51
|
Corada M, Orsenigo F, Morini MF, Pitulescu ME, Bhat G, Nyqvist D, Breviario F, Conti V, Briot A, Iruela-Arispe ML, Adams RH, Dejana E. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun 2014; 4:2609. [PMID: 24153254 PMCID: PMC3826640 DOI: 10.1038/ncomms3609] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/13/2013] [Indexed: 02/07/2023] Open
Abstract
The functional diversity of the arterial and venous endothelia is regulated through a complex system of signalling pathways and downstream transcription factors. Here we report that the transcription factor Sox17, which is known as a regulator of endoderm and hemopoietic differentiation, is selectively expressed in arteries, and not in veins, in the mouse embryo and in mouse postnatal retina and adult. Endothelial cell-specific inactivation of Sox17 in the mouse embryo is accompanied by a lack of arterial differentiation and vascular remodelling that results in embryo death in utero. In mouse postnatal retina, abrogation of Sox17 expression in endothelial cells leads to strong vascular hypersprouting, loss of arterial identity and large arteriovenous malformations. Mechanistically, Sox17 acts upstream of the Notch system and downstream of the canonical Wnt system. These data introduce Sox17 as a component of the complex signalling network that orchestrates arterial/venous specification. The transcription factor Sox17 is required for the development of the vasculature in vertebrates. Here Corada et al. show that Sox17 acts downstream of Wnt signalling and upstream of Notch signalling in the regulation of artery and vein differentiation in mice.
Collapse
Affiliation(s)
- Monica Corada
- 1] FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy [2]
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
|
53
|
Lee SH, Lee S, Yang H, Song S, Kim K, Saunders TL, Yoon JK, Koh GY, Kim I. Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis. Circ Res 2014; 115:215-26. [PMID: 24755984 DOI: 10.1161/circresaha.115.303142] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE The Notch pathway stabilizes sprouting angiogenesis by favoring stalk cells over tip cells at the vascular front. Because tip and stalk cells have different properties in morphology and function, their transcriptional regulation remains to be distinguished. Transcription factor Sox17 is specifically expressed in endothelial cells, but its expression and role at the vascular front remain largely unknown. OBJECTIVE To specify the role of Sox17 and its relationship with the Notch pathway in sprouting angiogenesis. METHODS AND RESULTS Endothelial-specific Sox17 deletion reduces sprouting angiogenesis in mouse embryonic and postnatal vascular development, whereas Sox17 overexpression increases it. Sox17 promotes endothelial migration by destabilizing endothelial junctions and rearranging cytoskeletal structure and upregulates expression of several genes preferentially expressed in tip cells. Interestingly, Sox17 expression is suppressed in stalk cells in which Notch signaling is relatively high. Notch activation by overexpressing Notch intracellular domain reduces Sox17 expression both in primary endothelial cells and in retinal angiogenesis, whereas Notch inhibition by delta-like ligand 4 (Dll4) blockade increases it. The Notch pathway regulates Sox17 expression mainly at the post-transcriptional level. Furthermore, endothelial Sox17 ablation rescues vascular network from excessive tip cell formation and hyperbranching under Notch inhibition in developmental and tumor angiogenesis. CONCLUSIONS Our findings demonstrate that the Notch pathway restricts sprouting angiogenesis by reducing the expression of proangiogenic regulator Sox17.
Collapse
Affiliation(s)
- Seung-Hun Lee
- From the Graduate School of Medical Science and Engineering (S.-H.L., S.L., H.Y., S.S., K.K., G.Y.K., I.K.) and Biomedical Science and Engineering Interdisciplinary Program (S.-H.L., G.Y.K., I.K.), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea (S.L.); Transgenic Animal Model Core, University of Michigan, Ann Arbor (T.L.S.); and Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (J.K.Y.)
| | - Sungsu Lee
- From the Graduate School of Medical Science and Engineering (S.-H.L., S.L., H.Y., S.S., K.K., G.Y.K., I.K.) and Biomedical Science and Engineering Interdisciplinary Program (S.-H.L., G.Y.K., I.K.), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea (S.L.); Transgenic Animal Model Core, University of Michigan, Ann Arbor (T.L.S.); and Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (J.K.Y.)
| | - Hanseul Yang
- From the Graduate School of Medical Science and Engineering (S.-H.L., S.L., H.Y., S.S., K.K., G.Y.K., I.K.) and Biomedical Science and Engineering Interdisciplinary Program (S.-H.L., G.Y.K., I.K.), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea (S.L.); Transgenic Animal Model Core, University of Michigan, Ann Arbor (T.L.S.); and Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (J.K.Y.)
| | - Sukhyun Song
- From the Graduate School of Medical Science and Engineering (S.-H.L., S.L., H.Y., S.S., K.K., G.Y.K., I.K.) and Biomedical Science and Engineering Interdisciplinary Program (S.-H.L., G.Y.K., I.K.), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea (S.L.); Transgenic Animal Model Core, University of Michigan, Ann Arbor (T.L.S.); and Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (J.K.Y.)
| | - Kangsan Kim
- From the Graduate School of Medical Science and Engineering (S.-H.L., S.L., H.Y., S.S., K.K., G.Y.K., I.K.) and Biomedical Science and Engineering Interdisciplinary Program (S.-H.L., G.Y.K., I.K.), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea (S.L.); Transgenic Animal Model Core, University of Michigan, Ann Arbor (T.L.S.); and Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (J.K.Y.)
| | - Thomas L Saunders
- From the Graduate School of Medical Science and Engineering (S.-H.L., S.L., H.Y., S.S., K.K., G.Y.K., I.K.) and Biomedical Science and Engineering Interdisciplinary Program (S.-H.L., G.Y.K., I.K.), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea (S.L.); Transgenic Animal Model Core, University of Michigan, Ann Arbor (T.L.S.); and Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (J.K.Y.)
| | - Jeong K Yoon
- From the Graduate School of Medical Science and Engineering (S.-H.L., S.L., H.Y., S.S., K.K., G.Y.K., I.K.) and Biomedical Science and Engineering Interdisciplinary Program (S.-H.L., G.Y.K., I.K.), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea (S.L.); Transgenic Animal Model Core, University of Michigan, Ann Arbor (T.L.S.); and Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (J.K.Y.)
| | - Gou Young Koh
- From the Graduate School of Medical Science and Engineering (S.-H.L., S.L., H.Y., S.S., K.K., G.Y.K., I.K.) and Biomedical Science and Engineering Interdisciplinary Program (S.-H.L., G.Y.K., I.K.), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea (S.L.); Transgenic Animal Model Core, University of Michigan, Ann Arbor (T.L.S.); and Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (J.K.Y.)
| | - Injune Kim
- From the Graduate School of Medical Science and Engineering (S.-H.L., S.L., H.Y., S.S., K.K., G.Y.K., I.K.) and Biomedical Science and Engineering Interdisciplinary Program (S.-H.L., G.Y.K., I.K.), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea (S.L.); Transgenic Animal Model Core, University of Michigan, Ann Arbor (T.L.S.); and Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (J.K.Y.)
| |
Collapse
|
54
|
Swift MR, Pham VN, Castranova D, Bell K, Poole RJ, Weinstein BM. SoxF factors and Notch regulate nr2f2 gene expression during venous differentiation in zebrafish. Dev Biol 2014; 390:116-25. [PMID: 24699544 DOI: 10.1016/j.ydbio.2014.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/03/2014] [Accepted: 03/25/2014] [Indexed: 11/19/2022]
Abstract
Initial embryonic determination of artery or vein identity is regulated by genetic factors that work in concert to specify the endothelial cell׳s (EC) fate, giving rise to two structurally unique components of the circulatory loop. The Shh/VEGF/Notch pathway is critical for arterial specification, while the orphan receptor nr2f2 (COUP-TFII) has been implicated in venous specification. Studies in mice have shown that nr2f2 is expressed in venous but not arterial ECs, and that it preferentially induces markers of venous cell fate. We have examined the role of nr2f2 during early arterial-venous development in the zebrafish trunk. We show that expression of a subset of markers of venous endothelial identity requires nr2f2, while the expression of nr2f2 itself requires sox7 and sox18 gene function. However, while sox7 and sox18 are expressed in both the cardinal vein and the dorsal aorta during early trunk development, nr2f2 is expressed only in the cardinal vein. We show that Notch signaling activity present in the dorsal aorta suppresses expression of nr2f2, restricting nr2f2-dependent promotion of venous differentiation to the cardinal vein.
Collapse
Affiliation(s)
- Matthew R Swift
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Van N Pham
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Castranova
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kameha Bell
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Brant M Weinstein
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
55
|
Abstract
Key Points
Haploinsufficiency of Sox18 reveals an important role for VEGFD in regulating blood vascular development in vivo in vertebrates. VEGFD acts through mitogen-activated protein kinase kinase–extracellular signal-regulated kinase to modulate the activity and nuclear concentration of endothelial-specific transcription factor SOX18.
Collapse
|
56
|
van Impel A, Zhao Z, Hermkens DMA, Roukens MG, Fischer JC, Peterson-Maduro J, Duckers H, Ober EA, Ingham PW, Schulte-Merker S. Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development 2014; 141:1228-38. [PMID: 24523456 DOI: 10.1242/dev.105031] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis. Murine Prox1-null embryos lack lymphatic structures, and sustained expression of Prox1 is indispensable for the maintenance of lymphatic cell fate even at adult stages, highlighting the unique importance of this gene for the lymphatic lineage. Whether this pre-eminent role of Prox1 within the lymphatic vasculature is conserved in other vertebrate classes has remained unresolved, mainly owing to the lack of availability of loss-of-function mutants. Here, we re-examine the role of Prox1a in zebrafish lymphangiogenesis. First, using a transgenic reporter line, we show that prox1a is initially expressed in different endothelial compartments, becoming restricted to lymphatic endothelial cells only at later stages. Second, using targeted mutagenesis, we show that Prox1a is dispensable for lymphatic specification and subsequent lymphangiogenesis in zebrafish. In line with this result, we found that the functionally related transcription factors Coup-TFII and Sox18 are also dispensable for lymphangiogenesis. Together, these findings suggest that lymphatic commitment in zebrafish and mice is controlled in fundamentally different ways.
Collapse
Affiliation(s)
- Andreas van Impel
- Hubrecht Institute - KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Lange AW, Haitchi HM, LeCras TD, Sridharan A, Xu Y, Wert SE, James J, Udell N, Thurner PJ, Whitsett JA. Sox17 is required for normal pulmonary vascular morphogenesis. Dev Biol 2014; 387:109-20. [PMID: 24418654 DOI: 10.1016/j.ydbio.2013.11.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022]
Abstract
The SRY-box containing transcription factor Sox17 is required for endoderm formation and vascular morphogenesis during embryonic development. In the lung, Sox17 is expressed in mesenchymal progenitors of the embryonic pulmonary vasculature and is restricted to vascular endothelial cells in the mature lung. Conditional deletion of Sox17 in splanchnic mesenchyme-derivatives using Dermo1-Cre resulted in substantial loss of Sox17 from developing pulmonary vascular endothelial cells and caused pulmonary vascular abnormalities before birth, including pulmonary vein varices, enlarged arteries, and decreased perfusion of the microvasculature. While survival of Dermo1-Cre;Sox17Δ/Δ mice (herein termed Sox17Δ/Δ) was unaffected at E18.5, most Sox17Δ/Δ mice died by 3 weeks of age. After birth, the density of the pulmonary microvasculature was decreased in association with alveolar simplification, biventricular cardiac hypertrophy, and valvular regurgitation. The severity of the postnatal cardiac phenotype was correlated with the severity of pulmonary vasculature abnormalities. Sox17 is required for normal formation of the pulmonary vasculature and postnatal cardiovascular homeostasis.
Collapse
Affiliation(s)
- Alexander W Lange
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, The University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, United States
| | - Hans Michael Haitchi
- Clinical and Experimental Sciences, Faculty of Medicine, and National Institute for Health Research Respiratory Biomedical Research Unit, Southampton General Hospital, United Kingdom
| | - Timothy D LeCras
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, The University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, United States
| | - Anusha Sridharan
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, The University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, United States
| | - Yan Xu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, The University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, United States
| | - Susan E Wert
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, The University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, United States
| | - Jeanne James
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, United States
| | - Nicholas Udell
- Bioengineering Sciences Research Group, Faculty of Engineering and the Environment, University of Southampton, United Kingdom
| | - Philipp J Thurner
- Bioengineering Sciences Research Group, Faculty of Engineering and the Environment, University of Southampton, United Kingdom
| | - Jeffrey A Whitsett
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, The University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, United States.
| |
Collapse
|
58
|
Transcriptional control of lymphatic endothelial cell type specification. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2014; 214:5-22. [PMID: 24276883 DOI: 10.1007/978-3-7091-1646-3_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lymphatic vasculature is the "sewer system" of our body as it plays an important role in transporting tissue fluids and extravasated plasma proteins back to the blood circulation and absorbs lipids from the intestinal tract. Malfunction of the lymphatic vasculature can result in lymphedema and obesity. The lymphatic system is also important for the immune response and is one of the main routes for the spreading of metastatic tumor cells. The development of the mammalian lymphatic vasculature is a stepwise process that requires the specification of lymphatic endothelial cell (LEC) progenitors in the embryonic veins, and the subsequent budding of those LEC progenitors from the embryonic veins to give rise to the primitive lymph sacs from which the entire lymphatic vasculature will eventually be derived. This process was first proposed by Florence Sabin over a century ago and was recently confirmed by several studies using lineage tracing and gene manipulation. Over the last decade, significant advances have been made in understanding the transcriptional control of lymphatic endothelial cell type differentiation. Here we summarize our current knowledge about the key transcription factors that are necessary to regulate several aspects of lymphatic endothelial specification and differentiation.
Collapse
|
59
|
Wilkinson RN, van Eeden FJ. The Zebrafish as a Model of Vascular Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:93-122. [DOI: 10.1016/b978-0-12-386930-2.00005-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
60
|
van Impel A, Schulte-Merker S. A Fisheye View on Lymphangiogenesis. DEVELOPMENTAL ASPECTS OF THE LYMPHATIC VASCULAR SYSTEM 2014; 214:153-65. [DOI: 10.1007/978-3-7091-1646-3_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
61
|
Abstract
Hey bHLH transcription factors are direct targets of canonical Notch signaling. The three mammalian Hey proteins are closely related to Hes proteins and they primarily repress target genes by either directly binding to core promoters or by inhibiting other transcriptional activators. Individual candidate gene approaches and systematic screens identified a number of Hey target genes, which often encode other transcription factors involved in various developmental processes. Here, we review data on interaction partners and target genes and conclude with a model for Hey target gene regulation. Furthermore, we discuss how expression of Hey proteins affects processes like cell fate decisions and differentiation, e.g., in cardiovascular, skeletal, and neural development or oncogenesis and how this relates to the observed developmental defects and phenotypes observed in various knockout mice.
Collapse
Affiliation(s)
- David Weber
- Developmental Biochemistry, Theodor-Boveri-Institute/Biocenter, Wuerzburg University, Wuerzburg, Germany
| | - Cornelia Wiese
- Developmental Biochemistry, Theodor-Boveri-Institute/Biocenter, Wuerzburg University, Wuerzburg, Germany
| | - Manfred Gessler
- Developmental Biochemistry, Theodor-Boveri-Institute/Biocenter, Wuerzburg University, Wuerzburg, Germany; Comprehensive Cancer Center Mainfranken, Wuerzburg University, Wuerzburg, Germany.
| |
Collapse
|
62
|
Abstract
Cerebral cavernous malformation is a clinically well-defined microvascular disorder predisposing to stroke; however, the major phenotype observed in zebrafish is the cardiac defect, specifically an enlarged heart. Less effort has been made to explore this phenotypic discrepancy between human and zebrafish. Given the fact that the gene products from Ccm1/Ccm2 are nearly identical between the two species, the common sense has dictated that the zebrafish animal model would provide a great opportunity to dissect the detailed molecular function of Ccm1/Ccm2 during angiogenesis. We recently reported on the cellular role of the Ccm1 gene in biochemical processes that permit proper angiogenic microvascular development in the zebrafish model. In the course of this experimentation, we encountered a vast amount of recent research on the relationship between dysfunctional angiogenesis and cardiovascular defects in zebrafish. Here we compile the findings of our research with the most recent contributions in this field and glean conclusions about the effect of defective angiogenesis on the developing cardiovascular system. Our conclusion also serves as a bridge for the phenotypic discrepancy between humans and animal models, which might provide some insights into future translational research on human stroke.
Collapse
|
63
|
The regulation of SOX7 and its tumor suppressive role in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1645-1653. [PMID: 24012678 DOI: 10.1016/j.ajpath.2013.07.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/16/2013] [Accepted: 07/10/2013] [Indexed: 12/23/2022]
Abstract
Both epigenetic silencing and genetic deletion of tumor suppressors contribute to the development and progression of breast cancer. SOX7 is a transcription factor important to development, and its down-regulation has been reported in tumor tissues and cell lines of prostate, colon, and lung cancers. However, the regulation of SOX7 expression and its functional role in breast cancer have not been reported. The current study demonstrates that SOX7 mRNA and protein expression are down-regulated in breast cancer tissues and cell lines compared with adjacent normal tissues and nontumorigenic cells, respectively. The SOX7 promoter is hypermethylated in breast cancer cell lines compared with nontumorigenic cells, and the inhibition of DNA methylation increases SOX7 mRNA levels. With shRNA-mediated SOX7 silencing, nontumorigenic immortal breast cells display increased proliferation, migration, and invasion and form structures that resemble that of breast cancer cells in a three-dimensional culture system. Conversely, ectopic SOX7 expression inhibits proliferation, migration, and invasion of breast cancer cells in vitro and tumor growth in vivo. Importantly, we discovered that SOX7 transcript levels positively correlated with clinical outcome of 674 breast cancer patients. Overall, our data suggest that SOX7 acts as a tumor suppressor in breast cancer. SOX7 expression is likely regulated by multiple mechanisms and potentially serves as a prognostic marker for breast cancer patients.
Collapse
|
64
|
Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
65
|
Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development. Proc Natl Acad Sci U S A 2013; 110:11893-8. [PMID: 23818617 DOI: 10.1073/pnas.1300805110] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mechanisms by which arterial fate is established and maintained are not clearly understood. Although a number of signaling pathways and transcriptional regulators have been implicated in arterio-venous differentiation, none are essential for arterial formation, and the manner in which widely expressed factors may achieve arterial-specific gene regulation is unclear. Using both mouse and zebrafish models, we demonstrate here that arterial specification is regulated combinatorially by Notch signaling and SoxF transcription factors, via direct transcriptional gene activation. Through the identification and characterization of two arterial endothelial cell-specific gene enhancers for the Notch ligand Delta-like ligand 4 (Dll4), we show that arterial Dll4 expression requires the direct binding of both the RBPJ/Notch intracellular domain and SOXF transcription factors. Specific combinatorial, but not individual, loss of SOXF and RBPJ DNA binding ablates all Dll4 enhancer-transgene expression despite the presence of multiple functional ETS binding sites, as does knockdown of sox7;sox18 in combination with loss of Notch signaling. Furthermore, triple knockdown of sox7, sox18 and rbpj also results in ablation of endogenous dll4 expression. Fascinatingly, this combinatorial ablation leads to a loss of arterial markers and the absence of a detectable dorsal aorta, demonstrating the essential roles of SoxF and Notch, together, in the acquisition of arterial identity.
Collapse
|
66
|
Gore AV, Monzo K, Cha YR, Pan W, Weinstein BM. Vascular development in the zebrafish. Cold Spring Harb Perspect Med 2013; 2:a006684. [PMID: 22553495 DOI: 10.1101/cshperspect.a006684] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The zebrafish has emerged as an excellent vertebrate model system for studying blood and lymphatic vascular development. The small size, external and rapid development, and optical transparency of zebrafish embryos are some of the advantages the zebrafish model system offers. Multiple well-established techniques have been developed for imaging and functionally manipulating vascular tissues in zebrafish embryos, expanding on and amplifying these basic advantages and accelerating use of this model system for studying vascular development. In the past decade, studies performed using zebrafish as a model system have provided many novel insights into vascular development. In this article we discuss the amenability of this model system for studying blood vessel development and review contributions made by this system to our understanding of vascular development.
Collapse
Affiliation(s)
- Aniket V Gore
- Program in Genomics of Differentiation, Laboratory of Molecular Genetics, Section on Vertebrate Organogenesis, NICHD, NIH, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
67
|
Cermenati S, Moleri S, Neyt C, Bresciani E, Carra S, Grassini DR, Omini A, Goi M, Cotelli F, François M, Hogan BM, Beltrame M. Sox18 Genetically Interacts With VegfC to Regulate Lymphangiogenesis in Zebrafish. Arterioscler Thromb Vasc Biol 2013; 33:1238-47. [DOI: 10.1161/atvbaha.112.300254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Solei Cermenati
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Silvia Moleri
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Christine Neyt
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Erica Bresciani
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Silvia Carra
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Daniela R. Grassini
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Alice Omini
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Michela Goi
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Franco Cotelli
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Mathias François
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Benjamin M. Hogan
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| | - Monica Beltrame
- From the Dipartimento di Scienze Biomolecolari e Biotecnologie (S. Cermenati, S.M., D.R.G., M.G., M.B.), Dipartimento di Bioscienze (S. Cermenati, S.M., S. Carra, A.O., F.C., M.B.), and Dipartimento di Biologia (E.B., S. Carra, F.C.), Universita’ degli Studi di Milano, Milan, Italy; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia (C.N., M.F., B.M.H.)
| |
Collapse
|
68
|
Clarke RL, Yzaguirre AD, Yashiro-Ohtani Y, Bondue A, Blanpain C, Pear WS, Speck NA, Keller G. The expression of Sox17 identifies and regulates haemogenic endothelium. Nat Cell Biol 2013; 15:502-10. [PMID: 23604320 DOI: 10.1038/ncb2724] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
Although it is well recognized that haematopoietic stem cells (HSCs) develop from a specialized population of endothelial cells known as haemogenic endothelium, the regulatory pathways that control this transition are not well defined. Here we identify Sox17 as a key regulator of haemogenic endothelial development. Analysis of Sox17-GFP reporter mice revealed that Sox17 is expressed in haemogenic endothelium and emerging HSCs and that it is required for HSC development. Using the mouse embryonic stem cell differentiation model, we show that Sox17 is also expressed in haemogenic endothelium generated in vitro and that it plays a pivotal role in the development and/or expansion of haemogenic endothelium through the Notch signalling pathway. Taken together, these findings position Sox17 as a key regulator of haemogenic endothelial and haematopoietic development.
Collapse
Affiliation(s)
- Raedun L Clarke
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 2013; 151:1332-44. [PMID: 23217714 DOI: 10.1016/j.cell.2012.10.042] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 08/27/2012] [Accepted: 10/25/2012] [Indexed: 11/15/2022]
Abstract
Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
70
|
Choi E, Kraus MRC, Lemaire LA, Yoshimoto M, Vemula S, Potter LA, Manduchi E, Stoeckert CJ, Grapin-Botton A, Magnuson MA. Dual lineage-specific expression of Sox17 during mouse embryogenesis. Stem Cells 2013; 30:2297-308. [PMID: 22865702 DOI: 10.1002/stem.1192] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sox17 is essential for both endoderm development and fetal hematopoietic stem cell (HSC) maintenance. While endoderm-derived organs are well known to originate from Sox17-expressing cells, it is less certain whether fetal HSCs also originate from Sox17-expressing cells. By generating a Sox17(GFPCre) allele and using it to assess the fate of Sox17-expressing cells during embryogenesis, we confirmed that both endodermal and a part of definitive hematopoietic cells are derived from Sox17-positive cells. Prior to E9.5, the expression of Sox17 is restricted to the endoderm lineage. However, at E9.5 Sox17 is expressed in the endothelial cells (ECs) at the para-aortic splanchnopleural region that contribute to the formation of HSCs at a later stage. The identification of two distinct progenitor cell populations that express Sox17 at E9.5 was confirmed using fluorescence-activated cell sorting together with RNA-Seq to determine the gene expression profiles of the two cell populations. Interestingly, this analysis revealed differences in the RNA processing of the Sox17 mRNA during embryogenesis. Taken together, these results indicate that Sox17 is expressed in progenitor cells derived from two different germ layers, further demonstrating the complex expression pattern of this gene and suggesting caution when using Sox17 as a lineage-specific marker.
Collapse
Affiliation(s)
- Eunyoung Choi
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0494, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kim SH, Schmitt CE, Woolls MJ, Holland MB, Kim JD, Jin SW. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development. Biochem Biophys Res Commun 2012; 430:1212-6. [PMID: 23266606 DOI: 10.1016/j.bbrc.2012.12.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.
Collapse
Affiliation(s)
- Se-Hee Kim
- McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
72
|
Costa G, Mazan A, Gandillet A, Pearson S, Lacaud G, Kouskoff V. SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of haematopoietic development. Development 2012; 139:1587-98. [PMID: 22492353 DOI: 10.1242/dev.071282] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
At early stages of vertebrate ontogeny, blood and endothelial cells develop from a common mesodermal progenitor, the haemangioblast. Upon haematopoietic commitment, the haemangioblast generates blood precursors through populations of endothelial cells with haemogenic properties. Although several transcription factors have been implicated in haemangioblast differentiation, the precise mechanisms governing cell fate decisions towards the generation of haemogenic endothelium precursors remain largely unknown. Under defined conditions, embryonic stem (ES) cells can be differentiated into haemangioblast-like progenitors that faithfully recapitulate early embryonic haematopoiesis. Here, we made use of mouse ES cells as a model system to understand the role of SOX7, a member of a large family of transcription factors involved in a wide range of developmental processes. During haemangioblast differentiation, SOX7 is expressed in haemogenic endothelium cells and is downregulated in nascent blood precursors. Gain-of-function assays revealed that the enforced expression of Sox7 in haemangioblast-derived blast colonies blocks further differentiation and sustains the expression of endothelial markers. Thus, to explore the transcriptional activity of SOX7, we focused on the endothelial-specific adhesion molecule VE-cadherin. Similar to SOX7, VE-cadherin is expressed in haemogenic endothelium and is downregulated during blood cell formation. We show that SOX7 binds and activates the promoter of VE-cadherin, demonstrating that this gene is a novel downstream transcriptional target of SOX7. Altogether, our findings suggest that SOX7 is involved in the transcriptional regulation of genes expressed in the haemogenic endothelium and provide new clues to decipher the molecular pathways that drive early embryonic haematopoiesis.
Collapse
Affiliation(s)
- Guilherme Costa
- Cancer Research UK Stem Cell Research Group, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | | | | | |
Collapse
|
73
|
Fan R, Zhang LY, Wang H, Yang B, Han T, Zhao XL, Wang W, Wang XQ, Lin GW. Methylation of the CpG Island Near SOX7 Gene Promoter Is Correlated with the Poor Prognosis of Patients with Myelodysplastic Syndrome. TOHOKU J EXP MED 2012; 227:119-128. [DOI: 10.1620/tjem.227.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Affiliation(s)
- Rong Fan
- Department of Hematology, Huashan Hospital of Fudan University
| | | | - Hong Wang
- Department of Hematology, The First Affiliated Hospital of Soochow University
| | - Bo Yang
- Fudan-Cinpathogen Clinical & Molecular Research Center
| | - Tao Han
- Fudan-Cinpathogen Clinical & Molecular Research Center
| | - Xiao-Li Zhao
- Department of Hematology, Huashan Hospital of Fudan University
| | - Wei Wang
- Department of Hematology, Huashan Hospital of Fudan University
| | - Xiao-Qin Wang
- Department of Hematology, Huashan Hospital of Fudan University
| | - Guo-Wei Lin
- Department of Hematology, Huashan Hospital of Fudan University
| |
Collapse
|
74
|
UY BENJAMINR, SIMOES-COSTA MARCOS, SAUKA-SPENGLER TATJANA, BRONNER MARIANNEE. Expression of Sox family genes in early lamprey development. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2012; 56:377-83. [PMID: 22811271 PMCID: PMC4118928 DOI: 10.1387/ijdb.113416bu] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Members of the Sox (Sry-related high mobility group box) family of transcription factors play a variety of roles during development of both vertebrates and invertebrates. A marked expansion in gene number occurred during the emergence of vertebrates, apparently via gene duplication events that are thought to have facilitated new functions. By screening a macroarrayed library as well as the lamprey genome, we have isolated genes of the Sox B, D, E and F subfamilies in the basal jawless vertebrate, lamprey. The expression patterns of all identified Sox genes were examined from gastrulation through early organogenesis (embryonic day 4-14), with particular emphasis on the neural crest, a vertebrate innovation. Coupled with phylogenetic analysis of these Sox genes, the results provide insight into gene duplication and di-vergence in paralog deployment occurring during early vertebrate evolution.
Collapse
Affiliation(s)
- BENJAMIN R. UY
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125 USA
| | - MARCOS SIMOES-COSTA
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125 USA
| | | | - MARIANNE E. BRONNER
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
75
|
Tao S, Witte M, Bryson-Richardson RJ, Currie PD, Hogan BM, Schulte-Merker S. Zebrafish prox1b mutants develop a lymphatic vasculature, and prox1b does not specifically mark lymphatic endothelial cells. PLoS One 2011; 6:e28934. [PMID: 22216143 PMCID: PMC3247213 DOI: 10.1371/journal.pone.0028934] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/17/2011] [Indexed: 11/20/2022] Open
Abstract
Background The expression of the Prospero homeodomain transcription factor (Prox1) in a subset of cardinal venous cells specifies the lymphatic lineage in mice. Prox1 is also indispensible for the maintenance of lymphatic cell fate, and is therefore considered a master control gene for lymphangiogenesis in mammals. In zebrafish, there are two prox1 paralogues, the previously described prox1 (also known as prox1a) and the newly identified prox1b. Principal Findings To investigate the role of the prox1b gene in zebrafish lymphangiogenesis, we knocked-down prox1b and found that depletion of prox1b mRNA did not cause lymphatic defects. We also generated two different prox1b mutant alleles, and maternal-zygotic homozygous mutant embryos were viable and did not show any lymphatic defects. Furthermore, the expression of prox1b was not restricted to lymphatic vessels during zebrafish development. Conclusion We conclude that Prox1b activity is not essential for embryonic lymphatic development in zebrafish.
Collapse
Affiliation(s)
- Shijie Tao
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Centre, Utrecht, The Netherlands
| | - Merlijn Witte
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Centre, Utrecht, The Netherlands
| | | | - Peter D. Currie
- The Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
- Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| | - Benjamin M. Hogan
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Centre, Utrecht, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Centre, Utrecht, The Netherlands
- EZO, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
76
|
Atkins GB, Jain MK, Hamik A. Endothelial differentiation: molecular mechanisms of specification and heterogeneity. Arterioscler Thromb Vasc Biol 2011; 31:1476-84. [PMID: 21677290 DOI: 10.1161/atvbaha.111.228999] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A complex and diverse vascular system is requisite for the survival of higher organisms. The process of vascular development is highly regulated, involving the de novo formation of vessels (vasculogenesis), followed by expansion and remodeling of the primitive vasculature (angiogenesis), culminating in differentiation of endothelial phenotypes, as found in the mature vascular system. Over the last decade, significant advances have been made in understanding the molecular regulation of endothelial cell development and differentiation. Endothelial development, in particular the mechanisms in play during vasculogenesis and angiogenesis, is discussed in a sister review to this article. This review highlights the key pathways governing in endothelial differentiation, with a focus on the major molecular mechanisms of endothelial specification and heterogeneity.
Collapse
Affiliation(s)
- G Brandon Atkins
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Harrington-McLaughlin Heart and Vascular Institute, Cleveland, OH, USA
| | | | | |
Collapse
|
77
|
Samant GV, Schupp MO, François M, Moleri S, Kothinti RK, Chun CZ, Sinha I, Sellars S, Leigh N, Pramanik K, Horswill MA, Remadevi I, Li K, Wilkinson GA, Tabatabai NM, Beltrame M, Koopman P, Ramchandran R. Sox factors transcriptionally regulate ROBO4 gene expression in developing vasculature in zebrafish. J Biol Chem 2011; 286:30740-30747. [PMID: 21730073 DOI: 10.1074/jbc.m111.220665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite their importance as members of the Roundabout (Robo) family in the control of axonal and vascular patterning, the transcriptional regulation of these genes is poorly understood. In this study, we show that members of the Sry-related high mobility box (Sox) transcription factor family as being transcriptional regulators of roundabout4 (robo4), a Robo gene family member that participates in sprouting angiogenesis in vivo, in zebrafish. Double whole mount in situ hybridization analysis in zebrafish embryos revealed co-localization of the vascular relevant Sox factors sox7 or sox18 mRNA with robo4 transcripts in developing intersomitic vessels. A 3-kb human ROBO4 promoter element was able to drive reporter expression in zebrafish to recapitulate the endogenous temporal intersomitic vessel expression pattern of robo4. EMSA analysis confirmed binding of Sox18 to a canonical Sox binding site (from -1170 bp to -1176 bp) in the ROBO4 promoter (3 kb), and mutation analysis indicated that this site was partially responsible for ROBO4 promoter activity in ECs. A combination of gain- and loss-of-function analysis identified Sox7 and Sox18 co-regulation of robo4 but not fli1a transcripts in zebrafish. Finally, Sox-mediated robo4 transcriptional regulation is conserved across evolution. These studies imply Sox-mediated transcriptional regulation of Robo4 in the developing embryonic vasculature.
Collapse
Affiliation(s)
- Ganesh V Samant
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Marcus O Schupp
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mathias François
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Silvia Moleri
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan 26-20133, Italy
| | - Rajendra K Kothinti
- Department of Medicine and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Chang Zoon Chun
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Indranil Sinha
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Suzanna Sellars
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Noah Leigh
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | - Mark A Horswill
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Indulekha Remadevi
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Keguo Li
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - George A Wilkinson
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Niloofar M Tabatabai
- Department of Medicine and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Monica Beltrame
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan 26-20133, Italy
| | - Peter Koopman
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ramani Ramchandran
- Division of Developmental Biology, Developmental Vascular Biology Program, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
78
|
Chung MIS, Ma ACH, Fung TK, Leung AYH. Characterization of Sry-related HMG box group F genes in zebrafish hematopoiesis. Exp Hematol 2011; 39:986-998.e5. [PMID: 21726513 DOI: 10.1016/j.exphem.2011.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 06/18/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The roles of Sry-related HMG box (Sox) genes in zebrafish hematopoiesis are not clearly defined. In this study, we have characterized the sequence homology, gene expression, hematopoietic functions, and regulation of sox genes in F group (SoxF) in zebrafish embryos. MATERIALS AND METHODS Expression of zebrafish SoxF genes were analyzed by whole-mount in situ hybridization, reverse transcription polymerase chain reaction, and real-time reverse transcription polymerase chain reaction of erythroid cells obtained from Tg(gata1:GFP) embryos by fluorescence-activated cell sorting. Roles of SoxF genes were analyzed in zebrafish embryos using morpholino knockdown and analyzed by whole-mount in situ hybridization and real-time reverse transcription polymerase chain reaction. Embryo patterning and vascular development were analyzed. RESULTS All members, except sox17, contained a putative β-catenin binding site. sox7 and 18 expressed primarily in the vasculature. sox17 expressed in the intermediate cell mass and its knockdown significantly reduced primitive erythropoiesis at 18 hours post-fertilization (hpf). Definitive hematopoiesis was unaffected. Concomitant sox7 and sox18 knockdown disrupted vasculogenesis and angiogenesis, but not hematopoiesis. sox32 knockdown delayed medial migration of hematopoietic and endothelial progenitors at 18 hpf and abolished cmyb expression at the caudal hematopoietic tissue at 48 hpf. These defects could be prevented by delaying its knockdown using a caged sox32 morpholino uncaged at 10 hpf. Knockdown of SoxF genes significantly upregulated their own expression and that of sox32 also upregulated sox18 expression. CONCLUSIONS sox17 helped to maintain primitive hematopoiesis, whereas sox7 and sox18 regulated angiogenesis and vasculogenesis. sox32 affected both vascular and hematopoietic development through its effects on medial migration of the hematopoietic and endothelial progenitors.
Collapse
Affiliation(s)
- Martin In Shing Chung
- Division of Haematology and Bone Marrow Transplantation, Department of Medicine, Queen Mary Hospital, University of Hong Kong, China
| | | | | | | |
Collapse
|
79
|
Ulrich F, Ma LH, Baker RG, Torres-Vázquez J. Neurovascular development in the embryonic zebrafish hindbrain. Dev Biol 2011; 357:134-51. [PMID: 21745463 DOI: 10.1016/j.ydbio.2011.06.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 01/05/2023]
Abstract
The brain is made of billions of highly metabolically active neurons whose activities provide the seat for cognitive, affective, sensory and motor functions. The cerebral vasculature meets the brain's unusually high demand for oxygen and glucose by providing it with the largest blood supply of any organ. Accordingly, disorders of the cerebral vasculature, such as congenital vascular malformations, stroke and tumors, compromise neuronal function and survival and often have crippling or fatal consequences. Yet, the assembly of the cerebral vasculature is a process that remains poorly understood. Here we exploit the physical and optical accessibility of the zebrafish embryo to characterize cerebral vascular development within the embryonic hindbrain. We find that this process is primarily driven by endothelial cell migration and follows a two-step sequence. First, perineural vessels with stereotypical anatomies are formed along the ventro-lateral surface of the neuroectoderm. Second, angiogenic sprouts derived from a subset of perineural vessels migrate into the hindbrain to form the intraneural vasculature. We find that these angiogenic sprouts reproducibly penetrate into the hindbrain via the rhombomere centers, where differentiated neurons reside, and that specific rhombomeres are invariably vascularized first. While the anatomy of intraneural vessels is variable from animal to animal, some aspects of the connectivity of perineural and intraneural vessels occur reproducibly within particular hindbrain locales. Using a chemical inhibitor of VEGF signaling we determine stage-specific requirements for this pathway in the formation of the hindbrain vasculature. Finally, we show that a subset of hindbrain vessels is aligned and/or in very close proximity to stereotypical neuron clusters and axon tracts. Using endothelium-deficient cloche mutants we show that the endothelium is dispensable for the organization and maintenance of these stereotypical neuron clusters and axon tracts in the early hindbrain. However, the cerebellum's upper rhombic lip and the optic tectum are abnormal in clo. Overall, this study provides a detailed, multi-stage characterization of early zebrafish hindbrain neurovascular development with cellular resolution up to the third day of age. This work thus serves as a useful reference for the neurovascular characterization of mutants, morphants and drug-treated embryos.
Collapse
Affiliation(s)
- Florian Ulrich
- Department of Developmental Genetics, Skirball Institute of Molecular Medicine, New York City, New York 10016, USA.
| | | | | | | |
Collapse
|
80
|
Francois M, Harvey NL, Hogan BM. The Transcriptional Control of Lymphatic Vascular Development. Physiology (Bethesda) 2011; 26:146-55. [DOI: 10.1152/physiol.00053.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
More than 100 years ago, Florence Sabin suggested that lymphatic vessels develop by sprouting from preexisting blood vessels, but it is only over the past decade that the molecular mechanisms underpinning lymphatic vascular development have begun to be elucidated. Genetic manipulations in mice have identified a transcriptional hub comprised of Prox1, CoupTFII, and Sox18 that is essential for lymphatic endothelial cell fate specification. Recent work has identified a number of additional transcription factors that regulate later stages of lymphatic vessel differentiation and maturation. This review highlights recent advances in our understanding of the transcriptional control of lymphatic vascular development and reflects on efforts to better understand the activities of transcriptional networks during this discrete developmental process. Finally, we highlight the transcription factors associated with human lymphatic vascular disorders, demonstrating the importance of understanding how the activity of these key molecules is regulated, with a view toward the development of innovative therapeutic avenues.
Collapse
Affiliation(s)
- Mathias Francois
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane
| | - Natasha L. Harvey
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide; and
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Benjamin M. Hogan
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane
| |
Collapse
|
81
|
Abstract
The mammalian lymphatic vasculature has an important function in the maintenance of tissue fluid homeostasis, absorption of dietary lipids, and immune surveillance. The lymphatic vessels are also recruited by many tumors as primary routes for metastasis and mediate immune responses in inflammatory diseases, whereas dysfunction of the lymphatic drainage leads to lymphedema. The characterization of a lymphatic vasculature in zebrafish has made the advantages of this small model organism, the suitability for intravital time-lapse imaging of developmental processes and the amenability for chemical and forward genetic screens, available to lymphatic vascular research. Here we review our current understanding of embryonic lymphangiogenesis in zebrafish, its molecular and anatomical similarities to mammalian lymphatic vascular development, and the possibilities zebrafish offers to complement mouse models and cell culture assays in the lymphangiogenesis field.
Collapse
|
82
|
Chan J, Mably JD. Dissection of cardiovascular development and disease pathways in zebrafish. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:111-53. [PMID: 21377626 DOI: 10.1016/b978-0-12-384878-9.00004-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The use of animal models in medicine has contributed significantly to the development of drug treatments and surgical procedures for the last century, in particular for cardiovascular disease. In order to model human disease in an animal, an appreciation of the strengths and limitations of the system are required to interpret results and design the logical sequence of steps toward clinical translation. As the world's population ages, cardiovascular disease will become even more prominent and further progress will be essential to stave off what seems destined to become a massive public health issue. Future treatments will require the imaginative application of current models as well as the generation of new ones. In this review, we discuss the resources available for modeling cardiovascular disease in zebrafish and the varied attributes of this system. We then discuss current zebrafish disease models and their potential that has yet to be exploited.
Collapse
Affiliation(s)
- Joanne Chan
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
83
|
Ye X, Wang Y, Nathans J. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 2010; 16:417-25. [PMID: 20688566 DOI: 10.1016/j.molmed.2010.07.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/09/2010] [Accepted: 07/09/2010] [Indexed: 01/22/2023]
Abstract
Disorders of retinal vascular growth and function are responsible for vision loss in a variety of diseases, including diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity and retinal artery or vein occlusion. Over the past decade, a new signaling pathway that controls retinal vascular development has emerged from the study of inherited disorders - in both humans and mice - that are characterized by retinal hypovascularization. This pathway utilizes a glial-derived extracellular ligand, Norrin, that acts on a transmembrane receptor, Frizzled4, a coreceptor, Lrp5, and an auxiliary membrane protein, Tspan12, on the surface of developing endothelial cells. The resulting signal controls a transcriptional program that regulates endothelial growth and maturation. It will be of great interest to determine whether modulating this pathway could represent a therapeutic approach to human retinal vascular disease.
Collapse
Affiliation(s)
- Xin Ye
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
84
|
Abstract
The molecular basis of lymphangiogenesis remains incompletely characterized. Here, we document a novel role for the PDZ domain-containing scaffold protein synectin in lymphangiogenesis using genetic studies in zebrafish and tadpoles. In zebrafish, the thoracic duct arises from parachordal lymphangioblast cells, which in turn derive from secondary lymphangiogenic sprouts from the posterior cardinal vein. Morpholino knockdown of synectin in zebrafish impaired formation of the thoracic duct, due to selective defects in lymphangiogenic but not angiogenic sprouting. Synectin genetically interacted with Vegfr3 and neuropilin-2a in regulating lymphangiogenesis. Silencing of synectin in tadpoles caused lymphatic defects due to an underdevelopment and impaired migration of Prox-1(+) lymphatic endothelial cells. Molecular analysis further revealed that synectin regulated Sox18-induced expression of Prox-1 and vascular endothelial growth factor C-induced migration of lymphatic endothelial cells in vitro. These findings reveal a novel role for synectin in lymphatic development.
Collapse
|
85
|
Kume T. Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol Histopathol 2010; 25:637-46. [PMID: 20238301 DOI: 10.14670/hh-25.637] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The groundbreaking discovery about arterial and venous expression of ephrinB2 and EphB4, respectively, in early embryonic development has led to a new paradigm for vascular research, providing compelling evidence that arterial and venous endothelial cells are established by genetic mechanisms before circulation begins. For arterial specification, vascular endothelial growth factor (VEGF) induces expression of Notch signaling genes, including Notch1 and its ligand, Delta-like 4 (Dll4), and Foxc1 and Foxc2 transcription factors directly regulate Dll4 expression. Upon activation of Notch signaling, the Notch downstream genes, Hey1/2 in mice or gridlock in zebrafish, further promote arterial differentiation. On the other hand, the orphan nuclear receptor COUP-TFII is a determinant factor for venous specification by inhibiting expression of arterial specific genes, including Nrp1 and Notch. After arterial and venous endothelial cells differentiate, a subpopulation of venous endothelial cells is thought to become competent to acquire lymphatic endothelial cell fate by progressively expressing the transcription factors Sox18 and Prox1 to differentiate into lymphatic endothelial cells. Therefore, it has now evident that arterial-venous cell fate determination and subsequent lymphatic development are regulated by the multi-step regulatory system associated with the key signaling pathways and transcription factors. Furthermore, new signaling molecules as additional regulators in these processes have recently been identified. As the mechanistic basis for a link between signaling pathways and transcriptional networks in arterial, venous and lymphatic endothelial cells begins to be uncovered, it is now time to summarize the literature on this exciting topic and provide perspectives for future research in the field.
Collapse
Affiliation(s)
- Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
86
|
Serrano AG, Gandillet A, Pearson S, Lacaud G, Kouskoff V. Contrasting effects of Sox17- and Sox18-sustained expression at the onset of blood specification. Blood 2010; 115:3895-8. [PMID: 20228271 DOI: 10.1182/blood-2009-10-247395] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that Sox7 was transiently expressed at the onset of blood specification and was implicated in the regulation of cell survival, proliferation, and maturation of hematopoietic precursors. Here, we assessed, using embryonic stem cell differentiation as a model system, whether Sox17 and Sox18, 2 close homologs of Sox7, may act similarly to Sox7 at the onset of hematopoietic development. Sox18-enforced expression led to the enhanced proliferation of early hematopoietic precursors while blocking their maturation, phenotype highly reminiscent of Sox7-enforced expression. In striking contrast, Sox17-enforced expression dramatically increased the apoptosis of these early precursors. Similarly to Sox7, Sox18 was transiently expressed during early hematopoiesis, but its expression was predominantly observed in CD41(+) cells, contrasting with Sox7, mostly expressed in Flk1(+) cells. Conversely, Sox17 remained marginally expressed during blood specification. Overall, our data uncover contrasting effect and expression pattern for Sox18 and Sox17 at the onset of hematopoiesis specification.
Collapse
|
87
|
Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood 2009; 114:4813-22. [DOI: 10.1182/blood-2009-06-226290] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
The molecular mechanisms that regulate the balance between proliferation and differentiation of precursors at the onset of hematopoiesis specification are poorly understood. By using a global gene expression profiling approach during the course of embryonic stem cell differentiation, we identified Sox7 as a potential candidate gene involved in the regulation of blood lineage formation from the mesoderm germ layer. In the present study, we show that Sox7 is transiently expressed in mesodermal precursors as they undergo specification to the hematopoietic program. Sox7 knockdown in vitro significantly decreases the formation of both primitive erythroid and definitive hematopoietic progenitors as well as endothelial progenitors. In contrast, Sox7-sustained expression in the earliest committed hematopoietic precursors promotes the maintenance of their multipotent and self-renewing status. Removal of this differentiation block driven by Sox7-enforced expression leads to the efficient differentiation of hematopoietic progenitors to all erythroid and myeloid lineages. This study identifies Sox7 as a novel and important player in the molecular regulation of the first committed blood precursors. Furthermore, our data demonstrate that the mere sustained expression of Sox7 is sufficient to completely alter the balance between proliferation and differentiation at the onset of hematopoiesis.
Collapse
|
88
|
Javerzat S, Franco M, Herbert J, Platonova N, Peille AL, Pantesco V, De Vos J, Assou S, Bicknell R, Bikfalvi A, Hagedorn M. Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system. PLoS One 2009; 4:e7856. [PMID: 19924294 PMCID: PMC2774277 DOI: 10.1371/journal.pone.0007856] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/17/2009] [Indexed: 11/18/2022] Open
Abstract
Background Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis. Methology/Principal Findings We accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM), a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5%) with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21–66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001). Interfering with PARVB (encoding parvin, beta) function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process. Conclusions/Significance Our study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial roles in normal and pathological angiogenesis.
Collapse
Affiliation(s)
- Sophie Javerzat
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Mélanie Franco
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
- * E-mail:
| | - John Herbert
- Molecular Angiogenesis Group, Institute of Biomedical Research, University of Birmingham, Medical School, Birmingham, United Kingdom
| | - Natalia Platonova
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Anne-Lise Peille
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Véronique Pantesco
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - John De Vos
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Said Assou
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Roy Bicknell
- Molecular Angiogenesis Group, Institute of Biomedical Research, University of Birmingham, Medical School, Birmingham, United Kingdom
| | - Andreas Bikfalvi
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Martin Hagedorn
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
- * E-mail:
| |
Collapse
|
89
|
Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS, Nathans J. Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 2009; 139:285-98. [PMID: 19837032 DOI: 10.1016/j.cell.2009.07.047] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/11/2009] [Accepted: 07/30/2009] [Indexed: 02/02/2023]
Abstract
Disorders of vascular structure and function play a central role in a wide variety of CNS diseases. Mutations in the Frizzled-4 (Fz4) receptor, Lrp5 coreceptor, or Norrin ligand cause retinal hypovascularization, but the mechanisms by which Norrin/Fz4/Lrp signaling controls vascular development have not been defined. Using mouse genetic and cell culture models, we show that loss of Fz4 signaling in endothelial cells causes defective vascular growth, which leads to chronic but reversible silencing of retinal neurons. Loss of Fz4 in all endothelial cells disrupts the blood brain barrier in the cerebellum, whereas excessive Fz4 signaling disrupts embryonic angiogenesis. Sox17, a transcription factor that is upregulated by Norrin/Fz4/Lrp signaling, plays a central role in inducing the angiogenic program controlled by Norrin/Fz4/Lrp. These experiments establish a cellular basis for retinal hypovascularization diseases due to insufficient Frizzled signaling, and they suggest a broader role for Frizzled signaling in vascular growth, remodeling, maintenance, and disease.
Collapse
Affiliation(s)
- Xin Ye
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Liao WP, Uetzmann L, Burtscher I, Lickert H. Generation of a mouse line expressing Sox17-driven Cre recombinase with specific activity in arteries. Genesis 2009; 47:476-83. [PMID: 19415628 DOI: 10.1002/dvg.20520] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The HMG-box transcription factor Sox17 has been shown to play important roles in both endoderm formation and cardiovascular development. To conditionally inactivate genes in these domains, we have targeted a codon improved Cre Recombinase (iCre) into exon 1 of the Sox17 gene. Surprisingly, Cre-mediated recombination in the Rosa26 reporter mouse line revealed largely specific activity within the vasculature rather than in endoderm-derived tissues. Here we report a new Cre knock-in mouse line, Sox17(iCre) with activity in the vascular endothelial cells of arteries in the cardiovascular system but not in veins. Cre-mediated recombination was also strongly detected in the liver and spleen, the two organs associated with hematopoiesis. Thus, these results indicate that the Sox17(iCre) would be an appropriate tool for conditional mutagenesis of genes in the vasculature and could be used in studies of blood vessel development and angiogenesis. Additionally, we provide evidence that two different promoters drive Sox17 expression in the endodermal and vascular system.
Collapse
Affiliation(s)
- W Perry Liao
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, Germany
| | | | | | | |
Collapse
|
91
|
Ellertsdóttir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting HG. Vascular morphogenesis in the zebrafish embryo. Dev Biol 2009; 341:56-65. [PMID: 19895803 DOI: 10.1016/j.ydbio.2009.10.035] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/28/2009] [Accepted: 10/28/2009] [Indexed: 12/31/2022]
Abstract
During embryonic development, the vertebrate vasculature is undergoing vast growth and remodeling. Blood vessels can be formed by a wide spectrum of different morphogenetic mechanisms, such as budding, cord hollowing, cell hollowing, cell wrapping and intussusception. Here, we describe the vascular morphogenesis that occurs in the early zebrafish embryo. We discuss the diversity of morphogenetic mechanisms that contribute to vessel assembly, angiogenic sprouting and tube formation in different blood vessels and how some of these complex cell behaviors are regulated by molecular pathways.
Collapse
Affiliation(s)
- Elín Ellertsdóttir
- Department of Cell Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
92
|
Herbert SP, Huisken J, Kim TN, Feldman ME, Houseman BT, Wang RA, Shokat KM, Stainier DYR. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 2009; 326:294-8. [PMID: 19815777 PMCID: PMC2865998 DOI: 10.1126/science.1178577] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood vessels form de novo (vasculogenesis) or upon sprouting of capillaries from preexisting vessels (angiogenesis). With high-resolution imaging of zebrafish vascular development, we uncovered a third mode of blood vessel formation whereby the first embryonic artery and vein, two unconnected blood vessels, arise from a common precursor vessel. The first embryonic vein formed by selective sprouting of progenitor cells from the precursor vessel, followed by vessel segregation. These processes were regulated by the ligand EphrinB2 and its receptor EphB4, which are expressed in arterial-fated and venous-fated progenitors, respectively, and interact to orient the direction of progenitor migration. Thus, directional control of progenitor migration drives arterial-venous segregation and generation of separate parallel vessels from a single precursor vessel, a process essential for vascular development.
Collapse
Affiliation(s)
- Shane P Herbert
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Wong KS, Proulx K, Rost MS, Sumanas S. Identification of vasculature-specific genes by microarray analysis of Etsrp/Etv2 overexpressing zebrafish embryos. Dev Dyn 2009; 238:1836-50. [PMID: 19504456 DOI: 10.1002/dvdy.21990] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Signaling pathways controlling vasculogenesis, angiogenesis, and myelopoiesis are still poorly understood, in part because not all genes important for vasculature or myeloid cell formation have been characterized. To identify novel potential regulators of vasculature and myeloid cell formation we performed microarray analysis of zebrafish embryos that overexpress Ets1-related protein (Etsrp/Etv2/ER71), sufficient to induce vasculogenesis and myelopoiesis (Sumanas and Lin [2006] Development 121:3141-3150; Lee [2008] Cell Stem Cell 2:497-507; Sumanas et al. [2008] Blood 111:4500-4510). We performed sequence homology and expression analysis for up-regulated genes that were novel or previously unassociated with the zebrafish vasculature formation. Angiotensin II type 2 receptor (agtr2), src homology 2 domain containing E (she), mannose receptor C1 (mrc1), endothelial cell-specific adhesion molecule (esam), yes-related kinase (yrk/fyn), zinc finger protein, multitype 2b (zfpm2b/fog2b), and stabilin 2 (stab2) were specifically expressed in vascular endothelial cells during early development while keratin18 expression was localized to the myeloid cells. Identification of vasculature and myeloid-specific genes will be important for dissecting molecular mechanisms of vasculogenesis/angiogenesis and myelopoiesis.
Collapse
Affiliation(s)
- Kuan Shen Wong
- Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
94
|
Hosking B, François M, Wilhelm D, Orsenigo F, Caprini A, Svingen T, Tutt D, Davidson T, Browne C, Dejana E, Koopman P. Sox7 and Sox17 are strain-specific modifiers of the lymphangiogenic defects caused by Sox18 dysfunction in mice. Development 2009; 136:2385-91. [PMID: 19515696 DOI: 10.1242/dev.034827] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developmental defects caused by targeted gene inactivation in mice are commonly subject to strain-specific modifiers that modulate the severity of the phenotype. Although several genetic modifier loci have been mapped in mice, the gene(s) residing at these loci are mostly unidentified, and the molecular mechanisms of modifier action remain poorly understood. Mutations in Sox18 cause a variable phenotype in the human congenital syndrome hypotrichosis-lymphedema-telangiectasia, and the phenotype of Sox18-null mice varies from essentially normal to completely devoid of lymphatic vasculature and lethal, depending on the strain of the mice, suggesting a crucial role for strain-specific modifiers in this system. Here we show that two closely related Group F Sox factors, SOX7 and SOX17, are able to functionally substitute for SOX18 in vitro and in vivo. SOX7 and SOX17 are not normally expressed during lymphatic development, excluding a conventional redundancy mechanism. Instead, these genes are activated specifically in the absence of SOX18 function, and only in certain strains. Our studies identify Sox7 and Sox17 as modifiers of the Sox18 mutant phenotype, and reveal their mechanism of action as a novel mode of strain-specific compensatory upregulation.
Collapse
Affiliation(s)
- Brett Hosking
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Savage J, Conley AJ, Blais A, Skerjanc IS. SOX15 and SOX7 Differentially Regulate the Myogenic Program in P19 Cells. Stem Cells 2009; 27:1231-43. [DOI: 10.1002/stem.57] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
96
|
Downes M, François M, Ferguson C, Parton RG, Koopman P. Vascular defects in a mouse model of hypotrichosis-lymphedema-telangiectasia syndrome indicate a role for SOX18 in blood vessel maturation. Hum Mol Genet 2009; 18:2839-50. [PMID: 19429912 DOI: 10.1093/hmg/ddp219] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the transcription factor gene SOX18 cause vascular, lymphatic and hair follicle defects in humans with dominant and recessive forms of hypotrichosis-lymphedema-telangiectasia (HLT) syndrome. Here, we clarify the role of SOX18 in the vascular dysfunction in HLT by ultrastructural, immunofluorescence, molecular and functional analysis of vascular anomalies in embryos of the naturally occurring Sox18-mutant mouse strain ragged-opossum (Ra(Op)). Early genesis and patterning of vasculature was unimpaired in Ra(Op) embryos, but surface capillaries became enlarged from 12.5 dpc and embryos developed massive surface hemorrhage by 14.5 dpc. Large focal breaches in the endothelial barrier were observed, in addition to endothelial hyperplasia associated with impaired pericyte recruitment to the microvasculature. Expression of the genes encoding the endothelial factors MMP7, IL7R and N-cadherin was reduced in Ra(Op) embryos, suggesting that these are downstream targets of SOX18. Together, our results indicate that vascular anomalies in HLT arise from defects in regulation of genes required for the acquisition of structural integrity during microvascular maturation.
Collapse
Affiliation(s)
- Meredith Downes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
97
|
Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet 2009; 18:R65-74. [PMID: 19297403 DOI: 10.1093/hmg/ddp002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The localized structural abnormalities that arise during vasculogenesis, angiogenesis and lymphangiogenesis, the developmental processes which give rise to the adult vasculature, are collectively termed vascular anomalies. The last 2 years have seen an explosion of studies that underscore paradominant inheritance, the combination of inherited changes with somatic second-hits to the same genes, as underlying rare familial forms. Moreover, local, somatic genetic defects that cause some of the common sporadic forms of these malformations have been unraveled. This highlights the importance of assessing for tissue-based genetic changes, especially acquired genetic changes, as possible pathophysiological causes, which have been largely overlooked except in the area of cancer research. Large-scale somatic screens will therefore be essential in uncovering the nature and prevalence of such changes, and their downstream effects. The identification of disease genes combined with exhaustive, precise clinical delineations of the entire spectra of associated phenotypes guides better management and genetic counseling. Such a synthesis of information on functional and phenotypic effects will enable us to make and use animal models to test less invasive, targeted, perhaps locally administered, biological therapies.
Collapse
Affiliation(s)
- Nisha Limaye
- de Duve Institute, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
98
|
Abstract
The major arteries and veins of the vertebrate circulatory system are formed early in embryonic development, before the onset of circulation, following de novo aggregation of "angioblast" progenitors in a process called vasculogenesis. Initial embryonic determination of artery or vein identity is regulated by variety of genetic factors that work in concert to specify endothelial cell fate, giving rise to 2 distinct components of the circulatory loop possessing unique structural characteristics. Work in multiple in vivo animal model systems has led to a detailed examination of the interacting partners that determine arterial and venous specification. We discuss the hierarchical arrangement of many signaling molecules, including Hedgehog (Hh), vascular endothelial growth factor (VEGF), Notch, and chicken ovalbumin upstream-transcription factor II (COUP-TFII) that promote or inhibit divergent pathways of endothelial cell fate. Elucidation of the functional role of these genetic determinants of blood vessel specification together with the epigenetic factors involved in subsequent modification of arterial-venous identity will allow for potential new therapeutic targets for vascular disorders.
Collapse
Affiliation(s)
- Matthew R Swift
- Laboratory of Molecular Genetics, NICHD, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
99
|
De Val S, Black BL. Transcriptional control of endothelial cell development. Dev Cell 2009; 16:180-95. [PMID: 19217421 DOI: 10.1016/j.devcel.2009.01.014] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 12/14/2022]
Abstract
The transcription factors that regulate endothelial cell development have been a focus of active research for several years, and many players in the endothelial transcriptional program have been identified. This review discusses the function of several major regulators of endothelial transcription, including members of the Sox, Ets, Forkhead, GATA, and Kruppel-like families. This review also highlights recent developments aimed at unraveling the combinatorial mechanisms and transcription factor interactions that regulate endothelial cell specification and differentiation during vasculogenesis and angiogenesis.
Collapse
Affiliation(s)
- Sarah De Val
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, 94158, USA
| | | |
Collapse
|
100
|
Nelson TJ, Chiriac A, Faustino RS, Crespo-Diaz RJ, Behfar A, Terzic A. Lineage specification of Flk-1+ progenitors is associated with divergent Sox7 expression in cardiopoiesis. Differentiation 2008; 77:248-55. [PMID: 19272523 DOI: 10.1016/j.diff.2008.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 07/28/2008] [Accepted: 10/02/2008] [Indexed: 12/15/2022]
Abstract
Embryonic stem cell differentiation recapitulates the diverse phenotypes of a developing embryo, traceable according to markers of lineage specification. At gastrulation, the vascular endothelial growth factor (VEGF) receptor, Flk-1 (KDR), identifies a mesoderm-restricted potential of embryonic stem cells. The multi-lineage propensity of Flk-1(+) progenitors mandates the mapping of fate-modifying co-factors in order to stratify differentiating cytotypes and predict lineage competency. Here, Flk-1-based selection of early embryonic stem cell progeny separated a population depleted of pluripotent (Oct4, Sox2) and endoderm (Sox17) markers. The gene expression profile of the Flk-1(+) population was notable for a significant upregulation in the vasculogenic Sox7 transcription factor, which overlapped with the emergence of primordial cardiac transcription factors GATA-4, Myocardin and Nkx2.5. Sorting the parental Flk-1(+) pool with the chemokine receptor CXCR4 to enrich the cardiopoietic subpopulation uncovered divergent Sox7 expression, with a 7-fold induction in non-cardiac compared to cardiac progenitors. Bioinformatic resolution sequestered a framework of gene expression relationship between Sox transcription factor family members and the Flk-1/CXCR4 axes with significant integration of beta-catenin signaling. Thus, differential Sox7 gene expression presents a novel biomarker profile, and possible regulatory switch, to distinguish cardiovascular pedigrees within Flk-1(+) multi-lineage progenitors.
Collapse
Affiliation(s)
- Timothy J Nelson
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|