51
|
Sun Y, Jiang C, Jiang J, Qiu L. Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway. Clin Exp Pharmacol Physiol 2018; 44:946-953. [PMID: 28556946 DOI: 10.1111/1440-1681.12791] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 11/28/2022]
Abstract
Acute myocardial ischaemia/reperfusion (MIR) injury leads to severe arrhythmias and has a high rate of lethality. In the present study, we aim to determine the effect of dexmedetomidine (Dex) on heart injury parameters following MIR surgery. We examined the effects of Dex on heart function parameters and infarct size following MIR surgery. Proinflammatory cytokines, oxidative products and anti-oxidative enzymes in the myocardium were measured to evaluate the anti-inflammatory and anti-oxidative effects of Dex. The role of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/phosphatidylino-sitol 3-kinase (PI3k)/Akt/endothelial nitric oxide synthase (eNOS) pathway was investigated using their inhibitors. The alteration of haemodynamic parameters, histopathological results, and infarct size caused by MIR was attenuated by Dex. The interleukine-1 beta (IL-1β), IL-6, tumour necrosis factor-a (TNF-α) and myeloperoxidase (MPO) were all significantly decreased. Anti-oxidative enzymes superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) were restored by Dex. Oxidative products8-OHdG, MDA and protein carbonyl were all decreased by Dex (P<.05). Dex activated AMPK expression, eNOS and Akt phosphorylation. The influence of Dex on cardiac function was reversed by the inhibitors of the eNOS, AMPK and PI3K/Akt pathways. These results indicate that Dex protected the cardiac functional, histological changes, inflammation and oxidative stress induced by MIR. Our results present a novel signalling mechanism that Dex protects MIR injury by activating an AMPK/PI3K/Akt/eNOS pathway.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuan Jiang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Jiang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lisheng Qiu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
52
|
Li X, Bilali A, Qiao R, Paerhati T, Yang Y. Association of the PPARγ/PI3K/Akt pathway with the cardioprotective effects of tacrolimus in myocardial ischemic/reperfusion injury. Mol Med Rep 2018; 17:6759-6767. [PMID: 29488613 DOI: 10.3892/mmr.2018.8649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
Myocardial ischemia/reperfusion injury (MIRI) induces severe arrhythmias and has a high risk of mortality. The aim of the present study was to investigate the effect of tacrolimus on arrhythmias, cardiac function, oxidative stress and myocardium apoptosis induced by MIRI, and to elucidate the underlying mechanism. The effects of MIRI and tacrolimus on arrhythmias, cardiac function parameters, myocardial oxidative stress and apoptosis were investigated in a rat model of MIRI. The phosphorylation of peroxisome proliferator‑activated receptor γ (PPARγ) and protein kinase B (Akt) was investigated via western blotting. After rats were treated with inhibitors of PPARγ/phosphoinositide 3‑kinase (PI3K)/Akt, cardiac function parameters were measured. The results demonstrated that the MIRI procedure induced arrhythmias and significant impairment of cardiac function, oxidative stress and apoptosis in cardiomyocytes (P<0.05). Tacrolimus significantly alleviated the arrhythmias and impairment of cardiac function and inhibited the oxidative stress and apoptosis in cardiomyocytes (P<0.05). The phosphorylation of PPARγ and Akt was significantly activated by tacrolimus, whereas inhibitors of PPARγ/PI3K/Akt significantly abolished the effects of tacrolimus (P<0.05). Together, these results suggest that tacrolimus may protect rats from MIRI through activation of the PPARγ/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiufen Li
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Aishan Bilali
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Rui Qiao
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Tuerxun Paerhati
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Yan Yang
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| |
Collapse
|
53
|
Casquilho NV, Moreira-Gomes MD, Magalhães CB, Okuro RT, Ortenzi VH, Feitosa-Lima EK, Lima LM, Barreiro EJ, Soares RM, Azevedo SMFO, Valença SS, Fortunato RS, Carvalho AR, Zin WA. Oxidative imbalance in mice intoxicated by microcystin-LR can be minimized. Toxicon 2018; 144:75-82. [PMID: 29454806 DOI: 10.1016/j.toxicon.2018.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
Microcystins-LR (MC-LR) is a cyanotoxin produced by cyanobacteria. We evaluated the antioxidant potential of LASSBio-596 (LB-596, inhibitor of phosphodiesterases 4 and 5), per os, and biochemical markers involved in lung and liver injury induced by exposure to sublethal dose of MC-LR. Fifty male Swiss mice received an intraperitoneal injection of 60 μL of saline (CTRL group, n = 20) or a sublethal dose of MC-LR (40 μg/kg, TOX group, n = 20). After 6 h the animals received either saline (TOX and CTRL groups) or LB-596 (50 mg/kg, TOX + LASS group, n = 10) by gavage. At 6 h after exposure, respiratory mechanics was evaluated in 10 CTRL and 10 TOX mice: there was a significant increase of all lung mechanics parameters (static elastance, viscoelastic component of elastance and lung resistive and viscoelastic/inhomogeneous pressures) in TOX compared to CTRL. 8 h after saline or MC-LR administration, i.e., 2 h after treatment with LB-596, blood serum levels of alanine aminotransferase and aspartate aminotransferase, activity of superoxide dismutase, catalase, and content of malondialdehyde and carbonyl in lung and liver, NADPH oxidase 2 and 4 mRNA expressions, dual oxidase enzyme activity and H2O2 generation were analyzed in lung homogenates. All parameters were significantly higher in TOX than in the other groups. There was no significant difference between CTRL and TOX + LASS. MC-LR deteriorated lung and liver functions and induced redox imbalance in them, which was prevented by oral administration of LB-596.
Collapse
Affiliation(s)
- Natália V Casquilho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Diana Moreira-Gomes
- Laboratory of Respiratory Physiology and Biochemistry, Superior Institute of Biomedical Sciences, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Clarissa B Magalhães
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata T Okuro
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Ortenzi
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emanuel K Feitosa-Lima
- Laboratory of Biology Redox, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lidia M Lima
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio(®)), Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio(®)), Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel M Soares
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; NUMPEX-BIO - Multidisciplinar Center of Biological Research, Universidade Federal do Rio de Janeiro, Polo Xerém, Duque de Caxias, RJ, Brazil
| | - Sandra M F O Azevedo
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel S Valença
- Laboratory of Biology Redox, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alysson Roncally Carvalho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter A Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
54
|
Liu W, Wang L, Zheng C, Liu L, Wang J, Li D, Tan Y, Zhao X, He L, Shu W. Microcystin-LR increases genotoxicity induced by aflatoxin B1 through oxidative stress and DNA base excision repair genes in human hepatic cell lines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:455-463. [PMID: 29100183 DOI: 10.1016/j.envpol.2017.10.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Aflatoxin B1 (AFB1) and microcystin-LR (MC-LR) simultaneously exist in polluted food and water in humid and warm areas, and each has been reported to be genotoxic to liver and associated with hepatocellular carcinoma (HCC). However, the genotoxic effects of the two biotoxins in combination and potential mechanism remain unknown. We treated the human hepatic cell line HL7702 with AFB1 and MC-LR together at different ratios, examined their genotoxic effects using micronuclei and comet assays, and evaluated the possible mechanism by measuring oxidative stress markers and DNA base excision repair (BER) genes. Our data show that co-exposure to AFB1 and MC-LR significantly increased DNA damage compared with AFB1 or MC-LR alone as measured by the levels of both micronuclei and tail DNA. Meanwhile, AFB1 and MC-LR co-exposure showed biphasic effects on ROS production, and a gradual trend towards increased Glutathione (GSH) levels and activity of Catalase (CAT) and Superoxide Dismutase (SOD). Furthermore, MC-LR, with or without AFB1, significantly down-regulated the expression of the base excision repair (BER) genes 8-oxoguanine glycosylase-1 (OGG1) and X-ray repair cross complementing group 1 (XRCC1). AFB1 and MC-LR in combination upregulated the expression of the BER gene apurinic/apyrimidinic endonuclease 1 (APE1), whereas either agent alone had no effect. In conclusion, our studies show that MC-LR exacerbates AFB1-induced genotoxicity and we report for the first time that this occurs through effects on oxidative stress and the deregulation of DNA base excision repair genes.
Collapse
Affiliation(s)
- Wenyi Liu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; Center for Disease Control and Prevention of Guangzhou Military Command, Dongguanzhuang Road NO.91, Tianhe District, Guangzhou 510507, China
| | - Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Chuanfen Zheng
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Lebin Liu
- Center for Disease Control and Prevention of Guangzhou Military Command, Dongguanzhuang Road NO.91, Tianhe District, Guangzhou 510507, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Daibo Li
- Center for Disease Control and Prevention of Guangzhou Military Command, Dongguanzhuang Road NO.91, Tianhe District, Guangzhou 510507, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xilong Zhao
- Kunming General Hospital of Chengdu Military Command, Kunming 650032, China
| | - Lixiong He
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
55
|
Abu-Serie MM, Nasser N, Abd El-Wahab A, Shehawy R, Pienaar H, Baddour N, Amer R. In vivo assessment of the hepatotoxicity of a new Nostoc isolate from the Nile River: Nostoc sp. strain NRI. Toxicon 2018; 143:81-89. [PMID: 29366868 DOI: 10.1016/j.toxicon.2018.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/29/2017] [Accepted: 01/16/2018] [Indexed: 01/29/2023]
Abstract
Nostoc sp. is one of the most widely distributed cyanobacterial genera that produce potentially protein phosphatase (PP) inhibitor; microcystins (MCs). MCs have posed a worldwide concern due to predominant hepatotoxicity to human health. We have previously isolated a Nostoc strain (NR1) from the Nile River (the main water supply in Egypt) and this strain exerted production of rare and highly toxic MC; demethylated microcystin-LR. There is no data concerning risk factors of liver diseases for human and animal exposure to NR1-contaminated drinking water yet. It is thus important to evaluate acute (LD50 dose), subacute (0.01% and 10% of LD50 dose) and subchronic (0.01% and 10% of LD50 dose) hepatotoxicity's NR1 extract using experimental mice. Mice groups, who orally received 0.01% LD50, represented a permissible concentration of the World Health Organization (WHO) for MC in drinking water. Several parameters were detected, including hepatotoxicity (i.e. PP activity, liver function, oxidative stress markers and DNA fragmentation), pro-inflammatory cytokine (TNF-α) and liver histopathology. Our results demonstrated LD50 of NR1 extract was at 15,350 mg/kg body weight and caused hepatotoxicity that attributed to PP inhibition and a significant increase of hepatic damage biomarkers with lipid accumulation. Moreover, NR1 extract induced hepatic oxidative damage that may have led to DNA fragmentation and production of TNF-α. As demonstrated from the histopathological study, NR1 extract caused a severe collapse of cytoskeleton with subsequent focal degeneration of hepatocytes, necroinflammation and steatosis. The grade of hepatotoxicity in subacute (10% of LD50) group was higher than that in the subchronic (10% of LD50 and 0.01% of LD50, WHOch, respectively) groups. No significant hepatotoxicity was detectable for subacute (0.01% of LD50, WHOac) group. NR1 is therefore considered as one of the harmful and life-threatening cyanobacteria for Egyptian people being exposed to dose above WHO guideline. Thus, biological indicators and thresholds for water treatment are extremely needed.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Nermine Nasser
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Abeer Abd El-Wahab
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Rehab Shehawy
- Institute IMDEA-Agua, C/Punto Net4, Alcalá de Henares, Madrid, Spain.
| | - Harrison Pienaar
- CSIR, Natural Resources and Environment, Pretoria, South Africa.
| | | | - Ranya Amer
- Environment and Natural Materials Research Institute (ENMRI), SRTA-City, New Borg El Arab, Egypt.
| |
Collapse
|
56
|
Xu Z, Regenstein JM, Xie D, Lu W, Ren X, Yuan J, Mao L. The oxidative stress and antioxidant responses of Litopenaeus vannamei to low temperature and air exposure. FISH & SHELLFISH IMMUNOLOGY 2018; 72:564-571. [PMID: 29133253 DOI: 10.1016/j.fsi.2017.11.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Low temperature and air exposure were the key attributes for waterless transportation of fish and shrimp. In order to investigate the oxidative stress and antioxidant responses of the live shrimp Litopenaeus vannamei in the mimic waterless transportation, live shrimp were cooled at 13 °C for 3 min, stored in oxygen at 15 °C for 12 h, and then revived in water at 25 °C. The survival rate of shrimp under this waterless transportation system was over 86.67%. The ultrastructure of hepatopancreas cells were observed while activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione peroxidase (GSH-Px), antisuperoxide anion free radicals (ASAFR), total antioxidant capacity (TAOC), reactive oxygen species (ROS) production, content of malondialdehyde (MDA) and relative mRNA expressions of CAT and GSH-Px in the hemolymph and hepatopancreas were determined. Slight distortions of some organelles in hepatopancreas cells was reversible upon the shrimp revived from the cold shock. The activities of SOD, POD, CAT, GSH-Px, TAOC, ROS production and relative mRNA expressions of CAT and GSH-Px increased following the cold shock and reached peak levels after 3 or 6 h of storage, and then decreased gradually. There was no significant difference between the fresh and the revived shrimp in SOD, POD, GSH-Px, TAOC, ROS, MDA and relative mRNA expressions of CAT and GSH-Px. The oxidative stress and antioxidant responses were tissue-specific because hepatopancreas seemed to have a greater ability to defend against organelle damage and was more sensitive to stress than hemolymph based on the results of SOD activity, MDA content and GSH-Px mRNA expression. These results revealed that low temperature and air exposure caused significant oxidative and antioxidant responses, but did not lead to irreversible damages in this waterless system.
Collapse
Affiliation(s)
- Zihan Xu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang University, 310058, Hangzhou, Zhejiang, China; Department of Food Science, Cornell University, 14853-7201, Ithaca, NY, USA
| | - Joe M Regenstein
- Department of Food Science, Cornell University, 14853-7201, Ithaca, NY, USA
| | - Dandan Xie
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Wenjing Lu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xingchen Ren
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajia Yuan
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
57
|
Zhang H, Zhou X, Wong MHY, Man KY, Pin WK, Yeung JHK, Kwan YW, Leung GPH, Hoi PM, Lee SMY, Chan CO, Mok DKW, Yu PHF, Chan SW. Sichuan pepper attenuates H 2O 2-induced apoptosis via antioxidant activity and up-regulating heme oxygenase-1 gene expression in primary rat hepatocytes. J Food Biochem 2017; 41:e12403. [DOI: 10.1111/jfbc.12403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Affiliation(s)
- Huan Zhang
- Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
| | - Xuelin Zhou
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong China
| | - Marcus Ho-Yin Wong
- Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
| | - Ka-Yi Man
- Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
| | - Wing-Kwan Pin
- Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
| | - John Hok-Keung Yeung
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Faculty of Medicine; The University of Hong Kong; Hong Kong China
| | - Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences; University of Macau; Avenue Padre Tomás Pereira S.J., Taipa Macau China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences; University of Macau; Avenue Padre Tomás Pereira S.J., Taipa Macau China
| | - Chi-On Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
| | - Daniel Kam-Wah Mok
- Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
| | - Peter Hoi-Fu Yu
- Department of Food and Health Sciences, Faculty of Science and Technology; Technological and Higher Education Institute of Hong Kong; Hong Kong China
| | - Shun-Wan Chan
- Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
- Department of Food and Health Sciences, Faculty of Science and Technology; Technological and Higher Education Institute of Hong Kong; Hong Kong China
| |
Collapse
|
58
|
Chen X, Su T, Chen Y, He Y, Liu Y, Xu Y, Wei Y, Li J, He R. d-Ribose as a Contributor to Glycated Haemoglobin. EBioMedicine 2017; 25:143-153. [PMID: 29033370 PMCID: PMC5704047 DOI: 10.1016/j.ebiom.2017.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Glycated haemoglobin (HbA1c) is the most important marker of hyperglycaemia in diabetes mellitus. We show that d-ribose reacts with haemoglobin, thus yielding HbA1c. Using mass spectrometry, we detected glycation of haemoglobin with d-ribose produces 10 carboxylmethyllysines (CMLs). The first-order rate constant of fructosamine formation for d-ribose was approximately 60 times higher than that for d-glucose at the initial stage. Zucker Diabetic Fatty (ZDF) rat, a common model for type 2 diabetes mellitus (T2DM), had high levels of d-ribose and HbA1c, accompanied by a decrease of transketolase (TK) in the liver. The administration of benfotiamine, an activator of TK, significantly decreased d-ribose followed by a decline in HbA1c. In clinical investigation, T2DM patients with high HbA1c had a high level of urine d-ribose, though the level of their urine d-glucose was low. That is, d-ribose contributes to HbA1c, which prompts future studies to further explore whether d-ribose plays a role in the pathophysiological mechanism of T2DM.
Collapse
Affiliation(s)
- Xixi Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Su
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yao Chen
- Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yingge He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Xu
- Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Mental Health, Institute of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Juan Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Mental Health, Institute of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
59
|
Elgawish RA, Yoshimura Y, Isobe N. Microcystin-leucine-arginine Modulates the Expression Patterns of Proinflammatory Cytokines and an Apoptotic Gene in Chicken Liver. J Poult Sci 2017; 55:70-77. [PMID: 32055159 PMCID: PMC6756373 DOI: 10.2141/jpsa.0170054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/15/2017] [Indexed: 01/05/2023] Open
Abstract
Microcystins (MCs) are included in drinking water and a family of cyclic heptapeptide hepatotoxins that have been implicated in the impairment of liver function in various animals. There is scarce information on the effect of MCs on cytokines and apoptotic gene expression and on whether MCs can induce inflammation and apoptosis in avian hepatic tissue. This study investigated the expression of genes related to proinflammatory interleukins, apoptosis, and antioxidant function in chicken liver tissues cultured in the presence of different doses of microcystin-leucine-arginine (MC-LR). Livers were collected from five hens and liver slices were placed in sterile tubes containing Dulbecco's medium supplemented with 0, 1, 10, or 100 ng/mL of MC-LR. After 6 h of cultivation, total RNA was extracted and quantitative PCR analysis was performed for interleukin genes (IL-1β, IL-6, and IL-8), TNF sf15, an apoptotic gene (caspase-3), and genes involved in antioxidant function ([catalase [CAT ], glutathione peroxidase [GSH-PX ], and superoxide dismutase [SOD]). Liver tissues in each group were fixed for histopathology. MC-LR downregulated the mRNA levels of IL-1β, IL-8, and TNF sf15 as compared to the control (0 ng/mL) in dose-dependent patterns; however, the differences were not significant. The expression of IL-6 in liver tissues exposed to 100 ng/mL of MC-LR was significantly (P<0.05) lower than that in tissues exposed to 1 ng/mL. In contrast, MC-LR upregulated the mRNA expression of caspase-3 and genes involved in antioxidant function in the liver tissues after 6 h, without the difference reaching statistical significance. Hepatocytes showed vacuolar degeneration and focal necrosis according to the dose of MC-LR. This study highlighted the risk of low doses of MC-LR in chicken liver. Moreover, MC-LR could modulate the transcriptional patterns of at least IL-6 in liver-tissue culture of chicken after 6 h of exposure.
Collapse
Affiliation(s)
- Rania A. Elgawish
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Yukinori Yoshimura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
60
|
Potential Use of Chemoprotectants against the Toxic Effects of Cyanotoxins: A Review. Toxins (Basel) 2017; 9:toxins9060175. [PMID: 28545227 PMCID: PMC5488025 DOI: 10.3390/toxins9060175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022] Open
Abstract
Cyanobacterial toxins, particularly microcystins (MCs) and cylindrospermopsin (CYN), are responsible for toxic effects in humans and wildlife. In order to counteract or prevent their toxicity, various strategies have been followed, such as the potential application of chemoprotectants. A review of the main substances evaluated for this aim, as well as the doses and their influence on cyanotoxin-induced toxicity, has been performed. A search of the literature shows that research on MCs is much more abundant than research on CYN. Among chemoprotectants, antioxidant compounds are the most extensively studied, probably because it is well known that oxidative stress is one of the toxic mechanisms common to both toxins. In this group, vitamin E seems to have the strongest protectant effect for both cyanotoxins. Transport inhibitors have also been studied in the case of MCs, as CYN cellular uptake is not yet fully elucidated. Further research is needed because systematic studies are lacking. Moreover, more realistic exposure scenarios, including cyanotoxin mixtures and the concomitant use of chemoprotectants, should be considered.
Collapse
|
61
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
62
|
Microcystin-Leucine Arginine Causes Cytotoxic Effects in Sertoli Cells Resulting in Reproductive Dysfunction in Male Mice. Sci Rep 2016; 6:39238. [PMID: 27976743 PMCID: PMC5157014 DOI: 10.1038/srep39238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Microcystin-leucine arginine (MC-LR) is a potent toxin for Sertoli cells. However, the specific molecular mechanisms of MC-induced cytotoxicity still remain unclear. In this study, we performed a comprehensive analyses of changes of miRNAs and mRNAs in Sertoli cells treated with MC-LR. Through computational approaches, we showed the pivotal roles of differentially expressed miRNAs that were associated with cell metabolism, cellular growth and proliferation, cell-to-cell signaling and interaction and cellular movement. Ingenuity Pathway Analyses (IPA) revealed some differentially expressed miRNAs and mRNAs that may cause reproductive system diseases. Target gene analyses suggested that destruction in tight junctions (TJ) and adherens junctions (AJ) in testes may be mediated by miRNAs. Consistent with a significant enrichment of chemokine signaling pathways, we observed numerous macrophages in the testes of mice following treatment with MC-LR, which may cause testicular inflammation. Moreover, miR-98-5p and miR-758 were predicted to bind the 3′-UTR region of the mitogen-activated protein kinase 11 (MAPK11, p38 β isoform) gene which stimulates tumor necrosis factor-α (TNF-α) expression in Sertoli cells. TNF-α could interact with the tumor necrosis factor receptor 1 (TNFR1) on germ cells leading to induction of germ cell apoptosis. Collectively, our integrated miRNA/mRNA analyses provided a molecular paradigm, which was experimentally validated, for understanding MC-LR-induced cytotoxicity.
Collapse
|
63
|
Zhang S, Liu C, Li Y, Imam MU, Huang H, Liu H, Xin Y, Zhang H. Novel Role of ER Stress and Autophagy in Microcystin-LR Induced Apoptosis in Chinese Hamster Ovary Cells. Front Physiol 2016; 7:527. [PMID: 27877136 PMCID: PMC5099254 DOI: 10.3389/fphys.2016.00527] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022] Open
Abstract
Microcystin-LR (MC-LR) is a ubiquitous peptide that exhibits strong reproductive toxicity, although the mechanistic basis for such toxicity remains largely unknown. The present study was conducted to investigate the mechanisms underlying the adverse effects of exposure to MC-LR in Chinese hamster ovary (CHO) cells. The results showed that MC-LR inhibited the in vitro proliferation of CHO cells significantly, with an IC50 of 10 μM. Moreover, MC-LR-treated CHO cells revealed strong induction of cell cycle arrest and apoptosis. Additionally, exposure of CHO cells to MC-LR resulted in excess reactive oxygen species production and intracellular calcium release, with resultant endoplasmic reticulum stress (ERs). There was also extensive accumulation of autophagic vacuoles with the highest concentration of MC-LR used (10 μM). Furthermore, the expression of ERs (GRP78, ATF-6, PERK, IRE1, CHOP) and autophagy (Beclin1 and LC3II) proteins was increased, with concomitantly reduced expression of LC3I suggesting that ERs and autophagy were induced in CHO cells by MC-LR treatment. Conversely, pretreatment of CHO cells with 4-Phenyl butyric acid, the ERs inhibitor reduced the MC-LR-induced apoptotic cell death and cellular autophagy as evidenced by the reduced expression of Beclin1 and LC3II. Similarly, MC-LR treatment in combination with an autophagy inhibitor (3-methyladenine) increased apoptotic cell death compared with MC-LR alone, and induced ERs via upregulating ERs proteins. The overall results indicated that activation of ERs and autophagy are both associated with MC-LR-induced apoptosis in CHO cells. ERs may be a trigger of autophagy in this process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huizhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
64
|
Wu B, Wei Y, Wang Y, Su T, Zhou L, Liu Y, He R. Gavage of D-Ribose induces Aβ-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety-like behavior in mice. Oncotarget 2016; 6:34128-42. [PMID: 26452037 PMCID: PMC4741441 DOI: 10.18632/oncotarget.6021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
In addition to D-Glucose, D-Ribose is also abnormally elevated in the urine of type 2 diabetic patients, establishing a positive correlation between the concentration of uric D-Ribose and the severity of diabetes. Intraperitoneal injection of D-Ribose causes memory loss and brain inflammation in mice. To simulate a chronic progression of age-related cognitive impairment, we orally administered D-Ribose by gavage at both a low and high dose to 8 week-old male C57BL/6J mice daily for a total of 6 months, followed by behavioral, histological and biochemical analysis. We found that long-term oral administration of D-Ribose impairs spatial learning and memory, accompanied by anxiety-like behavior. Tau was hyperphosphorylated at AT8, S396, S214 and T181 in the brain. Aβ-like deposition was also found in the hippocampus for the high dose group. D-Glucose-gavaged mice did not show significant memory loss and anxiety-like behavior under the same experimental conditions. These results demonstrate that a long-term oral administration of D-Ribose not only induces memory loss with anxiety-like behavior, but also elevates Aβ-like deposition and Tau hyperphosphorylation, presenting D-Ribose-gavaged mouse as a model for age-related cognitive impairment and diabetic encephalopathy.
Collapse
Affiliation(s)
- Beibei Wu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yujing Wang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tao Su
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lei Zhou
- Animal Experiment Center, Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
65
|
Chen L, Li S, Guo X, Xie P, Chen J. The role of GSH in microcystin-induced apoptosis in rat liver: Involvement of oxidative stress and NF-κB. ENVIRONMENTAL TOXICOLOGY 2016; 31:552-560. [PMID: 25410294 DOI: 10.1002/tox.22068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/20/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Microcystins (MCs) are potent and specific hepatotoxins produced by cyanobacteria in eutrophic waters, representing a health hazard to animals and humans. The objectives of this study are to determine the relationship between oxidative stress and NF-κB activity in MC-induced apoptosis in rat liver and the role of glutathione (GSH). Sprague-Dawley rats were intraperitoneally (i.p.) injected with microcystin-LR (MC-LR) at 0.25 and 0.5 LD50 with or without pretreatment of buthionine-(S,R)-sulfoximine (BSO), a specific GSH synthesis inhibitor. MC-LR induced time-dependent alterations of GSH levels in rat liver. Increased malondialdehyde (MDA) and significant changes of antioxidant enzymes including GSH peroxidase (GPX) and GSH reductase (GR) were also observed, particularly at 24 h post-exposure. The results indicated that acute exposure to MC-LR induced oxidative stress, and GSH depletion (BSO pretreatment) enhanced the level of oxidative stress. Furthermore, the modulation of pro-apoptotic gene p53 and Bax and anti-apoptotic gene Bcl-2 was observed in 0.5 LD50 group at 24 h, and the alteration was more pronounced by BSO injection before MC-LR treatment, suggesting that GSH played a protective role against MC-induced toxicity. Additionally, electrophoretic mobility shift assay (EMSA) showed that NF-κB was induced at 0.25 LD50 but inhibited at 0.5 LD50 . The above results indicated that the possible crosstalk of oxidative stress and NF-κB activity was associated with MC-LR-induced hepatocytes apoptosis in vivo. Our data will provide a new perspective for understanding the mechanisms of MC-induced liver injury.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shangchun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaochun Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
66
|
Wu J, Yuan M, Song Y, Sun F, Han X. MC-LR Exposure Leads to Subfertility of Female Mice and Induces Oxidative Stress in Granulosa Cells. Toxins (Basel) 2015; 7:5212-23. [PMID: 26633508 PMCID: PMC4690122 DOI: 10.3390/toxins7124872] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 01/04/2023] Open
Abstract
Health risk of human exposure to microcystin-leucine arginine (MC-LR) has aroused more and more attention over the past few decades. In the present study, MC-LR was orally administered to female mice at 0, 1, 10 and 40 μg/L for three and six months. We found that chronic exposure to MC-LR at environmental levels could stimulate follicle atresia and lead to decreased developmental follicles, accompanied by a reduction of gonadosomatic index (GSI). In line with the irregular gonadal hormone level and estrus cycles, subfertility of female mice was also confirmed by analyzing numbers of litters and pups. The in vitro study suggested that granulosa cells could uptake MC-LR and should be the target of the toxicant. Oxidative stress in granulose cells induced by MC-LR promoted follicle atresia and eventually leads to female subfertility.
Collapse
Affiliation(s)
- Jiang Wu
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Mingming Yuan
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Yuefeng Song
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Feng Sun
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, Jiangsu, China.
| |
Collapse
|
67
|
Li S, Chen J, Xie P, Guo X, Fan H, Yu D, Zeng C, Chen L. The role of glutathione detoxification pathway in MCLR-induced hepatotoxicity in SD rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:1470-80. [PMID: 24964298 DOI: 10.1002/tox.22017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 05/18/2023]
Abstract
In the present study, we investigated the role of glutathione (GSH) and its related enzymes in Sprague Dawley (SD) rats subjected to microcystin-leucine-arginine (MCLR)-induced hepatotoxicity. SD rats were intraperitoneally (i.p.) injected with MCLR after pretreating with or without buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH synthesis. The depletion of GSH with BSO enhanced MCLR-induced oxidative stress, resulting in more severe liver damage and higher MCLR accumulation. Similarly, the contents of malondialdehyde (MDA), total GSH (T-GSH), oxidized GSH (GSSG) and GSH were significantly enhanced in BSO pretreated rats following MCLR treatment. The study showed that the transcription of GSH-related enzymes such as glutathione-S-transferase (GST), γ-glutamylcysteine synthetase (γ-GCS), glutathione reductase (GR) varied in different ways (expect for glutathione peroxidase (GPx), whose gene expression was induced in all treated groups) with or without BSO pretreatment before MCLR exposure, suggesting an adaptative response of GSH-related enzymes at transcription level to combat enhancement of oxidative stress induced by MCLR when pretreated with BSO. These data suggested the tissues with low GSH concentration are highly vulnerable to MCLR toxicity and GSH was critical for the detoxification in MCLR-induced hepatotoxicity in vivo.
Collapse
Affiliation(s)
- Shangchun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Xiaochun Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huihui Fan
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dezhao Yu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Cheng Zeng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
68
|
Huang X, Chen L, Liu W, Qiao Q, Wu K, Wen J, Huang C, Tang R, Zhang X. Involvement of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:41-50. [PMID: 26022555 DOI: 10.1016/j.aquatox.2015.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
The outbreak of cyanobacterial blooms induces the production and release of microcystins (MCs) into water, representing a health hazard to aquatic organisms and even humans. Some recent studies have suggested that kidney is another important target organ of MCs except liver, however, the potential toxicity mechanisms are still unclear. In this study, we first investigated the collaborative effect of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK (Ctenopharyngodon idellus kidney) cells in vitro. CIK cells were treated with 0, 1, 10, and 100μg/L microcystin-LR (MC-LR) for 24 and 48h. Cell viability was increased by MC-LR in 1μg/L group, while decreased in 100μg/L group at 48h. Cell cycle assay showed that 1 and 10μg/L MC-LR induced cell cycle through G1 into S and G2/M phases, while 100μg/L MC-LR reduced G2/M phase population. MC-LR markedly induced apoptosis in 10 and 100μg/L groups. Elevated reactive oxygen species (ROS) production, increased malondialdehyde (MDA) contents, decreased glutathione (GSH) levels, and modulated antioxidant enzymes including catalase (CAT) and superoxide dismutase (SOD) were observed in CIK cells exposed to MC-LR. These alterations were more pronounced at higher doses (10 and 100μg/L), indicating that oxidative stress was induced by MC-LR. Laser scanning confocal microscope observation showed aggregation and collapse of microfilaments (MFs) and microtubules (MTs) in CIK cells, and even loss of some cytoskeleton structure. Moreover, transcriptional changes of cytoskeletal genes (β-actin, lc3a, and keratin) were also determined, which have a high probability with cytoskeleton structure damage. Our data suggest that oxidative stress and cytoskeletal disruption may interact with each other and jointly lead to apoptosis and renal toxicity induced by MCs.
Collapse
Affiliation(s)
- Xiao Huang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Qin Qiao
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Kang Wu
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Jing Wen
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Cuihong Huang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
69
|
Mechanisms of microcystin-LR-induced cytoskeletal disruption in animal cells. Toxicon 2015; 101:92-100. [DOI: 10.1016/j.toxicon.2015.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
|
70
|
Kiryu Y, Landsberg JH, Peters EC, Tichenor E, Burleson C, Perry N. Pathological effects of cyanobacteria on sea fans in southeast Florida. J Invertebr Pathol 2015; 129:13-27. [PMID: 25958261 DOI: 10.1016/j.jip.2015.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022]
Abstract
In early August 2008, observations by divers indicated that sea fans, particularly Gorgonia ventalina, Gorgonia flabellum, and Iciligorgia schrammi, were being covered by benthic filamentous cyanobacteria. From August 2008 through January 2009 and again in April 2009, tissue samples from a targeted G. ventalina colony affected by cyanobacteria and from a nearby, apparently healthy (without cyanobacteria) control colony, were collected monthly for histopathological examination. The primary cellular response of the sea fan to overgrowth by cyanobacteria was an increase in the number of acidophilic amoebocytes (with their granular contents dispersed) that were scattered throughout the coenenchyme tissue. Necrosis of scleroblasts and zooxanthellae and infiltration of degranulated amoebocytes were observed in the sea fan surface tissues at sites overgrown with cyanobacteria. Fungal hyphae in the axial skeleton were qualitatively more prominent in cyanobacteria-affected sea fans than in controls.
Collapse
Affiliation(s)
- Y Kiryu
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| | - J H Landsberg
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| | - E C Peters
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA.
| | - E Tichenor
- Palm Beach County Reef Rescue, Boynton Beach, FL 33425, USA.
| | - C Burleson
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| | - N Perry
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| |
Collapse
|
71
|
Zhang B, Liu Y, Li X. Alteration in the expression of cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11) in the liver of mouse induced by microcystin-LR. Toxins (Basel) 2015; 7:1102-15. [PMID: 25831226 PMCID: PMC4417957 DOI: 10.3390/toxins7041102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/21/2023] Open
Abstract
Microcystins (MCs) are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs) play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR) on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11) at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD) (CYP1A1) and erythromycin N-demthylase (ERND) (CYP3A11) activities and increased aniline hydroxylase (ANH) activity (CYP2E1) in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice.
Collapse
Affiliation(s)
- Bangjun Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
72
|
Hwang GH, Jeon YJ, Han HJ, Park SH, Baek KM, Chang W, Kim JS, Kim LK, Lee YM, Lee S, Bae JS, Jee JG, Lee MY. Protective effect of butylated hydroxylanisole against hydrogen peroxide-induced apoptosis in primary cultured mouse hepatocytes. J Vet Sci 2015; 16:17-23. [PMID: 25798044 PMCID: PMC4367145 DOI: 10.4142/jvs.2015.16.1.17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/20/2014] [Accepted: 07/10/2014] [Indexed: 01/12/2023] Open
Abstract
Butylated hydroxyanisole (BHA) is a synthetic phenolic compound consisting of a mixture of two isomeric organic compounds: 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. We examined the effect of BHA against hydrogen peroxide (H2O2)-induced apoptosis in primary cultured mouse hepatocytes. Cell viability was significantly decreased by H2O2 in a dose-dependent manner. Additionally, H2O2 treatment increased Bax, decreased Bcl-2, and promoted PARP-1 cleavage in a dose-dependent manner. Pretreatment with BHA before exposure to H2O2 significantly attenuated the H2O2-induced decrease of cell viability. H2O2 exposure resulted in an increase of intracellular reactive oxygen species (ROS) generation that was significantly inhibited by pretreatment with BHA or N-acetyl-cysteine (NAC, an ROS scavenger). H2O2-induced decrease of cell viability was also attenuated by pretreatment with BHA and NAC. Furthermore, H2O2-induced increase of Bax, decrease of Bcl-2, and PARP-1 cleavage was also inhibited by BHA. Taken together, results of this investigation demonstrated that BHA protects primary cultured mouse hepatocytes against H2O2-induced apoptosis by inhibiting ROS generation.
Collapse
Affiliation(s)
- Geun Hye Hwang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Yu Jin Jeon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Soo Hyun Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | - Kyoung Min Baek
- Department of Cardiovascular and Neurologic Disease, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Korea
| | - Joong Sun Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Korea. ; Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | - Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - You-Mie Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Jun-Goo Jee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Min Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
73
|
Meng G, Liu J, Lin S, Guo Z, Xu L. Microcystin-LR-caused ROS generation involved in p38 activation and tau hyperphosphorylation in neuroendocrine (PC12) cells. ENVIRONMENTAL TOXICOLOGY 2015; 30:366-374. [PMID: 24142891 DOI: 10.1002/tox.21914] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/23/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Microcystin-LR (MC-LR), a potent specific hepatotoxin produced by cyanobacteria, has recently been reported to show neurotoxicity. Our previous study demonstrated that MC-LR caused the reorganization of cytoskeleton architectures and hyperphosphorylation of the cytoskeletal-associated proteins tau and HSP27 in neuroendocrine PC12 cell line by direct PP2A inhibition and indirect p38 mitogen-activated protein kinase (MAPK) activation. It has been shown that oxidative stress is extensively associated with MC-LR toxicity, mainly resulting from an excessive production of reactive oxygen species (ROS). However, the mechanisms by which ROS mediates the cytotoxic action of MC-LR are unclear. In the present study, we investigated whether ROS might play a critical role in MC-LR-induced hyperphosphorylation of microtubule-associated protein tau and the activation of the MAPKs in PC12 cell line. The results showed that MC-LR had time- and concentration-dependent effects on ROS generation, p38-MAPK activation and tau phosphorylation. The time-course studies indicated similar biphasic changes in ROS generation and tau hyperphosphorylation, which started to increase within 1 h and reached the maximum level at 3 h followed by a decrease after prolonged treatment. Furthermore, pretreatment with the antioxidants, N-acetylcysteine and vitamin C, significantly decreased MC-LR-induced ROS generation and effectively attenuated p38-MAPK activation as well as tau hyperphosphorylation. Taken together, these findings suggest that ROS generation triggered by MC-LR is a key intracellular event that contributes to an induction of p38-MAPK activation and tau phosphorylation, and that blockade of this ROS-mediated redox-sensitive signal cascades may attenuate the toxic effects of MC-LR.
Collapse
Affiliation(s)
- Guanmin Meng
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, China; Department of Biochemistry, School of Medicine, Zhejiang University, 866th Yu Hang Tang Road, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
74
|
Hu D, Wu CQ, Li ZJ, Liu Y, Fan X, Wang QJ, Ding RG. Characterizing the mechanism of thiazolidinedione-induced hepatotoxicity: An in vitro model in mitochondria. Toxicol Appl Pharmacol 2015; 284:134-41. [PMID: 25727309 DOI: 10.1016/j.taap.2015.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To characterize the mechanism of action of thiazolidinedione (TZD)-induced liver mitochondrial toxicity caused by troglitazone, rosiglitazone, and pioglitazone in HepaRG cells. METHODS Human hepatoma cells (HepaRG) were treated with troglitazone, rosiglitazone, or pioglitazone (12.5, 25, and 50μM) for 48h. The Seahorse Biosciences XF24 Flux Analyzer was used to measure mitochondrial oxygen consumption. The effect of TZDs on reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected by flow cytometry. The mitochondrial ultrastructure of HepaRG cells was observed under a transmission electrical microscope (TEM). mtDNA content was evaluated by real-time PCR, and ATP content and mitochondrial respiratory chain (MRC) complex I, II, III, IV activity were measured via chemiluminescence. Results were considered statistically significant at p<0.05. RESULTS Among the three drugs, troglitazone exhibited the highest potency, followed by rosiglitazone, and then pioglitazone. The TZDs caused varying degrees of mitochondrial respiratory function disorders including decreases in oxygen consumption, MRC activity, and ATP level, and an elevation in ROS level. TZD treatment resulted in mtDNA content decline, reduction in MMP, and alterations of mitochondrial structure. CONCLUSION All investigated TZDs show a certain degree of mitochondrial toxicity, with troglitazone exhibiting the highest potency. The underlying mechanism of TZD-induced hepatotoxicity may be associated with alterations in mitochondrial respiratory function disorders, oxidative stress, and changes in membrane permeability. These parameters may be used early in drug development to further optimize risk:benefit profiles.
Collapse
Affiliation(s)
- Dan Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Chun-qi Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Ze-jun Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; Guang Dong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yue Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Xing Fan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Quan-jun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China.
| | - Ri-gao Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China.
| |
Collapse
|
75
|
Yin X, Wang X, Fan Z, Peng C, Ren Z, Huang L, Liu Z, Zhao K. Hyperbaric Oxygen Preconditioning Attenuates Myocardium Ischemia-Reperfusion Injury Through Upregulation of Heme Oxygenase 1 Expression: PI3K/Akt/Nrf2 Pathway Involved. J Cardiovasc Pharmacol Ther 2015; 20:428-38. [PMID: 25604781 DOI: 10.1177/1074248414568196] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/10/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND With the rise of the burden of ischemic heart disease, both clinical and economic evidence show a desperate need to protect the heart against myocardium ischemia-reperfusion injury-related complications following cardiac surgery or percutaneous coronary intervention. However, there is no effective intervention for myocardium ischemia-reperfusion injury as yet. METHODS We pretreated mice with 4 daily 2.0 absolute atmosphere (ATA) hyperbaric oxygen, then observed its effects on heart function parameters and infarct size following in situ ischemia-reperfusion. Multiple oxidative and inflammation products were measured in the myocardium. Next, we investigated the expression of heme oxygenase 1 (HO-1), phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase (Akt) pathway, and NF-E2-related factor 2 (Nrf2) in the presence of myocardium ischemia-reperfusion injury, hyperbaric oxygen preconditioning, and their inhibitors and their effects on heart function parameters. RESULTS Hyperbaric oxygen preconditioning ameliorated the cardiac function and histological alterations induced by myocardium ischemia-reperfusion injury, decreased oxidative products and proinflammatory cytokine. Hyperbaric oxygen preconditioning increased expression of HO-1, which was suppressed by PI3K inhibitor LY294002, Nrf2 knockout, and Akt inhibitor triciribine. The expression of Nrf2 was enhanced by hyperbaric oxygen preconditioning, but decreased by LY294002 and triciribine. The Akt was also activated by hyperbaric oxygen preconditioning but suppressed by LY294002. The hemodynamic assays showed that cardiac function was suppressed by LY294002, Nrf2 knockout, and triciribine. CONCLUSION These data present a novel signaling mechanism by which hyperbaric oxygen preconditioning protects myocardium ischemia-reperfusion injury via PI3K/Akt/Nrf2-dependent antioxidant defensive system.
Collapse
Affiliation(s)
- Xuesong Yin
- Department of Emergency Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Xiaofeng Wang
- Department of General Medicine, The Fourth Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Zhixin Fan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Chenghai Peng
- Department of Emergency Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Zhongqiao Ren
- Department of Emergency Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Le Huang
- Department of Emergency Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Zhuang Liu
- Department of Emergency Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Kan Zhao
- Department of Emergency Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
76
|
Ziková A, Kopp R. Impacts of microcystin, a cyanobacterial toxin, on laboratory rodents in vivo. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200856050263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
77
|
Ziková A, Palíková M, Mareš J, Navrátil S, Kopp R. Impacts of dietary cyanobacteria on fish. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun201058040277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
78
|
Zhang H, Fang W, Xiao W, Lu L, Jia X. Protective role of oligomeric proanthocyanidin complex against hazardous nodularin-induced oxidative toxicity in Carassius auratus lymphocytes. JOURNAL OF HAZARDOUS MATERIALS 2014; 274:247-257. [PMID: 24794815 DOI: 10.1016/j.jhazmat.2014.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Nodularin (NOD) is a hazardous material widely detected in water blooms. Fish immune cells are extremely vulnerable to NOD-induced oxidative stress. Oligomeric proanthocyanidin complex (OPC), extracted from grapeseed, was used as an antioxidant to eliminate reactive oxygen species and prevent apoptotic effects. Carassius auratus lymphocytes were treated with different concentrations (0, 10, 100, and 1,000 μg/L) of OPC and a constant dose (100 μg/L) of NOD for 12h in vitro. OPC inhibited mitosis by decreasing intracellular levels of oxidative stress, regulating antioxidant enzymes (CAT, SOD, GPx, GR, and GST), mediating bcl-2 family proteins, and deactivating caspase-3. Glutathione (GSH) levels in group V (NOD 100 μg/L; OPC 1,000 μg/L) showed a twofold increase compared with corresponding levels in group II (NOD 100 μg/L). Structure parameters of NOD and NOD-GSH were calculated using SYBYL 7.1 software. ClogP and HINK logP values of NOD-GSH decreased by 10.4- and 2.3-fold, respectively, compared with corresponding values of NOD. OPC-stimulated GSH can lower the lipophilicity and polarity of NOD. OPC, as a protective agent, can alleviate NOD-induced toxicity in C. auratus lymphocytes by regulating oxidative stress and inducing NOD-GSH detoxification.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China.
| | - Wendi Fang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Wenfeng Xiao
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Liping Lu
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Xiuying Jia
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| |
Collapse
|
79
|
Zhu Q, Gu L, Wang Y, Jia L, Zhao Z, Peng S, Lei L. The role of alpha-1 and alpha-2 adrenoceptors in restraint stress-induced liver injury in mice. PLoS One 2014; 9:e92125. [PMID: 24682087 PMCID: PMC3969348 DOI: 10.1371/journal.pone.0092125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/18/2014] [Indexed: 12/04/2022] Open
Abstract
Acute stress affects cellular integrity in many tissues including the liver, but its underlying mechanism is still unclear. The aim of the present study was to investigate the potential involvement of catecholamines and adrenoceptors in the regulation of acute restraint stress-induced liver injury. Restraint was achieved by placing mice in restraint tubes. Mice were treated with either an α-l antagonist, prazosin, an α-2 antagonist, yohimbine, a β-l antagonist, betaxolol, a β-2 antagonist, ICI 118551, or a central and peripheral catecholamine depleting agent, reserpine, and followed by restraint stress. Assessment of liver injury (serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) , hepatic total GSH, GSSG and GSH/GSSG ratio) , histopathology and of apoptosis, by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay and western blotting, was performed. Three hours of restraint stress resulted in liver injury, as indexed by elevated serum transaminase levels, decreased hepatic total GSH levels and GSH/GSSG ratio, increased hepatic GSSG levels as well as enhanced hepatocytes apoptosis. Either reserpine or prazosin or yohimbine was found to attenuate liver injury. Furthermore, prazosin and yohimbine protected against restraint-induced hepatocytes apoptosis through attenuating the activation of caspases-9 and -3 and reducing the Bax/Bcl-2 ratio. These results suggest that α-1 and α-2 adrenoceptors mediate restraint-induced liver oxidative injury through caspase-9 and Bcl-2 family of apoptotic regulatory proteins.
Collapse
Affiliation(s)
- Qing Zhu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Liwei Gu
- Qinghaosu (Artemisinin) Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yimei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Li Jia
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zengming Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Shuangqing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (LL); (SP)
| | - Linsheng Lei
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- * E-mail: (LL); (SP)
| |
Collapse
|
80
|
Lu YF, Liu J, Wu KC, Qu Q, Fan F, Klaassen CD. Overexpression of Nrf2 protects against microcystin-induced hepatotoxicity in mice. PLoS One 2014; 9:e93013. [PMID: 24667526 PMCID: PMC3965536 DOI: 10.1371/journal.pone.0093013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/28/2014] [Indexed: 12/03/2022] Open
Abstract
Oxidative stress and glutathione (GSH) depletion are implicated in mycocystin hepatotoxicity. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in microcystin-induced liver injury, Nrf2-null, wild-type, and Keap1-hepatocyte knockout (Keap1-HKO) mice were treated with microcystin (50 μg/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Microcystin increased serum alanine aminotransferase and aspartate aminotransferase activities, and caused extensive inflammation and necrosis in Nrf2-null and wild-type mice, but not in Keap1-HKO mice. Oxidative stress and inflammation are implicated in microcystin-induced hepatotoxicity, as evidenced by increased lipid peroxidation and increased expression of pro-inflammatory genes, such as neutrophil-specific chemokines mKC and MIP-2, and pro-inflammatory cytokines IL-1β and IL-6. The increased expression of these pro-inflammatory genes was attenuated in Keap1-HKO mice. Nrf2 and Nqo1 mRNA and protein were higher in Keap1-HKO mice at constitutive levels and after microcystin. To further investigate the mechanism of the protection, hepatic GSH and the mRNA of GSH-related enzymes were determined. Microcystin markedly depleted liver GSH by 60–70% in Nrf2 and WT mice but only 35% in Keap1-HKO mice. The mRNAs of GSH conjugation and peroxide reduction enzymes, such as Gstα1, Gstα4, Gstμ, and Gpx2 were higher in livers of Keap1-HKO mice, together with higher expression of the rate-limiting enzyme for GSH synthesis (Gclc). Organic anion transport polypeptides were increased by microcystin with the most increase in Keap1-HKO mice. In conclusion, this study demonstrates that higher basal levels of Nrf2 and GSH-related genes in Keap1-HKO mice prevented microcystin-induced oxidative stress and liver injury.
Collapse
Affiliation(s)
- Yuan-Fu Lu
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Jie Liu
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Kai Connie Wu
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Qiang Qu
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Fang Fan
- Cytopathology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Curtis D. Klaassen
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
81
|
D-ribosylation induces cognitive impairment through RAGE-dependent astrocytic inflammation. Cell Death Dis 2014; 5:e1117. [PMID: 24625976 PMCID: PMC3973213 DOI: 10.1038/cddis.2014.89] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 01/04/2023]
Abstract
Non-enzymatic glycation of proteins by reducing saccharides for instance D-glucose is an important post-translational modification regulating protein function. Already two centuries ago, D-glucose (Glc) was identified in the urine of diabetic patients. Recently, abnormally high level of D-ribose (Rib) in the urine of type 2 diabetics has been discovered, which is highly active in protein glycation, resulting in the production of advanced glycation end products (AGEs). Accumulation of AGEs leads to altered cellular function, for example AGE accumulation in the nervous system impairs cognitive ability, yet the mechanisms mediating this process for Rib are unknown. Here we found that treatment with Rib accelerated AGE formation in U251 and U87MG astrocytoma cells and in mouse brain, inducing upregulation of receptor for AGEs (RAGE). Astrocytoma cells with elevated levels of RAGE displayed enhanced activity of the proinflammatory nuclear transcription factor kappaB and increased expression of tumor necrosis factor alpha and glial fibrillary acidic protein. Moreover, injection of Rib induced astrocyte activation in mouse hippocampus and impaired spatial learning and memory abilities. These results indicate that mouse spatial cognitive impairment caused by Rib-derived AGEs is correlated with activation of an astrocyte-mediated, RAGE-dependent inflammatory response. This study may provide insights into the mechanism of Rib-involved cognitive impairments and diabetic encephalopathy.
Collapse
|
82
|
Luo H, Lv XD, Wang GE, Li YF, Kurihara H, He RR. Anti-inflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillusL.) on croton oil-induced ear edema andPropionibacterium acnesplus LPS-induced liver damage in mice. Int J Food Sci Nutr 2014; 65:594-601. [DOI: 10.3109/09637486.2014.886184] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
83
|
Lu Y, Zhang YY, Hu YC, Lu YH. Protective effects of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone against hydrogen peroxide-induced oxidative stress in hepatic L02 cell. Arch Pharm Res 2014; 37:1211-8. [PMID: 24469602 DOI: 10.1007/s12272-014-0334-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
Abstract
2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) is a chalcone isolated from the buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry, and the hepatoprotective effects of DMC on Kunming mice have been studied in previous study. However, the effects of DMC on hepatocyte toxicity and corresponding mechanism remain unclear. The aim of this study was to evaluate the hepatoprotective mechanism of DMC in human hepatocytes (L02) treated with H₂O₂. The results demonstrated that pretreatment with DMC effectively protected H₂O₂-induced cell viability loss, cell membrane damage (lactate dehydrogenase, nitric oxide production and caspase-3 accumulation. Besides, DMC pretreatment increased the amount of glutathione, decreased malondialdehyde and the percentage of apoptotic L02 cells compared with only H₂O₂ treated group. Taken together, these results indicated that DMC had hepatoprotective effects against H₂O₂-induced liver injury by alleviating oxidative stress and apoptosis process in L02 cells, and DMC might be a potential candidate for the intervention of liver diseases.
Collapse
Affiliation(s)
- Yue Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | | | | | | |
Collapse
|
84
|
Wang L, Wang X, Geng Z, Zhou Y, Chen Y, Wu J, Han X. Distribution of microcystin-LR to testis of male Sprague-Dawley rats. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:1555-1563. [PMID: 24150695 DOI: 10.1007/s10646-013-1141-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
Microcystins (MCs) are a group of cyclic heptapeptide toxins produced by naturally freshwater cyanobacteria. Among more than 90 identified analogues of microcystins, microcystin-LR (MC-LR) is the most abundant and toxic. Our previous investigations indicated that MC-LR displays male reproductive toxicity, but the target of MC-LR in testes remains unclear. To this end, the present study is designed to elucidate whether microcystin-LR could be distributed to testes and explore the target cells in testes. In the in vivo study, male Sprague-Dawley rats were injected intraperitoneally with MC-LR at a dose of 300 μg/kg per day for 6 days. MC-LR was detected in testes, mainly within seminiferous tubules, which was further validated by Western blot. The concentrations of MC-LR were determined by LC-MS analysis, with a result of 0.0252 ± 0.0037 and 0.0056 ± 0.0012 μg/g dry weight in liver and testis respectively. In the in vitro study, Primary cultured spermatogonia, Sertoli cells and Leydig cells were exposed to MC-LR respectively, and MC-LR was observed to enter spermatogonia and Sertoli cells, but not Leydig cells. These results suggested that the reproductive toxicity of MC-LR were induced by its distribution in testis. Spermatogonia and Sertoli cells are important target cells.
Collapse
Affiliation(s)
- Lihui Wang
- Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
85
|
Zhang H, Cai C, Fang W, Wang J, Zhang Y, Liu J, Jia X. Oxidative damage and apoptosis induced by microcystin-LR in the liver of Rana nigromaculata in vivo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:11-18. [PMID: 23747548 DOI: 10.1016/j.aquatox.2013.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Microcystins (MCs) are hepatotoxins with potent inhibitor activity of protein phosphatases PP1 and PP2A. The present study shows that MC-LR can induce severe oxidative damage and apoptosis in the livers of frogs (Rana nigromaculata) exposed to 1μg/L MC-LR for 7 and 14d in vivo. Ultrastructural observation showed the apoptotic morphology of perinuclear chromatin margination and swollen mitochondria, indicating that MC-LR can significantly damage frog liver. Reactive oxygen species (ROS) production and malondialdehyde (MDA) content were positively correlated with exposure time. Meanwhile, reduced glutathione (GSH) content and GSH peroxidase (GPx) activity rapidly decreased after prolonged exposure to 1μg/L MC-LR in a time-dependent manner. These results imply that the antioxidant defense systems of the liver were damaged. Enhanced apoptosis of cells in the livers of MC-treated frogs was detected by terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling (TUNEL) associated with up-regulation of the mitochondrial system. MC-LR significantly stimulated the livers to release cytochrome c, which improved the protein expressions of Bax, caspase-3, and caspase-9 (p<0.01) and inhibited the protein expression of Bcl-2 with prolonged exposure (p<0.01) via the mitochondrial pathway. These results imply that the mitochondrial pathway has a key function in toxin-induced liver cell apoptosis. The expression of caspase-8 was induced significantly (p<0.01), which illustrates the mechanism that the death receptor pathway is also involved in apoptosis. The present findings show that MC-LR can induce apoptosis in frog liver, which may be related with the decline of amphibian populations. The World Health Organization-recommended drinking water limit for MC-LR in water may be not safe for amphibians.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | | | | | | | | | | | | |
Collapse
|
86
|
Li WX, Li YF, Zhai YJ, Chen WM, Kurihara H, He RR. Theacrine, a purine alkaloid obtained from Camellia assamica var. kucha, attenuates restraint stress-provoked liver damage in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6328-6335. [PMID: 23678853 DOI: 10.1021/jf400982c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Theacrine (1,3,7,9-tetramethyluric acid), a purine alkaloid, has proven to be beneficial in maintaining several brain functions and is being studied for potential medicinal uses in recent years. In this study, we isolated theacrine from Camellia assamica var. kucha and investigated its protective effects on liver damage induced by restraint stress in mice. Results showed that 18 h of restraint stress could induce liver damage, with an obvious increase in levels of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST). This finding was further confirmed by hepatic pathological examination, which showed inflammatory cell infiltration and focal necrosis of hepatocytes. However, oral administration of theacrine (10, 20, 30 mg/kg for 7 consecutive days) was found to decrease plasma ALT and AST levels, reduce hepatic mRNA levels of inflammatory mediators (IL-1β, TNF-α, IL-6, and IFN-γ), and reverse the histologic damages in stressed mice. Simultaneously, theacrine also significantly decreased the content of malondialdehyde and increased oxygen radical absorbance capacity (ORAC) level in the plasma and liver of stressed mice. These results suggested that the protective effects of theacrine on stress-induced liver damage might be correlated with its antioxidative activity. The antioxidative capacity of theacrine was further evaluated by in vitro ORAC and cellular antioxidant activity assay. The results suggested that the antioxidative capacity of theacrine was not due to the direct action on free radical clearance. Moreover, the elevated activities and gene expressions of superoxide dismutase, catalase, and glutathione peroxidase, as well as the reduced activity of xanthine oxidase by theacrine treatment in stressed mice suggested that the antioxidative activity might be due to the strengthening of the antioxidant system in vivo. On the basis of the above results, theacrine is possibly a good candidate for protecting against or treating lifestyle diseases and might contribute to the study of natural products.
Collapse
Affiliation(s)
- Wei-Xi Li
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
87
|
Nrf2 protection against liver injury produced by various hepatotoxicants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:305861. [PMID: 23766851 PMCID: PMC3676920 DOI: 10.1155/2013/305861] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/21/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022]
Abstract
To investigate the role of Nrf2 as a master defense against the hepatotoxicity produced by various chemicals, Nrf2-null, wild-type, Keap1-knock down (Keap1-Kd) and Keap1-hepatocyte knockout (Keap1-HKO) mice were used as a “graded Nrf2 activation” model. Mice were treated with 14 hepatotoxicants at appropriate doses, and blood and liver samples were collected thereafter (6 h to 7 days depending on the hepatotoxicant). Graded activation of Nrf2 offered a Nrf2-dependent protection against the hepatotoxicity produced by carbon tetrachloride, acetaminophen, microcystin, phalloidin, furosemide, cadmium, and lithocholic acid, as evidenced by serum alanine aminotransferase (ALT) activities and by histopathology. Nrf2 activation also offered moderate protection against liver injury produced by ethanol, arsenic, bromobenzene, and allyl alcohol but had no effects on the hepatotoxicity produced by D-galactosamine/endotoxin and the Fas ligand antibody Jo-2. Graded Nrf2 activation reduced the expression of inflammatory genes (MIP-2, mKC, IL-1β, IL-6, and TNFα), oxidative stress genes (Ho-1, Egr1), ER stress genes (Gadd45 and Gadd153), and genes encoding cell death (Noxa, Bax, Bad, and caspase3). Thus, this study demonstrates that Nrf2 prevents the liver from many, but not all, hepatotoxicants. The Nrf2-mediated protection is accompanied by induction of antioxidant genes, suppression of inflammatory responses, and attenuation of oxidative stress.
Collapse
|
88
|
Zhang H, Cai C, Wu Y, Shao D, Ye B, Zhang Y, Liu J, Wang J, Jia X. Mitochondrial and endoplasmic reticulum pathways involved in microcystin-LR-induced apoptosis of the testes of male frog (Rana nigromaculata) in vivo. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:382-389. [PMID: 23548922 DOI: 10.1016/j.jhazmat.2013.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
Previous studies have shown that toxins produced by toxic cyanobacterial blooms are hazardous materials. In the present study, 1 μg/L microcystin-LR (MC-LR) was observed to induce apoptosis in the testes of male Rana nigromaculata via the mitochondrial and endoplasmic reticulum (ER) pathways at exposure times ranging from 7 d to 14 d. The results showed that reactive oxygen species production and malondialdehyde content were positively correlated with exposure time. Antioxidant enzyme contents, such as reduced glutathione and glutathione peroxidase rapidly decreased, implying that the defense system of the testes induces oxidative damage. MC-LR significantly stimulated the release of cytochrome c in the testes, thereby improving the protein expressions of Bax and caspases-3, 8, and 9 (p<0.01) and inhibiting the protein expression of Bcl-2 with prolonged exposure (p<0.01). Ultrastructural observations showed distention of the mitochondria and endoplasmic reticulum and deformation of the nucleolus. Moreover, prolonged exposure times strengthened and weakened the relative expression levels of C/EBP homologous protein and GRP78, respectively. These results indicate that MC-LR-induced apoptosis of the testes in male frogs in vivo may occur through the mitochondrial and ER pathways. It also further proves our previous findings that MC-LR can induce toxicity in the male reproductive system of R. nigromaculata in vitro. The findings show that MC-LR is highly hazardous to frogs and that the accepted drinking water limit of 1 μg/L MC-LR exerts significant toxicity to amphibians.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Zong W, Sun F, Sun X. Evaluation on the generative mechanism and biological toxicity of microcystin-LR disinfection by-products formed by chlorination. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:293-299. [PMID: 23542323 DOI: 10.1016/j.jhazmat.2013.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/09/2013] [Accepted: 03/06/2013] [Indexed: 06/02/2023]
Abstract
To control the environmental risk of microcystin-LR disinfection by-products (MCLR-DBPs), we evaluated their generative mechanisms and biological toxicity by mass spectrometry technology and protein phosphatase inhibition assay. Subject to chlorination, MCLR was totally transformed within 45 min and generated 5 types of MCLR-DBPs with the chemical formulas of C34H54N10O12, C49H76N10O14Cl2, C49H77N10O15Cl, C49H75N10O13Cl, and C49H76N10O14. Isomers for each MCLR-DBP type were identified and separated (products 1-9), indicating that the conjugated diene in Adda residue was a major target site of disinfection. Though, subsequent toxicity test showed the toxicity of MCLR-DBPs on protein phosphatase 1 decreased with the extending of disinfection by and large, these DBPs still possessed certain biological toxicity (especially for product 5). Combined with quantitative analysis, we thought the secondary pollution of MCLR-DBPs in drinking water also deserved further attention. This study offers valid technique support for MCLR-DBPs identification, contributes to a comprehensive cognition on their hazard, and thus has great significance to prevent and control the environmental risk induced by microcystins and their DBPs.
Collapse
Affiliation(s)
- Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan 250014, PR China.
| | | | | |
Collapse
|
90
|
Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D. Role for membrane remodeling in cell death: Implication for health and disease. Toxicology 2013; 304:141-57. [DOI: 10.1016/j.tox.2012.12.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/29/2012] [Accepted: 12/20/2012] [Indexed: 12/31/2022]
|
91
|
He J, Chen J, Wu L, Li G, Xie P. Metabolic Response to Oral Microcystin-LR Exposure in the Rat by NMR-Based Metabonomic Study. J Proteome Res 2012; 11:5934-46. [DOI: 10.1021/pr300685g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jun He
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
| | - Jun Chen
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
| | - Laiyan Wu
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
- College of Chemistry and Materials
Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Guangyu Li
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
- Fisheries College of Huazhong Agricultural University, Wuhan, People's
Republic of China
| | - Ping Xie
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
| |
Collapse
|
92
|
Oliveira V, Carvalho G, Avila M, Soares R, Azevedo S, Ferreira T, Valença S, Faffe D, Zin WA. Time-dependence of lung injury in mice acutely exposed to cylindrospermopsin. Toxicon 2012; 60:764-72. [DOI: 10.1016/j.toxicon.2012.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/01/2012] [Accepted: 06/13/2012] [Indexed: 11/16/2022]
|
93
|
Menezes C, Alverca E, Dias E, Sam-Bento F, Pereira P. Involvement of endoplasmic reticulum and autophagy in microcystin-LR toxicity in Vero-E6 and HepG2 cell lines. Toxicol In Vitro 2012; 27:138-48. [PMID: 23010415 DOI: 10.1016/j.tiv.2012.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022]
Abstract
This work investigates the involvement of the endoplasmic reticulum (ER) and autophagy in microcystin-LR (MCLR) toxicity in Vero-E6 and HepG2 cell lines. Additionally, morphological alterations induced by MCLR in lysosomes and mitochondria were studied. Cytotoxicity evaluation showed that pure MCLR and MCLR from LMECYA110 extract induce concentration dependent viability decays after 24h exposure. HepG2 cells showed an increased sensitivity to MCLR than Vero cells, with lower cytotoxic thresholds and EC(50) values. Conversely, LC3B immunofluorescence showed that autophagy is triggered in both cell lines as a survival response to low MCLR concentrations. Furthermore, MCLR induced a MCLR concentration-dependent decrease of GRP94 expression in HepG2 cells while in Vero cells no alteration was observed. This suggests the involvement of the ER in HepG2 apoptosis elicited by MCLR, while in Vero cells ER destructuration could be a consequence of cytoskeleton inflicted damages. Additionally, in both cell lines, lysosomal destabilization preceded mitochondrial impairment which occurred at high toxin concentrations. Although not an early cellular target of MCLR, mitochondria appears to serve as central mediators of different signaling pathways elicited by the organelles involved in MCLR toxicity. As a result, kidney and hepatic cell lines exhibit cell type and dose-dependent mechanisms to overcome MCLR toxicity.
Collapse
Affiliation(s)
- Carina Menezes
- Department of Environmental Health, National Health Institute Dr Ricardo Jorge, Av Padre Cruz, 1649-016 Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
94
|
Garcia CZ, Martinez CBR. Biochemical and genetic alterations in the freshwater neotropical fish Prochilodus lineatus after acute exposure to Microcystis aeruginosa. NEOTROPICAL ICHTHYOLOGY 2012. [DOI: 10.1590/s1679-62252012000300015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microcystins are secondary metabolites produced by different species of cyanobacteria, such as Microcystis aeruginosa (MA). In this study, the biochemical and genetic effects of lyophilized MA were evaluated in the neotropical fish Prochilodus lineatus exposed to 1 or 2 mg L-1 lyophilized MA (treated group) or only water (control group) in static toxicity tests for 24 and 96 h. The gills and liver were used in the analysis of biotransformation enzymes and antioxidant defenses, blood and gill cells in genetic analysis and in brain and muscle it was determined the activity of acetylcholinesterase (AChE). The results showed the biotransformation pathway activation due to the increase in hepatic CYP1A and in branchial and hepatic glutathione S-transferase (GST). The antioxidant defense proved to be greatly affected by MA exposure leading to changes, both in gills and liver, in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and in the content of tripeptide glutathione (GSH). Lipid peroxidation was not detected, but damage to DNA molecule was observed in blood cells. In conclusion, it can be state the lyophilized MA is able to promote changes in the biochemical and genetic parameters of P. lineatus.
Collapse
|
95
|
Zhou Y, Yuan J, Wu J, Han X. The toxic effects of microcystin-LR on rat spermatogonia in vitro. Toxicol Lett 2012; 212:48-56. [DOI: 10.1016/j.toxlet.2012.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 01/22/2023]
|
96
|
Xu Y, Feng Y, Li H, Gao Z. Ferric citrate CYP2E1-independently promotes alcohol-induced apoptosis in HepG2 cells via oxidative/nitrative stress which is attenuated by pretreatment with baicalin. Food Chem Toxicol 2012; 50:3264-72. [PMID: 22699086 DOI: 10.1016/j.fct.2012.05.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/19/2012] [Accepted: 05/31/2012] [Indexed: 12/26/2022]
Abstract
In the case of alcoholic liver injury, an iron overload is always present. Both alcohol and iron can individually induce oxidative stress in liver. However, the combined effect of physiological concentrations of alcohol and iron on oxidative stress in hepatocytes remains unknown. Baicalin has been demonstrated to be an antioxidant or iron chelator in animal experiments. In this study, we investigated the injury to hepatocytes CYP2E1-independently induced by the combination of alcohol and iron and the protective effect of baicalin. Compared with cells treated with ethanol alone, ferric citrate enhanced the accumulation of reactive oxygen and nitrogen species, increased the occurrence of protein carbonylation/nitration and the levels of 4-hydroxy-2-nonenal, changed the distribution of iNOS, and eventually resulted in apoptosis. However, pretreatment with baicalin inhibited the oxidative stress induced by the combination of alcohol and iron, mainly by chelating iron. Our findings therefore suggest that iron could CPY2E1-independently enhance the oxidative stress induced by alcohol, which probably contributes to the pathogenesis of alcoholic liver disease. Baicalin is a promising phytomedicine for preventing alcoholic liver disease.
Collapse
Affiliation(s)
- Yan Xu
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | | | | | | |
Collapse
|
97
|
Lezcano N, Sedán D, Lucotti I, Giannuzzi L, Vittone L, Andrinolo D, Mundiña-Weilenmann C. Subchronic microcystin-lr exposure increased hepatic apoptosis and induced compensatory mechanisms in mice. J Biochem Mol Toxicol 2012; 26:131-8. [DOI: 10.1002/jbt.20419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/20/2011] [Accepted: 11/04/2011] [Indexed: 01/19/2023]
|
98
|
Li Y, Han X. Microcystin-LR causes cytotoxicity effects in rat testicular Sertoli cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:318-326. [PMID: 22301162 DOI: 10.1016/j.etap.2011.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/01/2011] [Accepted: 12/17/2011] [Indexed: 05/31/2023]
Abstract
Microcystins (MCs) are produced by cyanobacteria. The most toxic and widely distributed MC is microcystin-LR (MC-LR). The aim of this study was to investigate whether exposure to MC-LR could induce oxidative stress, leading the further toxicity effects on Sertoli cells in vitro. Sertoli cells obtained from rats were cultured with a medium containing 0, 0.5, 5, 50 or 500 nM/l MC-LR. We examined the decrease of mitochondrial membrane potential (MMP), the increase of reactive oxygen species (ROS) production, the increase of lipid peroxidation and decrease of superoxide dismutase (SOD) activity in Sertoli cells after treatment with MC-LR in vitro, and higher expression of caspase-9 and caspase-3, the increase of apoptosis rate. Therefore, we deduced that direct exposure to microcystin-LR could induce oxidative stress generation in Sertoli cells, and subsequently depressed cellular viability and caused cells to undergo apoptosis, resulting in the reproductive toxicity in male rats.
Collapse
Affiliation(s)
- Yan Li
- Life Science School, Nanjing University, Nanjing, Jiangsu 210093, PR China.
| | | |
Collapse
|
99
|
Zegura B, Gajski G, Straser A, Garaj-Vrhovac V, Filipič M. Microcystin-LR induced DNA damage in human peripheral blood lymphocytes. Mutat Res 2011; 726:116-122. [PMID: 22001196 DOI: 10.1016/j.mrgentox.2011.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 07/07/2011] [Accepted: 08/16/2011] [Indexed: 05/31/2023]
Abstract
Human exposure to microcystins, which are produced by freshwater cyanobacterial species, is of growing concern due to increasing appearance of cyanobacterial blooms as a consequence of global warming and increasing water eutrophication. Although microcystins are considered to be liver-specific, there is evidence that they may also affect other tissues. These substances have been shown to induce DNA damage in vitro and in vivo, but the mechanisms of their genotoxic activity remain unclear. In human peripheral blood lymphocytes (HPBLs) exposure to non-cytotoxic concentrations (0, 0.1, 1 and 10μg/ml) of microcystin-LR (MCLR) induced a dose- and time-dependent increase in DNA damage, as measured with the comet assay. Digestion of DNA from MCLR-treated HPBLs with purified formamidopyrimidine-DNA glycosylase (Fpg) displayed a greater number of DNA strand-breaks than non-digested DNA, confirming the evidence that MCLR induces oxidative DNA damage. With the cytokinesis-block micronucleus assay no statistically significant induction of micronuclei, nucleoplasmic bridges and nuclear buds was observed after a 24-h exposure to MCLR. At the molecular level, no changes in the expression of selected genes involved in the cellular response to DNA damage and oxidative stress were observed after a 4-h exposure to MCLR (1μg/ml). After 24h, DNA damage-responsive genes (p53, mdm2, gadd45a, cdkn1a), a gene involved in apoptosis (bax) and oxidative stress-responsive genes (cat, gpx1, sod1, gsr, gclc) were up-regulated. These results provide strong support that MCLR is an indirectly genotoxic agent, acting via induction of oxidative stress, and that lymphocytes are also the target of microcystin-induced toxicity.
Collapse
Affiliation(s)
- B Zegura
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
100
|
Huang P, Zheng Q, Xu LH. The apoptotic effect of oral administration of microcystin-RR on mice liver. ENVIRONMENTAL TOXICOLOGY 2011; 26:443-452. [PMID: 20196164 DOI: 10.1002/tox.20570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 01/04/2010] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
Microcystin produced by cyanobacteria in diverse water systems is a potent hepatotoxin that has been documented to induce hepatocyte apoptosis and liver injury. There are more than eighty reported microcystins. The present work aimed at investigating the apoptotic effect of MC-RR (a common member of microcystin family), and its related mechanism. MC-RR was administered orally to ICR mice for 7 days with different dosages. Apoptotic cell death in liver was detected by TUNEL assay, and the expression levels of Bcl-2, Bax and p53, GRP 78 and CHOP which have been reported to be related to apoptosis and ER stress were determined via western-blot. The activity of PP2A was measured using the serine-threonine phosphatase assay system and PP2A A subunit expression at both transcription and protein levels was measured by RT-PCR and western blot, respectively. A significant difference was observed on the number of TUNEL positive liver cells between the control and MC-RR-treated groups. The expression levels of Bcl-2, Bax, p53, and GRP 78 in MC-RR-treated groups were altered significantly compared to the control, but no obvious alteration was found in CHOP expression. The PP2A activity and A subunit expression did not manifest any obvious change at both transcription and protein levels. The results indicated that oral exposure to MC-RR can cause apoptosis as well as moderate ER stress in mice liver. The mitochondrial pathway via Bcl-2 family members may contribute to the apoptosis. However, PP2A may not be involved in the regulation of apoptotic process under the current conditions.
Collapse
Affiliation(s)
- Pu Huang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|