51
|
Malinoski CP, Marcus PI. Influenza Virus: A Single Noninfectious Interferon Induction-Suppressing Particle Blocks Expression of Interferon-Inducing Particles. J Interferon Cytokine Res 2012; 32:121-6. [PMID: 22136418 DOI: 10.1089/jir.2011.0078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christopher P. Malinoski
- Laboratory for Virus and Interferon Research, Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Philip I. Marcus
- Laboratory for Virus and Interferon Research, Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
52
|
Variability among the neuraminidase, non-structural 1 and PB1-F2 proteins in the influenza A virus genome. Virus Genes 2012; 44:363-73. [PMID: 22261818 DOI: 10.1007/s11262-012-0714-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/04/2012] [Indexed: 11/26/2022]
|
53
|
Wang L, Qin Z, Pantin-Jackwood M, Faulkner O, Suarez DL, Garcia M, Lupiani B, Reddy SM, Saif YM, Lee CW. Development of DIVA (differentiation of infected from vaccinated animals) vaccines utilizing heterologous NA and NS1 protein strategies for the control of triple reassortant H3N2 influenza in turkeys. Vaccine 2011; 29:7966-7974. [PMID: 21907751 DOI: 10.1016/j.vaccine.2011.08.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/01/2011] [Accepted: 08/14/2011] [Indexed: 02/07/2023]
Abstract
Since 2003, triple reassortant (TR) swine H3N2 influenza viruses containing gene segments from human, avian, and swine origins have been detected in the U.S. turkey populations. The initial outbreak that occurred involved birds that were vaccinated with the currently available H3 swine- and avian-origin influenza vaccines. Antigenically, all turkey swine-lineage TR H3N2 isolates are closely related to each other but show little or no antigenic cross-reactivity with the avian origin or swine origin influenza vaccine strains that are currently being used in turkey operations. These results call for re-evaluation of currently available influenza vaccines being used in turkey flocks and development of more effective DIVA (differentiation of infected from vaccinated animals) vaccines. In this study, we selected one TR H3N2 strain, A/turkey/OH/313053/04 (H3N2) that showed broad cross reactivity with other recent TR turkey H3N2 isolates, and created NA- and NS-based DIVA vaccines using traditional reassortment as well as reverse genetics methods. Protective efficacy of those vaccines was determined in 2-week-old and 80-week-old breeder turkeys. The reassortant DIVA vaccines significantly reduced the presence of challenge virus in the oviduct of breeder turkeys as well as trachea and cloaca shedding of both young and old breeder turkeys, suggesting that proper vaccination could effectively prevent egg production drop and potential viral contamination of eggs in infected turkeys. Our results demonstrate that the heterologous NA and NS1 DIVA vaccines together with their corresponding serological tests could be useful for the control of TR H3N2 influenza in turkeys.
Collapse
Affiliation(s)
- Leyi Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Gambaryan AS, Lomakina NF, Boravleva EY, Kropotkina EA, Mashin VV, Krasilnikov IV, Klimov AI, Rudenko LG. Comparative safety, immunogenicity, and efficacy of several anti-H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine). Influenza Other Respir Viruses 2011; 6:188-95. [PMID: 21951678 PMCID: PMC4941668 DOI: 10.1111/j.1750-2659.2011.00291.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Please cite this paper as: Gambaryan et al. (2011) Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models. Parallel testing of killed and live H5 vaccine. Influenza and Other Respiratory Viruses 6(3), 188–195. Objective Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. Method Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non‐glycoprotein genes of the experimental live vaccines were from H2N2 cold‐adapted master strain A/Leningrad/134/17/57 (VN‐Len and Ku‐Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN‐Gull and Ku‐Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. Results All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold‐adapted H1N1 vaccine reduced the mortality near to zero level. Conclusions The high yield, safety, and protectivity of VN‐Len and Ku‐Len made them promising strains for the production of inactivated and live vaccines against H5N1 viruses.
Collapse
Affiliation(s)
- Alexandra S Gambaryan
- M P Chumakov Institute of Poliomyelitis and Viral Encephalitides, RAMS, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
MDCK cell line with inducible allele B NS1 expression propagates delNS1 influenza virus to high titres. Vaccine 2011; 29:6976-85. [PMID: 21787829 DOI: 10.1016/j.vaccine.2011.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 12/17/2022]
|
56
|
Penski N, Härtle S, Rubbenstroth D, Krohmann C, Ruggli N, Schusser B, Pfann M, Reuter A, Gohrbandt S, Hundt J, Veits J, Breithaupt A, Kochs G, Stech J, Summerfield A, Vahlenkamp T, Kaspers B, Staeheli P. Highly pathogenic avian influenza viruses do not inhibit interferon synthesis in infected chickens but can override the interferon-induced antiviral state. J Virol 2011; 85:7730-41. [PMID: 21613402 PMCID: PMC3147912 DOI: 10.1128/jvi.00063-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/17/2011] [Indexed: 01/13/2023] Open
Abstract
From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Nicola Penski
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | | | - Carsten Krohmann
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Nicolas Ruggli
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | - Benjamin Schusser
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Michael Pfann
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Antje Reuter
- Department of Virology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | | | - Jana Hundt
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Jutta Veits
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | | | - Georg Kochs
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Jürgen Stech
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | | | - Bernd Kaspers
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | - Peter Staeheli
- Department of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
57
|
Pica N, Palese P, Steel J. Live Attenuated Influenza Virus Vaccines: NS1 Truncation as an Approach to Virus Attenuation. REPLICATING VACCINES 2011:195-221. [DOI: 10.1007/978-3-0346-0277-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
58
|
Marcus PI, Ngunjiri JM, Sekellick MJ, Wang L, Lee CW. In vitro analysis of virus particle subpopulations in candidate live-attenuated influenza vaccines distinguishes effective from ineffective vaccines. J Virol 2010; 84:10974-10981. [PMID: 20739541 PMCID: PMC2953188 DOI: 10.1128/jvi.00502-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 08/13/2010] [Indexed: 02/07/2023] Open
Abstract
Two effective (vac+) and two ineffective (vac-) candidate live-attenuated influenza vaccines (LAIVs) derived from naturally selected genetically stable variants of A/TK/OR/71-delNS1[1-124] (H7N3) that differed only in the length and kind of amino acid residues at the C terminus of the nonstructural NS1 protein were analyzed for their content of particle subpopulations. These subpopulations included total physical particles (measured as hemagglutinating particles [HAPs]) with their subsumed biologically active particles of infectious virus (plaque-forming particles [PFPs]) and different classes of noninfectious virus, namely, interferon-inducing particles (IFPs), noninfectious cell-killing particles (niCKPs), and defective interfering particles (DIPs). The vac+ variants were distinguished from the vac- variants on the basis of their content of viral subpopulations by (i) the capacity to induce higher quantum yields of interferon (IFN), (ii) the generation of an unusual type of IFN-induction dose-response curve, (iii) the presence of IFPs that induce IFN more efficiently, (iv) reduced sensitivity to IFN action, and (v) elevated rates of PFP replication that resulted in larger plaques and higher PFP and HAP titers. These in vitro analyses provide a benchmark for the screening of candidate LAIVs and their potential as effective vaccines. Vaccine design may be improved by enhancement of attributes that are dominant in the effective (vac+) vaccines.
Collapse
Affiliation(s)
- Philip I Marcus
- Department of Molecular and Cell Biology, Center of Excellence for Vaccine Research, University of Connecticut, U-3125, 91 North Eagleville Rd., Storrs, CT 06269, USA.
| | | | | | | | | |
Collapse
|
59
|
Soubies SM, Volmer C, Guérin JL, Volmer R. Truncation of the NS1 protein converts a low pathogenic avian influenza virus into a strong interferon inducer in duck cells. Avian Dis 2010; 54:527-31. [PMID: 20521689 DOI: 10.1637/8707-031709-reg.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The NS1 protein of influenza A viruses is known as a nonessential virulence factor inhibiting type I interferon (IFN) production in mammals and in chicken cells. Whether NS1 inhibits the induction of type I IFNs in duck cells is currently unknown. In order to investigate this issue, we used reverse genetics to generate a virus expressing a truncated NS1 protein. Using the low pathogenic avian influenza virus A/turkey/Italy/977/1999 (H7N1) as a backbone, we were able to rescue a virus expressing a truncated NS1 protein of 99 amino acids in length. The truncated virus replicated poorly in duck embryonic fibroblasts, but reached high titers in the mammalian IFN-deficient Vero cell line. Using a gene reporter system to measure duck type I IFN production, we showed that the truncated virus is a potent inducer of type I IFN in cell culture. These results show that the NS1 protein functions to prevent the induction of IFN in duck cells and underline the need for a functional NS1 protein in order for the virus to express its full virulence.
Collapse
Affiliation(s)
- Sébastien Mathieu Soubies
- INRA, UMR 1225, Interactions Hôtes Agents Pathogenes, Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, 31076 Toulouse Cedex, France
| | | | | | | |
Collapse
|
60
|
Liu Y, Mundt E, Mundt A, Sylte M, Suarez DL, Swayne DE, García M. Development and evaluation of an avian influenza, neuraminidase subtype 1, indirect enzyme-linked immunosorbent assay for poultry using the differentiation of infected from vaccinated animals control strategy. Avian Dis 2010; 54:613-21. [PMID: 20521703 DOI: 10.1637/8844-040409-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An indirect enzyme-linked immunosorbent assay (ELISA) was developed using baculovirus, purified, recombinant N1 protein from A/chicken/Indonesia/PA7/2003 (H5N1) virus. The N1-ELISA showed high selectivity for detection of N1 antibodies, with no cross-reactivity with other neuraminidase subtypes, and broad reactivity with sera to N1 subtype isolates from North American and Eurasian lineages. Sensitivity of the N1-ELISA to detect N1 antibodies in turkey sera, collected 3 wk after H1N1 vaccination, was comparable to detection of avian influenza antibodies by the commercial, indirect ELISAs ProFLOK AIV Plus ELISA Kit (Synbiotics, Kansas City, MO) and Avian Influenza Virus Antibody Test Kit (IDEXX, Westbrook, ME). However, 6 wk after vaccination, the Synbiotics ELISA kit performed better than the N1-ELISA and the IDEXX ELISA kit. An evaluation was made of the ability of the N1-ELISA to discriminate vaccinated chickens from subsequently challenged chickens. Two experiments were conducted, chickens were vaccinated with inactivated H5N2 and H5N9 viruses and challenged with highly pathogenic H5N1 virus, and chickens were vaccinated with recombinant poxvirus vaccine encoding H7 and challenged with highly pathogenic H7N1 virus. Serum samples were collected at 14 days postchallenge and tested by hemagglutination inhibition (HI), quantitative neuraminidase inhibition (NI), and N1-ELISA. At 2 days postchallenge, oropharyngeal swabs were collected for virus isolation (VI) to confirm infection. The N1-ELISA was in fair agreement with VI and HI results. Although the N1-ELISA showed a lower sensitivity than the NI assay, it was demonstrated that detection of N1 antibodies by ELISA was an effective and rapid assay to identify exposure to the challenge virus in vaccinated chickens. Therefore, N1-ELISA can facilitate a vaccination strategy with differentiation of infected from vaccinated animals using a neuraminidase heterologous approach.
Collapse
Affiliation(s)
- Y Liu
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Jadhao SJ, Suarez DL. New Approach to Delist Highly Pathogenic Avian Influenza Viruses from BSL3+ Select Agents to BSL2 Non-Select Status for Diagnostics and Vaccines. Avian Dis 2010; 54:302-6. [PMID: 20521650 DOI: 10.1637/8926-051509-resnote.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
62
|
Brahmakshatriya VR, Lupiani B, Reddy SM. Characterization and evaluation of avian influenza NS1 mutant virus as a potential live and killed DIVA (differentiating between infected and vaccinated animals) vaccine for chickens. Vaccine 2010; 28:2388-96. [PMID: 20064474 DOI: 10.1016/j.vaccine.2009.12.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/06/2009] [Accepted: 12/29/2009] [Indexed: 10/20/2022]
|
63
|
Wang L, Yassine H, Saif YM, Lee CW. Developing live attenuated avian influenza virus in ovo vaccines for poultry. Avian Dis 2010; 54:297-301. [PMID: 20521649 DOI: 10.1637/8623-012309-resnote.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Live attenuated vaccines can mimic natural infection and induce humoral and cellular immune response. However, the possibility of reassortment between vaccine viruses and field isolates and of mutations from low-pathogenic to highly pathogenic viruses has prevented the use of live attenuated strains as poultry vaccines. In ovo vaccination using live attenuated strains that can undergo limited replication cycles would be a better option, because these strains can be used for mass vaccination without spreading or reassorting with other viruses. Our previous study demonstrated that two influenza nonstructural (NS) variant viruses are highly attenuated and immunogenic in chickens, making them potential live vaccine candidates. In this study, we tested whether NS variants could be used as in ovo vaccines alone or in combination with temperature-sensitive (ts) mutations. In addition, we also tested the effect of different hemagglutinin (HA) subtypes on in ovo vaccination of NS variants. Our results demonstrated that NS variants alone or in combination with ts mutations were not attenuated enough to be used for in ovo vaccination. We also observed variable effects of different HA subtypes in the same NS deletion variant backbone on hatchability. However, even with substitution of HA subtypes, NS variant-inoculated eggs still had lower hatchability compared to the mock control group, indicating that the high virulence of NS variant backbone strain in eggs might have affected the results.
Collapse
Affiliation(s)
- Leyi Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
64
|
Dundon WG, Capua I. A Closer Look at the NS1 of Influenza Virus. Viruses 2009; 1:1057-72. [PMID: 21994582 PMCID: PMC3185538 DOI: 10.3390/v1031057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/13/2009] [Accepted: 11/25/2009] [Indexed: 11/16/2022] Open
Abstract
The Non-Structural 1 (NS1) protein is a multifactorial protein of type A influenza viruses that plays an important role in the virulence of the virus. A large amount of what we know about this protein has been obtained from studies using human influenza isolates and, consequently, the human NS1 protein. The current global interest in avian influenza, however, has highlighted a number of sequence and functional differences between the human and avian NS1. This review discusses these differences in addition to describing potential uses of NS1 in the management and control of avian influenza outbreaks.
Collapse
Affiliation(s)
- William G Dundon
- OIE/FAO and National Reference Laboratory for Avian influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell' Università, 10, Legnaro (PD), 35020, Italy; E-Mail:
| | | |
Collapse
|
65
|
Dynamics of biologically active subpopulations of influenza virus: plaque-forming, noninfectious cell-killing, and defective interfering particles. J Virol 2009; 83:8122-30. [PMID: 19494019 DOI: 10.1128/jvi.02680-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynamic changes in the temporal appearance and quantity of a new class of influenza virus, noninfectious cell-killing particles (niCKP), were compared to defective interfering particles (DIP). After a single high-multiplicity passage in MDCK cells of an egg-derived stock that lacked detectable niCKP or DIP, both classes of particles appeared in large numbers (>5 x 10(8)/ml), and the plaque-forming particle (PFP) titer dropped approximately 60-fold. After two additional serial high-multiplicity passages the DIP remained relatively constant, the DIP/niCKP ratio reached 10:1, and the PFP had declined by about 10,000-fold. Together, the niCKP and DIP subpopulations constituted ca. 20% of the total hemagglutinating particle population in which these noninfectious biologically active particles (niBAP) were subsumed. DIP neither killed cells nor interfered with the cell-killing (apoptosis-inducing) activity of niCKP or PFP (infectious CKP), even though they blocked the replication of PFP. Relative to the UV-target of approximately 13,600 nucleotides (nt) for inactivation of PFP, the UV target for niCKP was approximately 2,400 nt, consistent with one of the polymerase subunit genes, and that for DIP was approximately 350 nt, consistent with the small DI-RNA responsible for DIP-mediated interference. Thus, niCKP and DIP are viewed as distinct particles with a propensity to form during infection at high multiplicities. These conditions are postulated to cause aberrations in the temporally regulated replication of virus and its packaging, leading to the production of niBAP. DIP have been implicated in the virulence of influenza virus, but the role of niCKP is yet unknown.
Collapse
|