51
|
Yang L, Wu Y, Yang F, Wang W. A conductive polymer composed of a cellulose-based flexible film and carbon nanotubes. RSC Adv 2021; 11:20081-20088. [PMID: 35479890 PMCID: PMC9033658 DOI: 10.1039/d1ra03474j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 01/22/2023] Open
Abstract
As a natural biological material, wood has renewability, biocompatibility, biodegradability and excellent mechanical properties. This research shows a conductive polymer composed of a cellulose-based flexible film constructed from natural wood and carbon nanotubes. Part of the lignin/hemicellulose of the natural wood was removed by the deep eutectic solvent to obtain a cellulose-based flexible film with a porous structure, and then the carbon nanotubes were infiltrated into the cellulose-based flexible film by vacuum pressure impregnation treatment to obtain the final conductive polymer. This conductive polymer has high conductivity and good toughness, and shows good perception ability under a certain range of strain/stress or human activity conditions. In addition, conductive fibers can be prepared by cutting and twisting the oriented cellulose nanofibers of this conductive polymer. The above-mentioned properties of this conductive polymer provide great potential for its development in electrical-related fields.
Collapse
Affiliation(s)
- Lechen Yang
- College of Furnishings and Industrial Design, Nanjing Forestry University Nanjing 210037 Jiangsu China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China
| | - Yan Wu
- College of Furnishings and Industrial Design, Nanjing Forestry University Nanjing 210037 Jiangsu China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China
| | - Feng Yang
- Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology Beijing China
| | - Wenhao Wang
- College of Furnishings and Industrial Design, Nanjing Forestry University Nanjing 210037 Jiangsu China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
52
|
Adorinni S, Rozhin P, Marchesan S. Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine. Biomedicines 2021; 9:570. [PMID: 34070138 PMCID: PMC8158376 DOI: 10.3390/biomedicines9050570] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. They have attracted great interest in medicine for their high innovative potential, owing to their unique electronic and mechanical properties. In this review, we describe the most recent advancements in their inclusion in hydrogels to yield smart systems that can respond to a variety of stimuli. In particular, we focus on graphene and carbon nanotubes, for applications that span from sensing and wearable electronics to drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
53
|
Zare P, Aleemardani M, Seifalian A, Bagher Z, Seifalian AM. Graphene Oxide: Opportunities and Challenges in Biomedicine. NANOMATERIALS 2021; 11:nano11051083. [PMID: 33922153 PMCID: PMC8143506 DOI: 10.3390/nano11051083] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Desirable carbon allotropes such as graphene oxide (GO) have entered the field with several biomedical applications, owing to their exceptional physicochemical and biological features, including extreme strength, found to be 200 times stronger than steel; remarkable light weight; large surface-to-volume ratio; chemical stability; unparalleled thermal and electrical conductivity; and enhanced cell adhesion, proliferation, and differentiation properties. The presence of functional groups on graphene oxide (GO) enhances further interactions with other molecules. Therefore, recent studies have focused on GO-based materials (GOBMs) rather than graphene. The aim of this research was to highlight the physicochemical and biological properties of GOBMs, especially their significance to biomedical applications. The latest studies of GOBMs in biomedical applications are critically reviewed, and in vitro and preclinical studies are assessed. Furthermore, the challenges likely to be faced and prospective future potential are addressed. GOBMs, a high potential emerging material, will dominate the materials of choice in the repair and development of human organs and medical devices. There is already great interest among academics as well as in pharmaceutical and biomedical industries.
Collapse
Affiliation(s)
- Pariya Zare
- Department of Chemical Engineering, University of Tehran, Tehran 1417466191, Iran;
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK;
| | - Amelia Seifalian
- Watford General Hospital, Watford WD18 0HB, UK;
- UCL Medical School, University College London, London WC1E 6BT, UK
| | - Zohreh Bagher
- ENT and Head and Neck Research Centre and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran 1445413131, Iran
- Correspondence: (Z.B.); (A.M.S.); Tel.: +44-(0)-2076911122 (A.M.S.)
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London NW1 0NH, UK
- Correspondence: (Z.B.); (A.M.S.); Tel.: +44-(0)-2076911122 (A.M.S.)
| |
Collapse
|
54
|
Parvanak Boroujeni K, Tohidiyan Z, Lorigooini Z, Hamidifar Z, Eskandari MM. Co-Sn-Cu oxides/graphene nanocomposites as green catalysts for preparing 1,8-dioxo-octahydroxanthenes and apoptosis-inducing agents in MCF-7 human breast cancer cells. IET Nanobiotechnol 2021; 15:197-211. [PMID: 34694698 PMCID: PMC8675816 DOI: 10.1049/nbt2.12006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 11/19/2022] Open
Abstract
In this work, Co-Sn-Cu oxides/graphene nanocomposite, 30-40 ± 0.5 nm in size, was synthesized by solid-state microwave irradiation. This method presents several advantages such as operational simplicity, fast, low cost, safe and energy efficient, and suitability for production of high purity of nanoparticles. Other advantages of this method are there is no need for the use of solvent, fuel, and surfactant. Co-Sn-Cu oxides/graphene nanocomposites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, energy-dispersive X-ray spectroscopy, and UV-Vis spectroscopy. The synthesized nanocomposites were used as novel highly efficient catalysts for the synthesis of 1,8-dioxo-octahydroxanthenes at room temperature. The catalysts are recoverable and can be reused for six runs without loss of their activity. Also, the obtained nanocomposites exhibited significant anticancer activity against breast cancer cells and they could induce apoptosis in cancer cells.
Collapse
Affiliation(s)
| | - Zeinab Tohidiyan
- Department of ChemistryShahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Zahra Lorigooini
- Medical Plants Research CenterBasic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | | | | |
Collapse
|
55
|
Abstract
The family of carbon nanostructures comprises several members, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. Their unique electronic properties have attracted great interest for their highly innovative potential in nanomedicine. However, their hydrophobic nature often requires organic solvents for their dispersibility and processing. In this review, we describe the green approaches that have been developed to produce and functionalize carbon nanomaterials for biomedical applications, with a special focus on the very latest reports.
Collapse
|
56
|
|
57
|
Tadayyon G, Krukiewicz K, Britton J, Larrañaga A, Vallejo-Giraldo C, Fernandez-Yague M, Guo Y, Orpella-Aceret G, Li L, Poudel A, Biggs MJ. In vitro analysis of a physiological strain sensor formulated from a PEDOT:PSS functionalized carbon nanotube-poly(glycerol sebacate urethane) composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111857. [DOI: 10.1016/j.msec.2020.111857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/05/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022]
|
58
|
Graphene nanoribbons: A state-of-the-art in health care. Int J Pharm 2021; 595:120269. [DOI: 10.1016/j.ijpharm.2021.120269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023]
|
59
|
Zhao S, Wang Y, Duo L. Biochemical toxicity, lysosomal membrane stability and DNA damage induced by graphene oxide in earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116225. [PMID: 33316493 DOI: 10.1016/j.envpol.2020.116225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
With the growing production and use of carbon nanomaterials (CNMs), the risk of their releases to the environment has drawn much attention. However, their potential effect on soil invertebrates has not yet been systematically assessed. Herein, the toxic effects of graphene oxide (GO) on earthworms (Eisenia fetida) were thoroughly investigated. Exposure to different doses of GO (0, 5, 10, 20, and 30 g kg-1) was conducted for 7, 14, 21, and 28 days. The results showed that enzymatic activity was stimulated at the early stages of exposure (7 days and 14 days) and inhibited after 14 days for catalase (CAT) and after 21 days for peroxidase (POD) and superoxide dismutase (SOD), especially at high GO doses. The content of MDA showed an increasing trend over the whole exposure period and was significantly elevated by GO from 21 days except at the dose of 5 g kg-1on day 21. Lysosomal membrane stability and DNA damage presented dose- and time-dependent relationships. Graphene oxide remarkably decreased lysosomal membrane stability except at the dose of 5 g kg-1 on day 7. The tail DNA%, tail length and olive tail moment increased with increasing GO dose throughout the exposure duration, reaching maximum values at the end of exposure (28 days). These findings suggest that GO induces oxidative stress and genotoxicity in Eisenia fetida, resulting in lipid peroxidation, decreased lysosomal membrane stability and DNA damage. Therefore, attention should be paid to the potential pollution and risk associated with graphene oxide application. The results can provide valuable information for environmental safety assessment of graphene nanomaterials in soil.
Collapse
Affiliation(s)
- Shulan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yanli Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Lian Duo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
60
|
Kurapati R, Martìn C, Palermo V, Nishina Y, Bianco A. Biodegradation of graphene materials catalyzed by human eosinophil peroxidase. Faraday Discuss 2021; 227:189-203. [DOI: 10.1039/c9fd00094a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enzymatic activity of eosinophil peroxidase secreted by human immune cells leads to degradation of different sources of graphene oxide.
Collapse
Affiliation(s)
| | - Cristina Martìn
- CNRS
- Immunology
- Immunopathology and Therapeutic Chemistry
- UPR 3572
- ISIS
| | - Vincenzo Palermo
- Industrial and Materials Science
- Chalmers University of Technology
- 41258 Göteborg
- Sweden
- Istituto per la Sintesi Organica e la Fotoreattività
| | - Yuta Nishina
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama
- Japan
- Research Core for Interdisciplinary Sciences (RCIS)
| | - Alberto Bianco
- CNRS
- Immunology
- Immunopathology and Therapeutic Chemistry
- UPR 3572
- ISIS
| |
Collapse
|
61
|
Farr AC, Hogan KJ, Mikos AG. Nanomaterial Additives for Fabrication of Stimuli-Responsive Skeletal Muscle Tissue Engineering Constructs. Adv Healthc Mater 2020; 9:e2000730. [PMID: 32691983 DOI: 10.1002/adhm.202000730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/13/2020] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss necessitates novel tissue engineering strategies for skeletal muscle repair, which have traditionally involved cells and extracellular matrix-mimicking scaffolds and have thus far been unable to successfully restore physiologically relevant function. However, the incorporation of various nanomaterial additives with unique physicochemical properties into scaffolds has recently been explored as a means of fabricating constructs that are responsive to electrical, magnetic, and photothermal stimulation. Herein, several classes of nanomaterials that are used to mediate external stimulation to tissue engineered skeletal muscle are reviewed and the impact of these stimuli-responsive biomaterials on cell growth and differentiation and in vivo muscle repair is discussed. The degradation kinetics and biocompatibilities of these nanomaterial additives are also briefly examined and their potential for incorporation into clinically translatable skeletal muscle tissue engineering strategies is considered. Overall, these nanomaterial additives have proven efficacious and incorporation in tissue engineering scaffolds has resulted in enhanced functional skeletal muscle regeneration.
Collapse
Affiliation(s)
- Amy Corbin Farr
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Center for Engineering Complex Tissues, USA
| | - Katie J Hogan
- Center for Engineering Complex Tissues, USA
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Antonios G Mikos
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Center for Engineering Complex Tissues, USA
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| |
Collapse
|
62
|
Bekmukhametova A, Ruprai H, Hook JM, Mawad D, Houang J, Lauto A. Photodynamic therapy with nanoparticles to combat microbial infection and resistance. NANOSCALE 2020; 12:21034-21059. [PMID: 33078823 DOI: 10.1039/d0nr04540c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infections caused by drug-resistant pathogens are rapidly increasing in incidence and pose an urgent global health concern. New treatments are needed to address this critical situation while preventing further resistance acquired by the pathogens. One promising approach is antimicrobial photodynamic therapy (PDT), a technique that selectively damages pathogenic cells through reactive oxygen species (ROS) that have been deliberately produced by light-activated chemical reactions via a photosensitiser. There are currently some limitations to its wider deployment, including aggregation, hydrophobicity, and sub-optimal penetration capabilities of the photosensitiser, all of which decrease the production of ROS and lead to reduced therapeutic performance. In combination with nanoparticles, however, these challenges may be overcome. Their small size, functionalisable structure, and large contact surface allow a high degree of internalization by cellular membranes and tissue barriers. In this review, we first summarise the mechanism of PDT action and the interaction between nanoparticles and the cell membrane. We then introduce the categorisation of nanoparticles in PDT, acting as nanocarriers, photosensitising molecules, and transducers, in which we highlight their use against a range of bacterial and fungal pathogens. We also compare the antimicrobial efficiency of nanoparticles to unbound photosensitisers and examine the relevant safety considerations. Finally, we discuss the use of nanoparticulate drug delivery systems in clinical applications of antimicrobial PDT.
Collapse
Affiliation(s)
| | - Herleen Ruprai
- School of Science, Western Sydney University, Penrith, NSW 2750, Australia.
| | - James M Hook
- School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia and Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent BioNano Science and Technology, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jessica Houang
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia and Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW 2750, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW 2750, Australia. and Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW 2750, Australia
| |
Collapse
|
63
|
He X, White DL, Kapralov AA, Kagan VE, Star A. Photoluminescence Response in Carbon Nanomaterials to Enzymatic Degradation. Anal Chem 2020; 92:12880-12890. [PMID: 32803946 DOI: 10.1021/acs.analchem.0c01380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myeloperoxidase (MPO), a key enzyme released by neutrophils during inflammation, has been shown to catalyze the biodegradation of carbon nanomaterials. In this work, we perform photoluminescence studies on the MPO-catalyzed oxidation of graphene oxide (GO) and surfactant-coated pristine (6,5) single-walled carbon nanotubes (SWCNTs). The enzymatic degradation mechanism involves the introduction of defects, which promotes further degradation. Interestingly, the photoluminescence responses of GO and SWCNTs to enzymatic degradation are counterposed. Although the near-infrared (NIR) fluorescence intensity of SWCNTs at 998 nm is either unchanged or decreases depending on the surfactant identity, the blue fluorescence intensity of GO at 440 nm increases with the progression of oxidation by MPO/H2O2/Cl- due to the formation of graphene quantum dots (GQDs). Turn-on GO fluorescence is also observed with neutrophil-like HL-60 cells, indicative of potential applications of GO for imaging MPO activity in live cells. Based on these results, we further construct two ratiometric sensors using SWCNT/GO nanoscrolls by incorporating surfactant-wrapped pristine SWCNTs as the internal either turn-off (with sodium cholate (SC)) or reference (with carboxymethylcellulose (CMC)) sensor. The ratiometric approach enables the sensors to be more stable to external noise by providing response invariant to the absolute intensity emitted from the sensors. Our sensors show linear response to MPO oxidative machinery and hold the promise to be used as self-calibrating carbon nanomaterial-based MPO activity indicators.
Collapse
Affiliation(s)
- Xiaoyun He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David L White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Valerian E Kagan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Institute for Regenerative Medicine, Sechenov First Moscow Medical State University, Moscow 119991, Russia
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
64
|
Hermes PH, Fabián FL, Esperanza HL, Jorge MV, José David AS, Edilberto HG, Javier Francisco VM, Marcos PS. The first evidence of accumulation and avoidance behavior of macroinvertebrates in a forest soil spiked with human-made iron nanoparticles: A field experiment. Heliyon 2020; 6:e04860. [PMID: 32984591 PMCID: PMC7492817 DOI: 10.1016/j.heliyon.2020.e04860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022] Open
Abstract
Both earthworms and terrestrial isopods have been used to evaluate the quality of contaminated soil by NPs. However, most experiments have been conducted in the laboratory and under greenhouse conditions. Besides, little is known of Fe accumulation in earthworms from iron NPs (Fe NPs) under natural conditions. Therefore, the objective of this research was to evaluate the effect of manufactured NPs on the accumulation of Fe in macroinvertebrates from forest soil. Our results revealed that earthworms consume low amounts of Fe in a concentration of 1000 mg Fe NPs kg−1 of dry soil, with a behavior constant over time. Besides, we observed that earthworms could not detect Fe at low concentrations (1 or 10 mg Fe NPs kg−1), so they do not limit soil consumption, which translates into high amounts of Fe in their bodies. By contrast, the content of Fe in organisms is inversely proportional to increasing concentrations in the soil (R2 = -0.41, p < 0.05). Therefore, although studies are needed, in addition to considering environmental factors and the physicochemical properties of the soil, endogenous worms in the evaluated area could, under natural conditions, be useful to inform us of contamination of NP manufactured from Faith. Besides, for future research, a novel methodology should be considered to demonstrate more realistic avoidance behavior under field conditions.
Collapse
Affiliation(s)
- Pérez-Hernández Hermes
- El Colegio de la Frontera Sur, Agroecología, Unidad Campeche, Av Poligono s/n, Ciudad Industrial, Lerma, Campeche, Mexico
| | - Fernández-Luqueño Fabián
- Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Coahuila de Zaragoza, C.P. 25900, Mexico
| | - Huerta-Lwanga Esperanza
- El Colegio de la Frontera Sur, Agroecología, Unidad Campeche, Av Poligono s/n, Ciudad Industrial, Lerma, Campeche, Mexico
| | - Mendoza-Vega Jorge
- El Colegio de la Frontera Sur, Agroecología, Unidad Campeche, Av Poligono s/n, Ciudad Industrial, Lerma, Campeche, Mexico
| | - Alvarez-Solís José David
- El Colegio de la Frontera Sur. Carretera Panamericana y Periférico Sur S/N, Barrio de María Auxiliadora, C.P. 29290, San Cristóbal de Las Casas, Chiapas, Mexico
| | - Hernández-Gutiérrez Edilberto
- El Colegio de la Frontera Sur, Agroecología, Unidad Campeche, Av Poligono s/n, Ciudad Industrial, Lerma, Campeche, Mexico
| | - Valle-Mora Javier Francisco
- El Colegio de la Frontera Sur, Estadística, Carretera Aeropuerto Antiguo Km 2.5, C.P. 30700, Tapachula, Chiapas, Mexico
| | - Pérez-Sato Marcos
- Facultad de Ingeniería Agrohidraulica, PE de Ingeniería Agronómica y Zootecnia de la Benemérita Universidad Autónoma de Puebla, Reforma 165, Colonia Centro, CP. 73900, Tlatlauquitepec, Puebla, Mexico
| |
Collapse
|
65
|
Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, Gallagher MJ, Goodwin DG, Durkin DP, Fairbrother DH. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chem Rev 2020; 120:11651-11697. [DOI: 10.1021/acs.chemrev.0c00351] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alyssa R. Deline
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Benjamin P. Frank
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Casey L. Smith
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Leslie R. Sigmon
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Alexa N. Wallace
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Miranda J. Gallagher
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David G. Goodwin
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Durkin
- Department of Chemistry, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - D. Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
66
|
Environment-Friendly Removal Methods for Endocrine Disrupting Chemicals. SUSTAINABILITY 2020. [DOI: 10.3390/su12187615] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the past few decades, many emerging pollutants have been detected and monitored in different water sources because of their universal consumption and improper disposal. Among these, endocrine-disrupting chemicals (EDCs), a group of organic chemicals, have received global attention due to their estrogen effect, toxicity, persistence and bioaccumulation. For the removal of EDCs, conventional wastewater treatment methods include flocculation, precipitation, adsorption, etc. However, there are some limitations on these common methods. Herein, in order to enhance the public’s understanding of environmental EDCs, the definition of EDCs and the characteristics of several typical EDCs (physical and chemical properties, sources, usage, concentrations in the environment) are reviewed and summarized in this paper. In particular, the methods of EDC removal are reviewed, including the traditional methods of EDC removal, photocatalysis, biodegradation of EDCs and the latest research results of EDC removal. It is proposed that photocatalysis and biodegradation could be used as an environmentally friendly and efficient EDC removal technology. Photocatalytic technology could be one of the water treatment methods with the most potential, with great development prospects due to its high catalytic efficiency and low energy consumption. Biodegradation is expected to replace traditional water treatment methods and is also considered to be a highly promising method for efficient removal of EDCs. Besides, we summarize several photocatalysts with high catalytic activity and some fungi, bacteria and algae with strong biodegradability.
Collapse
|
67
|
Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment. NANOMATERIALS 2020; 10:nano10091764. [PMID: 32906594 PMCID: PMC7558965 DOI: 10.3390/nano10091764] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Nanotechnology is an uppermost priority area of research in several nations presently because of its enormous capability and financial impact. One of the most promising environmental utilizations of nanotechnology has been in water treatment and remediation where various nanomaterials can purify water by means of several mechanisms inclusive of the adsorption of dyes, heavy metals, and other pollutants, inactivation and removal of pathogens, and conversion of harmful materials into less harmful compounds. To achieve this, nanomaterials have been generated in several shapes, integrated to form different composites and functionalized with active components. Additionally, the nanomaterials have been added to membranes that can assist to improve the water treatment efficiency. In this paper, we have discussed the advantages of nanomaterials in applications such as adsorbents (removal of dyes, heavy metals, pharmaceuticals, and organic contaminants from water), membrane materials, catalytic utilization, and microbial decontamination. We discuss the different carbon-based nanomaterials (carbon nanotubes, graphene, graphene oxide, fullerenes, etc.), and metal and metal-oxide based nanomaterials (zinc-oxide, titanium dioxide, nano zerovalent iron, etc.) for the water treatment application. It can be noted that the nanomaterials have the ability for improving the environmental remediation system. The examination of different studies confirmed that out of the various nanomaterials, graphene and its derivatives (e.g., reduced graphene oxide, graphene oxide, graphene-based metals, and graphene-based metal oxides) with huge surface area and increased purity, outstanding environmental compatibility and selectivity, display high absorption capability as they trap electrons, avoiding their recombination. Additionally, we discussed the negative impacts of nanomaterials such as membrane damage and cell damage to the living beings in the aqueous environment. Acknowledgment of the possible benefits and inadvertent hazards of nanomaterials to the environment is important for pursuing their future advancement.
Collapse
|
68
|
Ma B, Martín C, Kurapati R, Bianco A. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chem Soc Rev 2020; 49:6224-6247. [PMID: 32724940 DOI: 10.1039/c9cs00822e] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A large number of graphene and other 2D materials are currently used for the development of new technologies, increasingly entering different industrial sectors. Interrogating the impact of such 2D materials on health and environment is crucial for both modulating their potential toxicity in living organisms and eliminating them from the environment. In this context, understanding if 2D materials are bio-persistent is mandatory. In this review we describe the importance of biodegradability and decomposition of 2D materials. We initially cover the biodegradation of graphene family materials, followed by other emerging classes of 2D materials including transition metal dichalcogenides and oxides, Xenes, Mxenes and other non-metallic 2D materials. We explain the role of defects and functional groups, introduced onto the surface of the materials during their preparation, and the consequences of chemical functionalization on biodegradability. In strong relation to the chemistry on 2D materials, we describe the concept of "degradation-by-design" that we contributed to develop, and which concerns the covalent modification with appropriate molecules to enhance the biodegradability of 2D materials. Finally, we cover the importance of designing new biodegradable 2D conjugates and devices for biomedical applications as drug delivery carriers, in bioelectronics, and tissue engineering. We would like to highlight that the biodegradation of 2D materials mainly depends on the type of material, the chemical functionalization, the aqueous dispersibility and the redox potentials of the different oxidative environments. Biodegradation is one of the necessary conditions for the safe application of 2D materials. Therefore, we hope that this review will help to better understand their biodegradation processes, and will stimulate the chemists to explore new chemical strategies to design safer products, composites and devices containing 2D materials.
Collapse
Affiliation(s)
- Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
69
|
Chaika V, Pikula K, Vshivkova T, Zakharenko A, Reva G, Drozdov K, Vardavas AI, Stivaktakis PD, Nikolouzakis TK, Stratidakis AK, Kokkinakis MN, Kalogeraki A, Burykina T, Sarigiannis DA, Kholodov A, Golokhvast K. The toxic influence and biodegradation of carbon nanofibers in freshwater invertebrates of the families Gammaridae, Ephemerellidae, and Chironomidae. Toxicol Rep 2020; 7:947-954. [PMID: 32793424 PMCID: PMC7415770 DOI: 10.1016/j.toxrep.2020.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Carbon nanofibers had no pronounced pathomorphic effect on freshwater insects. Carbon nanofibers were absorbed in the intestine of freshwater insects. Biodegradation of carbon nanofibers was detected in the digestive tract of insects.
Carbon nanofibers (CNFs) are widely used in consumer products today. In this study, we assessed the effects of CNFs on the digestive system of three freshwater invertebrate species (Gammaridae, Ephemerellidae, and Chironomidae). The aquatic insects Diamesa sp., Drunella cryptomeria, and Gammarus suifunensis were incubated with the CNFs at the concentration of 100 mg/L during the 7-days period. Histological examination of the whole specimens and the longitudinal sections revealed no toxic effects of CNFs. However, a noticeable change in the structure of the CNFs accumulated in the intestines of the aquatic insects was found by Raman spectroscopy. The registered decrease in the relative proportion of amorphous carbon included in the CNF sample was found in the intestines of Diamesa sp. and D. cryptomeria. The registered effect can indicate a biodegradation of amorphous carbon in the digestive tract of these two insect species. In contrast, the decrease of highly structured carbons and the decrease of G-bonds intensity were registered in the digestive tract of G. suifunensis. This observation demonstrates the partial biodegradation of CNFs in the digestive tract of G. suifunensis.
Collapse
Affiliation(s)
- Vladimir Chaika
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia
| | - Konstantin Pikula
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
| | - Tatyana Vshivkova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, 6900022, Russia
| | - Alexander Zakharenko
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
| | - Galina Reva
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia
| | - Konstantin Drozdov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, 690022, Russia
| | - Alexander I Vardavas
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece
| | | | - Taxiarchis K Nikolouzakis
- Laboratory of Anatomy-Histology Embryology, School of Medicine, University of Crete, Heraklion, Crete, 71110, Greece
| | - Antonios K Stratidakis
- Environmental Health Engineering, University School of Advanced Studies IUSS, Pavia, 27100, Italy
| | - Manolis N Kokkinakis
- Hellenic Mediterranean University, Department of Nutrition and Dietetics, Heraklion, 71004, Greece
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Tatyana Burykina
- Department of Analytical and Forensic Medical Toxicology, M.I. Sechenov University, Moscow, 119048, Russia
| | - Dimosthenis A Sarigiannis
- Environmental Health Engineering, University School of Advanced Studies IUSS, Pavia, 27100, Italy.,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Aleksei Kholodov
- Far East Geological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Kirill Golokhvast
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia.,Pacific Geographical Institute FEB RAS, Vladivostok, 690014, Russia
| |
Collapse
|
70
|
Donskyi IS, Chen Y, Nickl P, Guday G, Qiao H, Achazi K, Lippitz A, Unger WES, Böttcher C, Chen W, Adeli M, Haag R. Self-degrading graphene sheets for tumor therapy. NANOSCALE 2020; 12:14222-14229. [PMID: 32608434 DOI: 10.1039/d0nr02159h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Low biodegradability of graphene derivatives and related health risks are the main limiting factors for their in vivo biomedical applications. Here, we present the synthesis of enzyme-functionalized graphene sheets with self-degrading properties under physiological conditions and their applications in tumor therapy. The synergistic enzyme cascade glucose oxidase and myeloperoxidase are covalently conjugated to the surface of graphene sheets and two-dimensional (2D) platforms are obtained that can produce sodium hypochlorite from glucose. The enzyme-functionalized graphene sheets with up to 289 nm average size are degraded into small pieces (≤40 nm) by incubation under physiological conditions for 24 h. Biodegradable graphene sheets are further loaded with doxorubicin and their ability for tumor therapy is evaluated in vitro and in vivo. The laser-triggered release of doxorubicin in combination with the enzymatic activity of the functionalized graphene sheets results in a synergistic antitumor activity. Taking advantage of their neutrophil-like activity, fast biodegradability, high photo- and chemotherapeutic effects, the novel two-dimensional nanoplatforms can be used for tumor therapeutic applications.
Collapse
Affiliation(s)
- Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Torrinha Á, Oliveira TMBF, Ribeiro FW, Correia AN, Lima-Neto P, Morais S. Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1268. [PMID: 32610509 PMCID: PMC7408367 DOI: 10.3390/nano10071268] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/13/2023]
Abstract
Pharmaceuticals, as a contaminant of emergent concern, are being released uncontrollably into the environment potentially causing hazardous effects to aquatic ecosystems and consequently to human health. In the absence of well-established monitoring programs, one can only imagine the full extent of this problem and so there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis. Carbon-based nanomaterials are the most used nanostructures in (bio)sensors construction attributed to their facile and well-characterized production methods, commercial availability, reduced cost, high chemical stability, and low toxicity. However, most importantly, their relatively good conductivity enabling appropriate electron transfer rates-as well as their high surface area yielding attachment and extraordinary loading capacity for biomolecules-have been relevant and desirable features, justifying the key role that they have been playing, and will continue to play, in electrochemical (bio)sensor development. The present review outlines the contribution of carbon nanomaterials (carbon nanotubes, graphene, fullerene, carbon nanofibers, carbon black, carbon nanopowder, biochar nanoparticles, and graphite oxide), used alone or combined with other (nano)materials, to the field of environmental (bio)sensing, and more specifically, to pharmaceutical pollutants analysis in waters and aquatic species. The main trends of this field of research are also addressed.
Collapse
Affiliation(s)
- Álvaro Torrinha
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Thiago M. B. F. Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, 1639, Cidade Universitária, 63048-080 Juazeiro do Norte, CE, Brazil;
| | - Francisco W.P. Ribeiro
- Instituto de Formação de Educadores, Universidade Federal do Cariri, Rua Olegário Emídio de Araújo, S/N, Centro, 63260-000 Brejo Santo - CE, Brazil;
| | - Adriana N. Correia
- GELCORR, Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Bloco 940, Campus do Pici, 60455-970 Fortaleza-CE, Brazil; (A.N.C.); (P.L.-N.)
| | - Pedro Lima-Neto
- GELCORR, Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Bloco 940, Campus do Pici, 60455-970 Fortaleza-CE, Brazil; (A.N.C.); (P.L.-N.)
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| |
Collapse
|
72
|
Michel R, Auzély-Velty R. Hydrogel-Colloid Composite Bioinks for Targeted Tissue-Printing. Biomacromolecules 2020; 21:2949-2965. [PMID: 32568527 DOI: 10.1021/acs.biomac.0c00305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of extrusion-based bioprinting for tissue engineering is conditioned by the design of bioinks displaying adequate printability, shape stability, and postprinting bioactivity. In this context, simple bioink formulations, made of cells supported by a polymer matrix, often lack the necessary versatility. To address this issue, intense research work has been focused on introducing colloidal particles into the ink formulation. By creating weak cross-links between polymer chains, added particles modify the rheology and mechanical behavior of bioinks to improve their printability and structural integrity. Additionally, nano- and microscopic particles display composition- and structure-specific properties that can affect the cellular behavior and enhance the formation of tissue within the printed material. This Review offers a comprehensive picture of the role of colloids in bioprinting from a physicochemical and biological perspective. As such, it provides guidance on devising adaptable bioinks for the fabrication of biomimetic tissues.
Collapse
Affiliation(s)
- Raphaël Michel
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 CEDEX 9 Grenoble, France
| | - Rachel Auzély-Velty
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 CEDEX 9 Grenoble, France
| |
Collapse
|
73
|
Soltani R, Guo S, Bianco A, Ménard‐Moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard‐Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
74
|
Xiaoli F, Qiyue C, Weihong G, Yaqing Z, Chen H, Junrong W, Longquan S. Toxicology data of graphene-family nanomaterials: an update. Arch Toxicol 2020; 94:1915-1939. [DOI: 10.1007/s00204-020-02717-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
|
75
|
Wang H, Pan X, Wang X, Wang W, Huang Z, Gu K, Liu S, Zhang F, Shen H, Yuan Q, Ma J, Yuan W, Liu H. Degradable Carbon-Silica Nanocomposite with Immunoadjuvant Property for Dual-Modality Photothermal/Photodynamic Therapy. ACS NANO 2020; 14:2847-2859. [PMID: 31909977 DOI: 10.1021/acsnano.9b06168] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon nanomaterials have flourished for cancer therapy for decades. However, their practical applications on clinical bases still pose a challenge to address the dilemma of metabolism in vivo. In this study, an attempt is made to design a degradable carbon-silica nanocomposite (CSN) with immunoadjuvant property, which could undergo an enzyme-free degradation process into small particles (∼5 nm) and facilitate its clinical application. CSN harbors photothermal and photodynamic properties and as an immunoadjuvant would help to generate tumor-associated antigens and mature dendritic cells (DCs). Potent antitumor effects have been achieved in both 4T1 and patient-derived xenograft tumor models with tumor inhibition efficiencies of 93.2% and 92.5%, respectively. We believe that this strategy will benefit the possible clinical translation and carbon-silica-nanomaterial-based cancer therapy.
Collapse
Affiliation(s)
- Hongyu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xueting Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaotong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Weiwei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhijun Huang
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Kai Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Fengrong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Heyun Shen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jie Ma
- Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
76
|
Chen X, Ahn JH. Biodegradable and bioabsorbable sensors based on two-dimensional materials. J Mater Chem B 2020; 8:1082-1092. [PMID: 31984403 DOI: 10.1039/c9tb02519g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two-dimensional (2D) materials, including graphene and transition metal dichalcogenides (TMDCs), have attracted considerable attention for the last decade due to their unique electrical, optical and mechanical properties. Recently, as their unique characteristics of biocompatibility and biodegradation are known, research on applying them in diagnostic and therapeutic applications has received considerable attention. This review provides a broad overview of recent reports on the biocompatibility and biodegradability of 2D materials and highlights recent progress in biodegradable and bioabsorbable sensors for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Xiang Chen
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
77
|
Impact of synthesized metal oxide nanomaterials on seedlings production of three Solanaceae crops. Heliyon 2020; 6:e03188. [PMID: 32042961 PMCID: PMC7002779 DOI: 10.1016/j.heliyon.2020.e03188] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/16/2019] [Accepted: 01/06/2020] [Indexed: 12/03/2022] Open
Abstract
Prospective involvement of metal oxide nanomaterials as a prominent agriculture practice for improving existing crop production directed the present investigation for synthesizing of ZnO and TiO2 nanomaterials as an attempt to enhance the transplants production of some Solanaceae crops. The morphological characterizations of the prepared nanomaterials indicated that the hydrothermal synthesized ZnO was produced in nanorod structure with an average aspect ratio of 7. However, SEM and TEM micrographs of microwave prepared TiO2 evident that it has a nanoparticle structure with an average diameter of 43 nm. The BET results confirmed the high specific areas of the two prepared metal oxide nanomaterials. The two synthesized metal oxide nanomaterials were coated in gel and mixed with the seeds of eggplant, pepper and tomato crops at four concentrations 0, 50, 100 and 150 mg/L, whilst the control seeds were germinated in distilled water without gel-coating. The results pointed to the outstanding effect of TiO2 and ZnO nanoparticles on germination characters and seedlings growth. The maximum transplants lengths, fresh and dry weight were recorded at the level 100 mg/L whatever the crop plant used. Hastening germination operation of nanomaterials-gel coated seedlings compared to control plants may be ascribed to the reduction of mean germination time and coefficient variation of the germination process besides increasing the mean germination rate and the synchrony of germination traits. Overall, better performance of growing transplants has been accredited for nanoparticles-gel coated seedlings more than the control treatments which could be efficient for the safer production of transplants in an innovative way.
Collapse
|
78
|
Sadeghian I, Rezaie Z, Rahmatabadi SS, Hemmati S. Biochemical insights into a novel thermo/organo tolerant bilirubin oxidase from Thermosediminibacter oceani and its application in dye decolorization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
79
|
Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends Biotechnol 2020; 38:24-49. [DOI: 10.1016/j.tibtech.2019.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
|
80
|
Baek S, Joo SH, Su C, Toborek M. Toxicity of ZnO/TiO 2 -conjugated carbon-based nanohybrids on the coastal marine alga Thalassiosira pseudonana. ENVIRONMENTAL TOXICOLOGY 2020; 35:87-96. [PMID: 31515868 PMCID: PMC7144345 DOI: 10.1002/tox.22845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 05/15/2023]
Abstract
Increasing consumption of metal-oxide nanoparticles (NPs) and carbon-based nanomaterials has caused significant concern about their potential hazards in aquatic environments. The release of NPs into aquatic environments could result in adsorption of NPs on microorganisms. While metal-oxide NP-conjugated carbon-based nanohybrids (NHs) may exhibit enhanced toxicity toward microorganisms due to their large surface area and the generation of reactive oxygen species (ROS), there is a lack of information regarding the ecotoxicological effects of NHs on marine diatom algae, which are an indicator of marine pollution. Moreover, there is scant information on toxicity mechanisms of NHs on aquatic organisms. In this study, four NHs (ie, ZnO-conjugated graphene oxide [GO], ZnO-conjugated carbon nanotubes [CNTs], TiO2 -conjugated GO, and TiO2 -conjugated CNT) that were synthesized by a hydrothermal method were investigated for their toxicity effects on a Thalassiosira pseudonana marine diatom. The in vitro cellular viability and ROS formation employed at the concentration ranges of 50 and 100 mg/L of NHs over 72 hours revealed that ZnO-GO had the most negative effect on T. pseudonana. The primary mechanism identified was the generation of ROS and GO-induced dispersion that caused electrostatic repulsion, preventing aggregation, and an increase in surface areas of NHs. In contrast to GO-induced dispersion, large aggregates were observed in ZnO/TiO2 -conjugated CNT-based NHs. The scanning electron microscopy images suggest that NHs covered algae cells and interacted with them (shading effects); this reduced light availability for photosynthesis. Detailed in vitro toxicity effects and mechanisms that cause high adverse acute toxicity on T. pseudonana were unveiled; this implied concerns about potential hazards of these mechanisms in aquatic ecosystems.
Collapse
Affiliation(s)
- Soyoung Baek
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida
| | - Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida
| | - Chunming Su
- Groundwater, Watershed, and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
81
|
Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Liu Y, Shao B, Liang Q, Tang W, Yuan X. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. ENVIRONMENT INTERNATIONAL 2020; 134:105298. [PMID: 31765863 DOI: 10.1016/j.envint.2019.105298] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Carbon nanomaterials (CNMs) are novel nanomaterials with excellent physicochemical properties, which are widely used in biomedicine, energy and sensing. Besides, CNMs also play an important role in environmental pollution control, which can absorb heavy metals, antibiotics and harmful gases. However, CNMs are inevitably entering the environment while they are rapidly developing. They are harmful to living organisms in the environment and are difficult to degrade under natural conditions. Here, we systematically describe the toxicity of carbon nanotubes (CNTs), graphene (GRA) and C60 to cells, animals, humans, and microorganisms. According to the current research results, the toxicity mechanism is summarized, including oxidative stress response, mechanical damage and effects on biological enzymes. In addition, according to the latest research progress, we focus on the two major degradation methods of chemical degradation and biodegradation of CNTs, GRA and C60. Meanwhile, the reaction conditions and degradation mechanisms of degradation are respectively stated. Moreover, we have prospects for the limitations of CNM degradation under non-experimental conditions and their potential application.
Collapse
Affiliation(s)
- Zan Peng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaojuan Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
82
|
Zhu Y, Wu J, Chen M, Liu X, Xiong Y, Wang Y, Feng T, Kang S, Wang X. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. CHEMOSPHERE 2019; 237:124403. [PMID: 31356996 DOI: 10.1016/j.chemosphere.2019.124403] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The contact between metal oxide nanoparticles (NPs) and human is more and more close with their wide applications. The inputs of metal oxide NPs to the environment are also growing every year, which causes potential environmental and human health risks. They are toxic to animals, microorganisms and plants at high concentrations, and they show different mechanisms of toxicity to different species. In addition, under complex environmental conditions, their toxic effects are often unpredictable. We have integrated the recent studies on the biotoxicity of metal oxide NPs from 2015-present, and clarified their toxic mechanism, as well as the toxic harm. It lays a foundation for further studying the toxicity and ecological risk of metal oxide NPs.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Jianhua Wu
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xianli Liu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China.
| | - Yijie Xiong
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Yanyan Wang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Tao Feng
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Shuang Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xianfeng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
83
|
Forstner C, Orton TG, Wang P, Kopittke PM, Dennis PG. Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:356-363. [PMID: 31125749 DOI: 10.1016/j.scitotenv.2019.05.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 05/23/2023]
Abstract
Carbon nanotubes (CNTs), reduced graphene oxide (rGO) and ammonia-functionalized graphene oxide (aGO), are nanomaterials with useful properties, such as high tensile strength, elasticity and thermal conductivity. However, following their use, their release into the environment is inevitable. While CNTs have been shown to influence soil bacterial diversity, albeit only at concentrations far exceeding predicted rates of release, the effects of rGO have only been examined using pure bacterial cultures, and those of aGO are unknown. Here, we investigated the effects of CNTs, rGO and aGO, at three time points (7, 14 and 30days), and over a range of concentrations (1ng, 1μg and 1mgkg dry soil-1), on soil bacterial diversity using 16S rRNA amplicon sequencing. Graphite was included to facilitate comparisons with a similar and naturally occurring carbon material, while the inclusion of GO allowed the effects of GO modification to be isolated. Bacterial community composition, but not alpha diversity, was altered by all treatments except the low GO, low rGO and high aGO treatments on day 14 only. In all cases, the nanomaterials led to shifts in community composition that were of similar magnitude to those induced by graphite and GO, albeit with differences in the taxa affected. Our study highlights that carbon nanomaterials can induce changes in soil bacterial diversity, even at doses that are environmentally realistic.
Collapse
Affiliation(s)
- Christian Forstner
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Thomas G Orton
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peng Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
84
|
Wang X, Zhu Y, Chen M, Yan M, Zeng G, Huang D. How do proteins 'response' to common carbon nanomaterials? Adv Colloid Interface Sci 2019; 270:101-107. [PMID: 31200262 DOI: 10.1016/j.cis.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/01/2022]
Abstract
Carbon nanomaterials are widely produced and applied in biological and environmental fields because of their outstanding physical and chemical properties, which pose a threat to the safety of living organisms and the ecological environment. Therefore, understanding how carbon nanomaterials and their derivatives work on organisms is becoming important. In recent years, more and more researchers have explored the damage of carbon nanomaterials to organisms at the molecular level. This review pays special emphasis on how proteins response to the main carbon nanomaterials (fullerene, carbon nanotubes, graphene and their derivatives). In addition, how to use the interaction between carbon nanomaterials and proteins to do some beneficial things for human and the development of safe nanomaterials is simply discussed. Finally, some suggestions have been made to lay a theoretical foundation for future research.
Collapse
Affiliation(s)
- Xianfeng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
85
|
Rozhina E, Batasheva S, Danilushkina A, Kryuchkova M, Gomzikova M, Cherednichenko Y, Nigamatzyanova L, Akhatova F, Fakhrullin R. Kaolin alleviates the toxicity of graphene oxide for mammalian cells. MEDCHEMCOMM 2019; 10:1457-1464. [PMID: 31534660 PMCID: PMC6748275 DOI: 10.1039/c8md00633d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/04/2019] [Indexed: 11/21/2022]
Abstract
The development of novel nanoscale vehicles for drug delivery promotes the growth of interest in investigations of interaction between nanomaterials. In this paper, we report the in vitro studies of eukaryotic cell physiological response to incubation with graphene oxide and planar kaolin nanoclay. Graphene family materials, including graphene oxide (GO), hold promise for numerous applications due to their unique electronic properties. However, graphene oxide reveals toxicity to some cell lines through an unidentified mechanism. Thus, methods and agents reducing the toxicity of graphene oxide can widen its practical application. We used a colorimetric test, flow cytometry and cell index assay methods to evaluate the effects of separate and combined application of graphene oxide and kaolin on mammalian cells. We have shown that the joint application of graphene oxide and kaolin reduced the negative effects of graphene by almost 20%, most likely because of coagulation of the nanoparticles with each other, which was detected by atomic force microscopy.
Collapse
Affiliation(s)
- Elvira Rozhina
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Anna Danilushkina
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Marina Kryuchkova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Marina Gomzikova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Yuliya Cherednichenko
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Läysän Nigamatzyanova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan , Republic of Tatarstan 420008 , Russian Federation . ;
| |
Collapse
|
86
|
Xu P, Chen M, Zeng G, Huang D, Lai C, Wang Z, Yan M, Huang Z, Gong X, Song B, Li T, Duan A. Effects of multi-walled carbon nanotubes on metal transformation and natural organic matters in riverine sediment. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:459-468. [PMID: 31077889 DOI: 10.1016/j.jhazmat.2019.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
In this study, pragmatic prospection of multi-walled carbon nanotubes (MWCNTs) is conducted considering their impacts on Cd transformation, microbial activity and natural organic matter (NOM) in sediments. Indeed, dose-dependent of MWCNTs acceleration in Cd sedimentation and immobilization in water-sediment interface has been found. Unexpectedly, even with the reduced Cd bioavailability, high ratios of MWCNTs incorporation led to exacerbated microbial inactivation. Besides, we noted that MWCNTs significantly lowered NOM contents in sediments. Chemical characterization results also demonstrated that high ratios of MWCNTs incorporation reduced the aromaticity, hydrophobicity and humification of fulvic acid (FA) and humic acid (HA) in sediments. The Cd binding results confirmed that quantity and chemical variation of NOM affected their central ability to Cd binding, referring to significant decrease in combined Cd contents. The findings indicated that reduction in humic substances and chemical structure variation might be the important reason attributed to the MWCNTs toxicity. This study provides novel mechanisms understanding the fate of carbon nanotubes considering the balance in environmental benefit and potential risks.
Collapse
Affiliation(s)
- Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ziwei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Tao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
87
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
88
|
Zhu Y, Liu X, Hu Y, Wang R, Chen M, Wu J, Wang Y, Kang S, Sun Y, Zhu M. Behavior, remediation effect and toxicity of nanomaterials in water environments. ENVIRONMENTAL RESEARCH 2019; 174:54-60. [PMID: 31029942 DOI: 10.1016/j.envres.2019.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 05/11/2023]
Abstract
In recent years, nanotechnology has been developing continuously. Due to their advantageous huge specific surface areas, microinterface characteristics, remediation ability and potential environmental risks, nanomaterials have become a hot topic in the field of environmental research. With the mass production and use of nanomaterials, they will inevitably be discharged or leaked into the water environment. In this paper, we will describe some typical nanomaterials, such as nanoscale zero valent iron (nZVI), graphene nanomaterials (GNMs), TiO2 nanoparticles (NPs), ZnO NPs, Fe3O4 NPs, carbon nanotubes (CNTs), Ag NPs, and other nanomaterials in water environments, focusing on the positive and negative effects of some nanomaterials in water environments. The remediation function and the impact of nanomaterials in water environments, including behavior of nanomaterials and their toxicity to aquatic organisms will be discussed. This will be of great significance for our subsequent research on nanomaterials.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Xianli Liu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Yali Hu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Rui Wang
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Jianhua Wu
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Yanyan Wang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Shuang Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yan Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mengxi Zhu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
89
|
Martín C, Kostarelos K, Prato M, Bianco A. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chem Commun (Camb) 2019; 55:5540-5546. [PMID: 31033990 DOI: 10.1039/c9cc01205b] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The potential risks associated with two-dimensional (2D) nanomaterials may cause serious concerns about their real applications and impact in biological systems. In addition, the demonstration of biodegradability of these flat nanomaterials is essential in living organisms. Here, we summarise the state-of-the-art in the field of biocompatibility and biodegradability of graphene-related materials (such as 2D materials like MoS2, BN or WS2). The impact of chemical functionalisation on the potential control of the biodegradability profile of these structures is also discussed.
Collapse
Affiliation(s)
- Cristina Martín
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
90
|
Graphene modifies the biodegradation of poly(lactic acid)-thermoplastic cassava starch reactive blend films. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
91
|
Tomaszewski M, Cema G, Ciesielski S, Łukowiec D, Ziembińska-Buczyńska A. Cold anammox process and reduced graphene oxide - Varieties of effects during long-term interaction. WATER RESEARCH 2019; 156:71-81. [PMID: 30904712 DOI: 10.1016/j.watres.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Because of its energy efficiency, the anaerobic ammonium oxidation (anammox) process has been recognized as the most promising biological nitrogen removal process, but its implementation in mainstream wastewater treatment plants is limited by its relatively high optimal temperature (30 °C). Recently, it was shown that during short-term batch experiments, reduced graphene oxide (RGO) displayed accelerated reaction activity at low temperatures (10-15 °C). In this study, the long-term effects of RGO on the low-temperature anammox process in a sequencing batch reactor (SBR), are studied for the first time, including different methods of interaction. The results presented here show that RGO can stimulate anammox activity up to 17% through two factors: bacterial growth stimulation, which was especially significant at higher temperatures (>15 °C), and an increase of the anammox reaction rate, which occurred only below 15 °C. The bacterial community structure was not influenced by addition of RGO. Moreover, after incubation in an anammox bioreactor, RGO showed signs of degradation and chemical changes as evidenced by the presence of oxygen and calcium on its surface. According to the literature and the obtained results, it is proposed that RGO is oxidized and oxygen is reduced by the organic mediator that is involved in the enzymatic reactions. However, activated sludge is a very complex structure created by numerous, undefined microorganisms, which makes it difficult to determine the exact oxidation mechanism.
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland.
| | - Grzegorz Cema
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland
| | - Slawomir Ciesielski
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-719 Olsztyn, Poland
| | - Dariusz Łukowiec
- Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18a, 44-100 Gliwice, Poland
| | | |
Collapse
|
92
|
|
93
|
Chen M, Sun Y, Liang J, Zeng G, Li Z, Tang L, Zhu Y, Jiang D, Song B. Understanding the influence of carbon nanomaterials on microbial communities. ENVIRONMENT INTERNATIONAL 2019; 126:690-698. [PMID: 30875562 DOI: 10.1016/j.envint.2019.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Carbon nanomaterials (CNMs) are widely used because of their unique advantages in recent years. At the same time, the influence of CNMs on the environment is becoming increasingly prominent. This review mainly introduces the research progress in the effects of fullerenes, multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs) and graphene on microorganisms and their toxicity mechanisms. On this basis, we have analyzed beneficial and adverse effects of fullerenes, graphene, MWCNTs and SWCNTs to microorganisms, and discussed the similarities of the toxicity mechanisms of different CNMs on microorganisms. This review helps provide ideas on how to protect microorganisms from the impacts of carbon nanomaterials, and it will be conductive to providing a strong theoretical basis for better application of carbon nanomaterials.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yan Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Danni Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
94
|
Zhu Y, Xu F, Liu Q, Chen M, Liu X, Wang Y, Sun Y, Zhang L. Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:414-421. [PMID: 30690375 DOI: 10.1016/j.scitotenv.2019.01.234] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 05/24/2023]
Abstract
Currently, the pollution of metals and metalloids in the soil has attracted considerable attention. Phytoremediation is considered an environmentally friendly means of remediating pollution, but often takes a long time to perform. Therefore, the combination of plants and nanomaterials in environmental management has attracted the attention of many researchers because some nanomaterials can promote the germination of plant seeds and the growth of whole plants. However, when the concentration of nanomaterials is not controlled properly, certain toxicity will be produced. This paper reviews research on the combination of plant and nanomaterials for the remediation of contaminated environments, as well as on the effects of nanomaterials on plants.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Fang Xu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Qin Liu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xianli Liu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China.
| | - Yanyan Wang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yan Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lili Zhang
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| |
Collapse
|
95
|
Maksimova YG. Microorganisms and Carbon Nanotubes: Interaction and Applications (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819010101] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
96
|
Shamekhi MA, Mirzadeh H, Mahdavi H, Rabiee A, Mohebbi-Kalhori D, Baghaban Eslaminejad M. Graphene oxide containing chitosan scaffolds for cartilage tissue engineering. Int J Biol Macromol 2019; 127:396-405. [DOI: 10.1016/j.ijbiomac.2019.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
|
97
|
Lahiani MH, Khare S, Cerniglia CE, Boy R, Ivanov IN, Khodakovskaya M. The impact of tomato fruits containing multi-walled carbon nanotube residues on human intestinal epithelial cell barrier function and intestinal microbiome composition. NANOSCALE 2019; 11:3639-3655. [PMID: 30741296 DOI: 10.1039/c8nr08604d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon nanomaterials (CNMs) can positively regulate seed germination and enhance plant growth. However, clarification of the impact of plant organs containing absorbed CNMs on animal and human health is a critical step of risk assessment for new nano-agro-technology. In this study, we have taken a comprehensive approach to studying the effect tomato fruits derived from plants exposed to multi-walled carbon nanotubes (CNTs) have on gastrointestinal epithelial barrier integrity and their impact on the human commensal intestinal microbiota using an in vitro cell culture and batch human fecal suspension models. The effects of CNTs on selected pure cultures of Salmonella enterica Typhimurium and Lactobacillus acidophilus were also evaluated. This study demonstrated that CNT-containing fruits or the corresponding residual level of pure CNTs (0.001 μg ml-1) was not sufficient to initiate a significant change in transepithelial resistance and on gene expression of the model T-84 human intestinal epithelial cells. However, at 10 μg ml-1 concentration CNTs were able to penetrate the cell membrane and change the gene expression profile of exposed cells. Moreover, extracts from CNT-containing fruits had minimal to no effect on human intestinal microbiota as revealed by culture-based analysis and 16S rRNA sequencing.
Collapse
MESH Headings
- Cell Line
- Feces/microbiology
- Fruit/chemistry
- Fruit/metabolism
- Gastrointestinal Microbiome/drug effects
- Humans
- Intestinal Mucosa/cytology
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Lactobacillus acidophilus/drug effects
- Lactobacillus acidophilus/genetics
- Solanum lycopersicum/chemistry
- Solanum lycopersicum/metabolism
- Nanotubes, Carbon/chemistry
- Nanotubes, Carbon/toxicity
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Salmonella typhimurium/drug effects
- Salmonella typhimurium/genetics
- Sequence Analysis, DNA
- Spectrum Analysis, Raman
Collapse
Affiliation(s)
- Mohamed H Lahiani
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Lewis RW, Bertsch PM, McNear DH. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review. Nanotoxicology 2019; 13:392-428. [PMID: 30760121 DOI: 10.1080/17435390.2018.1530391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deposition of engineered nanomaterials (ENMs) in various environmental compartments is projected to continue rising exponentially. Terrestrial environments are expected to be the largest repository for environmentally released ENMs. Because ENMs are enriched in biosolids during wastewater treatment, agriculturally applied biosolids facilitate ENM exposure of key soil micro-organisms, such as plant growth-promoting rhizobacteria (PGPR). The ecological ramifications of increasing levels of ENM exposure of terrestrial micro-organisms are not clearly understood, but a growing body of research has investigated the toxicity of ENMs to various soil bacteria using a myriad of toxicity end-points and experimental procedures. This review explores what is known regarding ENM toxicity to important soil bacteria, with a focus on ENMs which are expected to accumulate in terrestrial ecosystems at the highest concentrations and pose the greatest potential threat to soil micro-organisms having potential indirect detrimental effects on plant growth. Knowledge gaps in the fundamental understanding of nanotoxicity to bacteria are identified, including the role of physicochemical properties of ENMs in toxicity responses, particularly in agriculturally relevant micro-organisms. Strategies for improving the impact of future research through the implementation of in-depth ENM characterization and use of necessary experimental controls are proposed. The future of nanotoxicological research employing microbial ecoreceptors is also explored, highlighting the need for continued research utilizing bacterial isolates while concurrently expanding efforts to study ENM-bacteria interactions in more complex environmentally relevant media, e.g. soil. Additionally, the particular importance of future work to extensively examine nanotoxicity in the context of bacterial ecosystem function, especially of plant growth-promoting agents, is proposed.
Collapse
Affiliation(s)
- Ricky W Lewis
- a Rhizosphere Science Laboratory, Department of Plant and Soil Sciences , University of Kentucky , Lexington , KY , USA
| | - Paul M Bertsch
- a Rhizosphere Science Laboratory, Department of Plant and Soil Sciences , University of Kentucky , Lexington , KY , USA.,b CSIRO Land and Water , Ecosciences Precinct , Brisbane , Australia.,c Center for the Environmental Implications of Nanotechnology (CEINT) , Duke University , Durham , NC , USA
| | - David H McNear
- a Rhizosphere Science Laboratory, Department of Plant and Soil Sciences , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
99
|
Menezes BRCD, Rodrigues KF, Fonseca BCDS, Ribas RG, Montanheiro TLDA, Thim GP. Recent advances in the use of carbon nanotubes as smart biomaterials. J Mater Chem B 2019; 7:1343-1360. [PMID: 32255006 DOI: 10.1039/c8tb02419g] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbon nanotubes (CNTs) have remarkable mechanical, thermal, electronic, and biological properties due to their particular atomic structure made of graphene sheets that are rolled into cylindrical tubes. Due to their outstanding properties, CNTs have been used in several technological fields. Currently, the most prominent research area of CNTs focuses on biomedical applications, using these materials to produce hybrid biosensors, drug delivery systems, and high performance composites for implants. Although a great number of research studies have already shown the advantages of CNT-based biomedical devices, their clinical use for in vivo application has not been consummated. Concerns related to their toxicity, biosafety, and biodegradation still remain. The effect of CNTs on the human body and the ecosystem is not well established, especially due to the lack of standardization of toxicological tests, which generate contradictions in the results. CNTs' toxicity must be clarified to enable the medical use of these exceptional materials in the near future. In this review, we summarize recent advances in developing biosensors, drug delivery systems, and implants using CNTs as smart biomaterials to identify pathogens, load/deliver drugs and enhance the mechanical and antimicrobial performance of implants.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Divisão de Ciências Fundamentais, Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228970, Brazil.
| | | | | | | | | | | |
Collapse
|
100
|
Yang H, Wu X, Ma Q, Yilihamu A, Yang S, Zhang Q, Feng S, Yang ST. Fungal transformation of graphene by white rot fungus Phanerochaete chrysosporium. CHEMOSPHERE 2019; 216:9-18. [PMID: 30359921 DOI: 10.1016/j.chemosphere.2018.10.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
The wide applications of graphene materials require the thorough investigation on their biosafety and environmental risks. Transformation of graphene materials is a fundamental issue in their environmental risk evaluations. The enzymatic degradation of graphene is widely reported using peroxidases, but the information on the fungal transformation of graphene is still unavailable. Herein, we incubated reduced graphene oxide (RGO) in the white rot fungus Phanerochaete chrysosporium culture system for 4 weeks and investigated the transformation of RGO by multiple techniques. P. chrysosporium efficiently added oxygen to RGO and decreased the its carbon contents accordingly. The ID/IG ratios of RGO showed statistically increases upon the transformation by P. chrysosporium according to Raman spectroscopy, suggesting the increase of defects on carbon skeleton. The negatively charged oxygen containing groups exfoliated the graphene sheets as indicated by the larger layer distance according to the X-ray diffraction spectra and the increased roughness under scanning electron microscopy. The transformation was more obvious in the RGO separated from the fungal balls than the precipitates in the culture medium. The mechanism of transformation was attributed to the enzymatic degradation by P. chrysosporium. The environmental implication of the fungal transformation of graphene materials and the potential of using fungi to reduce the environmental risks of graphene materials are discussed.
Collapse
Affiliation(s)
- Hua Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Xian Wu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Qiang Ma
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Ailimire Yilihamu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Shengnan Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Qiangqiang Zhang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Shicheng Feng
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China
| | - Sheng-Tao Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, PR China.
| |
Collapse
|