51
|
Wu C, Tanaka K, Tani Y, Bi X, Liu J, Yu Q. Effect of particle size on the colonization of biofilms and the potential of biofilm-covered microplastics as metal carriers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153265. [PMID: 35065112 DOI: 10.1016/j.scitotenv.2022.153265] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Upon release into the aquatic environment, the surface of microplastics (MPs) can be readily colonized by biofilms, which may enhance the adsorption of contaminants. In this study, industrial-grade polystyrene (PS) of about 4 mm in size (MP4000-1), food-grade PS of about 4 mm in size (MP4000-2), and Powder PS of about 75 μm in size (MP75) were co-cultured with a model freshwater fungus, namely Acremonium strictum strain KR21-2, for seven days to form biofilms on their surface. We also determined the changes in surface physicochemical properties of the biofilm-covered MPs (BMPs) and the heavy metal adsorption capacity of the original MPs and BMPs. The results revealed that the biofilms improve the adsorption of heavy metals on MPs, and the particle size of MPs plays a crucial role in biofilm colonization and adsorption of heavy metals by BMPs. MP75 can carry more biofilm on its surface than that of the two MP4000s and form heteroaggregates with biofilms. In addition, there were more functional groups on the surface of BMP75 than on the surface of the two BMP4000s, which could promote the electrostatic interaction and chemical association of heavy metals. Moreover, BMP75 exhibited a higher capacity to adsorb Cu and reduce Cr (VI), which may be related to the functional groups in its biofilm. Overall, this study showed that after biofilms colonization, BMPs of smaller size have more significant potential as a metal vector, and the particle size deserves more scientific attention during the risk assessment.
Collapse
Affiliation(s)
- Chen Wu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Kazuya Tanaka
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Yukinori Tani
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Xiangyang Bi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Qianqian Yu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
52
|
Zhang G, Chen J, Li W. Conjugative antibiotic-resistant plasmids promote bacterial colonization of microplastics in water environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128443. [PMID: 35152101 DOI: 10.1016/j.jhazmat.2022.128443] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Both microplastic and bacterial antibiotic resistance have attracted attention worldwide. When microplastics coexist with antibiotic-resistant bacteria (ARB), which carry antibiotic resistance genes (ARGs), ARB colonize the surface of microplastics, and a unique biofilm is formed. The ARB and ARGs in biofilms are denser and more difficult to remove. However, studies on the factors influencing the formation of microplastic biofilms are limited. In this study, plasmid RP4, which appeared in wastewater treatment plants, was found to be able to promote irreversible bacterial colonization of microplastics, and the hypothetical reason was conjugative pili expression. Then, the potential conjugative pili synthesis promoter "nanoalumina" and inhibitor "free nitrous acid" (FNA) were selected to test this hypothesis. Simultaneously, nanoalumina promoted and FNA inhibited bacterial colonization when RP4 existed. Combined with the gene expression and ATP analysis results, this hypothesis was confirmed, and the mechanism of RP4 on bacterial colonization was related mainly to conjugative pili protein synthesis and intracellular ATP. In this study, the effects of plasmid RP4, nanoalumina, and FNA on the formation of microplastic biofilms were reported, which has a certain reference value for other researchers exploring microplastic biofilms.
Collapse
Affiliation(s)
- Guosheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Jiping Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China.
| |
Collapse
|
53
|
Wang C, Wang L, Ok YS, Tsang DCW, Hou D. Soil plastisphere: Exploration methods, influencing factors, and ecological insights. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128503. [PMID: 35739682 DOI: 10.1016/j.jhazmat.2022.128503] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP), an emerging contaminant, is globally prevalent and poses potential environmental threats and ecological risks to both aquatic and terrestrial ecosystems. When MPs enter into natural environments, they may serve as artificial substrates for microbial colonization and plastisphere formation, providing new ecological niches for microorganisms. Recent studies of the plastisphere have focused on aquatic ecosystems. However, our understanding of the soil plastisphere e.g. its formation process, microbial ecology, co-transport of organic pollutants and heavy metals, and effects on biogeochemical processes is still very limited. This review summarizes latest methods used to explore the soil plastisphere, assesses the factors influencing the microbial ecology of the soil plastisphere, and sheds light on potential ecological risks caused by the soil plastisphere. The formation and succession of soil plastisphere communities can be driven by MP characteristics and soil environmental factors. The soil plastisphere may affect a series of ecological processes, especially the co-transport of environmental contaminants, biodegradation of MPs, and soil carbon cycling. We aim to narrow the knowledge gap between the soil and aquatic plastisphere, and provide valuable guidance for future research on the soil plastisphere in MP-contaminated soils.
Collapse
Affiliation(s)
- Chengqian Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
54
|
Sharma MD, Krupadam RJ. Adsorption-desorption dynamics of synthetic and naturally weathered microfibers with toxic heavy metals and their ecological risk in an estuarine ecosystem. ENVIRONMENTAL RESEARCH 2022; 207:112198. [PMID: 34656635 DOI: 10.1016/j.envres.2021.112198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/12/2021] [Accepted: 10/07/2021] [Indexed: 05/12/2023]
Abstract
Microfibers (MFs) in aquatic and marine ecosystems adsorb toxic heavy metals and then transfer the heavy metals enriched MFs to living organisms. In this research paper, the adsorption-desorption dynamics of heavy metals onto MFs was studied by using theoretical models and experimental investigations. The adsorption of metals onto MFs was well correlated for the Freundlich model and the adsorption kinetics follows pseudo-second order rate equation. The adsorption capacity of naturally weathered MFs was 30.8 mg g-1 which is about 35% higher than the synthetic fiber of similar range of size of MFs. The leaching of heavy metals from MFs was found that 90-95% of adsorbed metals were leached within 24 h. The leaching of Ti(II) and Al(III) were slower than the other metal ions. The salinity has shown decrease in adsorption capacity of MFs for heavy metals. Based on the Nemerov pollution index (PN), the naturally weathered MFs enriched with heavy metals in sediments became heavily polluted with PN values between 2.98 and 3.49. The risk index value of 396 represents that the bottom dwellers and other marine organisms in the Narmada estuary high risk from MFs and MFs enriched with metals. This study indicates that MFs play dominant role in fate and distribution of heavy metals in the estuarine ecosystems.
Collapse
Affiliation(s)
- Madhu D Sharma
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India; Academy of Scientific & Innovative Research, Sector 19, Kamla Nehru Nagar, Gaziabad, 201002, India
| | - Reddithota J Krupadam
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India; Academy of Scientific & Innovative Research, Sector 19, Kamla Nehru Nagar, Gaziabad, 201002, India.
| |
Collapse
|
55
|
Ding T, Wei L, Hou Z, Li J, Zhang C, Lin D. Microplastics altered contaminant behavior and toxicity in natural waters. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127908. [PMID: 34883377 DOI: 10.1016/j.jhazmat.2021.127908] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have received an increasing attention because of their ubiquitous presence and aquatic toxicity associated with MPs and MP-bound contaminants in the natural water. This review is to critically examine the chemical additives leached from MPs, the altered contaminant behaviors and the resulting changes in their aquatic ecotoxicity. Available data suggest that heavy metals Zn, Cr, Pb, and Cd regulated and present in plastics at the sub-mg g-1 to mg g-1 level can leach a significant amount depending on MPs size, aging, pH, and salinity conditions. MP-bound organic contaminants are primarily additive-derived (e.g., brominated diphenyl ethers, nonylphenol, and bisphenol A) at the µg g-1 to mg g-1 level, and secondarily pyrogenic and legacy origins (e.g., PAHs and PCBs) in the range of ng g-1 and mg g-1. MPs tend to have higher but more variable sorption capacities for organic compounds than metals (1.77 ± 2.34 vs. 0.82 ± 0.94 mg g-1). MPs alter the behavior of heavy metals through the electrostatic interactions and surface complexation, while the transport of additive derived organic compounds are altered primarily through hydrophobic effect as supported by a positive correlation (R2 = 0.71) between the logarithmic MPs-adsorbed concentrations and octanol/water partition coefficients (KOW) of organic compounds. MPs constitute less than 0.01% of the total mass of aquatic particulates in typical waters, but play a discernible role in the local partitioning and long-distance movement of contaminants. MPs alone exert higher toxicity to invertebrates than algae; however, when MPs co-occur with pollutants, both synergistic and antagonistic toxicities are observed depending mainly on the ingestibility of MPs, the extent of sorption, MPs as a transport vector or a sink to scavenge pollutants. We finally suggest several key areas of future research directions and needed data concerning the role of MPs in mitigating pollutant leaching, transport and risk under conditions mimicking natural and polluted waters.
Collapse
Affiliation(s)
- Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liyan Wei
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhangming Hou
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston 77058, TX, United States
| | - Daohui Lin
- Department of Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
56
|
Automated analysis of microplastics based on vibrational spectroscopy: are we measuring the same metrics? Anal Bioanal Chem 2022; 414:3359-3372. [PMID: 35166866 DOI: 10.1007/s00216-022-03951-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
The traditional manual analysis of microplastics has been criticized for its labor-intensive, inaccurate identification of small microplastics, and the lack of uniformity. There are already three automated analysis strategies for microplastics based on vibrational spectroscopy: laser direct infrared (LDIR)-based particle analysis, Raman-based particle analysis, and focal plane array-Fourier transform infrared (FPA-FTIR) imaging. We compared their performances in terms of quantification, detection limit, size measurement, and material identification accuracy and speed by analyzing the same standard and environmental samples. LDIR-based particle analysis provides the fastest analysis speed, but potentially questionable material identification and quantification results. The number of particles smaller than 60 μm recognized by LDIR-based particle analysis is much less than that recognized by Raman-based particle analysis. Misidentification could occur due to the narrow tuning range from 1800 to 975 cm-1 and dispersive artifact distortion of infrared spectra collected in reflection mode. Raman-based particle analysis has a submicrometer detection limit but should be cautiously used in the automated analysis of microplastics in environmental samples because of the strong fluorescence interference. FPA-FTIR imaging provides relatively reliable quantification and material identification for microplastics in environmental samples greater than 20 μm but might provide an imprecise description of the particle shapes. Optical photothermal infrared (O-PTIR) spectroscopy can detect submicron-sized environmental microplastics (0.5-5 μm) intermingled with a substantial amount of biological matrix; the resulting spectra are searchable in infrared databases without the influence of fluorescence interference, but the process would need to be fully automated.
Collapse
|
57
|
Luo H, Liu C, He D, Xu J, Sun J, Li J, Pan X. Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126915. [PMID: 34461541 DOI: 10.1016/j.jhazmat.2021.126915] [Citation(s) in RCA: 193] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs, < 5 mm) in the environment have attracted worldwide attention due to their wide distribution and difficulty in handling. Aging processes such as UV irradiation, biodegradation, physical abrasion and chemical oxidation can affect the environmental behavior of MPs. This review article summarizes different aging processes of MPs and subsequent effects on the adsorption of pollutants, the leaching of additives, and the toxicity of MPs. In addition, the formation process of biofilm on the surface of MPs and the interactions between biofilm and aged MPs are revealed. MPs can accumulate different environmental pollutants (organic pollutants, heavy metals, microorganisms, etc.) through surface adsorption, pore filling and distribution. Moreover, the aging of MPs affects their adsorption performance toward these pollutants due to a series of changes in their specific surface area and oxygen-containing functional groups. The release of some toxic additives such as phthalates after aging can enhance the toxic effects of MPs. Aging also changes the shape and size of MPs, which can affect the eating habits of the organisms and further increase the potential toxicity of MPs. This article conducts a systematical analysis and summary of the environmental behavior and physicochemical properties of MPs as well as the changes due to MPs aging, which helps to better understand the impact of aging on MPs in the environment. Future research on MPs aging should reduce the knowledge gap between laboratory simulation and actual conditions and increase the environmental relevance.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
58
|
Alimi OS, Claveau-Mallet D, Kurusu RS, Lapointe M, Bayen S, Tufenkji N. Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: What are we missing? JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126955. [PMID: 34488100 DOI: 10.1016/j.jhazmat.2021.126955] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 05/14/2023]
Abstract
To date, most studies of microplastics have been carried out with pristine particles. However, most plastics in the environment will be aged to some extent; hence, understanding the effects of weathering and accurately mimicking weathering processes are crucial. By using microplastics that lack environmental relevance, we are unable to fully assess the risks associated with microplastic pollution in the environment. Emerging studies advocate for harmonization of experimental methods, however, the subject of reliable weathering protocols for realistic assessment has not been addressed. In this work, we critically analysed the current knowledge regarding protocols used for generating environmentally relevant microplastics and leachates for effects studies. We present the expected and overlooked weathering pathways that plastics will undergo throughout their lifecycle. International standard weathering protocols developed for polymers were critically analysed for their appropriateness for use in microplastics research. We show that most studies using weathered microplastics involve sorption experiments followed by toxicity assays. The most frequently reported weathered plastic types in the literature are polystyrene>polyethylene>polypropylene>polyvinyl chloride, which does not reflect the global plastic production and plastic types detected globally. Only ~10% of published effect studies have used aged microplastics and of these, only 12 use aged nanoplastics. This highlights the need to embrace the use of environmentally relevant microplastics and to pay critical attention to the appropriateness of the weathering methods adopted moving forward. We advocate for quality reporting of weathering protocols and characterisation for harmonization and reproducibility across different research efforts.
Collapse
Affiliation(s)
- Olubukola S Alimi
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Dominique Claveau-Mallet
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada; Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, H3C 3A7, Canada
| | - Rafael S Kurusu
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Mathieu Lapointe
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Lakeshore, Ste Anne de Bellevue, 21111, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
| |
Collapse
|
59
|
Wu J, Zhang Y, Tang Y. Fragmentation of microplastics in the drinking water treatment process - A case study in Yangtze River region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150545. [PMID: 34582875 DOI: 10.1016/j.scitotenv.2021.150545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are the emerging pollutants in the fresh water and have been found in the drinking water. Drinking water treatment plant (DWTP) is an important barrier to ensure the safety and quality of drinking water, so their effectiveness in removing MPs needs to be evaluated and optimized. In this paper, the abundance, characteristics and removal performance of 5 μm-5 mm granular MPs and 100 μm-5 mm fibrous MPs in the effluent of each water treatment unit in a DWTP in China were analyzed. The results show that only 80.96% of MPs ≤ 20 μm, accounting for more than 98% in the raw water, could be removed in the DWTP, while over 99% of the removal efficiency could be achieved for MPs > 20 μm. Coagulation-sedimentation and micro-flocculation combined with sand filtration couldn't effectively remove the granular MPs ≤ 20 μm (42.8% and 25.8%, respectively), but biological activated carbon (BAC) filtration was prone to remove this part (63.8%). Significant increases of granular MPs ≤ 20 μm were observed in the effluents of biological treatment (+149.6%) and ozonation (+13.8%). According to the variation in separate MPs' size distribution, the increases in MPs were attributed to the fragmentation of MPs, on which ozonation showed a remarkable effect. The ozonation might accelerate the aging and embrittlement of MPs, and then external stresses could further break them into smaller pieces, which eventually lead to an increase in MPs. To deal with the stubborn part and fragmentation of MPs in water, the removal ability of DWTP for MPs ≤ 20 μm needs to be improved. This study provides a detailed proof for the fate of MPs in the DWTP, and the results indicate that the fragmentation of MPs and the removal rate of MPs ≤ 20 μm should draw more attention in the DWTP.
Collapse
Affiliation(s)
- Junyi Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310012, PR China.
| | - Yan Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310012, PR China.
| | - Yu Tang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310012, PR China.
| |
Collapse
|
60
|
Menéndez-Pedriza A, Jaumot J, Bedia C. Lipidomic analysis of single and combined effects of polyethylene microplastics and polychlorinated biphenyls on human hepatoma cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126777. [PMID: 34364209 DOI: 10.1016/j.jhazmat.2021.126777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are an emerging environmental issue as a result of their ubiquity, persistence, and intrinsic toxic potential. In addition, their ability to sorb and transport a wide variety of environmental pollutants (i.e. "Trojan Horse" effect) exerts significant adverse impacts upon ecosystems. The toxicological evaluation of the single and combined effects produced by polyethylene microplastics and two polychlorinated biphenyl congeners was performed on the human hepatoma cell line HepG2 by cell viability assessment and an untargeted lipidomic study. The cell lethality evaluation evinced that MPs did not induce relevant cell lethality at any of the concentration range tested, while both PCBs presented a hormetic behavior. The lipidomic analysis suggested that both single PCB exposures induced significant lipidomic changes, especially for glycerophospholipids and glycerolipids. In contrast, for MPs single exposure, the most remarkable change was the substantial enhancement of triglyceride content. Regarding combined exposures, results showed that MPs could induce even more harmful effects than those produced intrinsically as a result of desorbing previously sorbed toxic pollutants. To the best of our knowledge, this is the first study assessing the toxicity of microplastics and their possible "Trojan Horse" effect by applying an untargeted lipidomic methodology.
Collapse
Affiliation(s)
- Albert Menéndez-Pedriza
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carmen Bedia
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
61
|
Huang H, Liu P, Shi Y, Wu X, Gao S. Remarkable characteristics and distinct community of biofilms on the photoaged polyethylene films in riverine microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118485. [PMID: 34774675 DOI: 10.1016/j.envpol.2021.118485] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Recalcitrant plastics in the environment are gradually fragmented into weathered debris distinguished from their original state by the integrative action of influencing factors, such as UV light, heating and physical abrasion. As new artificial carbon-source substrates in aquatic ecosystems, plastic products can be colonized by biofilms and even utilized by microorganisms. To investigate the influences of weathering of plastics on the colonized biofilms, freshwater samples from the Yangtze River (Nanjing, China) were collected for biofilm incubation. Based on the characterization of plastics and biofilms, the effects of plastic surface properties on biofilm characteristics were revealed by the analysis of partial least squares regression (PLSR). Roughness was the principal influencing factor, while rigidity had the opposite effect to it. 16S rRNA gene high-throughput sequencing results indicated the high relative abundance of Cyanobacteria and rising proportion of harmful components (e.g., Flavobacterium) on photoaged polyethylene plastics. The microbial functional profiles (KEGG) predicted by Tax4Fun showed that the functions (e.g., membrane transport, energy metabolism, etc.) of biofilm on photoaged plastics were dissimilar with those on original ones. These findings suggested that the distinct microbial community and the adverse functional changes in biofilms on photoaged plastics potentially enhanced their environmental risks. On the other hand, 28-day cultured biofilms on original low-density polyethylene (LDPE) films were dominated by Exiguobacterium. The previously ignored potentials of this microorganism in rapidly accommodating to a hydrophobic substrate and its plastic degrading ability were both worthy of attention. Therefore, it is necessary to consider the weathering process of plastics in exploring the "plastisphere", and to give further insights into the double-edged nature of the "plastisphere".
Collapse
Affiliation(s)
- Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
62
|
Li X, Li M, Mei Q, Niu S, Wang X, Xu H, Dong B, Dai X, Zhou JL. Aging microplastics in wastewater pipeline networks and treatment processes: Physicochemical characteristics and Cd adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148940. [PMID: 34293611 DOI: 10.1016/j.scitotenv.2021.148940] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Despite a wealth of information on removal of the microplastics (MPs) in wastewater treatment plants (WWTPs), little attention has been paid to how wastewater treatment process affect the MP physicochemical and adsorption characteristics. In this study, changes in physicochemical property of three MPs, i.e. polyamide (PA), polyethylene (PE) and polystyrene (PS) through the wastewater pipeline, grit and biological aeration tanks were investigated. The results show that compared with virgin MPs, the treated MPs have higher specific surface area and O content, and lower C and H contents, and glass transition temperature, implying that the three treatments cause the chain scission and oxidation of the MPs. Cd adsorption capacities of the MPs are higher than the corresponding virgin MPs after sulfidation in the pipeline (SWPN) and biological treatment in aeration tank (BTAT). Pearson correlation analysis shows that the increase is mainly resulted from the enhancement of the O-containing groups on the MPs. However, Cd adsorption capacities of the MPs decrease after mechanical abrasion in grit tank (MAGT), corresponding to the decrease in carbonyl index. Two dimensional FTIR correlation spectroscopy demonstrates that the NH bond in the PA plays a more important role than CH bond in the adsorption of Cd, but only change of the CH bond is found in the PE and PS. The findings provide new insights into the effect of WWTPs on the MP aging and physicochemical characteristics.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Man Li
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Qingqing Mei
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Xuan Wang
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Huafang Xu
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
63
|
Wang J, Guo X, Xue J. Biofilm-Developed Microplastics As Vectors of Pollutants in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12780-12790. [PMID: 34553907 DOI: 10.1021/acs.est.1c04466] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microplastics are a big and growing part of global pollution, which has aroused increasing concern in recent years because of their large amount, wide distribution, and adverse effects. Microplastics can sorb various pollutants from aquatic environments and act as vectors of pollutants. Most studies mainly focused on the virgin microplastics. However, microplastics in environments can be easily colonized by microorganisms, and form biofilm, which will influence the behaviors and potential risks of microplastics. The formation of biofilm on microplastics and its effects on their properties have been studied before, but their sorption and transport behaviors, and potential risks for pollutants' transfer have not been reviewed. In this paper, the role of biofilm-developed microplastics as vectors of pollutants was thoroughly analyzed and summarized. First, the formation of biofilm on microplastics, the compositions of microorganisms in biofilm, the influencing factors, and the property changes of microplastics after biofilm attachment are thoroughly reviewed. Second, the sorption of pollutants onto biofilm-developed microplastics is discussed. Third, the role of biofilm-developed microplastics as vector of pollutants are analyzed. We concluded that microplastics could provide unique substrates for microorganisms. Biofilm-developed microplastics can sorb more pollutants than the virgin ones, then act as vectors to introduce pollutants and attached microorganisms to aquatic environments and to organisms.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, China
| | - Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Private Bag 29237 Christchurch, New Zealand
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
64
|
Current Progress on Marine Microplastics Pollution Research: A Review on Pollution Occurrence, Detection, and Environmental Effects. WATER 2021. [DOI: 10.3390/w13121713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, microplastics pollution has attracted much attention in the environmental field, as researchers have found traces of microplastics in both marine and terrestrial ecological environments. Here, we reviewed and discussed the current progress on microplastics pollution in the marine environment from three main aspects including their identification and qualification methods, source and distribution, and fate and toxicity in a marine ecosystem. Microplastics in the marine environment originate from a variety of sources and distribute broadly all around the world, but their quantitative information is still lacking. Up to now, there have been no adequate and standard methods to identify and quantify the various types of microplastics, which need to be developed and unified. The fate of microplastics in the environment is particularly important as they may be transferred or accumulated in the biological chain. Meanwhile, microplastics may have a high adsorption capacity to pollutants, which is the basic research to further study their fate and joint toxicity in the environment. Therefore, all the findings are expected to fill the knowledge gaps in microplastics pollution and promote the development of relative regulations.
Collapse
|
65
|
The Potential for PE Microplastics to Affect the Removal of Carbamazepine Medical Pollutants from Aqueous Environments by Multiwalled Carbon Nanotubes. TOXICS 2021; 9:toxics9060139. [PMID: 34204690 PMCID: PMC8231597 DOI: 10.3390/toxics9060139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
Microplastics are ubiquitous in aquatic environments and interact with other kinds of pollutants, which affects the migration, transformation, and fate of those other pollutants. In this study, we employ carbamazepine (CBZ) as the contaminant to study the influence of polyethylene (PE) microplastics on the adsorption of CBZ pollutants by multiwalled carbon nanotubes (MCNTs) in aqueous solution. The adsorption capacity of CBZ by MCNTs in the presence of PE microplastics was obviously lower than that by MCNTs alone. The influencing factors, including the dose of microplastics, pH, and CBZ solution concentration, on the adsorption of CBZ by MCNTs and MCNTs-PE were thoroughly investigated. The adsorption rate of CBZ by MCNTs decreased from 97.4% to 90.6% as the PE microplastics dose increased from 2 g/L to 20 g/L. This decrease occurred because the MCNTs were coated on the surface of the PE microplastics, which further decreased the effective adsorption area of the MCNTs. This research provides a framework for revealing the effect of microplastics on the adsorption of pollutants by carbon materials in aqueous environments.
Collapse
|
66
|
Qi K, Lu N, Zhang S, Wang W, Wang Z, Guan J. Uptake of Pb(II) onto microplastic-associated biofilms in freshwater: Adsorption and combined toxicity in comparison to natural solid substrates. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125115. [PMID: 33486230 DOI: 10.1016/j.jhazmat.2021.125115] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 05/22/2023]
Abstract
In the present study, microplastic-associated biofilms were cultivated in an urban lake and a reservoir using virgin expanded polystyrene (PS). The uptake of Pb(II) onto both natural (suspended particles and surficial sediment) and anthropogenic (virgin microplastics and microplastic-associated biofilms) solid substrates was investigated and compared as a function of contact time, pH, and ionic strength in batch adsorption experiments. The adsorption isotherms revealed that biofilms enhanced the adsorption capacity of Pb(II) onto microplastics; however, natural substrates still exhibited a higher capacity. Ionic strength and pH significantly influenced the adsorption of Pb(II) onto all of the solid substrates. Under neutral conditions, competitive adsorption of Pb(II) was observed between anthropogenic solid substrates and natural substrates, which may further alter the distribution of Pb(II) among these solid substrates. The combined toxicity tests of Pb(II) and each solid substrate were carried out using Daphnia magna, the results indicated biofilm enhanced the combined toxicity of Pb(II) and microplastics. Therefore, biofilms not only intensified the vector role of microplastics in the migration of heavy metals in freshwater, but also enhanced their combined toxicity, which may have further potential ecological risks to freshwater ecosystems.
Collapse
Affiliation(s)
- Kun Qi
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Nan Lu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Shunqing Zhang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Weiwei Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zirui Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
67
|
Zhang B, Yang X, Liu L, Chen L, Teng J, Zhu X, Zhao J, Wang Q. Spatial and seasonal variations in biofilm formation on microplastics in coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145303. [PMID: 33515883 DOI: 10.1016/j.scitotenv.2021.145303] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/31/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
At present, microplastics (MPs) have gradually become a hot issue in marine environmental pollution and may pose a potential threat to marine ecosystems. Since MPs are not easily biodegradable, they can provide the attachment substrates for various organisms, which will affect their floating and transport, and may also lead to the invasion of harmful microorganisms. In this study, polypropylene, polyethylene, polylactic acid pellets, and glass particles were exposed for 6 weeks in different seasons at three stations in the Yellow Sea, China. The results showed that the total amounts of biofilms significantly varied among seasons and functional zones and that the temperature of seawater was the main influencing factor. A variety of biological communities (especially diatoms and bacteria) and extracellular polymeric substances were observed on the MP surfaces using scanning electron microscopy and confocal laser scanning microscopy. Sequencing analysis indicated that the structure and composition of microbial communities on MPs mainly varied with seasons and locations. In addition, most of the microorganisms were generally attached to the surface and were not any specific selection of plastic by different chemical compositions. However, the bacteria inhabiting microplastics harbored distinct metabolisms. Our results suggest that low-density MPs may settle quickly in summer in some eutrophic areas.
Collapse
Affiliation(s)
- Bin Zhang
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China; School of Food and Biotechnology of Xihua University, Chengdu 610039, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xin Yang
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Lingchen Liu
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Liang Chen
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiaopeng Zhu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
68
|
Liu P, Shi Y, Wu X, Wang H, Huang H, Guo X, Gao S. Review of the artificially-accelerated aging technology and ecological risk of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144969. [PMID: 33736298 DOI: 10.1016/j.scitotenv.2021.144969] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 05/21/2023]
Abstract
After being discarded into the environment, the microplastics (MPs) will undergo weathering effects. However, the low degradation rate of MPs in natural processes greatly limits the understanding of long-term aging behavior. By critically reviewing 82 articles in Web of Science from 2015 to 2020, the paper summarized different laboratory technologies including light irradiation, chemical oxidation, heat treatment and γ-ray irradiation to simulate and accelerate the aging of MPs, and evaluated the feasibility by comparison with natural processes. The advantages of laboratory technologies are that aging conditions can be artificially controlled and that the labor and time costs can be saved, whereas the laboratory system is too simple to simulate complex aging processes in the environment. We further reviewed the potential impacts of aging process on the risks of MPs (i.e. physical injury, combined toxicity with external pollutants and chemical risk of additives and low-molecular products). The overall risks are seemingly enhanced by aging process due to the high ingestion by organisms, the strong interaction with pollutants and the release of MP-derived organic compounds. Further studies on the aging behavior of MPs should be focused on the laboratory techniques that can simulate multiple processes of natural aging, the long-term fragmentation behavior of MPs, the effect of aging on growth rate of biofilm in MPs and ingestion property by organisms, and the relationship between aging property of MPs and release rate of chemicals in leachates.
Collapse
Affiliation(s)
- Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xiaowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Hanyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
69
|
Cresswell T, Prentice E, Howell N, Callaghan P, Metian M, Johansen MP. Bioaccumulation kinetics and internal distribution of the fission products radiocaesium and radiostrontium in an estuarine crab. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124453. [PMID: 33168318 DOI: 10.1016/j.jhazmat.2020.124453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Crab has been designated by the ICRP as one of twelve reference/model organisms for understanding the impacts of radionuclide releases on the biosphere. However, radionuclide-crab interaction data are sparse compared with other reference organisms (e.g. deer, earthworm). This study used an estuarine crab (Paragrapsus laevis) to investigate the contribution of water, diet and sediment sources to radionuclide (134Cs and 85Sr) bioaccumulation kinetics using live-animal radiotracing. The distribution of each radionuclide within the crab tissues was determined using dissection, whole-body autoradiography and synchrotron X-ray Fluorescence Microscopy (XFM). When moulting occurred during exposure, it caused significant increases in 85Sr bioaccumulation and efflux of 134Cs under constant aqueous exposure. Dietary assimilation efficiencies were determined as 55 ± 1% for 134Cs and 49 ± 3% for 85Sr. 85Sr concentrated in gonads more than other organs, resulting in proportionally greater radiation dose to the reproductive organs and requires further investigation. 134Cs was found in most soft tissues and was closely associated with S and K. Biodynamic modelling suggested that diet accounted for 90-97% of whole-body 137Cs, while water accounted for 59-81% of 90Sr. Our new data on crab, as a representative invertebrate, improves understanding of the impacts of planned or accidental releases of fission radionuclides on marine ecology.
Collapse
Affiliation(s)
- Tom Cresswell
- ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| | - Emily Prentice
- ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia; NSW Office of Environment and Heritage, PO Box 29, Lidcombe, NSW 1825, Australia
| | - Nick Howell
- ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Paul Callaghan
- ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Marc Metian
- International Atomic Energy Agency Environment Laboratories (IAEA-EL), Radioecology Laboratory, 4a Quai Antoine 1er, Principality of Monaco MC-98000, Monaco
| | | |
Collapse
|
70
|
Schmid C, Cozzarini L, Zambello E. Microplastic's story. MARINE POLLUTION BULLETIN 2021; 162:111820. [PMID: 33203604 DOI: 10.1016/j.marpolbul.2020.111820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The problem of microplastic pollution is now the order of the day in front of everyone's eyes affecting the environment and the health of leaving creature. This work aims to retrace the history of microplastics in a critical way through a substantial bibliographic collection, defining the points still unresolved and those that can be resolved. Presence of marine litter in different environments is reviewed on a global scale, focusing in particular on micro and macro plastics definition, classification and characterization techniques.
Collapse
Affiliation(s)
- Chiara Schmid
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| | - Luca Cozzarini
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy.
| | - Elena Zambello
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| |
Collapse
|
71
|
Nava V, Leoni B. A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. WATER RESEARCH 2021; 188:116476. [PMID: 33038716 DOI: 10.1016/j.watres.2020.116476] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 05/21/2023]
Abstract
With the widespread occurrence of microplastics in aquatic ecosystems having been firmly established, the focus of research has shifted towards the assessments of their influence on ecosystem functions and food webs. This includes interactions between microplastics and microalgae, as fundamental components at the base of aquatic food webs and pivotal organisms in a wide range of ecosystem functions. In this review, we present the current state of knowledge on microalgae-microplastic interactions and summarize the potential effect on their respective fate. Microplastics can and do interact with microalgae and the available literature has suggested that the epiplastic community of microalgae differs consistently from the surrounding aquatic communities; however, it is still not clear whether this different colonization is linked to the composition of the surface or more to the availability of a "hard" substrate on which organisms can attach and grow. Further studies are needed to understand to what extent the properties of different plastic materials and different environmental factors may affect the growth of microalgae on plastic debris. Biofouling may alter microplastic properties, especially increasing their density, consequently affecting the vertical fluxes of plastics. Moreover, microplastics may have toxic effects on microalgae, which could be physical or related to chemical interactions with plasticizers or other chemicals associated with plastics, with consequences for algal growth, photosynthetic activity, and morphology. Microplastics seems to have the potential to affect not only the quality (e.g., fatty acids and lipids composition, food dilution effect) but also the quantity of algal production, both positively and negatively. This may have consequences for energy fluxes, which may propagate throughout the whole food web and alter aquatic productivity. Even though experimental results have indicated reciprocal impacts between plastics and microalgae, it is currently difficult to predict how these impacts may manifest themselves at the ecosystem level. Therefore, further studies are needed to address this important topic.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza Della Scienza 1, I-20126 Milano, Italy.
| | - Barbara Leoni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza Della Scienza 1, I-20126 Milano, Italy.
| |
Collapse
|
72
|
Ho WK, Law JCF, Zhang T, Leung KSY. Effects of Weathering on the Sorption Behavior and Toxicity of Polystyrene Microplastics in Multi-solute Systems. WATER RESEARCH 2020; 187:116419. [PMID: 32980607 DOI: 10.1016/j.watres.2020.116419] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have demonstrated that weathering modifies the physicochemical properties and sorption behavior of microplastics (MPs). However, little is known about the effects of such weathering on the simultaneous sorption by MPs of different organic pollutants in multi-solute systems. In this study, the role of cosolute properties in the formation of solute multilayers with a hydrophobic primary solute (4-MBC) on pristine and various weathered polystyrene MPs (PSMPs) was examined. Three weathered PSMPs were studied namely, UV-irradiated PS (UV-PS), microbially degraded PS (MD-NPS), and UV-irradiated PS with subsequent microbial degradation (MD-UV-PS). The weathered PSMPs generally exhibited higher degree of oxygenated functionalities with less surface hydrophobicity than pristine particles. Our findings showed that the formation of solute multilayers with hydrophobic cosolutes was drastically suppressed in UV-PS due to more severe competition at hydrophobic sorption sites. Nevertheless, hydrophilic cosolutes contributed to solute multilayer formation with 4-MBC on PSMPs after UV irradiation, probably due to the stronger sorption of hydrophilic compounds to the oxidized surfaces of these particles via enhanced H-bonding. Strikingly, the sorption of 4-MBC by MD-UV-PS was notably enhanced when hydrophobic cosolutes were present. The observed synergistic sorption indicates that adhered biofilms and/or organic matter on MD-UV-PS could sorb the hydrophobic cosolute molecules, and eventually promote sorption of 4-MBC. Our further toxicity tests revealed that such solute multilayers formed on PSMPs inhibited microalgal growth. These results suggest that the fate and biological effects of MP-mediated chemical exposure could be strongly affected by weathering processes and coexistence of multiple organic contaminants in natural environments.
Collapse
Affiliation(s)
- Wai-Kit Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P.R.China
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P.R.China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, HKSAR, P.R.China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P.R.China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, P.R.China.
| |
Collapse
|
73
|
Wang T, Wang L, Chen Q, Kalogerakis N, Ji R, Ma Y. Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142427. [PMID: 33113705 DOI: 10.1016/j.scitotenv.2020.142427] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs), defined as particles with diameters <5 mm and including nanoplastics (NPs), with diameters <1 μm, are characterized by large specific surface areas and hydrophobicity. In aquatic and terrestrial environments, MPs interact with co-occurring organic pollutants through sorption and desorption, which alters the environmental behavior of the pollutants, such as their toxicity, bioaccumulation, degradation, and transport. In this review, we summarize the results of current studies of the interactions between MPs and organic contaminants, and focus on the different mechanisms and subsequent ecological risks of contaminant transfer among environmental media, MPs and organisms. The sorption/desorption of organic pollutants on/from MPs is discussed with respect to solution conditions and the properties of both the MPs and the pollutants. More importantly, the ability of MPs to alter the toxicity, bioaccumulation, degradation, and transport of organic pollutants through these interactions is considered as well. We then examine the interrelationships of the different environmental behaviors of MPs and organic pollutants and the roles played by environmental processes. Finally, we identify the remaining knowledge gaps that must be filled in further studies in order to accurately evaluate the environmental risks of MPs and their associated organic pollutants.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qianqian Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Nicolas Kalogerakis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yini Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; International Institute for Environmental Studies, Nanjing 210023, China.
| |
Collapse
|
74
|
Guan J, Qi K, Wang J, Wang W, Wang Z, Lu N, Qu J. Microplastics as an emerging anthropogenic vector of trace metals in freshwater: Significance of biofilms and comparison with natural substrates. WATER RESEARCH 2020; 184:116205. [PMID: 32717496 DOI: 10.1016/j.watres.2020.116205] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are ubiquitous in freshwater environments, and represent an emerging anthropogenic vector for contaminants, such as trace metals. In this study, virgin expanded polystyrene (PS) particles were placed in a eutrophic urban lake and a reservoir serving as the resource of domestic water for 4 weeks, to develop biofilms on the surface. For comparison, natural adsorbents in the form of suspended particles and surficial sediment were also sampled from these waterbodies. The trace metal adsorption properties of anthropogenic (virgin and biofilm covered microplastics) and natural substrates were investigated and compared via batch adsorption experiments. The adsorption isotherms fitted the Langmuir model, revealed that biofilms could enhance the trace metal adsorption capacity of MPs. However, natural substrates still had a greater adsorption capacity. Biofilms also alter the adsorption kinetics of trace metals onto MPs. The process of adsorption onto virgin MPs was dominated by intraparticle diffusion, whereas film diffusion governed adsorption onto biofilm covered microplastics and natural substrates. The trace metal adsorption of all the substrates was significantly dependent on pH and ionic strength. The adsorption mechanisms were further analyzed by SEM-EDS and FT-IR. The enhancement of adsorption was mainly attributed to complexation with functional groups contained in the biofilms, including carboxyl, amino, and phenyl-OH. Collectively, biofilm development intensifies the role of MPs in the migration and fate of trace metals in freshwater, since it does not give MPs an edge over natural substrates in adsorption.
Collapse
Affiliation(s)
- Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Kun Qi
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Junyang Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Weiwei Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zirui Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Nan Lu
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
75
|
Wang J, Coffin S, Schlenk D, Gan J. Accumulation of HOCs via Precontaminated Microplastics by Earthworm Eisenia fetida in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11220-11229. [PMID: 32786560 DOI: 10.1021/acs.est.0c02922] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Soil is a primary sink for plastics, but the influence of microplastics as carriers on terrestrial cycling of persistent contaminants is poorly understood as compared to aquatic systems. Studies to date have disregarded the potential fact that microplastics are generally contaminated before their entry into soil. In this study, earthworm Eisenia fetida was incubated for 28 d in a soil amended with five common types of microplastics precontaminated with polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) to elucidate contaminant transfer. Accumulation of HOCs in E. fetida varied greatly among different plastic types and HOCs. The freely dissolved concentration (Cfree) of HOCs showed that desorption of HOCs from microplastics into soil was closely related to plastic types and HOC hydrophobicity and was much slower for polystyrene or polypropylene than polyethylene. Biodynamic model analysis suggested that ingestion of microplastics could act as a significant pathway for some microplastics, likely due to HOCs on the plastics being in an "over-equilibrium" state. This was in contrast with mixing clean microplastics into HOC-contaminated soil, where the microplastics decreased bioaccumulation. Therefore, whether microplastics serve as facilitators or inhibitors of HOC bioaccumulation depends on the fugacity gradient of HOCs between microplastics and soil, which highlights the importance of considering the sequence of contamination between the plastics and soil. These findings also question the validity of short-term experiments because of the generally very slow partition kinetics of HOCs on plastics.
Collapse
Affiliation(s)
- Jie Wang
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Scott Coffin
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
76
|
He L, Rong H, Wu D, Li M, Wang C, Tong M. Influence of biofilm on the transport and deposition behaviors of nano- and micro-plastic particles in quartz sand. WATER RESEARCH 2020; 178:115808. [PMID: 32371288 DOI: 10.1016/j.watres.2020.115808] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 05/20/2023]
Abstract
Biofilm, community of bacteria ubiquitously present in natural environment, may interact with plastic particles and affect the transport of plastic particles in environment. The significance of biofilm (Escherichia coli) on the transport and deposition behaviors of three different sized plastic particles (0.02 μm NPs, 0.2 μm MP and 2 μm MP) were examined under both 10 mM and 50 mM NaCl solutions by comparing the breakthrough curves and retained profiles of plastic particles in bare sand versus those in biofilm-coated sand. Regardless of ionic strengths, the presence of biofilm increases the deposition of all three sized plastic particles in porous media. Via employing X-ray microtomography imaging (XMT) and Scanning electron microscope (SEM), we find that the presence of biofilm could narrow the flow path especially near to the inlet of the column and increase the surface roughness of porous media (by decreasing DLVO repulsive interaction), which contributes to the enhanced the deposition of plastic particles. Extracellular polymeric substances (EPS) present on the biofilm are found to contribute to the enhanced deposition of plastic particles. Packed column experiments, quartz crystal microbalance with dissipation (QCM-D) as well as parallel plate flow chamber experiments all show that three major components of EPS, proteins, polysaccharide, and humic substances all contribute to the enhanced deposition of plastic particles. O-H and N-H groups present on cell surfaces are highly likely to form hydrogen bond with plastic particles and increase the deposition plastic particles. Elution experiments show that decreasing solution ionic strength could release small portion of plastic particles from both bare and biofilm-coated sand columns especially from the segments near to the column inlet (with slighter lower percentage from biofilm-coated columns based on the total mass of retained plastics). In contrast, increasing flow rate does not obviously detach the plastic particles that already deposited onto porous media. The results of this study clearly show that the presence of biofilm in natural environment could enhance the deposition and decrease the transport of plastic particles.
Collapse
Affiliation(s)
- Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Dan Wu
- Beijing Institute of Metrology, Beijing, 100029, PR China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Chengyi Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
77
|
Interaction of Environmental Pollutants with Microplastics: A Critical Review of Sorption Factors, Bioaccumulation and Ecotoxicological Effects. TOXICS 2020; 8:toxics8020040. [PMID: 32498316 PMCID: PMC7355763 DOI: 10.3390/toxics8020040] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 01/04/2023]
Abstract
Microplastics have become one of the leading environmental threats due to their persistence, ubiquity and intrinsic toxic potential. The potential harm that microplastics impose on ecosystems varies from direct effects (i.e., entanglement and ingestion) to their ability to sorb a diversity of environmental pollutants (e.g., heavy metals, persistent organic compounds or pharmaceuticals). Therefore, the toxicological assessment of the combined effects of microplastics and sorbed pollutants can produce in biota is one of the hottest topics on the environmental toxicology field. This review aims to clarify the main impacts that this interaction could have on ecosystems by (1) highlighting the principal factors that influence the microplastics sorption capacities; (2) discussing the potential scenarios in which microplastics may have an essential role on the bioaccumulation and transfer of chemicals; and (3) reviewing the recently published studies describing toxicological effects caused by the combination of microplastics and their sorbed chemicals. Finally, a discussion regarding the need for a new generation of toxicological studies is presented.
Collapse
|
78
|
Elizalde-Velázquez A, Subbiah S, Anderson TA, Green MJ, Zhao X, Cañas-Carrell JE. Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136974. [PMID: 32041000 DOI: 10.1016/j.scitotenv.2020.136974] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 05/21/2023]
Abstract
High disposability, high durability, and indiscriminate use have led to the accumulation of plastics at uncontrolled rates in the environment. However, plastics are not the only source of water pollution in the environment. Nonsteroidal anti-inflammatory drugs (NSAIDs) are a group of pharmaceuticals widely and highly consumed in the market due to a low price and over-the-counter accessibility. NSAIDs are frequently detected in surface water environments at μg L-1 concentrations. In the present study, the sorption behavior of three NSAIDs (ibuprofen, naproxen, diclofenac) was examined with four types of microplastics (polystyrene (PS), ultra-high molecular weight polyethylene (UHMWPE), average molecular weight medium density polyethylene (AMWPE), and polypropylene (PP)), under varying water conditions. Low sorption occurred between NSAIDs and microplastics under environmentally relevant conditions. The sorption process exhibited a pronounced pH dependency due to the effect of pH on the speciation of the compounds and the surface charge of the particles. Only under acidic conditions (pH: 2), NSAIDs were highly sorbed onto microplastics mainly ruled by hydrophobic interactions. Among NSAIDs tested, diclofenac exhibited the highest sorption coefficients to microplastics. Polyethylene particles exhibited the highest affinity for NSAIDs.
Collapse
Affiliation(s)
- Armando Elizalde-Velázquez
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States
| | - Todd A Anderson
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Xiaofei Zhao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Jaclyn E Cañas-Carrell
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
79
|
Sekoai PT, Feng S, Zhou W, Ngan WY, Pu Y, Yao Y, Pan J, Habimana O. Insights into the Microbiological Safety of Wooden Cutting Boards Used for Meat Processing in Hong Kong's Wet Markets: A Focus on Food-Contact Surfaces, Cross-Contamination and the Efficacy of Traditional Hygiene Practices. Microorganisms 2020; 8:E579. [PMID: 32316436 PMCID: PMC7232214 DOI: 10.3390/microorganisms8040579] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/02/2023] Open
Abstract
Hong Kong's wet markets play a crucial role in the country's supply of safe, fresh meat to satisfy the dietary needs of its population. Whilst food safety regulations have been introduced over the past few years to maintain the microbial safety of foods sold from these wet markets, it remains unclear whether the hygiene maintenance that is performed on the wooden cutting boards used for meat-processing is effective. In fact, hygiene maintenance may often be overlooked, and hygiene standards may be insufficient. If so, this may lead to the spread of harmful pathogens through cross-contamination, thereby causing severe risks to public health. The aim of this study was to determine the level of microbial transfer between wooden cutting boards and swine meat of various qualities, using 16S metagenomic sequencing, strain identification and biofilm screening of isolated strains. The results established that: (a) the traditional hygiene practices used for cleaning wooden cutting boards in Hong Kong's wet markets expose the surfaces to potentially harmful microorganisms; (b) the processing of microbially contaminated meat on cutting boards cleaned using traditional practices leads to cross-contamination; and (c) several potentially pathogenic microorganisms found on the cutting boards have good biofilm-forming abilities. These results reinforce the need to review the traditional methods used to clean wooden cutting boards after the processing of raw meat in Hong Kong' wet markets so as to prevent cross-contamination events. The establishment of proper hygiene protocols may reduce the spread of disease-causing microorganisms (including antibiotic-resistant microorganisms) in food-processing environments.
Collapse
Affiliation(s)
- Patrick T Sekoai
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Shiqi Feng
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Wenwen Zhou
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Wing Y Ngan
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yang Pu
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yuan Yao
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Olivier Habimana
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| |
Collapse
|
80
|
Liu P, Zhan X, Wu X, Li J, Wang H, Gao S. Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks. CHEMOSPHERE 2020; 242:125193. [PMID: 31678851 DOI: 10.1016/j.chemosphere.2019.125193] [Citation(s) in RCA: 354] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 05/20/2023]
Abstract
Microplastic (MP) pollution is a raising global concern in recent years due to its wide distribution. Additionally, most of the MPs have undergone extensive weathering in the environment, and weathered MPs may exhibit different physicochemical properties from pristine ones. The review reveals the change in physicochemical properties (e.g. size, color, crystallinity, mechanical property and oxygen-containing groups) and the release of additives and MP-derived intermediates (i.e. oligomers and oxygenated compounds) during weathering processes. Weathering further affects the sorption behavior of MPs for environmental pollutants because of the changed crystallinity, specific surface area and oxygen functional groups. The interaction mechanisms of pristine and weathered MPs with pollutants are summarized, and how weathering processes affect sorption behavior is critically revealed. Because of the changed size, color and surface charges, weathered MPs might be ingested by aquatic organisms in different ways from the pristine ones. The detailed effects of weathering on the ingestion of MPs are discussed, and the potential toxicity of leachates from weathering processes is evaluated. In addition, the environmental components (e.g. natural organic matter and salinity) and biofilm correlated to the sorption behavior of MPs are reviewed. As for the knowledge gap, further studies should focus on the long-term weathering of MPs and the relationships between weathering properties and sorption capacities toward pollutants. The potential risks of weathered MPs and leachates on organisms should be explored.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Xin Zhan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Xiaowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Jinli Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Hanyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
81
|
Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1352-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|