51
|
Ramos L. WT1, NR0B1, NR5A1, LHX9, ZFP92, ZNF275, INSL3, and NRIP1 Genetic Variants in Patients with Premature Ovarian Insufficiency in a Mexican Cohort. Genes (Basel) 2022; 13:611. [PMID: 35456418 PMCID: PMC9025227 DOI: 10.3390/genes13040611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Premature ovarian insufficiency (POI) is one of the main causes of female premature infertility. POI is a genetically heterogeneous disorder with a complex molecular etiology; as such, the genetic causes remain unknown in the majority of patients. Therefore, this study aimed to identify mutations and characterize the associated molecular contribution of gonadogenesis-determinant genes to POI. Genomic assays, including PCR-SSCP and Sanger sequencing, followed by in silico analyses were used to investigate the underpinnings of ovarian deficiency in 11 women affected by POI. Large deletions and nucleotide insertions and duplications were excluded by PCR. Thirteen genetic variants were identified in the WT1 (c.213G>T, c.609T>C, c.873A>G, c.1122G>A), NR0B1 (c.353C>T, c.425G>A), NR5A1 (c.437G>C, IVS4-20C>T), LHX9 (IVS2-12G>C, IVS3+13C>T, c.741T>C), ZNF275 (c.969C>T), and NRIP1 (c.3403C>T) genes. Seven novel genetic variants and five unpublished substitutions were identified. No genetic aberrations were detected in the ZFP92 and INSL3 genes. Each variant was genotyped using PCR-SSCP in 100 POI-free subjects, and their allelic frequencies were similar to the patients. These analyses indicated that allelic variation in the WT1, NR0B1, NR5A1, LHX9, ZFP92, ZNF275, INSL3, and NRIP1 genes may be a non-disease-causing change or may not contribute significantly to the genetics underlying POI disorders. Findings support the polygenic nature of this clinical disorder, with the SNVs identified representing only a probable contribution to the variability of the human genome.
Collapse
Affiliation(s)
- Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México 14080, Mexico
| |
Collapse
|
52
|
Daily Practice Assessment of KRAS Status in NSCLC Patients: A New Challenge for the Thoracic Pathologist Is Right around the Corner. Cancers (Basel) 2022; 14:cancers14071628. [PMID: 35406400 PMCID: PMC8996900 DOI: 10.3390/cancers14071628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary RAS mutation is the most frequent oncogenic alteration in human cancers and KRAS is the most frequently mutated, notably in non-small cell lung carcinomas (NSCLC). Various attempts to inhibit KRAS in the past were unsuccessful in these latter tumors. However, recently, several small molecules (AMG510, MRTX849, JNJ-74699157, and LY3499446) have been developed to specifically target KRAS G12C-mutated tumors, which seems promising for patient treatment and should soon be administered in daily practice for non-squamous (NS)-NSCLC. In this context, it will be mandatory to systematically assess the KRAS status in routine clinical practice, at least in advanced NS-NSCLC, leading to new challenges for thoracic oncologists. Abstract KRAS mutations are among the most frequent genomic alterations identified in non-squamous non-small cell lung carcinomas (NS-NSCLC), notably in lung adenocarcinomas. In most cases, these mutations are mutually exclusive, with different genomic alterations currently known to be sensitive to therapies targeting EGFR, ALK, BRAF, ROS1, and NTRK. Recently, several promising clinical trials targeting KRAS mutations, particularly for KRAS G12C-mutated NSCLC, have established new hope for better treatment of patients. In parallel, other studies have shown that NSCLC harboring co-mutations in KRAS and STK11 or KEAP1 have demonstrated primary resistance to immune checkpoint inhibitors. Thus, the assessment of the KRAS status in advanced-stage NS-NSCLC has become essential to setting up an optimal therapeutic strategy in these patients. This stimulated the development of new algorithms for the management of NSCLC samples in pathology laboratories and conditioned reorganization of optimal health care of lung cancer patients by the thoracic pathologists. This review addresses the recent data concerning the detection of KRAS mutations in NSCLC and focuses on the new challenges facing pathologists in daily practice for KRAS status assessment.
Collapse
|
53
|
Abstract
SignificanceThe dynamics of deleterious variation under contrasting demographic scenarios remain poorly understood in spite of their relevance in evolutionary and conservation terms. Here we apply a genomic approach to study differences in the burden of deleterious alleles between the endangered Iberian lynx (Lynx pardinus) and the widespread Eurasian lynx (Lynx lynx). Our analysis unveils a significantly lower deleterious burden in the former species that should be ascribed to genetic purging, that is, to the increased opportunities of selection against recessive homozygotes due to the inbreeding caused by its smaller population size, as illustrated by our analytical predictions. This research provides theoretical and empirical evidence on the evolutionary relevance of genetic purging under certain demographic conditions.
Collapse
|
54
|
Zhao L, Li F, Liu T, Yuan L, Zhang X, Zhang D, Li X, Zhang Y, Zhao Y, Song Q, Wang J, Zhou B, Cheng J, Xu D, Li W, Lin C, Wang W. Ovine ELOVL5 and FASN genes polymorphisms and their correlations with sheep tail fat deposition. Gene 2022; 807:145954. [PMID: 34500050 DOI: 10.1016/j.gene.2021.145954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
Reducing tail fat deposition can increase the economic value of a carcass and improve feed efficiency. This study aimed to explore ELOVL5 and FASN polymorphisms associated with tail fat deposition and their expression levels of sheep. Association analysis showed that ELOVL5 synonymous mutation g.62534 C > T was associated with tail width, tail fat weight, and relative tail fat weight (P < 0.05). FASN synonymous mutation g.12694 A > G was associated with tail length and width (P < 0.05). Combined effect analyses indicated significant differences between the combined genotypes and tail fat deposition. Quantitative real-time reverse transcription PCR indicated that the ELOVL5 and FASN expression levels were significantly higher in tail fat than in other tissues (P < 0.05). ELOVL5 expression levels in tail-fat tissue of big-tail sheep was significantly higher than that in small-tail sheep (P < 0.01). FASN expression levels were significantly higher in tail-fat tissue of small-tail sheep than in that of big-tail sheep (P < 0.05). During development, ELOVL5 tail fat expression increased significantly from 0 to 6 months old (P < 0.05), and FASN expression at 3 months old was significantly higher than that at 0 (minimum) and 6 months old (P < 0.05). Therefore, ELOVL5 and FASN polymorphisms could represent new candidate molecular markers and targets to reduce tail fat deposition in sheep.
Collapse
Affiliation(s)
- Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Fadi Li
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China; The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Teng Liu
- Suzhou Zelgen Biopharmaceuticals Co., Ltd., Kunshan, Jiangsu 215300, China
| | - Lvfeng Yuan
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Qizhi Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
55
|
Yan X, Shu J, Nie Y, Zhang Y, Wang P, Zhou W, Cui X, Liu Y. Case Report: Identification and Functional Analysis of a Homozygous Synonymous Variant in the PLOD1 Gene in a Chinese Neonatal With the Ehlers-Danlos Syndrome. Front Pediatr 2022; 10:813758. [PMID: 35252061 PMCID: PMC8891444 DOI: 10.3389/fped.2022.813758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Kyphoscoliotic Ehlers-Danlos syndrome (kEDS; OMIM225400) is a rare autosomal recessive genetic disease caused by variants in the PLOD1 gene. This research was conducted to verify the disease-causing gene in a Chinese neonatal family with the EDS. METHODS We recruited a Han Chinese neonate with PLOD1-related kEDS without kyphoscoliosis. Detailed clinical examination and laboratory tests were performed and whole exome sequencing (WES) was used to detect the pathogenic genes of the proband. In vivo experiments (reverse-transcription PCR, quantitative real-time PCR) and in vitro experiments (minigene analysis) were used to verify the function of variants suspected of affecting the splicing process. The effect of the splice site variant on the PLOD1 transcript was analyzed using splice prediction programs NetGene2 and Alternative Splice Site Predictor (ASSP). RESULTS A homozygous synonymous variant c.1095C>T (p.Gly365, rs1032781250) in the PLOD1 gene was found and verified in the family with kEDS. This splicing variant resulted in a premature termination codon of exon 10 and affected the expression of the four bases GCGC. CONCLUSION Our research showed that the homozygous synonymous variant in PLOD1 was the pathogenic cause in the proband. The combined application of WES and functional studies verified the effect of uncertain gene variants on splicing, upgrading pathogenicity evidence, and determining the cause of disease. This is helpful for the early diagnosis and treatment of kEDS.
Collapse
Affiliation(s)
- Xiaodan Yan
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Graduate College of Tianjin Medical University, Tianjin, China
| | - Jianbo Shu
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.,Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Yanyan Nie
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Ying Zhang
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Graduate College of Tianjin Medical University, Tianjin, China
| | - Ping Wang
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.,Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Weiwei Zhou
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Graduate College of Tianjin Medical University, Tianjin, China
| | - Xiaoyu Cui
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Graduate College of Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| |
Collapse
|
56
|
Coradini ALV, da Silveira Bezerra de Mello F, Furlan M, Maneira C, Carazzolle MF, Pereira GAG, Teixeira GS. QTL mapping of a Brazilian bioethanol strain links the cell wall protein-encoding gene GAS1 to low pH tolerance in S. cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:239. [PMID: 34915919 PMCID: PMC8675505 DOI: 10.1186/s13068-021-02079-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae is largely applied in many biotechnological processes, from traditional food and beverage industries to modern biofuel and biochemicals factories. During the fermentation process, yeast cells are usually challenged in different harsh conditions, which often impact productivity. Regarding bioethanol production, cell exposure to acidic environments is related to productivity loss on both first- and second-generation ethanol. In this scenario, indigenous strains traditionally used in fermentation stand out as a source of complex genetic architecture, mainly due to their highly robust background-including low pH tolerance. RESULTS In this work, we pioneer the use of QTL mapping to uncover the genetic basis that confers to the industrial strain Pedra-2 (PE-2) acidic tolerance during growth at low pH. First, we developed a fluorescence-based high-throughput approach to collect a large number of haploid cells using flow cytometry. Then, we were able to apply a bulk segregant analysis to solve the genetic basis of low pH resistance in PE-2, which uncovered a region in chromosome X as the major QTL associated with the evaluated phenotype. A reciprocal hemizygosity analysis revealed the allele GAS1, encoding a β-1,3-glucanosyltransferase, as the casual variant in this region. The GAS1 sequence alignment of distinct S. cerevisiae strains pointed out a non-synonymous mutation (A631G) prevalence in wild-type isolates, which is absent in laboratory strains. We further showcase that GAS1 allele swap between PE-2 and a low pH-susceptible strain can improve cell viability on the latter of up to 12% after a sulfuric acid wash process. CONCLUSION This work revealed GAS1 as one of the main causative genes associated with tolerance to growth at low pH in PE-2. We also showcase how GAS1PE-2 can improve acid resistance of a susceptible strain, suggesting that these findings can be a powerful foundation for the development of more robust and acid-tolerant strains. Our results collectively show the importance of tailored industrial isolated strains in discovering the genetic architecture of relevant traits and its implications over productivity.
Collapse
Affiliation(s)
- Alessandro L V Coradini
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA
| | - Fellipe da Silveira Bezerra de Mello
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil
| | - Monique Furlan
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil
| | - Carla Maneira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil
| | - Marcelo F Carazzolle
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil
| | - Gonçalo Amarante Guimaraes Pereira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil.
| | - Gleidson Silva Teixeira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil
| |
Collapse
|
57
|
Lin X. Genomic Variation Prediction: A Summary From Different Views. Front Cell Dev Biol 2021; 9:795883. [PMID: 34901036 PMCID: PMC8656232 DOI: 10.3389/fcell.2021.795883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
Structural variations in the genome are closely related to human health and the occurrence and development of various diseases. To understand the mechanisms of diseases, find pathogenic targets, and carry out personalized precision medicine, it is critical to detect such variations. The rapid development of high-throughput sequencing technologies has accelerated the accumulation of large amounts of genomic mutation data, including synonymous mutations. Identifying pathogenic synonymous mutations that play important roles in the occurrence and development of diseases from all the available mutation data is of great importance. In this paper, machine learning theories and methods are reviewed, efficient and accurate pathogenic synonymous mutation prediction methods are developed, and a standardized three-level variant analysis framework is constructed. In addition, multiple variation tolerance prediction models are studied and integrated, and new ideas for structural variation detection based on deep information mining are explored.
Collapse
Affiliation(s)
- Xiuchun Lin
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
58
|
Wang S, Cheng Y, Liu S, Xu Y, Gao Y, Wang C, Wang Z, Feng T, Lu G, Song J, Xia P, Hao L. A synonymous mutation in IGF-1 impacts the transcription and translation process of gene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1446-1465. [PMID: 34938600 PMCID: PMC8655398 DOI: 10.1016/j.omtn.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is considered to be a crucial gene in the animal development of bone and body size. In this study, a unique synonymous mutation (c.258 A > G) of the IGF-1 gene was modified with an adenine base editor to observe the growth and developmental situation of mutant mice. Significant expression differences and molecular mechanisms among vectors with different alanine synonymous codons were explored. Although modification of a single synonymous codon rarely interferes with animal phenotypes, we observed that the expression and secretion of IGF-1 were different between 8-week-old homozygous (Ho) and wild-type (WT) mice. In addition, the IGF-1 with optimal codon combinations showed a higher expression content than other codon combination modes at both transcription and translation levels and performed proliferation promotion. The gene stability and translation initiation efficiency also changed significantly. Our findings illustrated that the synonymous mutation altered the IGF-1 gene expression in individual mice and suggested that the synonymous mutation affected the IGF-1 expression and biological function through the transcription and translation processes.
Collapse
Affiliation(s)
- S.Y. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Y.Y. Cheng
- Ministry of Health Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - S.C. Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Y.X. Xu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Y. Gao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - C.L. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Z.G. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - T.Q. Feng
- College of Animal Science, Jilin University, Changchun 130062, China
| | - G.H. Lu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - J. Song
- College of Animal Science, Jilin University, Changchun 130062, China
| | - P.J. Xia
- College of Animal Science, Jilin University, Changchun 130062, China
| | - L.L. Hao
- College of Animal Science, Jilin University, Changchun 130062, China
- Corresponding author: Linlin Hao, College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
59
|
Acar S, Schlingmann KP, Nalbantoğlu Ö, Köprülü Ö, Arslan G, Özkaya B, Özkan B. A novel synonymous homozygous variant [c.2538G>A (p.Thr846Thr)] in TRPM6 in a patient with hypomagnesemia with secondary hypocalcemia. J Pediatr Endocrinol Metab 2021; 34:1481-1486. [PMID: 34261199 DOI: 10.1515/jpem-2021-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/20/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Hypomagnesemia 1, intestinal (HOMG1) is characterized by neurological symptoms that occur due to hypocalcemia and hypomagnesemia and caused by mutations in the TRPM6. Most of the identified variants in TRPM6 lead to premature termination: nonsense, frameshift, deletion, and splice site mutations. CASE PRESENTATION Herein, we report a 1.5 month-old case who presented with convulsion due to hypocalcemia and hypomagnesemia in the early infancy. Sequencing of TRPM6 revealed a novel homozygous synonymous variant [c.2538G > A (p.Thr846Thr)] in the last codon of exon 19, which is most likely to affect the splicing. We report a novel homozygous synonymous variant in the TRPM6 leading to HOMG1, expanding the mutational spectrum. CONCLUSIONS Synonymous mutations that were previously considered as harmless should be evaluated at the nucleotide level, keeping in mind that they may affect splicing and cause to the disease.
Collapse
Affiliation(s)
- Sezer Acar
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| | | | - Özlem Nalbantoğlu
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Özge Köprülü
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Gülçin Arslan
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Beyhan Özkaya
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Behzat Özkan
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| |
Collapse
|
60
|
Cheng HL, Shao YR, Dong Y, Dong HL, Yang L, Ma Y, Shen Y, Wu ZY. Genetic spectrum and clinical features in a cohort of Chinese patients with autosomal recessive cerebellar ataxias. Transl Neurodegener 2021; 10:40. [PMID: 34663476 PMCID: PMC8522248 DOI: 10.1186/s40035-021-00264-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Background Although many causative genes have been uncovered in recent years, genetic diagnosis is still missing for approximately 50% of autosomal recessive cerebellar ataxia (ARCA) patients. Few studies have been performed to determine the genetic spectrum and clinical profile of ARCA patients in the Chinese population. Methods Fifty-four Chinese index patients with unexplained autosomal recessive or sporadic ataxia were investigated by whole-exome sequencing (WES) and copy number variation (CNV) calling with ExomeDepth. Likely causal CNV predictions were validated by CNVseq. Results Thirty-eight mutations including 29 novel ones were identified in 25 out of the 54 patients, providing a 46.3% positive molecular diagnostic rate. Ten different genes were involved, of which four most common genes were SACS, SYNE1, ADCK3 and SETX, which accounted for 76.0% (19/25) of the positive cases. The de novo microdeletion in SACS was reported for the first time in China and the uniparental disomy of ADCK3 was reported for the first time worldwide. Clinical features of the patients carrying SACS, SYNE1 and ADCK3 mutations were summarized. Conclusions Our results expand the genetic spectrum and clinical profiles of ARCA patients, demonstrate the high efficiency and reliability of WES combined with CNV analysis in the diagnosis of suspected ARCA, and emphasize the importance of complete bioinformatics analysis of WES data for accurate diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00264-z.
Collapse
Affiliation(s)
- Hao-Ling Cheng
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ya-Ru Shao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Lu Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yin Ma
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ying Shen
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200000, China.
| |
Collapse
|
61
|
Komar AA. A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell. BIOCHEMISTRY (MOSCOW) 2021; 86:976-991. [PMID: 34488574 DOI: 10.1134/s0006297921080083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic code sets the correspondence between the sequence of a given nucleotide triplet in an mRNA molecule, called a codon, and the amino acid that is added to the growing polypeptide chain during protein synthesis. With four bases (A, G, U, and C), there are 64 possible triplet codons: 61 sense codons (encoding amino acids) and 3 nonsense codons (so-called, stop codons that define termination of translation). In most organisms, there are 20 common/standard amino acids used in protein synthesis; thus, the genetic code is redundant with most amino acids (with the exception of Met and Trp) are being encoded by more than one (synonymous) codon. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in mRNA suggested that the specific codon choice might have functional implications beyond coding for amino acid. Observation of nonequivalent use of codons in mRNAs implied a possibility of the existence of auxiliary information in the genetic code. Indeed, it has been found that genetic code contains several layers of such additional information and that synonymous codons are strategically placed within mRNAs to ensure a particular translation kinetics facilitating and fine-tuning co-translational protein folding in the cell via step-wise/sequential structuring of distinct regions of the polypeptide chain emerging from the ribosome at different points in time. This review summarizes key findings in the field that have identified the role of synonymous codons and their usage in protein folding in the cell.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA. .,Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,DAPCEL, Inc., Cleveland, OH 44106, USA
| |
Collapse
|
62
|
Li M, Wang Y, Li F, Zhao Y, Liu M, Zhang S, Bin Y, Smith AI, Webb GI, Li J, Song J, Xia J. A Deep Learning-Based Method for Identification of Bacteriophage-Host Interaction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1801-1810. [PMID: 32813660 PMCID: PMC8703204 DOI: 10.1109/tcbb.2020.3017386] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multi-drug resistance (MDR) has become one of the greatest threats to human health worldwide, and novel treatment methods of infections caused by MDR bacteria are urgently needed. Phage therapy is a promising alternative to solve this problem, to which the key is correctly matching target pathogenic bacteria with the corresponding therapeutic phage. Deep learning is powerful for mining complex patterns to generate accurate predictions. In this study, we develop PredPHI (Predicting Phage-Host Interactions), a deep learning-based tool capable of predicting the host of phages from sequence data. We collect >3000 phage-host pairs along with their protein sequences from PhagesDB and GenBank databases and extract a set of features. Then we select high-quality negative samples based on the K-Means clustering method and construct a balanced training set. Finally, we employ a deep convolutional neural network to build the predictive model. The results indicate that PredPHI can achieve a predictive performance of 81 percent in terms of the area under the receiver operating characteristic curve on the test set, and the clustering-based method is significantly more robust than that based on randomly selecting negative samples. These results highlight that PredPHI is a useful and accurate tool for identifying phage-host interactions from sequence data.
Collapse
|
63
|
Lin JR, Sin-Chan P, Napolioni V, Torres GG, Mitra J, Zhang Q, Jabalameli MR, Wang Z, Nguyen N, Gao T, Laudes M, Görg S, Franke A, Nebel A, Greicius MD, Atzmon G, Ye K, Gorbunova V, Ladiges WC, Shuldiner AR, Niedernhofer LJ, Robbins PD, Milman S, Suh Y, Vijg J, Barzilai N, Zhang ZD. Rare genetic coding variants associated with human longevity and protection against age-related diseases. NATURE AGING 2021; 1:783-794. [PMID: 37117627 DOI: 10.1038/s43587-021-00108-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/05/2021] [Indexed: 12/18/2022]
Abstract
Extreme longevity in humans has a strong genetic component, but whether this involves genetic variation in the same longevity pathways as found in model organisms is unclear. Using whole-exome sequences of a large cohort of Ashkenazi Jewish centenarians to examine enrichment for rare coding variants, we found most longevity-associated rare coding variants converge upon conserved insulin/insulin-like growth factor 1 signaling and AMP-activating protein kinase signaling pathways. Centenarians have a number of pathogenic rare coding variants similar to control individuals, suggesting that rare variants detected in the conserved longevity pathways are protective against age-related pathology. Indeed, we detected a pro-longevity effect of rare coding variants in the Wnt signaling pathway on individuals harboring the known common risk allele APOE4. The genetic component of extreme human longevity constitutes, at least in part, rare coding variants in pathways that protect against aging, including those that control longevity in model organisms.
Collapse
Affiliation(s)
- Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - M Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Zhen Wang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Tina Gao
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Matthias Laudes
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, Kiel University, Kiel, Germany
| | - Siegfried Görg
- Institute of Transfusion Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Warren C Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | | | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sofiya Milman
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
64
|
Baker J, Meade A, Venditti C. Genes underlying the evolution of tetrapod testes size. BMC Biol 2021; 19:162. [PMID: 34407824 PMCID: PMC8375169 DOI: 10.1186/s12915-021-01107-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Testes vary widely in mass relative to body mass across species, but we know very little about which genes underlie and contribute to such variation. This is partly because evidence for which genes are implicated in testis size variation tends to come from investigations involving just one or a few species. Contemporary comparative phylogenetic methods provide an opportunity to test candidate genes for their role in phenotypic change at a macro-evolutionary scale-across species and over millions of years. Previous attempts to detect genotype-phenotype associations across species have been limited in that they can only detect where genes have driven directional selection (e.g. brain size increase). RESULTS Here, we introduce an approach that uses rates of evolutionary change to overcome this limitation to test whether any of twelve candidate genes have driven testis size evolution across tetrapod vertebrates-regardless of directionality. We do this by seeking a relationship between the rates of genetic and phenotypic evolution. Our results reveal five genes (Alkbh5, Dmrtb1, Pld6, Nlrp3, Sp4) that each have played unique and complex roles in tetrapod testis size diversity. In all five genes, we find strong significant associations between the rate of protein-coding substitutions and the rate of testis size evolution. Such an association has never, to our knowledge, been tested before for any gene or phenotype. CONCLUSIONS We describe a new approach to tackle one of the most fundamental questions in biology: how do individual genes give rise to biological diversity? The ability to detect genotype-phenotype associations that have acted across species has the potential to build a picture of how natural selection has sculpted phenotypic change over millions of years.
Collapse
Affiliation(s)
- Joanna Baker
- School of Biological Sciences, University of Reading, Reading, RG6 6BX, UK.
| | - Andrew Meade
- School of Biological Sciences, University of Reading, Reading, RG6 6BX, UK
| | - Chris Venditti
- School of Biological Sciences, University of Reading, Reading, RG6 6BX, UK.
| |
Collapse
|
65
|
Hagen SH, Hennesen J, Altfeld M. Assessment of escape from X chromosome inactivation and gene expression in single human immune cells. STAR Protoc 2021; 2:100641. [PMID: 34355200 PMCID: PMC8319808 DOI: 10.1016/j.xpro.2021.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
X-chromosomal genes escaping from X chromosome inactivation (XCI) in immune cells can contribute to sex-specific differences in immune responses. This protocol describes the specific steps to determine escape from XCI and to simultaneously quantify mRNA expression of multiple genes at the single immune cell level using a single-nucleotide polymorphism approach. The protocol furthermore allows the analysis of allele-specific expression of X-chromosomal genes. For complete details on the use and execution of this protocol, please refer to Hagen et al. (2020). Approach to investigate escape from XCI and gene expression in single cells Simultaneous gene expression measurement of over 100 genes in one cell Assessment of allele-specific expression of genes with monoallelic expression pattern
Collapse
Affiliation(s)
- Sven Hendrik Hagen
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Jana Hennesen
- Technology Platform Flow Cytometry / FACS, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| |
Collapse
|
66
|
Olech M, Ropka-Molik K, Szmatoła T, Piórkowska K, Kuźmak J. Single Nucleotide Polymorphisms in Genes Encoding Toll-Like Receptors 7 and 8 and Their Association with Proviral Load of SRLVs in Goats of Polish Carpathian Breed. Animals (Basel) 2021; 11:ani11071908. [PMID: 34206971 PMCID: PMC8300119 DOI: 10.3390/ani11071908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) 7 and 8 are important in single-stranded viral RNA recognition, so genetic variation of these genes may play a role in SRLVs infection and disease progression. Present study aimed to identify SNPs in genes encoding TLR7 and TLR8 in goats of Carpathian breed and analyze their association with the SRLVs provirus concentration as index of disease progression. A total of 14 SNPs were detected, 6 SNPs in the TLR7 gene locus and 8 SNPs in the TLR8 gene. Nine of the 14 identified polymorphisms, 4 in the TLR7 gene and 5 in TLR8 gene, were significantly associated with the SRLVs proviral concentration. These SNPs were located in 3'UTR, 5'UTR and intron sequences as well as in the coding sequences, but they led to silent changes. Homozygous genotypes of three TLR7 SNPs (synonymous variant 1:50703293, 3'UTR variant 1:50701297 and 5'UTR variant 1:50718645) were observed in goats with lower provirus copy number as well as in seronegative animals. The results obtained in this study suggest that SNPs of TLR7/TLR8 genes may induce differential innate immune response towards SRLVs affecting proviral concentration and thereby disease pathogenesis and progression. These findings support a role for genetic variations of TLR7 and TLR8 in SRLVs infection and warrants further studies on the effect of TLR7/TLR8 polymorphisms on SRLVs infection in different populations.
Collapse
Affiliation(s)
- Monika Olech
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland;
- Correspondence: ; Tel.: +48-8188-9300; Fax: +48-818-862-595
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.R.-M.); (T.S.); (K.P.)
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.R.-M.); (T.S.); (K.P.)
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Krakow, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.R.-M.); (T.S.); (K.P.)
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| |
Collapse
|
67
|
Seaby EG, Ennis S. Challenges in the diagnosis and discovery of rare genetic disorders using contemporary sequencing technologies. Brief Funct Genomics 2021; 19:243-258. [PMID: 32393978 DOI: 10.1093/bfgp/elaa009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Next generation sequencing (NGS) has revolutionised rare disease diagnostics. Concomitant with advancing technologies has been a rise in the number of new gene disorders discovered and diagnoses made for patients and their families. However, despite the trend towards whole exome and whole genome sequencing, diagnostic rates remain suboptimal. On average, only ~30% of patients receive a molecular diagnosis. National sequencing projects launched in the last 5 years are integrating clinical diagnostic testing with research avenues to widen the spectrum of known genetic disorders. Consequently, efforts to diagnose genetic disorders in a clinical setting are now often shared with efforts to prioritise candidate variants for the detection of new disease genes. Herein we discuss some of the biggest obstacles precluding molecular diagnosis and discovery of new gene disorders. We consider bioinformatic and analytical challenges faced when interpreting next generation sequencing data and showcase some of the newest tools available to mitigate these issues. We consider how incomplete penetrance, non-coding variation and structural variants are likely to impact diagnostic rates, and we further discuss methods for uplifting novel gene discovery by adopting a gene-to-patient-based approach.
Collapse
|
68
|
Bailey SF, Alonso Morales LA, Kassen R. Effects of synonymous mutations beyond codon bias: The evidence for adaptive synonymous substitutions from microbial evolution experiments. Genome Biol Evol 2021; 13:6300525. [PMID: 34132772 PMCID: PMC8410137 DOI: 10.1093/gbe/evab141] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Synonymous mutations are often assumed to be neutral with respect to fitness because they do not alter the encoded amino acid and so cannot be 'seen' by natural selection. Yet a growing body of evidence suggests that synonymous mutations can have fitness effects that drive adaptive evolution through their impacts on gene expression and protein folding. Here, we review what microbial experiments have taught us about the contribution of synonymous mutations to adaptation. A survey of site-directed mutagenesis experiments reveals the distributions of fitness effects for nonsynonymous and synonymous mutations are more similar, especially for beneficial mutations, than expected if all synonymous mutations were neutral, suggesting they should drive adaptive evolution more often than is typically observed. A review of experimental evolution studies where synonymous mutations have contributed to adaptation shows they can impact fitness through a range of mechanisms including the creation of illicit RNA polymerase binding sites impacting transcription and changes to mRNA folding stability that modulate translation. We suggest that clonal interference in evolving microbial populations may be the reason synonymous mutations play a smaller role in adaptive evolution than expected based on their observed fitness effects. We finish by discussing the impacts of falsely assuming synonymous mutations are neutral and discuss directions for future work exploring the role of synonymous mutations in adaptive evolution.
Collapse
Affiliation(s)
- Susan F Bailey
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | | | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
69
|
Zhou Y, Lauschke VM. Computational Tools to Assess the Functional Consequences of Rare and Noncoding Pharmacogenetic Variability. Clin Pharmacol Ther 2021; 110:626-636. [PMID: 33998671 DOI: 10.1002/cpt.2289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Interindividual differences in drug response are a common concern in both drug development and across layers of care. While genetics clearly influences drug response and toxicity of many drugs, a substantial fraction of the heritable pharmacological and toxicological variability remains unexplained by known genetic polymorphisms. In recent years, population-scale sequencing projects have unveiled tens of thousands of coding and noncoding pharmacogenetic variants with unclear functional effects that might explain at least part of this missing heritability. However, translating these personalized variant signatures into drug response predictions and actionable advice remains challenging and constitutes one of the most important frontiers of contemporary pharmacogenomics. Conventional prediction methods are primarily based on evolutionary conservation, which drastically reduces their predictive accuracy when applied to poorly conserved pharmacogenes. Here, we review the current state-of-the-art of computational variant effect predictors across variant classes and critically discuss their utility for pharmacogenomics. Besides missense variants, we discuss recent progress in the evaluation of synonymous, splice, and noncoding variations. Furthermore, we discuss emerging possibilities to assess haplotypes and structural variations. We advocate for the development of algorithms trained on pharmacogenomic instead of pathogenic data sets to improve the predictive accuracy in order to facilitate the utilization of next-generation sequencing data for personalized clinical decision support and precision pharmacogenomics.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
70
|
Fan Y, Wang Y, Korfanty GA, Archer M, Xu J. Genome-Wide Association Analysis for Triazole Resistance in Aspergillus fumigatus. Pathogens 2021; 10:701. [PMID: 34199862 PMCID: PMC8227032 DOI: 10.3390/pathogens10060701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous fungus and the main agent of aspergillosis, a common fungal infection in the immunocompromised population. Triazoles such as itraconazole and voriconazole are the common first-line drugs for treating aspergillosis. However, triazole resistance in A. fumigatus has been reported in an increasing number of countries. While most studies of triazole resistance have focused on mutations in the triazole target gene cyp51A, >70% of triazole-resistant strains in certain populations showed no mutations in cyp51A. To identify potential non-cyp51A mutations associated with triazole resistance in A. fumigatus, we analyzed the whole genome sequences and triazole susceptibilities of 195 strains from 12 countries. These strains belonged to three distinct clades. Our genome-wide association study (GWAS) identified a total of six missense mutations significantly associated with itraconazole resistance and 18 missense mutations with voriconazole resistance. In addition, to investigate itraconazole and pan-azole resistance, Fisher's exact tests revealed 26 additional missense variants tightly linked to the top 20 SNPs obtained by GWAS, of which two were consistently associated with triazole resistance. The large number of novel mutations related to triazole resistance should help further investigations into their molecular mechanisms, their clinical importance, and the development of a comprehensive molecular diagnosis toolbox for triazole resistance in A. fumigatus.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.F.); (Y.W.); (G.A.K.); (M.A.)
| |
Collapse
|
71
|
Apetrei A, Molin A, Gruchy N, Godin M, Bracquemart C, Resbeut A, Rey G, Nadeau G, Richard N. A novel synonymous variant in exon 1 of GNAS gene results in a cryptic splice site and causes pseudohypoparathyroidism type 1A and pseudo-pseudohypoparathyroidism in a French family. Bone Rep 2021; 14:101073. [PMID: 33997150 PMCID: PMC8100090 DOI: 10.1016/j.bonr.2021.101073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Pseudohypoparathyroidism type 1A (PHP1A) and pseudopseudohypoparathyroidism (PPHP) (Inactivating PTH/PTHrP Signaling Disorders type 2, IPPSD2) are two rare autosomal disorders caused by loss-of-function mutations on either maternal or paternal allele, respectively, in the imprinted GNAS gene, which encodes the α subunit of the ubiquitously-expressed stimulatory G protein (Gαs). CASE PRESENTATION We investigated a synonymous GNAS variant NM_001077488.2: c.108C>A / p.(Val36=) identified in a family presenting with IPPSD2 phenotype. In silico splicing prediction algorithms were in favor of a deleterious effect of this variant, by creating a new donor splicing site. The GNAS expression studies in blood suggested haploinsufficiency and showed an alternate splice product demonstrating the unmasking of a cryptic site, leading to a 34 base pairs deletion and the creation of a probable unstable RNA.We present the first familial case of IPPSD2 caused by a pathogenic synonymous variant in GNAS gene.
Collapse
Affiliation(s)
- Andreea Apetrei
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Arnaud Molin
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Nicolas Gruchy
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Manon Godin
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Claire Bracquemart
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Antoine Resbeut
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| | - Gaëlle Rey
- Metropole Savoie Hospital Center, Genetics Department, Chambéry, France
| | - Gwenaël Nadeau
- Metropole Savoie Hospital Center, Genetics Department, Chambéry, France
| | - Nicolas Richard
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, Reference Center of Rare Diseases of Calcium and Phosphorus Metabolism, EA 7450 BioTARGen, Caen, France
| |
Collapse
|
72
|
Xiao WW, Li M, Guo ZW, Zhang R, Xi SY, Zhang XG, Li Y, Wu DQ, Ren YF, Pang XL, Wan XB, Li K, Zhou CL, Zhai XM, Liang ZK, Wang QX, Zeng ZF, Zhang HZ, Yang XX, Wu YS, Li M, Gao YH. A Genotype Signature for Predicting Pathologic Complete Response in Locally Advanced Rectal Cancer. Int J Radiat Oncol Biol Phys 2021; 110:482-491. [PMID: 33434612 DOI: 10.1016/j.ijrobp.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To construct and validate a predicting genotype signature for pathologic complete response (pCR) in locally advanced rectal cancer (PGS-LARC) after neoadjuvant chemoradiation. METHODS AND MATERIALS Whole exome sequencing was performed in 15 LARC tissues. Mutation sites were selected according to the whole exome sequencing data and literature. Target sequencing was performed in a training cohort (n = 202) to build the PGS-LARC model using regression analysis, and internal (n = 76) and external validation cohorts (n = 69) were used for validating the results. Predictive performance of the PGS-LARC model was compared with clinical factors and between subgroups. The PGS-LARC model comprised 15 genes. RESULTS The area under the curve (AUC) of the PGS model in the training, internal, and external validation cohorts was 0.776 (0.697-0.849), 0.760 (0.644-0.867), and 0.812 (0.690-0.915), respectively, and demonstrated higher AUC, accuracy, sensitivity, and specificity than cT stage, cN stage, carcinoembryonic antigen level, and CA19-9 level for pCR prediction. The predictive performance of the model was superior to clinical factors in all subgroups. For patients with clinical complete response (cCR), the positive prediction value was 94.7%. CONCLUSIONS The PGS-LARC is a reliable predictive tool for pCR in patients with LARC and might be helpful to enable nonoperative management strategy in those patients who refuse surgery. It has the potential to guide treatment decisions for patients with different probability of tumor regression after neoadjuvant therapy, especially when combining cCR criteria and PGS-LARC.
Collapse
Affiliation(s)
- Wei-Wei Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Min Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Guangzhou Darui Biotechnology Co, Ltd High-Tech Development Zone, Guangzhou, Guangdong, China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Wei Guo
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shao-Yan Xi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiang-Guo Zhang
- Department of Radiation Oncology, Affiliated Yuebei People Hospital of Shantou University Medical College, ShaoGuan, Guangdong, China
| | - Yong Li
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - De-Qing Wu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yu-Feng Ren
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Lin Pang
- Department of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiang-Bo Wan
- Department of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun Li
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chun-Lian Zhou
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang-Ming Zhai
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Kun Liang
- Guangzhou Darui Biotechnology Co, Ltd High-Tech Development Zone, Guangzhou, Guangdong, China
| | - Qiao-Xuan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhi-Fan Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Zhong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xue-Xi Yang
- Guangzhou Darui Biotechnology Co, Ltd High-Tech Development Zone, Guangzhou, Guangdong, China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying-Song Wu
- Guangzhou Darui Biotechnology Co, Ltd High-Tech Development Zone, Guangzhou, Guangdong, China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Li
- Guangzhou Darui Biotechnology Co, Ltd High-Tech Development Zone, Guangzhou, Guangdong, China
| | - Yuan-Hong Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
73
|
Hirsch Y, Tangshewinsirikul C, Booth KT, Azaiez H, Yefet D, Quint A, Weiden T, Brownstein Z, Macarov M, Davidov B, Pappas J, Rabin R, Kenna MA, Oza AM, Lafferty K, Amr SS, Rehm HL, Kolbe DL, Frees K, Nishimura C, Luo M, Farra C, Morton CC, Scher SY, Ekstein J, Avraham KB, Smith RJH, Shen J. A synonymous variant in MYO15A enriched in the Ashkenazi Jewish population causes autosomal recessive hearing loss due to abnormal splicing. Eur J Hum Genet 2021; 29:988-997. [PMID: 33398081 PMCID: PMC8187401 DOI: 10.1038/s41431-020-00790-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.
Collapse
Affiliation(s)
- Yoel Hirsch
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, NY, 11211, USA
| | - Chayada Tangshewinsirikul
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Devorah Yefet
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Jerusalem, 91506, Israel
| | - Adina Quint
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Jerusalem, 91506, Israel
| | - Tzvi Weiden
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Jerusalem, 91506, Israel
| | - Zippora Brownstein
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Macarov
- Department of Genetics and Metabolic Diseases, Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Bella Davidov
- Department of Medical Genetics, Rabin Medical Center, Petah Tikva, 49100, Israel
| | - John Pappas
- Department of Pediatrics, New York University School of Medicine, New York, NY, 10016, USA
| | - Rachel Rabin
- Department of Pediatrics, New York University School of Medicine, New York, NY, 10016, USA
| | - Margaret A Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, 02115, USA
| | - Andrea M Oza
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, 02139, USA
| | - Katherine Lafferty
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, 02139, USA
- Maine Medical Center, Scarborough, ME, 04074, USA
| | - Sami S Amr
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, 02115, USA
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, 02139, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Heidi L Rehm
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, 02115, USA
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, 02139, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Diana L Kolbe
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Kathy Frees
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Carla Nishimura
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Minjie Luo
- The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Chantal Farra
- Medical Genetics Unit, American University of Beirut Medical Center, AUBMC, 1107 2020, Beirut, Lebanon
| | - Cynthia C Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Sholem Y Scher
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, NY, 11211, USA
| | - Josef Ekstein
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, NY, 11211, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Jun Shen
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, 02115, USA.
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, 02139, USA.
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
74
|
The Identification of the SARS-CoV-2 Whole Genome: Nine Cases Among Patients in Banten Province, Indonesia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the strain of virus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for the current pandemic. Viral genome sequencing has been widely applied during outbreaks to study the relatedness of this virus to other viruses, its transmission mode, pace, evolution and geographical spread, and also its adaptation to human hosts. To date, more than 90,000 SARS-CoV-2 genome sequences have been uploaded to the GISAID database. The availability of sequencing data along with clinical and geographical data may be useful for epidemiological investigations. In this study, we aimed to analyse the genetic background of SARS-CoV-2 from patients in Indonesia by whole genome sequencing. We examined nine samples from COVID-19 patients with RT-PCR cycle threshold (Ct) of less than 25 using ARTIC Network protocols for Oxford Nanopore’s Gridi On sequencer. The analytical methods were based on the ARTIC multiplex PCR sequencing protocol for COVID-19. In this study, we found that several genetic variants within the nine COVID-19 patient samples. We identified a mutation at position 614 P323L mutation in the ORF1ab gene often found in our severe patient samples. The number of SNPs and their location within the SARS-CoV-2 genome seems to vary. This diversity might be responsible for the virulence of the virus and its clinical manifestation.
Collapse
|
75
|
Role of Synonymous Mutations in the Evolution of TEM β-Lactamase Genes. Antimicrob Agents Chemother 2021; 65:AAC.00018-21. [PMID: 33820762 DOI: 10.1128/aac.00018-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023] Open
Abstract
Nonsynonymous mutations are well documented in TEM β-lactamases. The resulting amino acid changes often alter the conferred phenotype from broad spectrum (2b) conferred by TEM-1 to extended spectrum (2be), inhibitor resistant (2br), or both extended spectrum and inhibitor resistant (2ber). The encoding bla TEM genes also deviate in numerous synonymous mutations, which are not well understood. bla TEM-3 (2be), bla TEM-33 (2br), and bla TEM-109 (2ber) were studied in comparison to bla TEM-1 bla TEM-33 was chosen for more detailed studies because it deviates from bla TEM-1 by a single nonsynonymous mutation and three additional synonymous mutations. Genes encoding the enzymes with only nonsynonymous or all (including synonymous) mutations plus all permutations between bla TEM-1 and bla TEM-33 were expressed in Escherichia coli cells. In disc diffusion assays, genes encoding TEM-3, TEM-33, and TEM-109 with all synonymous mutations resulted in higher resistance levels than genes without synonymous mutations. Disc diffusion assays with the 16 genes carrying all possible nucleotide change combinations between bla TEM-1 and bla TEM-33 indicated different susceptibilities for different variants. Nucleotide BLAST searches did not identify genes without synonymous mutations but did identify some without nonsynonymous mutations. Energies of possible secondary mRNA structures calculated with mfold are generally higher with synonymous mutations, suggesting that their role could be to destabilize the mRNA and facilitate its unfolding for efficient translation. In summary, our data indicate that transition from bla TEM-1 to other variant genes by simply acquiring the nonsynonymous mutations is not favored. Instead, synonymous mutations seem to support the transition to other variant genes with nonsynonymous mutations leading to different phenotypes.
Collapse
|
76
|
Su Q, Chen Y, Wang B, Zhang Q, He H. Genetic characterizations of Toll-like receptors in the brown rat and their associations with pathogen infections. Integr Zool 2021; 17:879-889. [PMID: 34003606 DOI: 10.1111/1749-4877.12555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toll-like receptors (TLRs) are important initiators of innate immune responses that target host-pathogen interactions. However, further research into the molecular characteristics of TLRs in wild populations is required, as well as how TLRs genetically influenced pathogen infections in the brown rat (Rattus norvegicus). Here, we explored the genetic characterization and evolution of 2 sensing nucleic acid TLRs (TLR7 and TLR8) and 2 sensing non-nucleic acid TLRs (TLR2 and TLR4) in the wild brown rat, and assessed their associations with 2 RNA viruses (Seoul hantavirus and rat hepatitis E virus (HEV)) and 2 bacteria (Leptospira and Bartonella). In these 4 TLRs, we discovered a total of 16 variants. Furthermore, TLR8 had high genetic diversity among 7 variants, while TLR2 had low genetic diversity with only 1 variant. According to selective pressure analyses, TLR4, TLR7, and TLR8 genes evolved under purifying selection. Interestingly, significant associations were found between 3 TLR8 variants and HEV infection, as well as 1 TLR2 variant and Bartonella infection. Overall, our findings provided a glimpse into the genetic characterization of TLRs in the brown rat, and further demonstrated that TLR2 and TLR8 genetic variations were related to Bartonella and HEV infection, respectively. Especially, TLR8 may be a good candidate immune gene for future research on molecular ecology and functional adaptation in wild populations.
Collapse
Affiliation(s)
- Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Chinese Academy of Sciences, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Bo Wang
- National Research Center for Wildlife-Borne Diseases, Chinese Academy of Sciences, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| |
Collapse
|
77
|
Wang Z, Zhou Y, Han Q, Ye X, Chen Y, Sun Y, Liu Y, Zou J, Qi G, Zhou X, Cheng L, Ren B. Synonymous point mutation of gtfB gene caused by therapeutic X-rays exposure reduced the biofilm formation and cariogenic abilities of Streptococcus mutans. Cell Biosci 2021; 11:91. [PMID: 34001238 PMCID: PMC8130306 DOI: 10.1186/s13578-021-00608-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The shift of oral microbiota is a critical factor of radiation caries in head and neck cancer patients after the radiotherapy. However, the direct effects of irradiation on the genome and virulence of cariogenic bacteria are poorly described. Here we investigated the genomic mutations and virulence change of Streptococcus mutans (S. mutans), the major cariogenic bacteria, exposed to the therapeutic doses of X-rays. RESULTS X-ray reduced the survival fraction of S. mutans and impacted its biofilm formation. We isolated a biofilm formation-deficient mutant #858 whose genome only possessed three synonymous mutations (c.2043 T > C, c.2100C > T, c.2109A > G) in gtfB gene. The "silent mutation" of c.2043 T > C in gtfB gene can cause the down-regulation of all of the gtfs genes' expression and decrease the GtfB enzyme secretion without the effect on the growth due to the codon bias. #858 and synonymous point mutation strain gtfB 2043 T>C, similar to the gtfB gene null mutant Δ gtfB, can significantly decrease the extracellular polysaccharide production, biofilm formation and cariogenic capabilities both in vitro and in vivo compared with wild type. CONCLUSION The direct exposure of X-ray radiation can affect the genome and virulence of oral bacteria even at therapeutic doses. The synonymous mutations of genome are negligent factors for gene expression and related protein translation due to the codon usage frequency.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Yanyan Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guohai Qi
- Radiotherapy Center, Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China. .,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China. .,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
78
|
Santos CGM, Rolim-Filho NG, Domingues CA, Dornelas-Ribeiro M, King JL, Budowle B, Moura-Neto RS, Silva R. Association of whole mtDNA, an NADPH G11914A variant, and haplogroups with high physical performance in an elite military troop. ACTA ACUST UNITED AC 2021; 54:e10317. [PMID: 33909855 PMCID: PMC8075130 DOI: 10.1590/1414-431x202010317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022]
Abstract
Physical performance is a multifactorial and complex trait influenced by environmental and hereditary factors. Environmental factors alone have been insufficient to characterize all outstanding phenotypes. Recent advances in genomic technologies have enabled the investigation of whole nuclear and mitochondrial genome sequences, increasing our ability to understand interindividual variability in physical performance. Our objective was to evaluate the association of mitochondrial polymorphic loci with physical performance in Brazilian elite military personnel. Eighty-eight male military personnel who participated in the Command Actions Course of the Army were selected. Total DNA was obtained from blood samples and a complete mitochondrial genome (mtDNA) was sequenced using Illumina MiSeq platform. Twenty-nine subjects completed the training program (FINISHED, 'F'), and fifty-nine failed to complete (NOT_FINISHED, 'NF'). The mtDNA from NF was slightly more similar to genomes from African countries frequently related to endurance level. Twenty-two distinct mtDNA haplogroups were identified corroborating the intense genetic admixture of the Brazilian population, but their distribution was similar between the two groups (FST=0.0009). Of 745 polymorphisms detected in the mtDNA, the position G11914A within the NADPH gene component of the electron transport chain, was statistically different between F and NF groups (P=0.011; OR: 4.286; 95%CI: 1.198-16.719), with a higher frequency of the G allele in group F individuals). The high performance of military personnel may be mediated by performance-related genomic traits. Thus, mitochondrial genetic markers such as the ND4 gene may play an important role on physical performance variability.
Collapse
Affiliation(s)
- C G M Santos
- Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brasil
| | - N G Rolim-Filho
- Centro de Instrução de Operações Especiais do Exército Brasileiro, Rio de Janeiro, RJ, Brasil
| | - C A Domingues
- Centro de Instrução de Operações Especiais do Exército Brasileiro, Rio de Janeiro, RJ, Brasil
| | | | - J L King
- Center for Human Identification, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - B Budowle
- Center for Human Identification, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - R S Moura-Neto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - R Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
79
|
Huang X, Li Y, Zhou RM, Cui SJ, Cao SR, Huo XR, Wang N. CDH1 gene rs1801552 C/T polymorphism increases susceptibility to esophageal squamous cell carcinoma but not to gastric cardiac adenocarcinoma. Cancer Invest 2021; 39:812-818. [PMID: 33888005 DOI: 10.1080/07357907.2021.1916520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The present study aimed to investigate whether the single nucleotide polymorphism (SNP) rs1801552 C/T in CDH1 gene is correlated with the risk of esophageal squamous cell carcinoma (ESCC) and gastric cardiac adenocarcinoma (GCA), as a preliminary study. METHODS The rs1801552 C/T polymorphism was genotyped by the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 1316 cancer patients (810 ESCC and 506 GCA) and 1966 controls in north China. We performed two case-control studies, each of which included a population-based set and a hospital-based set. RESULTS The data showed that the rs1801552 C/T polymorphism was associated with the risk of ESCC. Allelotype and genotype distributions of the rs1801552 C/T polymorphism in ESCC patients of high-incidence region and hospital were significantly different from that in their respective controls (P < 0.05). Compared with C/C genotype, T/T genotype increased the risk of ESCC in high-incidence region and hospital (age, sex, smoking status and family history of UGIC adjusted odds ratio (OR) = 1.79 and 2.10, 95% confidence interval (CI) = 1.23 - 2.60 and 1.10 - 4.04, respectively). Allelotype and genotype distributions of the rs1801552 C/T polymorphism in GCA patients were not significantly different from that in their controls, respectively (P > 0.05). CONCLUSIONS The findings in the present pilot study suggest that the rs1801552 C/T polymorphism was associated with the risk of ESCC, but was not associated with the risk of GCA in high-incidence region and hospital.
Collapse
Affiliation(s)
- Xi Huang
- Hebei Provincial Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Yan Li
- Hebei Provincial Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Rong-Miao Zhou
- Hebei Provincial Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Sai-Jin Cui
- Hebei Provincial Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Shi-Ru Cao
- Hebei Provincial Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Xiang-Ran Huo
- Hebei Provincial Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Na Wang
- Hebei Provincial Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
80
|
Erblang M, Sauvet F, Drogou C, Quiquempoix M, Van Beers P, Guillard M, Rabat A, Trignol A, Bourrilhon C, Erkel MC, Léger D, Thomas C, Gomez-Merino D, Chennaoui M. Genetic Determinants of Neurobehavioral Responses to Caffeine Administration during Sleep Deprivation: A Randomized, Cross Over Study (NCT03859882). Genes (Basel) 2021; 12:555. [PMID: 33920292 PMCID: PMC8069049 DOI: 10.3390/genes12040555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
This study investigated whether four single nucleotide polymorphisms (SNPs) moderated caffeine effects on vigilance and performance in a double-blind and crossover total sleep deprivation (TSD) protocol in 37 subjects. In caffeine (2 × 2.5 mg/kg/24 h) or placebo-controlled condition, subjects performed a psychomotor vigilance test (PVT) and reported sleepiness every six hours (Karolinska sleepiness scale (KSS)) during TSD. EEG was also analyzed during the 09:15 PVT. Carriers of the TNF-α SNP A allele appear to be more sensitive than homozygote G/G genotype to an attenuating effect of caffeine on PVT lapses during sleep deprivation only because they seem more degraded, but they do not perform better as a result. The A allele carriers of COMT were also more degraded and sensitive to caffeine than G/G genotype after 20 h of sleep deprivation, but not after 26 and 32 h. Regarding PVT reaction time, ADORA2A influences the TSD effect but not caffeine, and PER3 modulates only the caffeine effect. Higher EEG theta activity related to sleep deprivation was observed in mutated TNF-α, PER3, and COMT carriers, in the placebo condition particularly. In conclusion, there are genetic influences on neurobehavioral impairments related to TSD that appear to be attenuated by caffeine administration. (NCT03859882).
Collapse
Affiliation(s)
- Mégane Erblang
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Fabien Sauvet
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Catherine Drogou
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Michaël Quiquempoix
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Pascal Van Beers
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Mathias Guillard
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Arnaud Rabat
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Aurélie Trignol
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Cyprien Bourrilhon
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Marie-Claire Erkel
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Damien Léger
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
- APHP, Hôtel-Dieu, Centre du sommeil et de la Vigilance, 75004 Paris, France
| | - Claire Thomas
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Danielle Gomez-Merino
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Mounir Chennaoui
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| |
Collapse
|
81
|
Gaither JBS, Lammi GE, Li JL, Gordon DM, Kuck HC, Kelly BJ, Fitch JR, White P. Synonymous variants that disrupt messenger RNA structure are significantly constrained in the human population. Gigascience 2021; 10:6211353. [PMID: 33822938 PMCID: PMC8023685 DOI: 10.1093/gigascience/giab023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Background The role of synonymous single-nucleotide variants in human health and disease is poorly understood, yet evidence suggests that this class of “silent” genetic variation plays multiple regulatory roles in both transcription and translation. One mechanism by which synonymous codons direct and modulate the translational process is through alteration of the elaborate structure formed by single-stranded mRNA molecules. While tools to computationally predict the effect of non-synonymous variants on protein structure are plentiful, analogous tools to systematically assess how synonymous variants might disrupt mRNA structure are lacking. Results We developed novel software using a parallel processing framework for large-scale generation of secondary RNA structures and folding statistics for the transcriptome of any species. Focusing our analysis on the human transcriptome, we calculated 5 billion RNA-folding statistics for 469 million single-nucleotide variants in 45,800 transcripts. By considering the impact of all possible synonymous variants globally, we discover that synonymous variants predicted to disrupt mRNA structure have significantly lower rates of incidence in the human population. Conclusions These findings support the hypothesis that synonymous variants may play a role in genetic disorders due to their effects on mRNA structure. To evaluate the potential pathogenic impact of synonymous variants, we provide RNA stability, edge distance, and diversity metrics for every nucleotide in the human transcriptome and introduce a “Structural Predictivity Index” (SPI) to quantify structural constraint operating on any synonymous variant. Because no single RNA-folding metric can capture the diversity of mechanisms by which a variant could alter secondary mRNA structure, we generated a SUmmarized RNA Folding (SURF) metric to provide a single measurement to predict the impact of secondary structure altering variants in human genetic studies.
Collapse
Affiliation(s)
- Jeffrey B S Gaither
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Grant E Lammi
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - James L Li
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - David M Gordon
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Harkness C Kuck
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Benjamin J Kelly
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - James R Fitch
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Peter White
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
82
|
Karavidha KK, Burmeister M, Greenwald MK. β-Arrestin 2 (ARRB2) Polymorphism is Associated With Adverse Consequences of Chronic Heroin Use. Am J Addict 2021; 30:351-357. [PMID: 33783060 DOI: 10.1111/ajad.13150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND OBJECTIVES β-arrestin 2 is an intracellular protein recruited during the activation of G-protein-coupled receptors. In preclinical studies, β-arrestin 2 has been implicated in µ-opioid receptor desensitization and internalization and the development of opioid tolerance and dependence. The present study investigated relationships between variants in the gene encoding β-arrestin 2 (ARRB2) and clinically relevant phenotypes among individuals with opioid use disorder (OUD). We hypothesized that ARRB2 variants would be associated with the negative effects of long-term heroin use. METHODS Chronic heroin users (N = 201; n = 103 African American; n = 98 Caucasian) were genotyped for ARRB2 r1045280 (synonymous, also affecting binding motif of transcription factor GTF2IRD1), rs2036657 (3'UTR) and rs3786047 (intron) and assessed for the past-month frequency of use, injection use, and lifetime duration of heroin use, number of heroin quit-attempts, and heroin use-related consequences. RESULTS Lifetime heroin-use consequences (especially occupational and health-related) were significantly lower for African American ARRB2 r1045280 C-allele carriers compared with the TT genotype. There was no significant genotype difference in the Caucasian group. ARRB2 rs2036657 was in strong linkage disequilibrium with rs1045280. DISCUSSION AND CONCLUSIONS These results, consistent with extant data, illustrate a role for ancestry-dependent allelic variation in ARRB2 r1045280 on heroin-use consequences. The ARRB2 r1045280 C-allele played a protective role in African-descent participants. SCIENTIFIC SIGNIFICANCE These first-in-human findings, which should be replicated, provide support for mechanistic investigations of ARRB2 and related intracellular signaling molecules in OUD etiology, treatment, and relapse prevention. (Am J Addict 2021;00:00-00).
Collapse
Affiliation(s)
- Klevis K Karavidha
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Margit Burmeister
- Department of Computational Medicine & Bioinformatics, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Mark K Greenwald
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan.,Department of Pharmacy Practice, Wayne State University, Detroit, Michigan
| |
Collapse
|
83
|
Heine A, Juranek S, Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer 2021; 20:52. [PMID: 33722265 PMCID: PMC7957288 DOI: 10.1186/s12943-021-01339-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
In vitro-transcribed messenger RNA-based therapeutics represent a relatively novel and highly efficient class of drugs. Several recently published studies emphasize the potential efficacy of mRNA vaccines in treating different types of malignant and infectious diseases where conventional vaccine strategies and platforms fail to elicit protective immune responses. mRNA vaccines have lately raised high interest as potent vaccines against SARS-CoV2. Direct application of mRNA or its electroporation into dendritic cells was shown to induce polyclonal CD4+ and CD8+ mediated antigen-specific T cell responses as well as the production of protective antibodies with the ability to eliminate transformed or infected cells. More importantly, the vaccine composition may include two or more mRNAs coding for different proteins or long peptides. This enables the induction of polyclonal immune responses against a broad variety of epitopes within the encoded antigens that are presented on various MHC complexes, thus avoiding the restriction to a certain HLA molecule or possible immune escape due to antigen-loss. The development and design of mRNA therapies was recently boosted by several critical innovations including the development of technologies for the production and delivery of high quality and stable mRNA. Several technical obstacles such as stability, delivery and immunogenicity were addressed in the past and gradually solved in the recent years.This review will summarize the most recent technological developments and application of mRNA vaccines in clinical trials and discusses the results, challenges and future directions with a special focus on the induced innate and adaptive immune responses.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Drug Delivery Systems
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Humans
- Immunity
- Immunotherapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Neoplasms/etiology
- Neoplasms/pathology
- Neoplasms/therapy
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Annkristin Heine
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Stefan Juranek
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Peter Brossart
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
84
|
Savarese M, Välipakka S, Johari M, Hackman P, Udd B. Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders? J Neuromuscul Dis 2021; 7:203-216. [PMID: 32176652 PMCID: PMC7369045 DOI: 10.3233/jnd-190459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human genes have a variable length. Those having a coding sequence of extraordinary length and a high number of exons were almost impossible to sequence using the traditional Sanger-based gene-by-gene approach. High-throughput sequencing has partly overcome the size-related technical issues, enabling a straightforward, rapid and relatively inexpensive analysis of large genes. Several large genes (e.g. TTN, NEB, RYR1, DMD) are recognized as disease-causing in patients with skeletal muscle diseases. However, because of their sheer size, the clinical interpretation of variants in these genes is probably the most challenging aspect of the high-throughput genetic investigation in the field of skeletal muscle diseases. The main aim of this review is to discuss the technical and interpretative issues related to the diagnostic investigation of large genes and to reflect upon the current state of the art and the future advancements in the field.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Välipakka
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
85
|
Zhou X, Li X, Wei W, Duan X, Zhang H, Ding M, Yao W, Wang Q, Wang W, Yang Y. Association between genetic polymorphisms of telomere pathway genes and hydrogen peroxide level in omethoate exposure workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103541. [PMID: 33161111 DOI: 10.1016/j.etap.2020.103541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The aim of this study was to explore the association between genetic variations in telomere pathway genes and the level of hydrogen peroxide (H2O2) in omethoate exposure workers. METHODS A total of 180 omethoate exposure workers and 115 healthy controls were recruited. The level of H2O2 in plasma was determined with molybdenic acid colorimetry. Polymerase chain reaction and restriction fragment length was used to detect polymorphisms in POT1 rs1034794, POT1 rs10250202, TERF1 rs3863242, and TERT rs2736098. RESULTS The level of H2O2 in exposure group (4.26 ± 0.71) was significantly higher than that in control group (3.29 ± 0.46). Generalized linear models indicated that risk factors for the increase H2O2 level were exposure [β(95 % CI) = 0.951 (0.806, 1.096), P < 0.001] and AA + AT genotype in POT1 rs034794 [β(95 % CI) = 0.397 (0.049, 0.745), P = 0.025]. CONCLUSION The increase H2O2 level was associated with omethoate exposure and AA + AT genotypes in POT1 gene rs1034794. It provided a new idea that polymorphisms in telomere pathway genes may indirectly regulate telomere length by influencing oxidative stress.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinling Li
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wan Wei
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingcui Ding
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
86
|
Barbhuiya PA, Uddin A, Chakraborty S. Understanding the codon usage patterns of mitochondrial CO genes among Amphibians. Gene 2021; 777:145462. [PMID: 33515725 DOI: 10.1016/j.gene.2021.145462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
A universal phenomenon of using synonymous codons unequally in coding sequences known as codon usage bias (CUB) is observed in all forms of life. Mutation and natural selection drive CUB in many species but the relative role of evolutionary forces varies across species, genes and genomes. We studied the CUB in mitochondrial (mt) CO genes from three orders of Amphibia using bioinformatics approach as no work was reported yet. We observed that CUB of mt CO genes of Amphibians was weak across different orders. Order Caudata had higher CUB followed by Gymnophiona and Anura for all genes and CUB also varied across genes. Nucleotide composition analysis showed that CO genes were AT-rich. The AT content in Caudata was higher than that in Gymnophiona while Anura showed the least content. Multiple investigations namely nucleotide composition, correspondence analysis, parity plot analysis showed that the interplay of mutation pressure and natural selection caused CUB in these genes. Neutrality plot suggested the involvement of natural selection was more than the mutation pressure. The contribution of natural selection was higher in Anura than Gymnophiona and the lowest in Caudata. The codons CGA, TGA, AAA were found to be highly favoured by nature across all genes and orders.
Collapse
Affiliation(s)
- Parvin A Barbhuiya
- Department of Biotechnology, Assam University, Silchar 788150, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788150, Assam, India.
| |
Collapse
|
87
|
Zhao S, Ge W, Watanabe A, Fortwendel JR, Gibbons JG. Genome-Wide Association for Itraconazole Sensitivity in Non-resistant Clinical Isolates of Aspergillus fumigatus. FRONTIERS IN FUNGAL BIOLOGY 2021; 1:617338. [PMID: 37743877 PMCID: PMC10512406 DOI: 10.3389/ffunb.2020.617338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/15/2020] [Indexed: 09/26/2023]
Abstract
Aspergillus fumigatus is a potentially lethal opportunistic pathogen that infects over ~200,000 people and causes ~100,000 deaths per year globally. Treating A. fumigatus infections is particularly challenging because of the recent emergence of azole-resistance. The majority of studies focusing on the molecular mechanisms underlying azole resistance have examined azole-resistant isolates. However, isolates that are susceptible to azoles also display variation in their sensitivity, presenting a unique opportunity to identify genes contributing to azole sensitivity. Here, we used genome-wide association (GWA) analysis to identify loci involved in azole sensitivity by analyzing the association between 68,853 SNPs and itraconazole (ITCZ) minimum inhibitory concentration (MIC) in 76 clinical isolates of A. fumigatus from Japan. Population structure analysis suggests the presence of four distinct populations, with ITCZ MICs distributed relatively evenly across populations. We independently conducted GWA when treating ITCZ MIC as a quantitative trait and a binary trait, and identified two SNPs with strong associations in both analyses. These SNPs fell within the coding regions of Afu2g02220 and Afu2g02140. We functionally validated Afu2g02220 by knocking it out using a CRISPR/Cas9 approach, because orthologs of this gene are involved in sterol modification and ITCZ targets the ergosterol biosynthesis pathway. Knockout strains displayed no difference in growth compared to the parent strain in minimal media, yet a minor but consistent inhibition of growth in the presence of 0.15 μg/ml ITCZ. Our results suggest that GWA paired with efficient gene deletion is a powerful and unbiased strategy for identifying the genetic basis of complex traits in A. fumigatus.
Collapse
Affiliation(s)
- Shu Zhao
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Jarrod R. Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - John G. Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
88
|
Clusan L, Le Goff P, Flouriot G, Pakdel F. A Closer Look at Estrogen Receptor Mutations in Breast Cancer and Their Implications for Estrogen and Antiestrogen Responses. Int J Mol Sci 2021; 22:ijms22020756. [PMID: 33451133 PMCID: PMC7828590 DOI: 10.3390/ijms22020756] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. More than 70% of BC cases express estrogen receptor alpha (ERα), a central transcription factor that stimulates the proliferation of breast cancer cells, usually in the presence of estrogen. While most cases of ER-positive BC initially respond to antiestrogen therapies, a high percentage of cases develop resistance to treatment over time. The recent discovery of mutated forms of ERα that result in constitutively active forms of the receptor in the metastatic-resistance stage of BC has provided a strong rationale for the development of new antiestrogens. These molecules targeting clinically relevant ERα mutants and a combination with other pharmacological inhibitors of specific pathways may constitute alternative treatments to improve clinical practice in the fight against metastatic-resistant ER-positive BC. In this review, we summarize the latest advances regarding the particular involvement of point mutations of ERα in endocrine resistance. We also discuss the involvement of synonymous ERα mutations with respect to co-translational folding of the receptor and ribosome biogenesis in breast carcinogenesis.
Collapse
|
89
|
Trabelsi N, Chaouch L, Haddad F, Jaouani M, Barkaoui E, Darragi I, Chaouachi D, Boudrigua I, Menif S, Abbes S. Novel mutations in Uridyl-diphosphate-glucuronosyl-transferase 1A1 (UGT1A1) gene in Tunisian patients with unconjugated hyperbilirubinemia. Eur J Med Genet 2021; 64:104139. [PMID: 33421605 DOI: 10.1016/j.ejmg.2021.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/02/2020] [Accepted: 01/03/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Unconjugated hyperbilirubinemia (UCB) is a feature of Gilbert's syndrome (GS) and Crigler-Najjar's syndrome (CNS), which are two hereditary defects in bilirubin metabolism. Both syndromes are linked to mutations in the UGT1A1 gene, which cause either the decrease or the absence of the UGT1A1 enzymatic activity. Here, we investigated the molecular basis of the UGT1A1 gene in Tunisian patients presenting with unconjugated hyperbilirubinemia. METHODS Twenty-four patients with UCB were investigated. The screening protocol for hemoglobinopathies, enzymopathies, and membrane defects was executed in all patients. Afterward, the molecular analysis of the entire UGT1A1 gene was performed by DNA Sanger sequencing. Several bioinformatic tools were used to explore the effects of novel mutations. RESULTS Fifteen different UGT1A1 variations were identified, among which four are described here for the first time. In exon 5, the c.1412C > G; p.(Ala471Gly) and c.1589C > T; p.(Ser530Phe) mutations were detected in patients presenting with CNS type I and GS, respectively. In the 3'UTR region of UGT1A1, the c.*90C > T mutation was detected in 3 patients with CNS type I. In the same region, the c.*388C > T defect was found in a GS patient. A deleterious and damaging effect on the UGT1A1 protein were predicted for both exonic mutations. Furthermore, novel microRNAs were identified as targetting the mutated sequences for the 3'UTR mutations. CONCLUSION Our study provides novel data on UCB among Tunisians. Furthermore, we report four novel mutations associated with both GS and CNS. The identification of these mutations increases the spectrum of the UGT1A1 mutations and contributes to an understanding of the molecular abnormalities associated with unconjugated hyperbilirubinemia.
Collapse
Affiliation(s)
- Nawel Trabelsi
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Hématologie Moléculaire et Cellulaire, Tunisie.
| | - Leila Chaouch
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Hématologie Moléculaire et Cellulaire, Tunisie; Université de Sousse, Faculté de Médecine de Sousse, Tunisie
| | - Faten Haddad
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Hématologie Moléculaire et Cellulaire, Tunisie
| | - Mouna Jaouani
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Hématologie Moléculaire et Cellulaire, Tunisie
| | - Emna Barkaoui
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Hématologie Moléculaire et Cellulaire, Tunisie
| | - Imen Darragi
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Hématologie Moléculaire et Cellulaire, Tunisie
| | - Dorra Chaouachi
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Hématologie Moléculaire et Cellulaire, Tunisie
| | - Imen Boudrigua
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Hématologie Moléculaire et Cellulaire, Tunisie
| | - Samia Menif
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Hématologie Moléculaire et Cellulaire, Tunisie
| | - Salem Abbes
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Hématologie Moléculaire et Cellulaire, Tunisie
| |
Collapse
|
90
|
Identification of New, Functionally Relevant Mutations in the Coding Regions of the Human Fos and Jun Proto-Oncogenes in Rheumatoid Arthritis Synovial Tissue. Life (Basel) 2020; 11:life11010005. [PMID: 33374881 PMCID: PMC7823737 DOI: 10.3390/life11010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
In rheumatoid arthritis (RA), the expression of many pro-destructive/pro-inflammatory proteins depends on the transcription factor AP-1. Therefore, our aim was to analyze the presence and functional relevance of mutations in the coding regions of the AP-1 subunits of the fos and jun family in peripheral blood (PB) and synovial membranes (SM) of RA and osteoarthritis patients (OA, disease control), as well as normal controls (NC). Using the non-isotopic RNAse cleavage assay, one known polymorphism (T252C: silent; rs1046117; present in RA, OA, and NC) and three novel germline mutations of the cfos gene were detected: (i) C361G/A367G: Gln121Glu/Ile123Val, denoted as “fos121/123”; present only in one OA sample; (ii) G374A: Arg125Lys, “fos125”; and (iii) C217A/G374A: Leu73Met/Arg125Lys, “fos73/125”, the latter two exclusively present in RA. In addition, three novel somatic cjun mutations (604–606ΔCAG: ΔGln202, “jun202”; C706T: Pro236Ser, “jun236”; G750A: silent) were found exclusively in the RA SM. Tansgenic expression of fos125 and fos73/125 mutants in NIH-3T3 cells induced an activation of reporter constructs containing either the MMP-1 (matrix metalloproteinase) promoter (3- and 4-fold, respectively) or a pentameric AP-1 site (approximately 5-fold). Combined expression of these two cfos mutants with cjun wildtype or mutants (jun202, jun236) further enhanced reporter expression of the pentameric AP-1 construct. Finally, genotyping for the novel functionally relevant germline mutations in 298 RA, 288 OA, and 484 NC samples revealed no association with RA. Thus, functional cfos/cjun mutants may contribute to local joint inflammation/destruction in selected patients with RA by altering the transactivation capacity of AP-1 complexes.
Collapse
|
91
|
Deb B, Uddin A, Chakraborty S. Genome-wide analysis of codon usage pattern in herpesviruses and its relation to evolution. Virus Res 2020; 292:198248. [PMID: 33253719 DOI: 10.1016/j.virusres.2020.198248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
The preferential use of a specific codon, out of a group of synonymous codons encoding the same amino acid, in a gene transcript results from the bias in codon choice. Various evolutionary forces namely mutation pressure and natural selection influence the pattern of codon usage i.e. distinct for each gene/genome. We investigated the pattern of codon usage of eight human herpesvirus genomes and compared them with two other herpesvirus genomes namely murine herpesvirus 68 and bovine herpesvirus type 1.1 to elucidate its compositional features, pattern of codon usage across the genomes and report the differences of codon usage pattern of human herpesviruses from that of other two other viruses. We also identified the similarity of the codon usage of human herpesviruses with its host (human). The genes were found to be CG rich in HHV2, HHV3, HHV4, HHV6, HHV7 and BH genomes while TA rich in HHV1, HHV5, HHV8 and MH genomes. The codon usage bias (CUB) of genes was low. A highly significant correlation was found among compositional contents depicting the role of mutational pressure along with natural selection in framing CUB. Several more frequently used codons as well as less frequently used codons were identified to be similar between each human virus and its host (human), while murine herpesvirus 68 and bovine herpesvirus type 1.1 genomes did not possess similar adaptation strategy as human herpesviruses to human (host), thus we could conclude that viral CUB might have been shaped as per their host's nature for better surveillance. Neutrality plot revealed mutational pressure mostly influenced the CUB of HHV1, HHV8 and MH viruses, while natural selection had a major impact in the CUB of HHV2, HHV3, HHV4, HHV5, HHV6, HHV7 and BH genomes.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
92
|
Zheng J, Xu X, Zhang X, Wang X, Shu J, Cai C. Variants of CAPN3 cause limb-girdle muscular dystrophy type 2A in two Chinese families. Exp Ther Med 2020; 21:104. [PMID: 33335567 PMCID: PMC7739812 DOI: 10.3892/etm.2020.9536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/26/2020] [Indexed: 11/11/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) are a group of neuromuscular diseases that are characterized by progressive muscle weakness. LGMD type 2A (LGMD2A), caused by variants in the calpain-3 (CAPN3) gene, is the most prevalent type. The present study aimed to analyze pathogenic CAPN3 gene variants in two pedigrees affected by LGMD2A. Each family contains three patients who are siblings and sought genetic counseling. Genomic DNA was extracted from the peripheral blood samples collected from the probands and family members and whole-exome sequencing (WES) was used to detect the pathogenic genes in the probands. Suspected variants were subsequently validated by Sanger sequencing. In family 1, WES revealed that the proband carried the compound heterogeneous variants c.1194-9A>G and c.1437C>T (p.Ser479=) in CAPN3 (NM_000070.2). In family 2, WES identified that the proband carried the compound heterogeneous variants c.632+4A>G and c.1468C>T (p.Arg490Trp) in CAPN3 (NM_000070.2). In conclusion, the present study indicated that the compound heterogeneous variants of the CAPN3 gene were most likely responsible for LGMD2A in the two Chinese families.
Collapse
Affiliation(s)
- Jie Zheng
- Graduate College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiaowei Xu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, P.R. China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, P.R. China
| | - Xinjie Zhang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, P.R. China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, P.R. China
| | - Xuetao Wang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, P.R. China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, P.R. China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, P.R. China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, P.R. China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, P.R. China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, P.R. China.,Department of Neurosurgery, Tianjin Children's Hospital, Tianjin 300134, P.R. China
| |
Collapse
|
93
|
Gebert M, Jaśkiewicz M, Moszyńska A, Collawn JF, Bartoszewski R. The Effects of Single Nucleotide Polymorphisms in Cancer RNAi Therapies. Cancers (Basel) 2020; 12:E3119. [PMID: 33113880 PMCID: PMC7694039 DOI: 10.3390/cancers12113119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Tremendous progress in RNAi delivery methods and design has allowed for the effective development of siRNA-based therapeutics that are currently under clinical investigation for various cancer treatments. This approach has the potential to revolutionize cancer therapy by providing the ability to specifically downregulate or upregulate the mRNA of any protein of interest. This exquisite specificity, unfortunately, also has a downside. Genetic variations in the human population are common because of the presence of single nucleotide polymorphisms (SNPs). SNPs lead to synonymous and non-synonymous changes and they occur once in every 300 base pairs in both coding and non-coding regions in the human genome. Much less common are the somatic mosaicism variations associated with genetically distinct populations of cells within an individual that is derived from postzygotic mutations. These heterogeneities in the population can affect the RNAi's efficacy or more problematically, which can lead to unpredictable and sometimes adverse side effects. From a more positive viewpoint, both SNPs and somatic mosaicisms have also been implicated in human diseases, including cancer, and these specific changes could offer the ability to effectively and, more importantly, selectively target the cancer cells. In this review, we discuss how SNPs in the human population can influence the development and success of novel anticancer RNAi therapies and the importance of why SNPs should be carefully considered.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Maciej Jaśkiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| |
Collapse
|
94
|
A de novo synonymous variant in EFTUD2 disrupts normal splicing and causes mandibulofacial dysostosis with microcephaly: case report. BMC MEDICAL GENETICS 2020; 21:182. [PMID: 32943010 PMCID: PMC7499997 DOI: 10.1186/s12881-020-01121-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/03/2020] [Indexed: 11/25/2022]
Abstract
Background Mandibulofacial dysostosis with microcephaly (MFDM) is a rare autosomal dominant genetic disease characterized by intellectual and growth retardations, as well as major microcephaly, induced by missense and splice site variants or microdeletions in the EFTUD2 gene. Case presentation Here, we investigate the case of a young girl with symptoms of MFDM and a normal karyotype. Whole-exome sequencing of the family was performed to identify genetic alterations responsible for this phenotype. We identified a de novo synonymous variant in the EFTUD2 gene. We demonstrated that this synonymous variant disrupts the donor splice-site in intron 9 resulting in the skipping of exon 9 and a frameshift that leads to a premature stop codon. Conclusions We present the first case of MFDM caused by a synonymous variant disrupting the donor splice site, leading to exon skipping.
Collapse
|
95
|
Alonso AM, Diambra L. SARS-CoV-2 Codon Usage Bias Downregulates Host Expressed Genes With Similar Codon Usage. Front Cell Dev Biol 2020; 8:831. [PMID: 32974353 PMCID: PMC7468442 DOI: 10.3389/fcell.2020.00831] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome has spread quickly throughout the world and was declared a pandemic by the World Health Organization (WHO). The pathogenic agent is a new coronavirus (SARS-CoV-2) that infects pulmonary cells with great effectiveness. In this study we focus on the codon composition for the viral protein synthesis and its relationship with the protein synthesis of the host. Our analysis reveals that SARS-CoV-2 preferred codons have poor representation of G or C nucleotides in the third position, a characteristic which could result in an unbalance in the tRNAs pools of the infected cells with serious implications in host protein synthesis. By integrating this observation with proteomic data from infected cells, we observe a reduced translation rate of host proteins associated with highly expressed genes and that they share the codon usage bias of the virus. The functional analysis of these genes suggests that this mechanism of epistasis can contribute to understanding how this virus evades the immune response and the etiology of some deleterious collateral effect as a result of the viral replication. In this manner, our finding contributes to the understanding of the SARS-CoV-2 pathogeny and could be useful for the design of a vaccine based on the live attenuated strategy.
Collapse
Affiliation(s)
- Andres Mariano Alonso
- InTech, Universidad Nacional de San Martin, Chascomús, Argentina
- CONICET, Chascomús, Argentina
| | - Luis Diambra
- CONICET, Chascomús, Argentina
- CREG, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
96
|
Associations between the Bovine Myostatin Gene and Milk Fatty Acid Composition in New Zealand Holstein-Friesian × Jersey-Cross Cows. Animals (Basel) 2020; 10:ani10091447. [PMID: 32824948 PMCID: PMC7552700 DOI: 10.3390/ani10091447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The gene that encodes myostatin influences more than one trait, and its expression has been observed in skeletal muscle, as well as the mammary gland. In this study, association analysis revealed that variation in the bovine myostatin gene affects milk fatty acid composition, raising the possibility that this genetic variation may be utilized to increase the amount of unsaturated fatty acid and decrease the amount of saturated fatty acid in milk. Abstract The myostatin gene (MSTN), which encodes the protein myostatin, is pleiotropic, and its expression has been associated with both increased and decreased adipogenesis and increased skeletal muscle mass in animals. In this study, the polymerase chain reaction, coupled with single strand conformation polymorphism analysis, was utilized to reveal nucleotide sequence variation in bovine MSTN in 410 New Zealand (NZ) Holstein-Friesian × Jersey (HF × J)-cross cows. These cows ranged from 3 to 9 years of age and over the time studied, produced an average 22.53 ± 2.18 L of milk per day, with an average milk fat content of 4.94 ± 0.17% and average milk protein content of 4.03 ± 0.10%. Analysis of a 406-bp amplicon from the intron 1 region, revealed five nucleotide sequence variants (A–E) that contained seven nucleotide substitutions. Using general linear mixed-effect model analyses the AD genotype was associated with reduced C10:0, C12:0, and C12:1 levels when compared to levels in cows with the AA genotype. These associations in NZ HF × J cross cows are novel, and they suggest that this variation in bovine MSTN could be explored for increasing the amount of milk unsaturated fatty acid and decreasing the amount of saturated fatty acid.
Collapse
|
97
|
Critical Analysis of Genome-Wide Association Studies: Triple Negative Breast Cancer Quae Exempli Causa. Int J Mol Sci 2020; 21:ijms21165835. [PMID: 32823908 PMCID: PMC7461549 DOI: 10.3390/ijms21165835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) are useful in assessing and analyzing either differences or variations in DNA sequences across the human genome to detect genetic risk factors of diseases prevalent within a target population under study. The ultimate goal of GWAS is to predict either disease risk or disease progression by identifying genetic risk factors. These risk factors will define the biological basis of disease susceptibility for the purposes of developing innovative, preventative, and therapeutic strategies. As single nucleotide polymorphisms (SNPs) are often used in GWAS, their relevance for triple negative breast cancer (TNBC) will be assessed in this review. Furthermore, as there are different levels and patterns of linkage disequilibrium (LD) present within different human subpopulations, a plausible strategy to evaluate known SNPs associated with incidence of breast cancer in ethnically different patient cohorts will be presented and discussed. Additionally, a description of GWAS for TNBC will be presented, involving various identified SNPs correlated with miRNA sites to determine their efficacies on either prognosis or progression of TNBC in patients. Although GWAS have identified multiple common breast cancer susceptibility variants that individually would result in minor risks, it is their combined effects that would likely result in major risks. Thus, one approach to quantify synergistic effects of such common variants is to utilize polygenic risk scores. Therefore, studies utilizing predictive risk scores (PRSs) based on known breast cancer susceptibility SNPs will be evaluated. Such PRSs are potentially useful in improving stratification for screening, particularly when combining family history, other risk factors, and risk prediction models. In conclusion, although interpretation of the results from GWAS remains a challenge, the use of SNPs associated with TNBC may elucidate and better contextualize these studies.
Collapse
|
98
|
Wang C, Wang S, Liu S, Cheng Y, Geng H, Yang R, Feng T, Lu G, Sun X, Song J, Hao L. Synonymous Mutations of Porcine Igf1r Extracellular Domain Affect Differentiation and Mineralization in MC3T3-E1 Cells. Front Cell Dev Biol 2020; 8:623. [PMID: 32754602 PMCID: PMC7381325 DOI: 10.3389/fcell.2020.00623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
Owing to the wide application of miniature pigs in biomedicine, the formation mechanism of its short stature must be elucidated. The insulin-like growth factor 1 receptor (IGF-1R), which receives signals through the extracellular domain (ECD) binding with ligands, is crucial in regulating cell growth and bone matrix mineralization. In this study, two haplotypes of Igf1r with four synonymous mutations in the coding sequences of IGF-1R ECD between large pigs (LP) and Bama pigs (BM) were stably expressed in the Igf1r-knockout MC3T3-E1 cells and named as MC3T3-LP cells (LP group) and MC3T3-BM cells (BM group), respectively. IGF-1R expression was lower in the BM group than in the LP group both in terms of transcription and translation levels, and IGF-1R expression inhibited cell proliferation. In addition, IGF-1R expression in the BM group promoted early-stage differentiation but delayed late-stage differentiation, which not only suppressed the expression of bone-related factors but also reduced alkaline phosphatase activity and calcium deposition. Moreover, different haplotypes of Igf1r changed the stability and conformation of the protein, further affecting the binding with IGF-1. Our data indicated that the four synonymous mutations of IGF1R ECD encoded by affect gene transcription and translation, thereby further leading to differences in the downstream pathways and functional changes of osteoblasts.
Collapse
Affiliation(s)
- Chunli Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Siyao Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Songcai Liu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yunyun Cheng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongwei Geng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Rui Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tianqi Feng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Guanhong Lu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaotong Sun
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Sciences, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
99
|
Pruner I, Farm M, Tomic B, Gvozdenov M, Kovac M, Miljic P, Soutari NMH, Antovic A, Radojkovic D, Antovic J, Djordjevic V. The Silence Speaks, but We Do Not Listen: Synonymous c.1824C>T Gene Variant in the Last Exon of the Prothrombin Gene as a New Prothrombotic Risk Factor. Clin Chem 2020; 66:379-389. [PMID: 32040579 DOI: 10.1093/clinchem/hvz015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/18/2019] [Indexed: 11/14/2022]
Abstract
BACKGROUND Thrombosis is a major global disease burden with almost 60% of cases related to underlying heredity and most cases still idiopathic. Synonymous single nucleotide polymorphisms (sSNPs) are considered silent and phenotypically neutral. Our previous study revealed a novel synonymous FII c.1824C>T variant as a potential risk factor for pregnancy loss, but it has not yet been associated with thrombotic diseases. METHODS To determine the frequency of the FII c.1824C>T variant we have sequenced patients' DNA. Prothrombin RNA expression was measured by quantitative PCR. Functional analyses included routine hemostasis tests, western blotting and ELISA to determine prothrombin levels in plasma, and global hemostasis assays for thrombin and fibrin generation in carriers of the FII c.1824C>T variant. Scanning electron microscopy was used to examine the structure of fibrin clots. RESULTS Frequency of the FII c.1824C>T variant was significantly increased in patients with venous thromboembolism and cerebrovascular insult. Examination in vitro demonstrated increased expression of prothrombin mRNA in FII c.1824T transfected cells. Our ex vivo study of FII c.1824C>T carriers showed that the presence of this variant was associated with hyperprothrombinemia, hypofibrinolysis, and formation of densely packed fibrin clots resistant to fibrinolysis. CONCLUSION Our data indicate that FII c.1824C>T, although a synonymous variant, leads to the development of a prothrombotic phenotype and could represent a new prothrombotic risk factor. As a silent variant, FII c.1824C>T would probably be overlooked during genetic screening, and our results show that it could not be detected in routine laboratory tests.
Collapse
Affiliation(s)
- Iva Pruner
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Maria Farm
- Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Branko Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maja Gvozdenov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Mirjana Kovac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Hemostasis Department, Blood Transfusion Institute of Serbia, Belgrade, Serbia
| | - Predrag Miljic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic of Hematology, University Clinical Center, Belgrade, Serbia
| | - Nida Mahmoud Hourani Soutari
- Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Antovic
- Department of Medicine, Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Academic Specialist Center, Center for Rheumatology, Stockholm Health Services, Stockholm, Sweden
| | - Dragica Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jovan Antovic
- Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Valentina Djordjevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
100
|
Sepahvand A, Razmara E, Bitarafan F, Galehdari M, Tavasoli AR, Almadani N, Garshasbi M. A homozygote variant in the tRNA splicing endonuclease subunit 54 causes pontocerebellar hypoplasia in a consanguineous Iranian family. Mol Genet Genomic Med 2020; 8:e1413. [PMID: 32697043 PMCID: PMC7549571 DOI: 10.1002/mgg3.1413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Background Homozygous loss‐of‐function mutations in TSEN54 (tRNA splicing endonuclease subunit 54; OMIM: 608755) cause different types of pontocerebellar hypoplasias (PCH) including PCH2, PCH4, and PCH5. The study aimed to determine the possible genetic factors contributing to PCH phenotypes in two affected male infants in an Iranian family. Methods We subjected two affected individuals in a consanguineous Iranian family. To systematically investigate the susceptible gene(s), whole‐exome sequencing was performed on the proband and a novel identified variant was confirmed by Sanger sequencing. We also analyzed 26 relatives in three generations using PCR‐restriction fragment length polymorphism (PCR‐RFLP) followed and confirmed by Sanger sequencing. Results Physical and medical examinations confirmed PCH in the patients. Besides, the proband showed bilateral moderate sensorineural hearing loss and structural heart defects as the novel phenotypes. The molecular findings also verified that two affected individuals were homozygote for the novel synonymous variant, NM_207346.2: c.1170G>A; p.(Val390Val), in TSEN54. PCR‐RFLP and Sanger sequencing elucidated that the parents and 16 relatives were heterozygote for the novel variant. Conclusion We identified a novel synonymous variant, c.1170G>A, in TSEN54 associated with PCH in an Iranian family. Based on this study, we strongly suggest using “TSENopathies” to show the overlapped phenotypes among different types of PCH resulted from TSEN causative mutations.
Collapse
Affiliation(s)
- Afrooz Sepahvand
- Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Fatemeh Bitarafan
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Galehdari
- Department of Biology, Faculty of Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|