguiar LK, Rojas-Herrera R, Lago-Lestón A, Prieto-Davó A. A computationally simplistic poly-phasic approach to explore microbial communities from the Yucatan aquifer as a potential sources of novel natural products. J Microbiol 2016; 54:774-781. [PMID: 27796931 DOI: 10.1007/s12275-016-6092-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/27/2016] [Accepted: 08/26/2016] [Indexed: 11/30/2022]
Abstract
The need for new antibiotics has sparked a search for the microbes that might potentially produce them. Current sequencing technologies allow us to explore the biotechnological potential of microbial communities in diverse environments without the need for cultivation, benefitting natural product discovery in diverse ways. A relatively recent method to search for the possible production of novel compounds includes studying the diverse genes belonging to polyketide synthase pathways (PKS), as these complex enzymes are an important source of novel therapeutics. In order to explore the biotechnological potential of the microbial community from the largest underground aquifer in the world located in the Yucatan, we used a polyphasic approach in which a simple, non-computationally intensive method was coupled with direct amplification of environmental DNA to assess the diversity and novelty of PKS type I ketosynthase (KS) domains. Our results suggest that the bioinformatic method proposed can indeed be used to assess the novelty of KS enzymes; nevertheless, this in silico study did not identify some of the KS diversity due to primer bias and stringency criteria outlined by the metagenomics pipeline. Therefore, additionally implementing a method involving the direct cloning of KS domains enhanced our results. Compared to other freshwater environments, the aquifer was characterized by considerably less diversity in relation to known ketosynthase domains; however, the metagenome included a family of KS type I domains phylogenetically related, but not identical, to those found in the curamycin pathway, as well as an outstanding number of thiolases. Over all, this first look into the microbial community found in this large Yucatan aquifer and other fresh water free living microbial communities highlights the potential of these previously overlooked environments as a source of novel natural products.
Collapse
Affiliation(s)
- Miguel David Marfil-Santana
- Center for Scientific Investigation of Yucatan (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, C.P. 97200, Mexico
| | - Aileen O'Connor-Sánchez
- Center for Scientific Investigation of Yucatan (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, C.P. 97200, Mexico
| | - Jorge Humberto Ramírez-Prado
- Center for Scientific Investigation of Yucatan (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, C.P. 97200, Mexico
| | - Cesar De Los Santos-Briones
- Center for Scientific Investigation of Yucatan (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, C.P. 97200, Mexico
| | - Lluvia Korynthia López-Aguiar
- School of Chemistry, National Autonomous University of Mexico (UNAM), Campus Sisal, Puerto de Abrigo s/n Municipio de Hunucmá, Sisal, Yucatan, C.P. 97356, Mexico
| | - Rafael Rojas-Herrera
- School of Chemical Engeneering, Autonomous University of Yucatan (UADY), Periférico Norte Kilometro 33.5, Chuburná de Hidalgo Inn, Mérida, Yucatán, C.P. 97203, Mexico
| | - Asunción Lago-Lestón
- Post Graduate Studies and Research Center of Ensenada (CICESE), Ensenada, Baja California, C.P. 22860, Mexico
| | - Alejandra Prieto-Davó
- School of Chemistry, National Autonomous University of Mexico (UNAM), Campus Sisal, Puerto de Abrigo s/n Municipio de Hunucmá, Sisal, Yucatan, C.P. 97356, Mexico.
| |
Collapse
|
69
|
Ithayaraja M, Janardan N, Wierenga RK, Savithri HS, Murthy MRN. Crystal structure of a thiolase from Escherichia coli at 1.8 Å resolution. Acta Crystallogr F Struct Biol Commun 2016; 72:534-44. [PMID: 27380370 PMCID: PMC4933003 DOI: 10.1107/s2053230x16008451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/25/2016] [Indexed: 11/10/2022] Open
Abstract
Thiolases catalyze the Claisen condensation of two acetyl-CoA molecules to give acetoacetyl-CoA, as well as the reverse degradative reaction. Four genes coding for thiolases or thiolase-like proteins are found in the Escherichia coli genome. In this communication, the successful cloning, purification, crystallization and structure determination at 1.8 Å resolution of a homotetrameric E. coli thiolase are reported. The structure of E. coli thiolase co-crystallized with acetyl-CoA at 1.9 Å resolution is also reported. As observed in other tetrameric thiolases, the present E. coli thiolase is a dimer of two tight dimers and probably functions as a biodegradative enzyme. Comparison of the structure and biochemical properties of the E. coli enzyme with those of other well studied thiolases reveals certain novel features of this enzyme, such as the modification of a lysine in the dimeric interface, the possible oxidation of the catalytic Cys88 in the structure of the enzyme obtained in the presence of CoA and active-site hydration. The tetrameric enzyme also displays an interesting departure from exact 222 symmetry, which is probably related to the deformation of the tetramerization domain that stabilizes the oligomeric structure of the protein. The current study allows the identification of substrate-binding amino-acid residues and water networks at the active site and provides the structural framework required for understanding the biochemical properties as well as the physiological function of this E. coli thiolase.
Collapse
Affiliation(s)
- M. Ithayaraja
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - N. Janardan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Rik K. Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014 Oulu, Finland
| | - H. S. Savithri
- Biochemistry Department, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - M. R. N. Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| |
Collapse
|
70
|
Abstract
Most of the stereocenters of polyketide natural products are established during assembly line biosynthesis. The body of knowledge for how stereocenters are set is now large enough to begin constructing physical models of key reactions. Interactions between stereocenter-forming enzymes and polyketide intermediates are examined here at atomic resolution, drawing from the most current structural and functional information of ketosynthases (KSs), ketoreductases (KRs), dehydratases (DHs), enoylreductases (ERs), and related enzymes. While many details remain to be experimentally determined, our understanding of the chemical and physical mechanisms utilized by the chirality-molding enzymes of modular PKSs is rapidly advancing.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA. and Department of Chemistry, The University of Texas at Austin, 105 E 24th St. Stop A5300, Austin, TX 78712, USA
| |
Collapse
|
71
|
Harijan RK, Mazet M, Kiema TR, Bouyssou G, Alexson SEH, Bergmann U, Moreau P, Michels PAM, Bringaud F, Wierenga RK. The SCP2-thiolase-like protein (SLP) of Trypanosoma brucei is an enzyme involved in lipid metabolism. Proteins 2016; 84:1075-96. [PMID: 27093562 DOI: 10.1002/prot.25054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 11/06/2022]
Abstract
Bioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2-thiolase-like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cβ2-Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T. brucei and causes a 5-fold reduction of de novo sterol biosynthesis from glucose- and acetate-derived acetyl-CoA. Fluorescence analyses of EGFP-tagged TbSLP expressed in the parasite located the TbSLP in the mitochondrion. The crystal structure of TbSLP (refined at 1.75 Å resolution) confirms that TbSLP has the canonical dimeric thiolase fold. In addition, the structures of the TbSLP-acetoacetyl-CoA (1.90 Å) and TbSLP-malonyl-CoA (2.30 Å) complexes reveal that the two oxyanion holes of the thiolase active site are preserved. TbSLP binds malonyl-CoA tightly (Kd 90 µM), acetoacetyl-CoA moderately (Kd 0.9 mM) and acetyl-CoA and CoA very weakly. TbSLP possesses low malonyl-CoA decarboxylase activity. Altogether, the data show that TbSLP is a mitochondrial enzyme involved in lipid metabolism. Proteins 2016; 84:1075-1096. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajesh K Harijan
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland.,Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Muriel Mazet
- Centre De Résonance Magnétique Des Systèmes Biologiques (RMSB), UMR5536, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France.,Laboratoire De Microbiologie Fondamentale Et Pathogénicité (MFP), UMR5234, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Tiila R Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Guillaume Bouyssou
- Laboratoire De Biogenèse Membranaire, UMR-5200, Université De Bordeaux, CNRS, Bâtiment A3 - 1er Étage, INRA Bordeaux Aquitaine BP81, 71 Avenue Edouard Bourlaux, Villenave D'Ornon Cedex, 33883, France
| | - Stefan E H Alexson
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Stockholm, SE 141 86, Sweden
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Patrick Moreau
- Laboratoire De Biogenèse Membranaire, UMR-5200, Université De Bordeaux, CNRS, Bâtiment A3 - 1er Étage, INRA Bordeaux Aquitaine BP81, 71 Avenue Edouard Bourlaux, Villenave D'Ornon Cedex, 33883, France
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, the King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| | - Frédéric Bringaud
- Centre De Résonance Magnétique Des Systèmes Biologiques (RMSB), UMR5536, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France.,Laboratoire De Microbiologie Fondamentale Et Pathogénicité (MFP), UMR5234, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| |
Collapse
|
72
|
Fogle EJ, Marlier JF, Stillman A, Gao X, Rao Y, Robins LI. An investigation into the butyrylcholinesterase-catalyzed hydrolysis of formylthiocholine using heavy atom kinetic isotope effects. Bioorg Chem 2016; 65:57-60. [DOI: 10.1016/j.bioorg.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/26/2016] [Accepted: 01/31/2016] [Indexed: 11/16/2022]
|
73
|
Holert J, Yücel O, Jagmann N, Prestel A, Möller HM, Philipp B. Identification of bypass reactions leading to the formation of one central steroid degradation intermediate in metabolism of different bile salts inPseudomonassp. strain Chol1. Environ Microbiol 2016; 18:3373-3389. [DOI: 10.1111/1462-2920.13192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Johannes Holert
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | - Onur Yücel
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | - Nina Jagmann
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | | | | | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| |
Collapse
|
74
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
75
|
Fage CD, Meinke JL, Keatinge-Clay AT. Coenzyme A-free activity, crystal structure, and rational engineering of a promiscuous β-ketoacyl thiolase from Ralstonia eutropha. ACTA ACUST UNITED AC 2015; 121:113-121. [PMID: 26494979 DOI: 10.1016/j.molcatb.2015.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Thiolases catalyze the formation of carbon-carbon bonds in diverse biosynthetic pathways. The promiscuous β-ketoacyl thiolase B of Ralstonia eutropha (ReBktB) has been utilized in the in vivo conversion of Coenzyme A (CoA)-linked precursors such as acetyl-CoA and glycolyl-CoA into β-hydroxy acids, including the pharmaceutically-important 3,4-dihydroxybutyric acid. Such thiolases could serve as powerful carbon-carbon bond-forming biocatalysts in vitro if handles less costly than CoA were employable. Here, thiolase activity is demonstrated toward substrates linked to the readily-available CoA mimic, N-acetylcysteamine (NAC). ReBktB was observed to catalyze the retro-Claisen condensation of several β-ketoacyl-S-NAC substrates, with a preference for 3-oxopentanoyl-S-NAC over 3-oxobutanoyl-, 3-oxohexanoyl-, and 3-oxoheptanoyl-S-NAC. A 2.0 Å-resolution crystal structure, in which the asymmetric unit consists of four ReBktB tetramers, provides insight into acyl group specificity and how it may be engineered. By replacing an active site methionine with an alanine, a mutant possessing significant activity towards α-methyl substituted, NAC-linked substrates was engineered. The ability of ReBktB and its engineered mutants to utilize NAC-linked substrates will facilitate the in vitro biocatalytic synthesis of diketide chiral building blocks from feedstock molecules such as acetate and propionate.
Collapse
Affiliation(s)
- Christopher D Fage
- Department of Molecular Biosciences, The University of Texas, Austin, TX 78712, USA
| | - Jessica L Meinke
- Department of Molecular Biosciences, The University of Texas, Austin, TX 78712, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas, Austin, TX 78712, USA. ; Department of Chemistry, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
76
|
Biosynthesis and function of bacterial dialkylresorcinol compounds. Appl Microbiol Biotechnol 2015; 99:8323-8. [DOI: 10.1007/s00253-015-6905-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
77
|
Kresovic D, Schempp F, Cheikh-Ali Z, Bode HB. A novel and widespread class of ketosynthase is responsible for the head-to-head condensation of two acyl moieties in bacterial pyrone biosynthesis. Beilstein J Org Chem 2015; 11:1412-7. [PMID: 26425196 PMCID: PMC4578411 DOI: 10.3762/bjoc.11.152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/22/2015] [Indexed: 01/22/2023] Open
Abstract
The biosynthesis of photopyrones, novel quorum sensing signals in Photorhabdus, has been studied by heterologous expression of the photopyrone synthase PpyS catalyzing the head-to-head condensation of two acyl moieties. The biochemical mechanism of pyrone formation has been investigated by amino acid exchange and bioinformatic analysis. Additionally, the evolutionary origin of PpyS has been studied by phylogenetic analyses also revealing homologous enzymes in Pseudomonas sp. GM30 responsible for the biosynthesis of pseudopyronines including a novel derivative. Moreover this novel class of ketosynthases is only distantly related to other pyrone-forming enzymes identified in the biosynthesis of the potent antibiotics myxopyronin and corallopyronin.
Collapse
Affiliation(s)
- Darko Kresovic
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Florence Schempp
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Zakaria Cheikh-Ali
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany ; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
78
|
Zocher G, Vilstrup J, Heine D, Hallab A, Goralski E, Hertweck C, Stahl M, Schäberle TF, Stehle T. Structural basis of head to head polyketide fusion by CorB. Chem Sci 2015; 6:6525-6536. [PMID: 28757960 PMCID: PMC5506619 DOI: 10.1039/c5sc02488a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023] Open
Abstract
Corallopyronin A is a polyketide derived from the myxobacterium Corallococcus coralloides with potent antibiotic features.
Corallopyronin A is a polyketide derived from the myxobacterium Corallococcus coralloides with potent antibiotic features. The gene cluster responsible for the biosynthesis of corallopyronin A has been described recently, and it was proposed that CorB acts as a ketosynthase to interconnect two polyketide chains in a rare head-to-head condensation reaction. We determined the structure of CorB, the interconnecting polyketide synthase, to high resolution and found that CorB displays a thiolase fold. Site-directed mutagenesis showed that the catalytic triad consisting of a cysteine, a histidine and an asparagine is crucial for catalysis, and that this triad shares similarities with the triad found in HMG-CoA synthases. We synthesized a substrate mimic to derivatize purified CorB and confirmed substrate attachment by ESI-MS. Structural analysis of the complex yielded an electron density-based model for the polyketide chain and showed that the unusually wide, T-shaped active site is able to accommodate two polyketides simultaneously. Our structural analysis provides a platform for understanding the unusual head-to-head polyketide-interconnecting reaction catalyzed by CorB.
Collapse
Affiliation(s)
- Georg Zocher
- Interfaculty Institute of Biochemistry , University Tübingen , Hoppe-Seyler-Str. 4 , 72076 Tübingen , Germany .
| | - Joachim Vilstrup
- Department of Molecular Biology and Genetics , Aarhus University , Gustav Wieds Vej 10C , DK 8000 Aarhus C , Denmark
| | - Daniel Heine
- Leibniz Institute for Natural Product Research and Infection Biology (HKI) , 07745 Jena , Germany
| | - Asis Hallab
- Max Planck Institute for Plant Breeding Research , Carl-von-Linné-Weg 10 , 50829 Köln , Germany
| | - Emilie Goralski
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany .
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology (HKI) , 07745 Jena , Germany.,Chair for Natural Product Chemistry , Friedrich Schiller University , 07743 Jena , Germany
| | - Mark Stahl
- Center for Plant Molecular Biology , University Tübingen , Auf der Morgenstelle 32 , 72076 Tübingen , Germany
| | - Till F Schäberle
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany .
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry , University Tübingen , Hoppe-Seyler-Str. 4 , 72076 Tübingen , Germany . .,Department of Pediatrics , Vanderbilt University School of Medicine , Nashville , TN 37232 , USA
| |
Collapse
|
79
|
Pfleger BF, Gossing M, Nielsen J. Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 2015; 29:1-11. [PMID: 25662836 DOI: 10.1016/j.ymben.2015.01.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
Microbial synthesis of oleochemicals has advanced significantly in the last decade. Microbes have been engineered to convert renewable substrates to a wide range of molecules that are ordinarily made from plant oils. This approach is attractive because it can reduce a motivation for converting tropical rainforest into farmland while simultaneously enabling access to molecules that are currently expensive to produce from oil crops. In the last decade, enzymes responsible for producing oleochemicals in nature have been identified, strategies to circumvent native regulation have been developed, and high yielding strains have been designed, built, and successfully demonstrated. This review will describe the metabolic pathways that lead to the diverse molecular features found in natural oleochemicals, highlight successful metabolic engineering strategies, and comment on areas where future work could further advance the field.
Collapse
Affiliation(s)
- Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States.
| | - Michael Gossing
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
80
|
Schaefer CM, Lu R, Nesbitt NM, Schiebel J, Sampson NS, Kisker C. FadA5 a thiolase from Mycobacterium tuberculosis: a steroid-binding pocket reveals the potential for drug development against tuberculosis. Structure 2014; 23:21-33. [PMID: 25482540 DOI: 10.1016/j.str.2014.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022]
Abstract
With the exception of HIV, tuberculosis (TB) is the leading cause of mortality among infectious diseases. The urgent need to develop new antitubercular drugs is apparent due to the increasing number of drug-resistant Mycobacterium tuberculosis (Mtb) strains. Proteins involved in cholesterol import and metabolism have recently been discovered as potent targets against TB. FadA5, a thiolase from Mtb, is catalyzing the last step of the β-oxidation reaction of the cholesterol side-chain degradation under release of critical metabolites and was shown to be of importance during the chronic stage of TB infections. To gain structural and mechanistic insight on FadA5, we characterized the enzyme in different stages of the cleavage reaction and with a steroid bound to the binding pocket. Structural comparisons to human thiolases revealed that it should be possible to target FadA5 specifically, and the steroid-bound structure provides a solid basis for the development of inhibitors against FadA5.
Collapse
Affiliation(s)
- Christin M Schaefer
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Rui Lu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Natasha M Nesbitt
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Johannes Schiebel
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| |
Collapse
|
81
|
Kiema TR, Harijan RK, Strozyk M, Fukao T, Alexson SEH, Wierenga RK. The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): insight into the reaction mechanism of its thiolase and thioesterase activities. ACTA ACUST UNITED AC 2014; 70:3212-25. [PMID: 25478839 DOI: 10.1107/s1399004714023827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022]
Abstract
Crystal structures of human mitochondrial 3-ketoacyl-CoA thiolase (hT1) in the apo form and in complex with CoA have been determined at 2.0 Å resolution. The structures confirm the tetrameric quaternary structure of this degradative thiolase. The active site is surprisingly similar to the active site of the Zoogloea ramigera biosynthetic tetrameric thiolase (PDB entries 1dm3 and 1m1o) and different from the active site of the peroxisomal dimeric degradative thiolase (PDB entries 1afw and 2iik). A cavity analysis suggests a mode of binding for the fatty-acyl tail in a tunnel lined by the Nβ2-Nα2 loop of the adjacent subunit and the Lα1 helix of the loop domain. Soaking of the apo hT1 crystals with octanoyl-CoA resulted in a crystal structure in complex with CoA owing to the intrinsic acyl-CoA thioesterase activity of hT1. Solution studies confirm that hT1 has low acyl-CoA thioesterase activity for fatty acyl-CoA substrates. The fastest rate is observed for the hydrolysis of butyryl-CoA. It is also shown that T1 has significant biosynthetic thiolase activity, which is predicted to be of physiological importance.
Collapse
Affiliation(s)
- Tiila Riikka Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| | - Rajesh K Harijan
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| | - Malgorzata Strozyk
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Stefan E H Alexson
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| |
Collapse
|
82
|
Bukhari HST, Jakob RP, Maier T. Evolutionary origins of the multienzyme architecture of giant fungal fatty acid synthase. Structure 2014; 22:1775-1785. [PMID: 25456814 DOI: 10.1016/j.str.2014.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 12/23/2022]
Abstract
Fungal fatty acid synthase (fFAS) is a key paradigm for the evolution of complex multienzymes. Its 48 functional domains are embedded in a matrix of scaffolding elements, which comprises almost 50% of the total sequence and determines the emergent multienzymes properties of fFAS. Catalytic domains of fFAS are derived from monofunctional bacterial enzymes, but the evolutionary origin of the scaffolding elements remains enigmatic. Here, we identify two bacterial protein families of noncanonical fatty acid biosynthesis starter enzymes and trans-acting polyketide enoyl reductases (ERs) as potential ancestors of scaffolding regions in fFAS. The architectures of both protein families are revealed by representative crystal structures of the starter enzyme FabY and DfnA-ER. In both families, a striking structural conservation of insertions to scaffolding elements in fFAS is observed, despite marginal sequence identity. The combined phylogenetic and structural data provide insights into the evolutionary origins of the complex multienzyme architecture of fFAS.
Collapse
Affiliation(s)
- Habib S T Bukhari
- Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
83
|
Anbazhagan P, Harijan RK, Kiema TR, Janardan N, Murthy M, Michels PA, Juffer AH, Wierenga RK. Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis. Tuberculosis (Edinb) 2014; 94:405-12. [DOI: 10.1016/j.tube.2014.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
84
|
Drissi F, Merhej V, Angelakis E, El Kaoutari A, Carrière F, Henrissat B, Raoult D. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutr Diabetes 2014; 4:e109. [PMID: 24567124 PMCID: PMC3940830 DOI: 10.1038/nutd.2014.6] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/18/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND: Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. METHODS: We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. CONCLUSIONS: The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.
Collapse
Affiliation(s)
- F Drissi
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - V Merhej
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - E Angelakis
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - A El Kaoutari
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - F Carrière
- CNRS, Aix-Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse, UMR 7282, 31 chemin Joseph Aiguier, Marseille, France
| | - B Henrissat
- 1] Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France [2] Centre National de la Recherche Scientifique, CNRS UMR 7257, Marseille, France
| | - D Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| |
Collapse
|
85
|
Davison J, Dorival J, Rabeharindranto H, Mazon H, Chagot B, Gruez A, Weissman KJ. Insights into the function of trans-acyl transferase polyketide synthases from the SAXS structure of a complete module. Chem Sci 2014. [DOI: 10.1039/c3sc53511h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Combined analysis by SAXS, NMR and homology modeling reveals the structure of an apo module from a trans-acyltransferase polyketide synthase.
Collapse
Affiliation(s)
- Jack Davison
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Jonathan Dorival
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Hery Rabeharindranto
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Hortense Mazon
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Benjamin Chagot
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Arnaud Gruez
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Kira J. Weissman
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| |
Collapse
|
86
|
Robins LI, Meisenheimer KM, Fogle EJ, Chaplan CA, Redman RL, Vacca JT, Tellier MR, Collins BR, Duong DH, Schulz K, Marlier JF. A Kinetic Isotope Effect and Isotope Exchange Study of the Nonenzymatic and the Equine Serum Butyrylcholinesterase-Catalyzed Thioester Hydrolysis. J Org Chem 2013; 78:12029-39. [DOI: 10.1021/jo402063k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lori I. Robins
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Kristen M. Meisenheimer
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Emily J. Fogle
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Cory A. Chaplan
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Richard L. Redman
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Joseph T. Vacca
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Michelle R. Tellier
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Brittney R. Collins
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Dorothea H. Duong
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Kathrin Schulz
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| | - John F. Marlier
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407
| |
Collapse
|
87
|
Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop. Biochem J 2013; 455:119-30. [PMID: 23909465 DOI: 10.1042/bj20130669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.
Collapse
|
88
|
Steinbach A, Maurer CK, Weidel E, Henn C, Brengel C, Hartmann RW, Negri M. Molecular basis of HHQ biosynthesis: molecular dynamics simulations, enzyme kinetic and surface plasmon resonance studies. BMC BIOPHYSICS 2013; 6:10. [PMID: 23916145 PMCID: PMC3734052 DOI: 10.1186/2046-1682-6-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 07/25/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND PQS (PseudomonasQuinolone Signal) and its precursor HHQ are signal molecules of the P. aeruginosa quorum sensing system. They explicate their role in mammalian pathogenicity by binding to the receptor PqsR that induces virulence factor production and biofilm formation. The enzyme PqsD catalyses the biosynthesis of HHQ. RESULTS Enzyme kinetic analysis and surface plasmon resonance (SPR) biosensor experiments were used to determine mechanism and substrate order of the biosynthesis. Comparative analysis led to the identification of domains involved in functionality of PqsD. A kinetic cycle was set up and molecular dynamics (MD) simulations were used to study the molecular bases of the kinetics of PqsD. Trajectory analysis, pocket volume measurements, binding energy estimations and decompositions ensured insights into the binding mode of the substrates anthraniloyl-CoA and β-ketodecanoic acid. CONCLUSIONS Enzyme kinetics and SPR experiments hint at a ping-pong mechanism for PqsD with ACoA as first substrate. Trajectory analysis of different PqsD complexes evidenced ligand-dependent induced-fit motions affecting the modified ACoA funnel access to the exposure of a secondary channel. A tunnel-network is formed in which Ser317 plays an important role by binding to both substrates. Mutagenesis experiments resulting in the inactive S317F mutant confirmed the importance of this residue. Two binding modes for β-ketodecanoic acid were identified with distinct catalytic mechanism preferences.
Collapse
Affiliation(s)
- Anke Steinbach
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany
| | - Christine K Maurer
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany
| | | | - Claudia Henn
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany.,Current address: MIP Pharma GmbH, Kirkelerstr. 41, 66440,Blieskastel-Niederwürzbach, Germany
| | - Christian Brengel
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany.,Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany
| |
Collapse
|
89
|
The essential function of genes for a hydratase and an aldehyde dehydrogenase for growth of Pseudomonas sp. strain Chol1 with the steroid compound cholate indicates an aldolytic reaction step for deacetylation of the side chain. J Bacteriol 2013; 195:3371-80. [PMID: 23708132 DOI: 10.1128/jb.00410-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the bacterial degradation of steroid compounds, the enzymes initiating the breakdown of the steroid rings are well known, while the reactions for degrading steroid side chains attached to C-17 are largely unknown. A recent in vitro analysis with Pseudomonas sp. strain Chol1 has shown that the degradation of the C5 acyl side chain of the C24 steroid compound cholate involves the C22 intermediate 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20S-carbaldehyde (DHOPDCA) with a terminal aldehyde group. In the present study, candidate genes with plausible functions in the formation and degradation of this aldehyde were identified. All deletion mutants were defective in growth with cholate but could transform it into dead-end metabolites. A mutant with a deletion of the shy gene, encoding a putative enoyl coenzyme A (CoA) hydratase, accumulated the C24 steroid (22E)-7α,12α-dihydroxy-3-oxochola-1,4,22-triene-24-oate (DHOCTO). Deletion of the sal gene, formerly annotated as the steroid ketothiolase gene skt, resulted in the accumulation of 7α,12α,22-trihydroxy-3-oxochola-1,4-diene-24-oate (THOCDO). In cell extracts of strain Chol1, THOCDO was converted into DHOPDCA in a coenzyme A- and ATP-dependent reaction. A sad deletion mutant accumulated DHOPDCA, and expression in Escherichia coli revealed that sad encodes an aldehyde dehydrogenase for oxidizing DHOPDCA to the corresponding acid 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) with NAD(+) as the electron acceptor. These results clearly show that the degradation of the acyl side chain of cholate proceeds via an aldolytic cleavage of an acetyl residue; they exclude a thiolytic cleavage for this reaction step. Based on these results and on sequence alignments with predicted aldolases from other bacteria, we conclude that the enzyme encoded by sal catalyzes this aldolytic cleavage.
Collapse
|
90
|
Venkatesan R, Wierenga RK. Structure of mycobacterial β-oxidation trifunctional enzyme reveals its altered assembly and putative substrate channeling pathway. ACS Chem Biol 2013; 8:1063-73. [PMID: 23496842 DOI: 10.1021/cb400007k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The incidence of tuberculosis is increasing due to the appearance of new drug-resistant variants. A thorough understanding of the disease organism is essential in order to create more effective drugs. In an attempt to understand better the poorly studied lipid metabolism of Mycobacterium tuberculosis (Mtb), we identified and characterized its fatty acid β-oxidation complex (trifunctional enzyme (TFE)). TFE is an α(2)β(2) complex consisting of two types of polypeptides catalyzing three of the four reactions of the β-oxidation of fatty acids. The kinetic constants (k(cat) and K(m)) show that the complexed α chain is more active than the individual α chain. Crystal structures of Mtb TFE (mtTFE) reveal that the quaternary assembly is strikingly different from the already known Pseudomonas fragi TFE (pfTFE) assembly due to the presence of a helical insertion (LA5) in the mtTFE-β subunit. This helical insertion prevents the pfTFE mode of assembly, as it would clash with helix H9A of the TFE-α chain. The mtTFE assembly appears to be more rigid and results in a different substrate channeling path between the α and the β subunits. Structural comparisons suggest that the mtTFE active sites can accommodate bulkier fatty acyl chains than in pfTFE. Although another thiolase (FadA2), more closely related to human TFE-β/thiolase, is present in the Mtb genome, it does not form a complex with mtTFE-α. Extensive phylogenetic analyses show that there are at least four TFE subfamilies. Our studies highlight the molecular properties of mtTFE, significantly extending the structural knowledge on this type of very interesting multifunctional enzymes.
Collapse
Affiliation(s)
- Rajaram Venkatesan
- Department of Biochemistry and Biocenter
Oulu, University of Oulu, Oulu 90014, Finland
| | - Rik K. Wierenga
- Department of Biochemistry and Biocenter
Oulu, University of Oulu, Oulu 90014, Finland
| |
Collapse
|
91
|
|
92
|
Sun S, Kang XP, Tian YS, Zheng SW, Hao RJ, Liu QL, Zhang JC, Xing GM. Cloning and Bioinformatic Analysis of a Novel Thiolase II Gene (BPLTHI2)from Betula Platyphylla. BIOTECHNOL BIOTEC EQ 2013. [DOI: 10.5504/bbeq.2013.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
93
|
Mann MS, Lütke-Eversloh T. Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum. Biotechnol Bioeng 2012; 110:887-97. [PMID: 23096577 DOI: 10.1002/bit.24758] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/01/2012] [Accepted: 10/12/2012] [Indexed: 12/20/2022]
Abstract
Biosynthetic thiolases catalyze the condensation of two molecules acetyl-CoA to acetoacetyl-CoA and represent key enzymes for carbon-carbon bond forming metabolic pathways. An important biotechnological example of such a pathway is the clostridial n-butanol production, comprising various natural constraints that limit titer, yield, and productivity. In this study, the thiolase of Clostridium acetobutylicum, the model organism for solventogenic clostridia, was specifically engineered for reduced sensitivity towards its physiological inhibitor coenzyme A (CoA-SH). A high-throughput screening assay in 96-well microtiter plates was developed employing Escherichia coli as host cells for expression of a mutant thiolase gene library. Screening of this library resulted in the identification of a thiolase derivative with significantly increased activity in the presence of free CoA-SH. This optimized thiolase comprised three amino acid substitutions (R133G, H156N, G222V) and its gene was expressed in C. acetobutylicum ATCC 824 to assess the effect of reduced CoA-SH sensitivity on solvent production. In addition to a clearly delayed ethanol and acetone formation, the ethanol and butanol titers were increased by 46% and 18%, respectively, while the final acetone concentrations were similar to the vector control strain. These results demonstrate that thiolase engineering constitutes a suitable methodology applicable to improve clostridial butanol production, but other biosynthetic pathways involving thiolase-mediated carbon flux limitations might also be subjected to this new metabolic engineering approach.
Collapse
Affiliation(s)
- Miriam S Mann
- Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Rostock, Germany
| | | |
Collapse
|
94
|
Wilbrink MH, van der Geize R, Dijkhuizen L. Molecular characterization of ltp3 and ltp4, essential for C24-branched chain sterol-side-chain degradation in Rhodococcus rhodochrous DSM 43269. MICROBIOLOGY-SGM 2012; 158:3054-3062. [PMID: 23059973 DOI: 10.1099/mic.0.059501-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A previously identified sterol catabolic gene cluster is widely dispersed among actinobacteria, enabling them to degrade and grow on naturally occurring sterols. We investigated the physiological roles of various genes by targeted inactivation in mutant RG32 of Rhodococcus rhodochrous, which selectively degrades sterol side-chains. The ltp3 and ltp4 deletion mutants were each completely blocked in side-chain degradation of β-sitosterol and campesterol, but not of cholesterol. These results indicated a role for ltp3 and ltp4 in the removal of C24 branches specifically. Bioinformatic analysis of the encoded Ltp3 and Ltp4 proteins revealed relatively high similarity to thiolase enzymes, typically involved in β-oxidation, but the catalytic residues characteristic for thiolase enzymes are not conserved in their amino acid sequences. Removal of the C24-branched side-chain carbons of β-sitosterol was previously shown to proceed via aldolytic cleavage rather than by β-oxidation. Our results therefore suggest that ltp3 and ltp4 probably encode aldol-lyases rather than thiolases. This is the first report, to our knowledge, on the molecular characterization of genes with specific and essential roles in carbon-carbon bond cleavage of C24-branched chain sterols in Rhodococcus strains, most likely acting as aldol-lyases. The results are a clear contribution to our understanding of sterol degradation in actinobacteria.
Collapse
Affiliation(s)
- Maarten Hotse Wilbrink
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Robert van der Geize
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
95
|
Inhibitors of fatty acid synthesis in prokaryotes and eukaryotes as anti-infective, anticancer and anti-obesity drugs. Future Med Chem 2012; 4:1113-51. [PMID: 22709254 DOI: 10.4155/fmc.12.62] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a large range of diseases, such diabetes and cancer, which are connected to abnormal fatty acid metabolism in human cells. Therefore, inhibitors of human fatty acid synthase have great potential to manage or treat these diseases. In prokaryotes, fatty acid synthesis is important for signaling, as well as providing starting materials for the synthesis of phospholipids, which are required for the formation of the cell membrane. Recently, there has been renewed interest in the development of new molecules that target bacterial fatty acid synthases for the treatment of bacterial diseases. In this review, we look at the differences and similarities between fatty acid synthesis in humans and bacteria and highlight various small molecules that have been shown to inhibit either the mammalian or bacterial fatty acid synthase or both.
Collapse
|
96
|
Janardan N, Harijan RK, Wierenga RK, Murthy MRN. Crystal structure of a monomeric thiolase-like protein type 1 (TLP1) from Mycobacterium smegmatis. PLoS One 2012; 7:e41894. [PMID: 22844533 PMCID: PMC3406046 DOI: 10.1371/journal.pone.0041894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/29/2012] [Indexed: 11/29/2022] Open
Abstract
An analysis of the Mycobacterium smegmatis genome suggests that it codes for several thiolases and thiolase-like proteins. Thiolases are an important family of enzymes that are involved in fatty acid metabolism. They occur as either dimers or tetramers. Thiolases catalyze the Claisen condensation of two acetyl-Coenzyme A molecules in the synthetic direction and the thiolytic cleavage of 3-ketoacyl-Coenzyme A molecules in the degradative direction. Some of the M. smegmatis genes have been annotated as thiolases of the poorly characterized SCP2-thiolase subfamily. The mammalian SCP2-thiolase consists of an N-terminal thiolase domain followed by an additional C-terminal domain called sterol carrier protein-2 or SCP2. The M. smegmatis protein selected in the present study, referred to here as the thiolase-like protein type 1 (MsTLP1), has been biochemically and structurally characterized. Unlike classical thiolases, MsTLP1 is a monomer in solution. Its structure has been determined at 2.7 Å resolution by the single wavelength anomalous dispersion method. The structure of the protomer confirms that the N-terminal domain has the thiolase fold. An extra C-terminal domain is indeed observed. Interestingly, it consists of six β-strands forming an anti-parallel β-barrel which is completely different from the expected SCP2-fold. Detailed sequence and structural comparisons with thiolases show that the residues known to be essential for catalysis are not conserved in MsTLP1. Consistent with this observation, activity measurements show that MsTLP1 does not catalyze the thiolase reaction. This is the first structural report of a monomeric thiolase-like protein from any organism. These studies show that MsTLP1 belongs to a new group of thiolase related proteins of unknown function.
Collapse
Affiliation(s)
- Neelanjana Janardan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
97
|
Goblirsch BR, Frias JA, Wackett LP, Wilmot CM. Crystal structures of Xanthomonas campestris OleA reveal features that promote head-to-head condensation of two long-chain fatty acids. Biochemistry 2012; 51:4138-46. [PMID: 22524624 PMCID: PMC3358466 DOI: 10.1021/bi300386m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short β-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117β) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117β comes from the other monomer of the physiological dimer.
Collapse
Affiliation(s)
- Brandon R. Goblirsch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Janice A. Frias
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Carrie M. Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
98
|
The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol 2012; 74:1-34. [PMID: 22210458 DOI: 10.1007/s00239-011-9480-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
Abstract
The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.
Collapse
|
99
|
A ketosynthase homolog uses malonyl units to form esters in cervimycin biosynthesis. Nat Chem Biol 2011; 8:154-61. [DOI: 10.1038/nchembio.746] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/05/2011] [Indexed: 02/08/2023]
|
100
|
The characterization and evolutionary relationships of a trypanosomal thiolase. Int J Parasitol 2011; 41:1273-83. [DOI: 10.1016/j.ijpara.2011.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/22/2011] [Accepted: 07/19/2011] [Indexed: 11/23/2022]
|