51
|
Funk GA. Adaptive immunity rather than viral cytopathology mediates polyomavirus-associated nephropathy in mice. Am J Transplant 2012; 12:3163-4. [PMID: 22994873 DOI: 10.1111/j.1600-6143.2012.04271.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
52
|
Heutinck KM, Rowshani AT, Kassies J, Claessen N, van Donselaar-van der Pant KAMI, Bemelman FJ, Eldering E, van Lier RAW, Florquin S, Ten Berge IJM, Hamann J. Viral double-stranded RNA sensors induce antiviral, pro-inflammatory, and pro-apoptotic responses in human renal tubular epithelial cells. Kidney Int 2012; 82:664-75. [PMID: 22648297 DOI: 10.1038/ki.2012.206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Viral infection in the kidney is characterized by tubular injury induced directly by the virus and/or by cytotoxic lymphocytes. Previously, we found that human tubular epithelial cells express Toll-like receptor 3 (TLR3), melanoma differentiation-associated gene 5 (MDA5), and retinoic acid-inducible gene-I (RIG-I), all sensors of double-stranded RNA (dsRNA) and potent inducers of antiviral activity. Here, we demonstrate increased expression of these three dsRNA sensors in kidney transplant biopsies during cytomegalovirus or BK virus infection. In primary tubular epithelial cells, dsRNA sensor activation induced the production of pro-inflammatory TNF-α and antiviral IFN-β. Notably, dsRNA also enhanced the expression of pro-apoptotic proteins; however, dsRNA alone did not cause cell death due to the expression of anti-apoptotic proteins. The dsRNA sensitized tubular epithelial cells to apoptosis induced by an agonistic antibody against the Fas receptor (CD95), an apoptotic pathway that eliminates infected cells. These findings indicate that tubular epithelial cells require at least two signals to undergo apoptosis, which can help preserve tubular integrity even under inflammatory conditions. Thus, sensors of viral dsRNA promote antiviral, pro-inflammatory, and pro-apoptotic responses in tubular epithelial cells, which may orchestrate the control of viral infection in the kidney.
Collapse
Affiliation(s)
- Kirstin M Heutinck
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Jiang M, Zhao L, Gamez M, Imperiale MJ. Roles of ATM and ATR-mediated DNA damage responses during lytic BK polyomavirus infection. PLoS Pathog 2012; 8:e1002898. [PMID: 22952448 PMCID: PMC3431332 DOI: 10.1371/journal.ppat.1002898] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/24/2012] [Indexed: 12/18/2022] Open
Abstract
BK polyomavirus (BKPyV) is an emerging pathogen whose reactivation causes severe disease in transplant patients. Unfortunately, there is no specific anti-BKPyV treatment available, and host cell components that affect the infection outcome are not well characterized. In this report, we examined the relationship between BKPyV productive infection and the activation of the cellular DNA damage response (DDR) in natural host cells. Our results showed that both the ataxia-telangiectasia mutated (ATM)- and ATM and Rad-3-related (ATR)-mediated DDR were activated during BKPyV infection, accompanied by the accumulation of polyploid cells. We assessed the involvement of ATM and ATR during infection using small interfering RNA (siRNA) knockdowns. ATM knockdown did not significantly affect viral gene expression, but reduced BKPyV DNA replication and infectious progeny production. ATR knockdown had a slightly more dramatic effect on viral T antigen (TAg) and its modified forms, DNA replication, and progeny production. ATM and ATR double knockdown had an additive effect on DNA replication and resulted in a severe reduction in viral titer. While ATM mainly led to the activation of pChk2 and ATR was primarily responsible for the activation of pChk1, knockdown of all three major phosphatidylinositol 3-kinase-like kinases (ATM, ATR, and DNA-PKcs) did not abolish the activation of γH2AX during BKPyV infection. Finally, in the absence of ATM or ATR, BKPyV infection caused severe DNA damage and aberrant TAg staining patterns. These results indicate that induction of the DDR by BKPyV is critical for productive infection, and that one of the functions of the DDR is to minimize the DNA damage which is generated during BKPyV infection. BK polyomavirus (BKPyV) is a human pathogen that establishes a persistent sub-clinical infection in healthy humans. When patients are immunosuppressed, particularly in kidney and bone marrow transplantation, the virus can reactivate and result in severe disease. BKPyV-related disease has risen due to the use of newer immunosuppressive regimens and an increase in the number of transplants performed each year. We are interested in understanding the interactions between BKPyV and host cell components or pathways, with the aim of developing more BKPyV-specific antiviral treatment options. In this study we characterized the relationship between BKPyV infection and the cellular DNA damage response (DDR), a signaling cascade that is initiated by cells to repair damaged DNA molecules. Our study indicated that BKPyV activates and hijacks the DDR to facilitate its infection and that various components of the DDR may play distinct roles during this process. These data suggest that the DDR may provide a potential host target to control BKPyV reactivation in transplant recipients.
Collapse
Affiliation(s)
- Mengxi Jiang
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Linbo Zhao
- Graduate Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Monica Gamez
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Michael J. Imperiale
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Graduate Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
54
|
Bennett SM, Broekema NM, Imperiale MJ. BK polyomavirus: emerging pathogen. Microbes Infect 2012; 14:672-83. [PMID: 22402031 PMCID: PMC3568954 DOI: 10.1016/j.micinf.2012.02.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 02/07/2023]
Abstract
BK polyomavirus (BKPyV) is a small double-stranded DNA virus that is an emerging pathogen in immunocompromised individuals. BKPyV is widespread in the general population, but primarily causes disease when immune suppression leads to reactivation of latent virus. Polyomavirus-associated nephropathy and hemorrhagic cystitis in renal and bone marrow transplant patients, respectively, are the most common diseases associated with BKPyV reactivation and lytic infection. In this review, we discuss the clinical relevance, effects on the host, virus life cycle, and current treatment protocols.
Collapse
Affiliation(s)
- Shauna M. Bennett
- Program in Cellular and Molecular Biology, University of Michigan Medical School, 1150 West Medical Center Drive, 5724 Medical Science II, Ann Arbor, MI 48109-5620, USA
| | - Nicole M. Broekema
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5724 Medical Science II, Ann Arbor, MI 48109-5620, USA
| | - Michael J. Imperiale
- Program in Cellular and Molecular Biology, University of Michigan Medical School, 1150 West Medical Center Drive, 5724 Medical Science II, Ann Arbor, MI 48109-5620, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5724 Medical Science II, Ann Arbor, MI 48109-5620, USA
- Comprehensive Cancer Center University of Michigan Medical School, 1150 West Medical Center Drive, 5724 Medical Science II, Ann Arbor, MI 48109-5620, USA
| |
Collapse
|
55
|
Heutinck KM, Kassies J, Florquin S, ten Berge IJM, Hamann J, Rowshani AT. SerpinB9 expression in human renal tubular epithelial cells is induced by triggering of the viral dsRNA sensors TLR3, MDA5 and RIG-I. Nephrol Dial Transplant 2012; 27:2746-54. [PMID: 22167597 DOI: 10.1093/ndt/gfr690] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Serine protease inhibitor B9 (serpinB9) protects against granzyme B-mediated apoptosis and could help to reduce tubular damage under inflammatory conditions like interstitial nephritis. Previously, we found that tubular serpinB9 expression was increased during subclinical rejection. Here, we studied the regulation of serpinB9 expression in tubular epithelial cells (TECs) under inflammatory conditions. METHODS SerpinB9 expression was analysed on messenger RNA (mRNA), and protein levels in primary human TECs were stimulated with various cytokines and pattern recognition receptor ligands and in kidney transplant biopsies obtained during different types of viral infection. RESULTS Of the inflammatory stimuli tested, only the double-stranded RNA (dsRNA) analogue poly(I:C) promoted serpinB9 mRNA and protein expression. We found that TECs express the viral dsRNA receptors Toll-like receptor 3 (TLR3), melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I). dsRNA receptor ligands enhanced serpinB9 expression, which involved nuclear factor-kappaB (NF-κB) activation, did not require Type I interferon production and was a direct result of dsRNA receptor-induced gene transcription. In kidney transplants, serpinB9 transcription was increased during infection with cytomegalovirus, Epstein-Barr virus or BK virus compared to stable grafts. Immunohistochemistry showed that tubuli and lymphocytes expressed the inhibitor. CONCLUSION SerpinB9 expression in human TECs is induced by triggering of the viral dsRNA sensors TLR3, MDA5 and RIG-I. Viral dsRNA may increase the threshold for granzyme B-mediated apoptosis in TECs via serpinB9 upregulation and thus help to protect the kidney against cytotoxic insults during viral infection.
Collapse
MESH Headings
- BK Virus/genetics
- Biopsy
- Blotting, Western
- Cells, Cultured
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/virology
- Herpesvirus 4, Human/genetics
- Humans
- Immunoenzyme Techniques
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Interferon-Induced Helicase, IFIH1
- Kidney Diseases/metabolism
- Kidney Diseases/surgery
- Kidney Diseases/virology
- Kidney Transplantation
- Kidney Tubules/cytology
- Kidney Tubules/metabolism
- Lymphocytes/cytology
- Lymphocytes/metabolism
- Poly I-C/pharmacology
- Polyomavirus Infections/genetics
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Messenger/genetics
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Immunologic
- Reverse Transcriptase Polymerase Chain Reaction
- Serpins/genetics
- Serpins/metabolism
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/metabolism
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- Kirstin M Heutinck
- Department of Experimental Immunology, Renal Transplant Unit, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
56
|
Carbone M, Ly BH, Dodson RF, Pagano I, Morris PT, Dogan UA, Gazdar AF, Pass HI, Yang H. Malignant mesothelioma: facts, myths, and hypotheses. J Cell Physiol 2012; 227:44-58. [PMID: 21412769 PMCID: PMC3143206 DOI: 10.1002/jcp.22724] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malignant mesothelioma (MM) is a neoplasm arising from mesothelial cells lining the pleural, peritoneal, and pericardial cavities. Over 20 million people in the US are at risk of developing MM due to asbestos exposure. MM mortality rates are estimated to increase by 5-10% per year in most industrialized countries until about 2020. The incidence of MM in men has continued to rise during the past 50 years, while the incidence in women appears largely unchanged. It is estimated that about 50-80% of pleural MM in men and 20-30% in women developed in individuals whose history indicates asbestos exposure(s) above that expected from most background settings. While rare for women, about 30% of peritoneal mesothelioma in men has been associated with exposure to asbestos. Erionite is a potent carcinogenic mineral fiber capable of causing both pleural and peritoneal MM. Since erionite is considerably less widespread than asbestos, the number of MM cases associated with erionite exposure is smaller. Asbestos induces DNA alterations mostly by inducing mesothelial cells and reactive macrophages to secrete mutagenic oxygen and nitrogen species. In addition, asbestos carcinogenesis is linked to the chronic inflammatory process caused by the deposition of a sufficient number of asbestos fibers and the consequent release of pro-inflammatory molecules, especially HMGB-1, the master switch that starts the inflammatory process, and TNF-alpha by macrophages and mesothelial cells. Genetic predisposition, radiation exposure and viral infection are co-factors that can alone or together with asbestos and erionite cause MM. J. Cell. Physiol. 227: 44-58, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michele Carbone
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii 96813, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Ribeiro A, Wörnle M, Motamedi N, Anders HJ, Gröne EF, Nitschko H, Kurktschiev P, Debiec H, Kretzler M, Cohen CD, Gröne HJ, Schlöndorff D, Schmid H. Activation of innate immune defense mechanisms contributes to polyomavirus BK-associated nephropathy. Kidney Int 2012; 81:100-11. [PMID: 21918500 DOI: 10.1038/ki.2011.311] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyomavirus-associated nephropathy (PVAN) is a significant complication after kidney transplantation, often leading to premature graft loss. In order to identify antiviral responses of the renal tubular epithelium, we studied activation of the viral DNA and the double-stranded RNA (dsRNA) sensors Toll-like receptor 3 (TLR3) and retinoic acid inducible gene-I (RIG-I) in allograft biopsy samples of patients with PVAN, and in human collecting duct cells in culture after stimulation by the dsRNA mimic polyriboinosinic:polyribocytidylic acid (poly(I:C)), cytokines, or infection with BK virus. Double staining using immunofluorescence for BK virus and TLR3 showed strong signals in epithelial cells of distal cortical tubules and the collecting duct. In biopsies microdissected to isolate tubulointerstitial lesions, TLR3 but not RIG-I mRNA expression was found to be increased in PVAN. Collecting duct cells in culture expressed TLR3 intracellularly, and activation of TLR3 and RIG-I by poly(I:C) enhanced expression of cytokine, chemokine, and IFN-β mRNA. This inflammatory response could be specifically blocked by siRNA to TLR3. Finally, infection of the collecting duct cells with BK virus enhanced the expression of cytokines and chemokines. This led to an efficient antiviral immune response with TLR3 and RIG-I upregulation without activation of IL-1β or components of the inflammasome pathway. Thus, PVAN activation of innate immune defense mechanisms through TLR3 is involved in the antiviral and anti-inflammatory response leading to the expression of proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Andrea Ribeiro
- Medizinische Poliklinik Campus Innenstadt, Klinikum der LMU, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Broekema NM, Imperiale MJ. Efficient propagation of archetype BK and JC polyomaviruses. Virology 2011; 422:235-41. [PMID: 22099377 DOI: 10.1016/j.virol.2011.10.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/27/2011] [Accepted: 10/28/2011] [Indexed: 01/29/2023]
Abstract
BKPyV and JCPyV are closely related, ubiquitous human pathogens that cause disease in immunocompromised patients. The DNA sequence of the regulatory regions distinguishes two forms of these viruses, designated archetype and rearranged. Although cell culture systems exist for rearranged BKPyV and JCPyV, currently there is no robust cell culture system to study the archetype viruses. Large T antigen (TAg) is a virally encoded protein required to initiate viral DNA synthesis. Because archetype virus produces undetectable levels of TAg, we hypothesized that TAg overexpression would stimulate archetype virus replication. Efficient propagation of the archetype forms of BKPyV and JCPyV was observed in 293TT cells, human embryonic kidney cells overexpressing SV40 TAg. Importantly, the archetypal structure of the regulatory region was maintained during viral growth. Significant replication was not observed for Merkel cell, KI, or WU polyomaviruses. 293TT cells provide a means of propagating archetype BKPyV and JCPyV for detailed study.
Collapse
Affiliation(s)
- Nicole M Broekema
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| | | |
Collapse
|
59
|
Magaldi TG, Almstead LL, Bellone S, Prevatt EG, Santin AD, DiMaio D. Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation. Virology 2011; 422:114-24. [PMID: 22056390 DOI: 10.1016/j.virol.2011.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/27/2011] [Accepted: 10/10/2011] [Indexed: 11/25/2022]
Abstract
Repression of human papillomavirus (HPV) E6 and E7 oncogenes in established cervical carcinoma cell lines causes senescence due to reactivation of cellular tumor suppressor pathways. Here, we determined whether ongoing expression of HPV16 or HPV18 oncogenes is required for the proliferation of primary human cervical carcinoma cells in serum-free conditions at low passage number after isolation from patients. We used an SV40 viral vector expressing the bovine papillomavirus E2 protein to repress E6 and E7 in these cells. To enable efficient SV40 infection and E2 gene delivery, we first incubated the primary cervical cancer cells with the ganglioside GM1, a cell-surface receptor for SV40 that is limiting in these cells. Repression of HPV in primary cervical carcinoma cells caused them to undergo senescence, but the E2 protein had little effect on HPV-negative primary cells. These data suggest that E6 and E7 dependence is an inherent property of human cervical cancer cells.
Collapse
Affiliation(s)
- Thomas G Magaldi
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520-8005, USA
| | | | | | | | | | | |
Collapse
|
60
|
Luo C, Hirsch HH, Kant J, Randhawa P. VP-1 quasispecies in human infection with polyomavirus BK. J Med Virol 2011; 84:152-61. [PMID: 22052529 DOI: 10.1002/jmv.22147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 11/06/2022]
Abstract
Polyomavirus BK is a recognized cause of nephropathy and hemorrhagic cystitis in kidney or allogeneic hematopoietic stem cell transplant recipients. This study explored a role of genetic variations in capsid protein VP-1 gene as a factor in viral pathogenesis. VP-1 was amplified from 7 healthy subjects with viruria, 7 transplant patients with viruria, and 11 patients with viremia or nephropathy. PCR products were cloned and a total of 558 clonal sequences were subjected to phylogenetic analysis using standard methods. VP-1 quasispecies were found in 25/25 and coinfection with different genotypes in 12/25 subjects. Genotype II was found as an unexpected minority species in 5/25 individuals. Recombinant strains of uncertain biologic significance, which frequently contained genotype II and IV sequences were identified in 9/25 subjects. Viremia/nephropathy group was characterized by (a) greater sequence complexity in whole VP-1 versus BC loop and BC loop compared to the HI loop, (b) greater intra-strain genetic diversity in the BC loop compared to whole VP-1 protein and HI loop, (c) more non-synonymous substitutions (dN) in the BC loop compared to whole VP-1 and HI loop, (e) fewer synonymous substitutions (dS) compared to healthy-viruria group, and (f) selection pressure (dN/dS >1.0) exerted on VP-1. In conclusion, this study documents frequent occurrence of quasispecies in a host DNA polymerase dependent virus, which is theoretically expected to show high replication fidelity. Quasispecies occur even in healthy subjects with viruria, but evolutionary selection pressure directed at the viral capsid protein (VP-1) is seen only in patients with viremia or nephropathy.
Collapse
Affiliation(s)
- Chunqing Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
61
|
Luo C, Hirsch HH, Kant J, Randhawa P. VP-1 quasispecies in human infection with polyomavirus BK. J Med Virol 2011. [PMID: 22052529 DOI: 10.1002/22147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyomavirus BK is a recognized cause of nephropathy and hemorrhagic cystitis in kidney or allogeneic hematopoietic stem cell transplant recipients. This study explored a role of genetic variations in capsid protein VP-1 gene as a factor in viral pathogenesis. VP-1 was amplified from 7 healthy subjects with viruria, 7 transplant patients with viruria, and 11 patients with viremia or nephropathy. PCR products were cloned and a total of 558 clonal sequences were subjected to phylogenetic analysis using standard methods. VP-1 quasispecies were found in 25/25 and coinfection with different genotypes in 12/25 subjects. Genotype II was found as an unexpected minority species in 5/25 individuals. Recombinant strains of uncertain biologic significance, which frequently contained genotype II and IV sequences were identified in 9/25 subjects. Viremia/nephropathy group was characterized by (a) greater sequence complexity in whole VP-1 versus BC loop and BC loop compared to the HI loop, (b) greater intra-strain genetic diversity in the BC loop compared to whole VP-1 protein and HI loop, (c) more non-synonymous substitutions (dN) in the BC loop compared to whole VP-1 and HI loop, (e) fewer synonymous substitutions (dS) compared to healthy-viruria group, and (f) selection pressure (dN/dS >1.0) exerted on VP-1. In conclusion, this study documents frequent occurrence of quasispecies in a host DNA polymerase dependent virus, which is theoretically expected to show high replication fidelity. Quasispecies occur even in healthy subjects with viruria, but evolutionary selection pressure directed at the viral capsid protein (VP-1) is seen only in patients with viremia or nephropathy.
Collapse
Affiliation(s)
- Chunqing Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
62
|
Abstract
BK virus (BKV) is the causative agent for polyomavirus-associated nephropathy, a severe disease found in renal transplant patients due to reactivation of a persistent BKV infection. BKV replication relies on the interactions of BKV with many nuclear components, and subnuclear structures such as promyelocytic leukemia nuclear bodies (PML-NBs) are known to play regulatory roles during a number of DNA virus infections. In this study, we investigated the relationship between PML-NBs and BKV during infection of primary human renal proximal tubule epithelial (RPTE) cells. While the levels of the major PML-NB protein components remained unchanged, BKV infection of RPTE cells resulted in dramatic alterations in both the number and the size of PML-NBs. Furthermore, two normally constitutive components of PML-NBs, Sp100 and hDaxx, became dispersed from PML-NBs. To define the viral factors responsible for this reorganization, we examined the cellular localization of the BKV large tumor antigen (TAg) and viral DNA. TAg colocalized with PML-NBs during early infection, while a number of BKV chromosomes were adjacent to PML-NBs during late infection. We demonstrated that TAg alone was not sufficient to reorganize PML-NBs and that active viral DNA replication is required. Knockdown of PML protein did not dramatically affect BKV growth in culture. BKV infection, however, was able to rescue the growth of an ICP0-null herpes simplex virus 1 mutant whose growth defect was partially due to its inability to disrupt PML-NBs. We hypothesize that the antiviral functions of PML-NBs are inactivated through reorganization during normal BKV infection. BK virus (BKV) is a human pathogen that causes severe diseases, including polyomavirus-associated nephropathy in kidney transplant patients and hemorrhagic cystitis in bone marrow transplant recipients. How BKV replication is regulated and the effects of a lytic BKV infection on host cells at the molecular level are not well understood. Currently, there is no specific antiviral treatment for BKV-associated disease, and a better understanding of the complete life cycle of the virus is necessary. Here, we report the interplay between BKV and one of the regulatory structures in the host cell nucleus, promyelocytic leukemia nuclear bodies (PML-NBs). Our results show that BKV infection reorganizes PML-NBs as a strategy to inactivate the negative functions of PML-NBs.
Collapse
|
63
|
A system for the analysis of BKV non-coding control regions: application to clinical isolates from an HIV/AIDS patient. Virology 2010; 407:368-73. [PMID: 20869740 DOI: 10.1016/j.virol.2010.08.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/09/2010] [Accepted: 08/30/2010] [Indexed: 12/28/2022]
Abstract
The human polyomavirus BK virus (BKV) is an important opportunistic pathogen whose disease prevalence continues to increase with the growing immunocompromised population. To date, the major determinant of replication in cell culture has not been formally proven. BKV exists as archetype virus and rearranged variants, which are classified based on the DNA sequence of their non-coding control regions (NCCRs). The archetype BKV NCCR is divided into five blocks of sequence and rearranged variants contain deletions and duplications of these blocks. In this study, a genetic system was developed and used to identify the major determinant of replication ability in primary renal proximal tubule epithelial cells, the natural host cell of BKV. This system was also used to analyze NCCR variants isolated from an immunocompromised patient which contain assorted rearrangement patterns and functional differences. This study solidifies the NCCR as the major genetic determinant of BKV replication ability in vitro.
Collapse
|
64
|
MAP kinase activation increases BK polyomavirus replication and facilitates viral propagation in vitro. J Virol Methods 2010; 170:21-9. [PMID: 20813136 DOI: 10.1016/j.jviromet.2010.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/27/2010] [Accepted: 08/23/2010] [Indexed: 11/21/2022]
Abstract
BK polyomavirus causes disease in immunosuppressed patients. BK virus replication was augmented in HEL-299 cells cultured in conditions that activated the MAP kinase, ERK1/2. To determine if MAP kinase activation increased BK virus replication, cells were treated with serum and phorbol 12-myristate 13-acetate (PMA). Serum and PMA stimulated large T-antigen expression and increased BK virus DNA replication. The effects of serum/PMA were directly related to MAP kinase signal activation since viral replication was reduced by the MEK1/2 inhibitor U0126. PMA also increased cyclin D1 expression and inhibition of cyclin D1/CDK4 complex and the cell cycle reduced BK virus infection. The PMA effect occurred independent of direct transcriptional activation of the viral NCCR. In HEL-299 cells, virus infection in high serum and PMA accelerated viral replication that resulted, within 7 days, in the production of high titer infectious BK virus. These results show that MAP kinase signal activation increases BK virus replication.
Collapse
|
65
|
1-O-hexadecyloxypropyl cidofovir (CMX001) effectively inhibits polyomavirus BK replication in primary human renal tubular epithelial cells. Antimicrob Agents Chemother 2010; 54:4714-22. [PMID: 20713664 DOI: 10.1128/aac.00974-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antiviral drugs for treating polyomavirus BK (BKV) replication in polyomavirus-associated nephropathy or hemorrhagic cystitis are of considerable clinical interest. Unlike cidofovir, the lipid conjugate 1-O-hexadecyloxypropyl cidofovir (CMX001) is orally available and has not caused detectable nephrotoxicity in rodent models or human studies to date. Primary human renal proximal tubular epithelial cells were infected with BKV-Dunlop, and CMX001 was added 2 h postinfection (hpi). The intracellular and extracellular BKV DNA load was determined by quantitative PCR. Viral gene expression was examined by quantitative reverse transcription-PCR, Western blotting, and immunofluorescence microscopy. We also examined host cell viability, proliferation, metabolic activity, and DNA replication. The titration of CMX001 identified 0.31 μM as the 90% effective concentration (EC(90)) for reducing the extracellular BKV load at 72 hpi. BKV large T antigen mRNA and protein expression was unaffected at 24 hpi, but the intracellular BKV genome was reduced by 90% at 48 hpi. Late gene expression was reduced by 70 and 90% at 48 and 72 hpi, respectively. Comparisons of CMX001 and cidofovir EC(90)s from 24 to 96 hpi demonstrated that CMX001 had a more rapid and enduring effect on BKV DNA and infectious progeny at 96 hpi than cidofovir. CMX001 at 0.31 μM had little effect on overall cell metabolism but reduced bromodeoxyuridine incorporation and host cell proliferation by 20 to 30%, while BKV infection increased cell proliferation in both rapidly dividing and near-confluent cultures. We conclude that CMX001 inhibits BKV replication with a longer-lasting effect than cidofovir at 400× lower levels, with fewer side effects on relevant host cells in vitro.
Collapse
|
66
|
Quantitative considerations to gather maximum information from viral growth efficiency studies: the example of polyomavirus type BK (BKV). Virus Res 2010; 151:244-5. [PMID: 20580755 DOI: 10.1016/j.virusres.2010.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 11/23/2022]
Abstract
This short communication shows how the application of simple mathematical formulae allows researchers to extract maximum information from viral growth efficiency studies at virtually no additional costs (in terms of time or money), thus improving the comparability of results (growth rates, replicative capacities, efficacies of antivirals) between in vitro and in vivo growth efficiency studies. This could help in elucidating kinetic links between the molecular basis of virus function and clinical findings.
Collapse
|
67
|
Abstract
Polyomaviruses (Pys) are nonenveloped DNA tumor viruses that include the murine polyomavirus (mPy), simian virus 40 (SV40), and the human BK, JC, KI, WU, and Merkel Cell viruses. To cause infection, Pys must enter host cells and navigate through various intracellular compartments, where they undergo sequential conformational changes enabling them to uncoat and deliver the DNA genome into the nucleus. The ensuing transcription and replication of the genome leads to lytic infection or cell transformation. In recent years, a more coherent understanding of how Pys are transported from the plasma membrane to the nucleus is starting to emerge. This review will focus on the decisive steps of Py entry, including engagement of the host cell receptor, targeting to the endoplasmic reticulum (ER), penetration across the ER membrane, nuclear entry, and genome release. Strikingly, a number of these steps resemble the intoxication pathway of the AB(5) bacterial toxins. Thus, as Pys and bacterial toxins hijack similar cellular machineries during infection, a general principle appears to guide their entry into host cells.
Collapse
Affiliation(s)
- Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | | |
Collapse
|
68
|
Abend JR, Low JA, Imperiale MJ. Global effects of BKV infection on gene expression in human primary kidney epithelial cells. Virology 2009; 397:73-9. [PMID: 19945725 DOI: 10.1016/j.virol.2009.10.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/29/2009] [Accepted: 10/30/2009] [Indexed: 02/08/2023]
Abstract
BK virus (BKV) is a ubiquitous human pathogen that establishes a lifelong persistent infection in kidney epithelial cells. BKV reactivation within these cells results in a lytic infection in immunocompromised patients. Little is known about the specific interactions of BKV and the host cell during persistence and reactivation. We performed global cellular gene expression analyses using microarrays to characterize the global effect of BKV on primary kidney epithelial cells during the viral life cycle. Our results demonstrate that BKV primarily activates genes involved in cell cycle regulation and apoptosis (58% and 44% of upregulated genes at 48 and 72 h post-infection, respectively). Surprisingly, we observed that only four genes were downregulated during infection and that only two genes directly involved in the inflammatory response were differentially expressed. These results provide information about how BKV interacts with a cell type in which it both establishes persistence and undergoes lytic reactivation.
Collapse
Affiliation(s)
- Johanna R Abend
- Department of Microbiology and Immunology, and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | | | | |
Collapse
|
69
|
Jeffers LK, Madden V, Webster-Cyriaque J. BK virus has tropism for human salivary gland cells in vitro: implications for transmission. Virology 2009; 394:183-93. [PMID: 19782382 DOI: 10.1016/j.virol.2009.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/28/2009] [Accepted: 07/14/2009] [Indexed: 01/06/2023]
Abstract
BACKGROUND In this study, it was determined that BKV is shed in saliva and an in vitro model system was developed whereby BKV can productively infect both submandibular (HSG) and parotid (HSY) salivary gland cell lines. RESULTS BKV was detected in oral fluids using quantitative real-time PCR (QRTPCR). BKV infection was determined using quantitative RT-PCR, immunofluorescence and immunoblotting assays. The infectivity of BKV was inhibited by pre-incubation of the virus with gangliosides that saturated the major capsid protein, VP1, halting receptor mediated BKV entry into salivary gland cells. Examination of infected cultures by transmission electron microscopy revealed 45-50 nm BK virions clearly visible within the cells. Subsequent to infection, encapsidated BK virus was detected in the supernatant. CONCLUSION We thus demonstrated that BKV was detected in oral fluids and that BK infection and replication occur in vitro in salivary gland cells. These data collectively suggest the potential for BKV oral route of transmission and oral pathogenesis.
Collapse
Affiliation(s)
- Liesl K Jeffers
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
70
|
Antibody responses to recombinant polyomavirus BK large T and VP1 proteins in young kidney transplant patients. J Clin Microbiol 2009; 47:2577-85. [PMID: 19474265 DOI: 10.1128/jcm.00030-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BK virus (BKV)-specific immunity is critical for polyomavirus-associated nephropathy, but antibody responses are incompletely defined. We compared the hemagglutination inhibition assay (HIA) with immunoglobulin G enzyme immunoassays (EIA) to BKV proteins expressed in baculovirus-infected insect cells. N-terminal, internal, and C-terminal domains of the BKV large T antigen (BKLT) were fused to glutathione S-transferase (GST), yielding GST-BKLTD1, GST-BKLTD2, and GST-BKLTD3, respectively. The BKV capsid VP1 was expressed as a GST fusion (BKVP1) or as a native VP1 assembled into viruslike particles (BKVLP). We tested 422 sera from 28 healthy donors (HD), 99 dialysis patients (DP; median age, 15 years; range, 3 to 32 years), and 46 age-matched kidney transplant patients (KTP; median age, 15 years; range, 2 to 33 years). In HD, HIA and BKVLP EIA both yielded a 91.7% seroreactivity, whereas all other EIA responses were lower (BKVP1, 83.3%; BKLTD1, 25%; BKLTD2, 29%; BKLTD3, 40%). HIA titers significantly correlated with EIA levels for BKVLP, BKVP1, and BKLTD1 but not for BKLTD2 or BKLTD3, which were barely above the cutoff. In DP, the seroreactivities of HIA, BKVLP, and BKLTD1 were lower than that in HD (63.6%, 86.9%, and 10.1%, respectively) and they had lower titers (P < 0.001). In KTP, seropositivities for BKVLP, BKVP1, and BKLTD1 were 78%, 50%, and 17%, respectively, but anti-BKVLP levels increased significantly in KTP with viruria and viremia, whereas anti-BKLTD1 levels increased after clearing sustained BKV viremia. In conclusion, anti-BKVLP is equivalent to HIA in HD but is more sensitive to determine the BKV serostatus in DP and KTP. In KTP, anti-BKVLP responds to recent BKV viruria and viremia, whereas anti-BKLTD1 may indicate emerging BKV-specific immune control.
Collapse
|
71
|
Moriyama T, Sorokin A. BK virus (BKV): infection, propagation, quantitation, purification, labeling, and analysis of cell entry. CURRENT PROTOCOLS IN CELL BIOLOGY 2009. [PMID: 19283732 DOI: 10.1002/047114030.cb2602s42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BK virus (BKV) can cause BKV nephritis in renal transplant patients and has become a significant reason for graft loss in this decade. BKV is latent in the urogenital tract and most likely is transported with the donor kidney to recipients. BKV replication occurs in the nucleus of human renal proximal tubular cells (HRPTEC) and daughter viruses are delivered to other cells to spread infection. A few in vitro studies have been reported about the mechanism and kinetics of BKV infection. However, there are still a lot of unknown factors regarding BKV infection. This unit describes the handling of BKV, BKV propagation, determination of titer and ability to infect cells, as well as purification and labeling of BKV in order to analyze BKV cell entry.
Collapse
|
72
|
Moriyama T, Sorokin A. BK virus (BKV): infection, propagation, quantitation, purification, labeling, and analysis of cell entry. ACTA ACUST UNITED AC 2009; Chapter 26:Unit 26.2. [PMID: 19283732 DOI: 10.1002/0471143030.cb2602s42] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BK virus (BKV) can cause BKV nephritis in renal transplant patients and has become a significant reason for graft loss in this decade. BKV is latent in the urogenital tract and most likely is transported with the donor kidney to recipients. BKV replication occurs in the nucleus of human renal proximal tubular cells (HRPTEC) and daughter viruses are delivered to other cells to spread infection. A few in vitro studies have been reported about the mechanism and kinetics of BKV infection. However, there are still a lot of unknown factors regarding BKV infection. This unit describes the handling of BKV, BKV propagation, determination of titer and ability to infect cells, as well as purification and labeling of BKV in order to analyze BKV cell entry.
Collapse
|
73
|
Abstract
BK virus (BKV) is a nonenveloped, ubiquitous human polyomavirus that establishes a persistent infection in healthy individuals. It can be reactivated, however, in immunosuppressed patients and cause severe diseases, including polyomavirus nephropathy. The entry and disassembly mechanisms of BKV are not well defined. In this report, we characterized several early events during BKV infection in primary human renal proximal tubule epithelial (RPTE) cells, which are natural host cells for BKV. Our results demonstrate that BKV infection in RPTE cells involves an acidic environment relatively early during entry, followed by transport along the microtubule network to reach the endoplasmic reticulum (ER). A distinct disulfide bond isomerization and cleavage pattern of the major capsid protein VP1 was observed, which was also influenced by alterations in pH and disruption of trafficking to the ER. A dominant negative form of Derlin-1, an ER protein required for retro-translocation of certain misfolded proteins, inhibited BKV infection. Consistent with this, we detected an interaction between Derlin-1 and VP1. Finally, we show that proteasome function is also linked to BKV infection and capsid rearrangement. These results indicate that BKV early entry and disassembly are highly regulated processes involving multiple cellular components.
Collapse
|
74
|
Seemayer CA, Seemayer NH, Dürmüller U, Gudat F, Schaub S, Hirsch HH, Mihatsch MJ. BK virus large T and VP-1 expression in infected human renal allografts. Nephrol Dial Transplant 2008; 23:3752-61. [PMID: 18784088 PMCID: PMC2639064 DOI: 10.1093/ndt/gfn470] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We investigated the expression of early and late phase BK virus (BKV) proteins and their interactions with host cell proteins in renal allografts, with ongoing polyomavirus associated nephropathy (PVAN), and correlated this with the nuclear and cell morphology. METHODS Frozen sections from three patients with renal allografts (two biopsies, one explant) with PVAN were analysed by indirect immunofluorescence using BKV specific anti-polyoma large T-antigen and anti-VP-1 antibodies, as well as anti-p53, anti-Ki67, anti-caspase-3, anti-bcl2 and anti-cytokeratin 22 antibodies. Nuclear morphology and size were estimated by DNA Hoechst staining. RESULTS In infected tubular cells the early and late phases of infection could be distinguished according to expression of large T-antigen or VP-1. The early phase revealed almost normal nuclear proportions, whereas in later phases nuclear size increased about 2 to 3 fold. Expression of large T-antigen was strongly associated with accumulation of p53 in the nucleus, accompanied by the activation of the cell cycle associated cell protein Ki67. In contrast, expression of BKV VP1 correlated only weakly with p53. Virus dependent cell lysis was due to necrosis, since neither caspase 3 nor nuclear nor cytoskeleton changes indicated apoptosis. CONCLUSION In our selected patients with PVAN a clear distinction between early and late phases was possible, according to the protein expression patterns of BKV markers. Striking nuclear enlargement is only present in the late phase of infection. In the inflammatory setting of PVAN, BKV dependent effects appear to be mediated by the inhibition of p53, resulting in the activation of the cell cycle. We assume that in PVAN similar BKV mechanisms are operative as in certain in vitro systems.
Collapse
Affiliation(s)
- Christian A. Seemayer
- Institute for Pathology, University Hospital Basel, Schönbeinstrasse 40, CH-4003 Basel, Switzerland
| | - Norbert H. Seemayer
- Institute of Virology, University Hospital Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | - Ursula Dürmüller
- Institute for Pathology, University Hospital Basel, Schönbeinstrasse 40, CH-4003 Basel, Switzerland
| | - Fred Gudat
- Institute for Pathology, University Hospital Basel, Schönbeinstrasse 40, CH-4003 Basel, Switzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Baseland
| | - Hans H. Hirsch
- Transplantation Virology, Medical Microbiology, University of Basel, CH-4003 Basel, Switzerland
| | - Michael J. Mihatsch
- Institute for Pathology, University Hospital Basel, Schönbeinstrasse 40, CH-4003 Basel, Switzerland
| |
Collapse
|
75
|
Repression of BK virus infection of human renal proximal tubular epithelial cells by pravastatin. Transplantation 2008; 85:1311-7. [PMID: 18475189 DOI: 10.1097/tp.0b013e31816c4ec5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND BK virus (BKV), a human polyomavirus, causes BKV nephritis, which often leads to graft loss after renal transplantation. Currently, the only efficient therapy against BKV nephritis seems to be a reduction or change of immunosuppressive agents, but this may increase the inherent risk of rejection. Here, we report the ability of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitor (statin), which is routinely used to treat hypercholesterolemia, to repress BKV entry pathways in human renal proximal tubular epithelial cells (HRPTEC) and, correspondently, prevent BKV infection. METHODS HRPTEC were co-incubated with BKV and pravastatin. Then the percentage of HRPTEC infected with BKV by immunofluorescent analysis and large T-antigen expression which suggested BKV infection by Western blots was assessed in the absence and presence of pravastatin. The distribution of purified and labeled BKV particles in the presence and absence of pravastatin was also investigated. RESULTS Both the percentage of BKV infected cells and the large T-antigen expression were significantly decreased in HRPTEC pretreated and co-incubated with pravastatin. However, when pravastatin was added 72 hr after BKV infection it failed to decrease percentage of BKV infected cells. It is likely, that pravastatin's inhibitory effect is explained by depletion of caveolin-1, a critical element of caveolae. BKV enters HRPTEC by caveolar-mediated endocytosis. We provide evidence that pravastatin dramatically decreased caveolin-1 expression in HRPTEC and interfered with internalization of labeled BKV particles. CONCLUSIONS Our data suggest that pravastatin, acting through depletion of caveolin-1, prevented caveolar-dependent BKV internalization and repressed BKV infection of HRPTEC.
Collapse
|
76
|
Takahashi RU, Kanesashi SN, Inoue T, Enomoto T, Kawano MA, Tsukamoto H, Takeshita F, Imai T, Ochiya T, Kataoka K, Yamaguchi Y, Handa H. Presentation of functional foreign peptides on the surface of SV40 virus-like particles. J Biotechnol 2008; 135:385-92. [DOI: 10.1016/j.jbiotec.2008.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/09/2008] [Accepted: 05/26/2008] [Indexed: 11/30/2022]
|
77
|
Moriyama T, Sorokin A. Intracellular trafficking pathway of BK Virus in human renal proximal tubular epithelial cells. Virology 2007; 371:336-49. [PMID: 17976677 DOI: 10.1016/j.virol.2007.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 07/31/2007] [Accepted: 09/21/2007] [Indexed: 01/04/2023]
Abstract
Intracellular trafficking of BK Virus (BKV) in human renal proximal tubular epithelial cells (HRPTEC) is critical for BKV nephritis. However, the major trafficking components utilized by BKV remain unknown. Coincubation of HRPTEC with BKV and microtubule disrupting agents prevented BKV infection as detected by immunofluorescence and western blot analysis with antibodies which recognize BKV large T antigen. However, inhibition of a dynein, cellular motor protein, did not interfere with BKV infection in HRPTEC. A colocalization study of BKV with the markers of the endoplasmic reticulum (ER) and the Golgi apparatus (GA), indicated that BKV reached the ER from 6 to 10 h, while bypassing the GA or passing through the GA too transiently to be detected. This study contributes to the understanding of mechanisms of intracellular trafficking used by BKV in the infection of HRPTEC.
Collapse
Affiliation(s)
- Takahito Moriyama
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
78
|
Abstract
Nephropathy from BK virus (BKV) infection is an evolving challenge in kidney transplant recipients. It is the consequence of modern potent immunosuppression aimed at reducing acute rejection and improving allograft survival. Untreated BKV infections lead to kidney allograft dysfunction or loss. Decreased immunosuppression is the principle treatment but predisposes to acute and chronic rejection. Screening protocols for early detection and prevention of symptomatic BKV nephropathy have improved outcomes. Although no approved antiviral drug is available, leflunomide, cidofovir, quinolones, and intravenous Ig have been used. Retransplantation after BKV nephropathy has been successful.
Collapse
Affiliation(s)
- Daniel L Bohl
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
79
|
Dugan AS, Gasparovic ML, Tsomaia N, Mierke DF, O'Hara BA, Manley K, Atwood WJ. Identification of amino acid residues in BK virus VP1 that are critical for viability and growth. J Virol 2007; 81:11798-808. [PMID: 17699578 PMCID: PMC2168807 DOI: 10.1128/jvi.01316-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BK virus (BKV) is a ubiquitous pathogen that establishes a persistent infection in the urinary tract of 80% of the human population. Like other polyomaviruses, the major capsid protein of BKV, virion protein 1 (VP1), is critical for host cell receptor recognition and for proper virion assembly. BKV uses a carbohydrate complex containing alpha(2,3)-linked sialic acid attached to glycoprotein and glycolipid motifs as a cellular receptor. To determine the amino acids important for BKV binding to the sialic acid portion of the complex, we generated a series of 17 point mutations in VP1 and scored them for viral growth. The first set of mutants behaved identically to wild-type virus, suggesting that these amino acids were not critical for virus propagation. Another group of VP1 mutants rendered the virus nonviable. These mutations failed to protect viral DNA from DNase I digestion, indicating a role for these domains in capsid assembly and/or packaging of DNA. A third group of VP1 mutations packaged DNA similarly to the wild type but failed to propagate. The initial burst size of these mutations was similar to that of the wild type, indicating that there is no defect in the lytic release of the mutated virions. Binding experiments revealed that a subset of the BKV mutants were unable to attach to their host cells. These motifs are likely important for sialic acid recognition. We next mapped these mutations onto a model of BKV VP1 to provide atomic insight into the role of these sites in the binding of sialic acid to VP1.
Collapse
Affiliation(s)
- Aisling S Dugan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Funk GA, Gosert R, Hirsch HH. Viral dynamics in transplant patients: implications for disease. THE LANCET. INFECTIOUS DISEASES 2007; 7:460-72. [PMID: 17597570 DOI: 10.1016/s1473-3099(07)70159-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Viral infections cause substantial morbidity and mortality in transplant patients. Quantifying viral loads is widely appreciated as a direct means to diagnose and monitor the course of viral infections. Recent studies indicate that the kinetics of viral load changes rather than single viral load measurements better correlate with organ involvement. In this Review, we will summarise the current knowledge regarding the kinetics of viruses relevant to transplantation including cytomegalovirus, Epstein-Barr virus, the herpes viruses 6 and 7, hepatitis C virus, GB virus C, adenovirus, and the emerging human polyomavirus type BK. We discuss the implications of viral kinetics for organ pathology as well as for the evaluation of antiviral interventions in transplant patients.
Collapse
Affiliation(s)
- Georg A Funk
- Transplantation Virology, Institute for Medical Microbiology, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
81
|
Moriyama T, Marquez JP, Wakatsuki T, Sorokin A. Caveolar endocytosis is critical for BK virus infection of human renal proximal tubular epithelial cells. J Virol 2007; 81:8552-62. [PMID: 17553887 PMCID: PMC1951339 DOI: 10.1128/jvi.00924-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, BK virus (BKV) nephritis after renal transplantation has become a severe problem. The exact mechanisms of BKV cell entry and subsequent intracellular trafficking remain unknown. Since human renal proximal tubular epithelial cells (HRPTEC) represent a main natural target of BKV nephritis, analysis of BKV infection of HRPTEC is necessary to obtain additional insights into BKV biology and to develop novel strategies for the treatment of BKV nephritis. We coincubated HRPTEC with BKV and the cholesterol-depleting agents methyl beta cyclodextrin (MBCD) and nystatin (Nys), drugs inhibiting caveolar endocytosis. The percentage of infected cells (detected by immunofluorescence) and the cellular levels of BKV large T antigen expression (detected by Western blot analysis) were significantly decreased in both MBCD- and Nys-treated HPRTEC compared to the level in HRPTEC incubated with BKV alone. HRPTEC infection by BKV was also tested after small interfering RNA (siRNA)-dependent depletion of either the caveolar structural protein caveolin-1 (Cav-1) or clathrin, the major structural protein of clathrin-coated pits. BKV infection was inhibited in HRPTEC transfected with Cav-1 siRNA but not in HRPTEC transfected with clathrin siRNA. The colocalization of labeled BKV particles with either Cav-1 or clathrin was investigated by using fluorescent microscopy and image cross-correlation spectroscopy. The rate of colocalization of BKV with Cav-1 peaked at 4 h after incubation. Colocalization with clathrin was insignificant at all time points. These results suggest that BKV entered into HRPTEC via caveolae, not clathrin-coated pits, and that BKV is maximally associated with caveolae at 4 h after infection, prior to relocation to a different intracellular compartment.
Collapse
Affiliation(s)
- Takahito Moriyama
- Division of Nephrology and Kidney Disease Center, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
82
|
Leuenberger D, Andresen PA, Gosert R, Binggeli S, Ström EH, Bodaghi S, Rinaldo CH, Hirsch HH. Human polyomavirus type 1 (BK virus) agnoprotein is abundantly expressed but immunologically ignored. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:959-68. [PMID: 17538118 PMCID: PMC2044487 DOI: 10.1128/cvi.00123-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Impaired BK virus (BKV)-specific immunity is a key risk factor of polyomavirus-associated nephropathy. We hypothesized that BKV agnoprotein might constitute an important immune target, as it is highly expressed after infection in vitro. We demonstrate abundant expression of BKV agnoprotein in vivo by immunostaining of kidney transplant (KT) biopsy specimens. Antibody responses to the recombinant affinity-purified BKV agnoprotein, large tumor (LT), and VP1 antigens in 146 sera from 38 KT patients and in 19 sera from 16 healthy donors (HD) were compared by enzyme immunoassay. In HD, low titers of anti-agnoprotein immunoglobulin G (IgG) were found in 15% of sera, compared to 41% for anti-LT antigen and 63% for anti-VP1. No anti-BKV IgM was detectable. In KT patients, anti-agnoprotein IgG and IgM were found in 8% and 3.6% of sera, compared to 63% and 18% for anti-LT IgG and IgM and 80% and 41% for anti-VP1 IgG and IgM, respectively. Anti-LT antigen and anti-VP1, but not anti-agnoprotein, activities increased during and after BKV viremia in KT patients. To investigate specific cellular immune responses, we compared levels of gamma interferon production in peripheral blood mononuclear cells (PBMC) of 10 HD and 30 KT patients by enzyme-linked immunospot assay. In HD, the median numbers of gamma interferon spot-forming units per million PBMC for the agnoprotein, LT antigen, and VP1 peptides were 1, 23, and 25, respectively, whereas the responses in KT patients were 2, 24, and 99, respectively. We conclude that BKV agnoprotein, though abundantly expressed in vivo, is poorly recognized immunologically.
Collapse
Affiliation(s)
- David Leuenberger
- Transplantation Virology, Institute for Medical Microbiology, Department of Clinical and Biological Sciences, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Grinde B, Gayorfar M, Rinaldo CH. Impact of a polyomavirus (BKV) infection on mRNA expression in human endothelial cells. Virus Res 2007; 123:86-94. [PMID: 16996634 DOI: 10.1016/j.virusres.2006.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/16/2006] [Accepted: 08/16/2006] [Indexed: 02/07/2023]
Abstract
Polyomavirus BK-associated nephropathy (PVAN) is an emerging cause of early renal transplant failure. In order to learn more about the cellular response to BK virus, microarrays were used to study its effect on mRNA expression in human endothelial cells. The oligo-based, 35k arrays used cover the predicted 25,000 human protein-expressing genes, and distinguish between a number of alternatively spliced mRNAs. Four parallel experiments were performed for each of two time-points (24 and 40 h) during the first round of the 48 h viral replicative cycle. Immunoperoxidase staining demonstrated that the pulse exposure to virus caused infection in at least 75% of the cells. At 24 h, 55 genes were more than doubly up-regulated and 249 genes were similarly down-regulated; at 40 h, the numbers were 242 and 104, respectively. Gene ontology analyses suggested that immune/defence response genes were selectively down-regulated. Genes involved in cell division and DNA replication tended to be up-regulated, which may reflect an attempt on behalf of the virus to promote viral replication. Genes associated with PVAN were not induced, suggesting that these genes are not required for viral replication, but rather reflect circumstances specific for the disease. Only a few immuno-related genes were turned on, including the interferon response genes G1P2 and IFIT3. However, some of the up-regulated genes of unknown function may be involved in viral defence.
Collapse
Affiliation(s)
- Bjørn Grinde
- Division of Infectious Disease Control, Norwegian Institute of Public Health, 0403 Oslo, Norway.
| | | | | |
Collapse
|
84
|
Gee GV, Dugan AS, Tsomaia N, Mierke DF, Atwood WJ. The role of sialic acid in human polyomavirus infections. Glycoconj J 2006; 23:19-26. [PMID: 16575519 DOI: 10.1007/s10719-006-5434-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
JC virus (JCV) and BK virus (BKV) are human polyomaviruses that infect approximately 85% of the population worldwide [1,2]. JCV is the underlying cause of the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML), a condition resulting from JCV induced lytic destruction of myelin producing oligodendrocytes in the brain [3]. BKV infection of kidneys in renal transplant recipients results in a gradual loss of graft function known as polyomavirus associated nephropathy (PVN) [4]. Following the identification of these viruses as the etiological agents of disease, there has been greater interest in understanding the basic biology of these human pathogens [5,6]. Recent advances in the field have shown that viral entry of both JCV and BKV is dependent on the ability to interact with sialic acid. This review focuses on what is known about the human polyomaviruses and the role that sialic acid plays in determining viral tropism.
Collapse
Affiliation(s)
- Gretchen V Gee
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
85
|
Inhibitory effect of gamma interferon on BK virus gene expression and replication. J Virol 2006. [PMID: 17035315 DOI: 10.1128/jvi.01571-06.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BK virus (BKV) is widely accepted to be the causative agent of polyomavirus nephropathy. In immunocompromised individuals, especially kidney transplant recipients, BKV can replicate in kidney epithelial cells, causing loss of renal function and eventual destruction of the graft. Advances in immunosuppressive therapies may be partially responsible for the increasing incidence of polyomavirus nephropathy among transplant recipients by more effectively eliminating components of the immune system, such as gamma interferon (IFN-gamma)-producing lymphocytes, that keep BKV infections at a subclinical level. In this study, we investigated the role of IFN-gamma in regulating lytic infection by BKV. Treatment with IFN-gamma inhibited the expression of the viral early protein large tumor antigen (TAg) and the late protein VP1 in a dose-dependent manner. We detected 1.6- and 12-fold reductions in TAg transcripts at 48 and 96 h postinfection, respectively, with 250 U/ml IFN-gamma, suggesting that IFN-gamma-mediated inhibition occurs at the level of transcription. Furthermore, IFN-gamma inhibited the level of viral progeny production as much as 50-fold at a multiplicity of infection (MOI) of 0.5 and 80-fold at an MOI of 0.1. The inhibitory effects of IFN-gamma were similar for three different strains of BKV examined. These results indicate an important role for IFN-gamma in regulating BKV lytic infection.
Collapse
|
86
|
Abend JR, Low JA, Imperiale MJ. Inhibitory effect of gamma interferon on BK virus gene expression and replication. J Virol 2006; 81:272-9. [PMID: 17035315 PMCID: PMC1797268 DOI: 10.1128/jvi.01571-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BK virus (BKV) is widely accepted to be the causative agent of polyomavirus nephropathy. In immunocompromised individuals, especially kidney transplant recipients, BKV can replicate in kidney epithelial cells, causing loss of renal function and eventual destruction of the graft. Advances in immunosuppressive therapies may be partially responsible for the increasing incidence of polyomavirus nephropathy among transplant recipients by more effectively eliminating components of the immune system, such as gamma interferon (IFN-gamma)-producing lymphocytes, that keep BKV infections at a subclinical level. In this study, we investigated the role of IFN-gamma in regulating lytic infection by BKV. Treatment with IFN-gamma inhibited the expression of the viral early protein large tumor antigen (TAg) and the late protein VP1 in a dose-dependent manner. We detected 1.6- and 12-fold reductions in TAg transcripts at 48 and 96 h postinfection, respectively, with 250 U/ml IFN-gamma, suggesting that IFN-gamma-mediated inhibition occurs at the level of transcription. Furthermore, IFN-gamma inhibited the level of viral progeny production as much as 50-fold at a multiplicity of infection (MOI) of 0.5 and 80-fold at an MOI of 0.1. The inhibitory effects of IFN-gamma were similar for three different strains of BKV examined. These results indicate an important role for IFN-gamma in regulating BKV lytic infection.
Collapse
Affiliation(s)
- Johanna R Abend
- University of Michigan Medical School, 1500 East Medical Center Drive, 6304 Cancer Center, Ann Arbor, MI 48109-0942, USA
| | | | | |
Collapse
|
87
|
Nukuzuma S, Takasaka T, Zheng HY, Zhong S, Chen Q, Kitamura T, Yogo Y. Subtype I BK polyomavirus strains grow more efficiently in human renal epithelial cells than subtype IV strains. J Gen Virol 2006; 87:1893-1901. [PMID: 16760391 DOI: 10.1099/vir.0.81698-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BK polyomavirus (BKPyV) is ubiquitous in human populations, infecting children without obvious symptoms and persisting in the kidney. BKPyV isolates have been classified into four subtypes (I-IV) using either serological or genotyping methods. In general, subtype I occurs most frequently, followed by subtype IV, with subtypes II and III rarely detected. As differences in growth capacity in human cells possibly determine the proportion of the four subtypes of BKPyV in human populations, here the growth properties of representative BKPyV strains classified as subtype I or IV in renal proximal tubule epithelial cells (HPTE cells) of human origin were analysed. HPTE cells were transfected with four and three full-length BKPyV DNAs belonging to subtypes I and IV, respectively, and cultivated in growth medium. Virus replication, detected using the haemagglutination assay, was observed in all HPTE cells transfected with subtype I BKPyV DNAs, whereas it was markedly delayed or not detected in those transfected with subtype IV BKPyV DNAs. It was confirmed that the transfected viral DNAs induced virus replication in HPTE cells. Furthermore, it was found that BKPyVs with archetypal transcriptional control regions replicated in HPTE cells, with only the occasional emergence of variants carrying rearranged transcriptional control regions. Essentially the same results as described above were obtained with renal epithelial cells derived from whole kidney. Thus, it was concluded that subtype I BKPyV replicates more efficiently than subtype IV BKPyV in human renal epithelial cells, supporting the hypothesis that growth capacity in human cells is related to the proportion of BKPyV subtypes in human populations.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Microbiology, Kobe Institute of Health, Kobe, Hyogo 650-0046, Japan
| | - Tomokazu Takasaka
- Department of Urology, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Huai-Ying Zheng
- Japanese Foundation for AIDS Prevention, Tokyo 105-0001, Japan
- Department of Urology, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shan Zhong
- Department of Urology, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Qin Chen
- Department of Urology, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tadaichi Kitamura
- Department of Urology, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiaki Yogo
- Department of Urology, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
88
|
Abstract
BK virus (BKV) is a small, non-enveloped, double-stranded DNA virus and a member of the Polyomaviridae family. As the recently recognized etiologic agent of polyomavirus-associated nephropathy, the events involved in BKV invasion of host cells are an important area of study. Using cell culture models, the mechanism by which BKV infects permissive hosts to gain access to the replication machinery within these cells is beginning to unfold. BKV uses an N-linked glycoprotein containing an alpha(2,3)-linked sialic acid as a receptor. After this initial attachment, BKV enters cells through caveolae-mediated endocytosis. Intracellular trafficking via cellular cytoskeletal components follows this relatively slow and cholesterol-dependent internalization. BKV must reach the nucleus for viral transcription and replication to occur. Elucidating the steps of the early viral lifecycle would provide clues to help explain the infectious spread and pathology of this human pathogen.
Collapse
Affiliation(s)
- A S Dugan
- Graduate Program in Pathobiology, Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
89
|
McCabe MT, Low JA, Imperiale MJ, Day ML. Human polyomavirus BKV transcriptionally activates DNA methyltransferase 1 through the pRb/E2F pathway. Oncogene 2006; 25:2727-35. [PMID: 16547506 DOI: 10.1038/sj.onc.1209266] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many DNA tumor virus oncogenes are capable of activating and highjacking the host cell's DNA replication machinery for its own reproduction purposes through targeting and inactivation of the retinoblastoma pocket protein family. Pocket proteins function to regulate cell cycle progression and DNA synthesis through inhibitory interactions with the E2F transcription factors. The interaction of viral oncogenes with the pocket proteins is crucial for their transforming activity. We recently demonstrated that the DNA methyltransferase 1 (DNMT1) gene is an E2F target gene that is transcriptionally activated in cells lacking the retinoblastoma gene (Rb-/-). Overexpression of DNMT1 is implicated in tumor suppressor gene hypermethylation which is associated with tumorigenesis. Given that viral oncogenes potently stimulate E2F activity, we hypothesized that viral infection might activate DNMT1 and thereby promote transformation. Herein, we demonstrate that DNMT1 is strongly activated by the human polyomavirus BKV large T antigen (TAg) and adenovirus E1a. Viral oncogene mutants incapable of binding the pocket proteins are ineffective at activating DNMT1 compared to their wild-type counterparts. Additionally, mutation of the E2F sites within the DNMT1 promoters dramatically abrogates transcriptional activation. These data suggest that viral induction of DNMT1 through modulation of the pRB/E2F pathway may be involved in viral transformation.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/virology
- Adenovirus E1A Proteins/metabolism
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- BK Virus/physiology
- Cell Transformation, Viral
- Cells, Cultured
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- E2F Transcription Factors/genetics
- E2F Transcription Factors/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Enzyme Activation
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Humans
- Luciferases
- Male
- Mice
- Mice, Knockout
- Mutation
- NIH 3T3 Cells/metabolism
- NIH 3T3 Cells/virology
- Polyomavirus Infections/immunology
- Polyomavirus Infections/virology
- Promoter Regions, Genetic/genetics
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- M T McCabe
- Program in Cellular and Molecular Biology, Department of Urology, University of Michigan, Ann Arbor, MI 48109-0944, USA
| | | | | | | |
Collapse
|
90
|
Low JA, Magnuson B, Tsai B, Imperiale MJ. Identification of gangliosides GD1b and GT1b as receptors for BK virus. J Virol 2006; 80:1361-6. [PMID: 16415013 PMCID: PMC1346969 DOI: 10.1128/jvi.80.3.1361-1366.2006] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gangliosides have been shown to be plasma membrane receptors for both murine polyomavirus and SV40, while JC virus uses serotonin receptors. In contrast, little is known of the membrane receptor and entry pathway for BK virus (BKV), which can cause severe disease in immunosuppressed bone marrow and renal transplant patients. Using sucrose flotation assays, we investigated BKV binding to and interaction with human erythrocyte membranes and determined that this interaction was dependent on a neuraminidase-sensitive, proteinase K-resistant molecule. BKV was found to interact with the gangliosides GT1b and GD1b. The terminal alpha2-8-linked disialic acid motif, present in both of these gangliosides, is likely to be important for this interaction. We also determined that the addition of GD1b and GT1b to LNCaP cells, which are normally resistant to BKV infection, made them susceptible to the virus. In addition, BKV interacted with membranes extracted from the endoplasmic reticulum (ER) and infection was blocked by the addition of brefeldin A, which interferes with transport from the ER to the Golgi apparatus. These data demonstrate that BKV uses the gangliosides GT1b and GD1b as receptors and passes through the ER on the way to the nucleus.
Collapse
Affiliation(s)
- Jonathan A Low
- Department of Microbiology and Immunology, University of Michigan Medical School, 1500 E. Medical Center Dr., 6304 Cancer Center, Ann Arbor, MI 48109-0942, USA
| | | | | | | |
Collapse
|
91
|
McCabe MT, Low JA, Daignault S, Imperiale MJ, Wojno KJ, Day ML. Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res 2006; 66:385-92. [PMID: 16397253 DOI: 10.1158/0008-5472.can-05-2020] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcriptional silencing of tumor suppressor genes by DNA methylation plays an important role in tumorigenesis. These aberrant epigenetic modifications may be mediated in part by elevated DNA methyltransferase levels. DNA methyltransferase 1 (DNMT1), in particular, is overexpressed in many tumor types. Recently, we showed that Dnmt1 is transcriptionally regulated by E2F transcription factors and that retinoblastoma protein (pRb) inactivation induces Dnmt1. Based on these observations, we investigated regulation of Dnmt1 by polyomavirus oncogenes, which potently inhibit the pRb pocket protein family. Infection of primary human prostate epithelial cells with BK polyomavirus dramatically induced Dnmt1 transcription following large T antigen (TAg) translation and E2F activation. For in vivo study of Dnmt1 regulation, we used the transgenic adenocarcinoma of the mouse prostate (TRAMP) model, which expresses the SV40 polyomavirus early region, including TAg, under control of a prostate-specific promoter. Analysis of TRAMP prostate lesions revealed greatly elevated Dnmt1 mRNA and protein levels beginning in prostatic intraepithelial neoplasia and continuing through advanced prostate cancer and metastasis. Interestingly, when TRAMP mice were treated in a chemopreventive manner with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza), 0 of 14 mice developed prostate cancer at 24 weeks of age, whereas 7 of 13 (54%) control-treated mice developed poorly differentiated prostate cancer. Treatment with 5-aza also prevented the development of lymph node metastases and dramatically extended survival compared with control-treated mice. Taken together, these data suggest that Dnmt1 is rapidly activated by pRb pathway inactivation, and that DNA methyltransferase activity is required for malignant transformation and tumorigenesis.
Collapse
Affiliation(s)
- Michael T McCabe
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109-0944, USA
| | | | | | | | | | | |
Collapse
|
92
|
Kuypers DRJ, Vandooren AK, Lerut E, Evenepoel P, Claes K, Snoeck R, Naesens L, Vanrenterghem Y. Adjuvant low-dose cidofovir therapy for BK polyomavirus interstitial nephritis in renal transplant recipients. Am J Transplant 2005; 5:1997-2004. [PMID: 15996251 DOI: 10.1111/j.1600-6143.2005.00980.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BK virus interstitial nephritis (BKVIN) is a serious complication after kidney grafting, necessitating drastic reduction of immunosuppressive therapy in order to enable viral clearance. Despite these measures, progressive graft dysfunction and graft loss occur in the majority of recipients. We diagnosed BKVIN in 21 recipients grafted between 1998 and 2004. Eight of 21 patients were treated with weekly, adjuvant low-dose cidofovir in addition to reduction of immunosuppressive therapy. BKVIN caused irreversible deterioration of graft function in all patients but renal function stabilized after antiviral treatment (creatinine clearance: 51.8-32 mL/min; p=0.001) and no graft loss occurred in cidofovir-treated recipients during 24.8 (8-41) months follow-up. Peak serum cidofovir concentrations were dose-dependent and attained approximately one-tenth of thein vitroEC50 for cidofovir against BK-virus, while pre-treatment with probenecid did not alter peak serum concentrations nor affected the incidence of nephrotoxicity. In fact, no cidofovir-related renal toxicity occurred; few patients had minor transient side effects (nausea, skin rash). In contrast, 9 of 13 patient who received no adjuvant cidofovir therapy lost their graft after median 8 (4-40) months. In this selected group of recipients with BKVIN, the use of adjuvant low-dose cidofovir therapy resulted in prolonged graft survival and stabilized graft function.
Collapse
Affiliation(s)
- Dirk R J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Sabatier J, Uro-Coste E, Benouaich A, Boetto S, Gigaud M, Tremoulet M, Delisle MB, Galateau-Sallé F, Brousset P. Immunodetection of SV40 large T antigen in human central nervous system tumours. J Clin Pathol 2005; 58:429-31. [PMID: 15790713 PMCID: PMC1770612 DOI: 10.1136/jcp.2004.020131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS DNA sequences from Simian virus 40 (SV40) have been previously isolated from various human tumours of the central nervous system (CNS). This study aimed to investigate a series of tumours of the CNS for the expression of the SV40 large T antigen (Tag), which is an oncogenic protein of the virus. METHODS A French series of 82 CNS tumours was investigated for Tag expression using a monoclonal antibody and immunohistochemistry. A Tag positive hepatocellular carcinoma cell line from transgenic mice and a kidney biopsy from a patient infected by SV40 were used as positive controls. RESULTS None of the tumours (20 ependymomas, 20 glioblastomas, 12 oligodendrogliomas, three plexus choroid adenomas, two plexus choroid carcinomas, 15 meningiomas, and 10 medulloblastomas) contained SV40 Tag positive cells. CONCLUSIONS The lack of SV40 Tag in 82 CNS tumours of various types is at variance with previous studies from different countries, and suggests that the virus may not be an important factor in CNS tumorigenesis, at least in French cases.
Collapse
Affiliation(s)
- J Sabatier
- Department of Neurosurgery, Purpan Hospital, Place Baylac, 31059 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|