51
|
Zhu Z, Bai Y, Lu X, Ding J, Qi C. Rapamycin downregulates NKG2D ligands in acute myeloid leukemia cells via an activation of the STAT3 pathway: a potential mechanism for rapamycin-induced immune escape in leukemia. Transl Cancer Res 2019; 8:473-482. [PMID: 35116779 PMCID: PMC8798175 DOI: 10.21037/tcr.2019.03.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/25/2019] [Indexed: 11/06/2022]
Abstract
Background The constitutive activation of the mammalian target of rapamycin (mTOR) is involved in the pathogenesis of many cancers. Rapamycin (RAPA), a specific inhibitor of mTOR, has been applied to the clinical treatment of tumors, and its anti-leukemia effect has also been confirmed. Methods We detected apoptosis and the NKG2D ligands expression in acute myeloid leukemia (AML) cells using flow cytometry and investigated the cytotoxicity of AML cells that had been co-cultured with natural killer (NK) cells using CFSE staining. We evaluated the signal pathways with a western blot assay. Results In this study, we found that RAPA can significantly inhibit the proliferation of AML cells. Further studies showed that the use of RAPA alone reduced the expression of NKG2D ligands on the membranes of HL-60 and THP-1 AML cells. Also, RAPA blocked the upregulation of the NKG2D ligand when AML cells were cultured with the demethylation drug decitabine (DAC). We found that RAPA decreased the expression of the NKG2D ligands by inducing the STAT3 phosphorylation of AML cells. Conclusions The discovery of this mechanism might further optimize the clinical use of RAPA for the treatment of AML.
Collapse
Affiliation(s)
- Zhichao Zhu
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yu Bai
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Xuzhang Lu
- Department of Hematology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Jun Ding
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Chunjian Qi
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
52
|
Liu D, Xu L, Zhang X, Shi C, Qiao S, Ma Z, Yuan J. Snapshot: Implications for mTOR in Aging-related Ischemia/Reperfusion Injury. Aging Dis 2019; 10:116-133. [PMID: 30705773 PMCID: PMC6345330 DOI: 10.14336/ad.2018.0501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
Aging may aggravate the damage and dysfunction of different components of multiorgan and thus increasing multiorgan ischemia/reperfusion (IR) injury. IR injury occurs in many organs and tissues, which is a major cause of morbidity and mortality worldwide. The kinase mammalian target of rapamycin (mTOR), an atypical serine/threonine protein kinase, involves in the pathophysiological process of IR injury. In this review, we first briefly introduce the molecular features of mTOR, the association between mTOR and aging, and especially its role on autophagy. Special focus is placed on the roles of mTOR during ischemic and IR injury. We then clarify the association between mTOR and conditioning phenomena. Following this background, we expand our discussion to potential future directions of research in this area. Collectively, information reviewed herein will serve as a comprehensive reference for the actions of mTOR in IR injury and may be significant for the design of future research and increase the potential of mTOR as a therapeutic target.
Collapse
Affiliation(s)
- Dong Liu
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Liqun Xu
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,2Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China.,3Cadet group 3, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China.,4Laboratory Animal Center, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoyan Zhang
- 2Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China.,3Cadet group 3, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China
| | - Changhong Shi
- 4Laboratory Animal Center, The Fourth Military Medical University, Xi'an 710032, China
| | - Shubin Qiao
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zhiqiang Ma
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,2Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Jiansong Yuan
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
53
|
Gao K, Chen JX, Jia CX, Wang JP, Zhang FL, Pang XH, Wang WL, Xu PX. Study on the mechanism of qingre huoxue prescription in the intervention and treatment of acute myocardial infarction based on network pharmacology. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2019. [DOI: 10.4103/wjtcm.wjtcm_15_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
54
|
Yamamoto S, Mutoh T, Sasaki K, Mutoh T, Taki Y. Central action of rapamycin on early ischemic injury and related cardiac depression following experimental subarachnoid hemorrhage. Brain Res Bull 2018; 144:85-91. [PMID: 30481554 DOI: 10.1016/j.brainresbull.2018.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/23/2023]
Abstract
Early brain injury and related cardiac consequences play a key role in the devastating outcomes after subarachnoid hemorrhage (SAH). We reported that rapamycin exerts neuroprotection against cortical hypoxia early after SAH, but its mechanism is poorly understood. This in vivo study aimed to determine the potential role of the transcription factor STAT3 in the rapamycin-mediated neuroprotection in a mouse model of SAH. Forty C57BL/6 N mice were treated with an intracerebroventricular injection of rapamycin or vehicle (control) given after SAH induction by a filament perforation method, with or without STAT3 (Stattic) or ERK (PD98059) inhibitor pretreatment. Cerebral blood flow signals (%vascularity), brain tissue oxygen saturation (SbtO2), and cardiac output (CO) were analyzed using an ultrasound/photoacoustic imaging system. Clinically relevant neurocardiac depression was notable in severe SAH mice. Rapamycin improved %vascularity, SbtO2, and CO on day 1 after SAH onset. The beneficial effects of rapamycin on cerebral blood flow and oxygenation persisted until day 3, resulting in a significant reduction in post-SAH new cerebral infarctions and survival, as well as improved neurological functions, compared to the control group. All of the effects were attenuated by pretreatment with Stattic or PD98059. These data suggest that ERK and JAK/STAT3 pathways play an important role in the neurocardiac protection by rapamycin after SAH. We propose that rapamycin is a novel pharmacological strategy to target STAT3 activation, with a possible crosstalk through the ERK pathway, for the treatment of post-SAH early brain injury.
Collapse
Affiliation(s)
- Shuzo Yamamoto
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tatsushi Mutoh
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Kazumasu Sasaki
- Department of Preclinical Evaluation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tomoko Mutoh
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
55
|
The protective microRNA-199a-5p-mediated unfolded protein response in hypoxic cardiomyocytes is regulated by STAT3 pathway. J Physiol Biochem 2018; 75:73-81. [PMID: 30426460 DOI: 10.1007/s13105-018-0657-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
The protective effects of downregulated miR-199a-5p on ischemic and hypoxic cardiomyocytes were well recognized, but the underlying mechanism of inhibited miR-199a-5p is not yet clear. The present study explored the relationship between enhanced signal transducer and activator of transcription 3 (STAT3) signaling and lowered production of miR-199a-5p in hypoxic cardiomyocytes. This study firstly found the correlation between elevated interleukin (IL)-6 and IL-11, as well as subsequent STAT3 signaling activation and the downregulation of miR-199a-5p in hypoxic myocardial samples from children with congenital heart disease. Then, using model of hypoxic mice and the intervention of phosphorylated STAT3 (pSTAT3), it was observed that pSTAT3 affected the expression of miR-199a-5p and modulated the expression of its target genes, including endoplasmic reticulum stress (ERS)-related activating transcription factor 6 (ATF6) and 78 kDa glucose-regulated protein (GRP78). Further observation revealed that the pSTAT3 signal in cardiac tissue could affect the expression of pri-miR-199a-2, a precursor of miR-199a-5p. And the chromatin immunoprecipitation (ChIP) assay also confirmed that pSTAT3 could bind to the promoter region of miR-199a-2 gene, which is more significant under hypoxic conditions. In conclusion, the activation of STAT3 signaling in cardiomyocytes during chronic hypoxia leads to downregulation of miR-199a-5p, which promotes the expression of many downstream target genes. This is an important pathway in the adaptive protection mechanism of myocardium during hypoxia.
Collapse
|
56
|
Chen P, Shang A, Yang J, Wang W. microRNA‐874 inhibition targeting STAT3 protects the heart from ischemia–reperfusion injury by attenuating cardiomyocyte apoptosis in a mouse model. J Cell Physiol 2018; 234:6182-6193. [PMID: 30370578 DOI: 10.1002/jcp.27398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Pei‐Jun Chen
- Department of Anesthesiology The First Affiliated Hospital of Soochow University Suzhou China
- Department of Anesthesiology The Sixth People’s Hospital of Yancheng City Yancheng China
| | - An‐Quan Shang
- Department of Laboratory Medicine School of Medicine, Tongji Hospital of Tongji University Shanghai China
| | - Jian‐Ping Yang
- Department of Anesthesiology The First Affiliated Hospital of Soochow University Suzhou China
| | - Wei‐Wei Wang
- Department of Pathology The Sixth People’s Hospital of Yancheng City Yancheng China
| |
Collapse
|
57
|
Ghasemnejad-berenji M, Ghazi-Khansari M, Pashapour S, Jafari A, Yazdani I, Ghasemnejad-berenji H, Saeedi Saravi SS, Sadeghpour S, Nobakht M, Abdollahi A, mohajer Ansari J, Dehpour AR. Synergistic effect of rapamycin and metformin against germ cell apoptosis and oxidative stress after testicular torsion/detorsion-induced ischemia/reperfusion in rats. Biomed Pharmacother 2018; 105:645-651. [DOI: 10.1016/j.biopha.2018.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 01/09/2023] Open
|
58
|
Walters HE, Cox LS. mTORC Inhibitors as Broad-Spectrum Therapeutics for Age-Related Diseases. Int J Mol Sci 2018; 19:E2325. [PMID: 30096787 PMCID: PMC6121351 DOI: 10.3390/ijms19082325] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Chronological age represents the greatest risk factor for many life-threatening diseases, including neurodegeneration, cancer, and cardiovascular disease; ageing also increases susceptibility to infectious disease. Current efforts to tackle individual diseases may have little impact on the overall healthspan of older individuals, who would still be vulnerable to other age-related pathologies. However, recent progress in ageing research has highlighted the accumulation of senescent cells with chronological age as a probable underlying cause of pathological ageing. Cellular senescence is an essentially irreversible proliferation arrest mechanism that has important roles in development, wound healing, and preventing cancer, but it may limit tissue function and cause widespread inflammation with age. The serine/threonine kinase mTOR (mechanistic target of rapamycin) is a regulatory nexus that is heavily implicated in both ageing and senescence. Excitingly, a growing body of research has highlighted rapamycin and other mTOR inhibitors as promising treatments for a broad spectrum of age-related pathologies, including neurodegeneration, cancer, immunosenescence, osteoporosis, rheumatoid arthritis, age-related blindness, diabetic nephropathy, muscular dystrophy, and cardiovascular disease. In this review, we assess the use of mTOR inhibitors to treat age-related pathologies, discuss possible molecular mechanisms of action where evidence is available, and consider strategies to minimize undesirable side effects. We also emphasize the urgent need for reliable, non-invasive biomarkers of senescence and biological ageing to better monitor the efficacy of any healthy ageing therapy.
Collapse
Affiliation(s)
- Hannah E Walters
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
59
|
He Y, Li C, Ma Q, Chen S. Esculetin inhibits oxidative stress and apoptosis in H9c2 cardiomyocytes following hypoxia/reoxygenation injury. Biochem Biophys Res Commun 2018; 501:139-144. [DOI: 10.1016/j.bbrc.2018.04.195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
|
60
|
Li X, Zhu G, Gou X, He W, Yin H, Yang X, Li J. Negative feedback loop of autophagy and endoplasmic reticulum stress in rapamycin protection against renal ischemia-reperfusion injury during initial reperfusion phase. FASEB J 2018; 32:fj201800299R. [PMID: 29771603 DOI: 10.1096/fj.201800299r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Rapamycin, an immunosuppressant, is widely used in patients with kidney transplant. However, the therapeutic effects of rapamycin remain controversial. Additionally, previous studies have revealed deleterious effects of rapamycin predominantly when administered for ≥24 h. Few studies, however, have focused on the short-term effects of rapamycin administered only during the initial reperfusion phase. As such, we designed this study to explore the potential effects and mechanisms of rapamycin under a specific therapeutic regimen in which rapamycin is mixed in the perfusate during the initial reperfusion phase (within 24 h). Interestingly, we found that rapamycin maintained renal function and attenuated ischemia-reperfusion (I/R)-induced apoptosis in vivo and in vitro during the initial reperfusion phase, especially at 8 h after reperfusion. Simultaneously, rapamycin activated autophagy and inhibited endoplasmic reticulum (ER) stress and 3 pathways of unfolding protein response: ATF6, PERK, and IRE1α. Interestingly, we further found that the protective effects of rapamycin were suppressed when autophagy was inhibited by chloroquine and 3-methyladenine or when ER stress was induced by thapsigargin. Moreover, in terms of the regulatory effects of rapamycin, a negative-feedback loop between autophagy and ER stress occurred, with autophagy inhibiting ER stress and increased ER stress promoting autophagy during the initial reperfusion phase of renal I/R injury. Our study provides evidence that immediate reperfusion with rapamycin during the initial reperfusion phase repairs renal function and reduces apoptosis via activating autophagy, which could further inhibit ER stress. These results suggest a novel treatment modality for application during the initial reperfusion phase of renal I/R injury caused by kidney transplantation.-Li, X., Zhu, G., Gou, X., He, W., Yin, H., Yang, X., Li, J. Negative feedback loop of autophagy and endoplasmic reticulum stress in rapamycin protection against renal ischemia-reperfusion injury during initial reperfusion phase.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Gongmin Zhu
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xin Gou
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Weiyang He
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Hubin Yin
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xiaoyu Yang
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Jie Li
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| |
Collapse
|
61
|
Xanthohumol protects against renal ischaemia reperfusion (I/R) injury by scavenging ROS and inhibition of JAK-2/STAT-3 inflammatory pathway. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2016.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
62
|
Wu J, Yang Y, Xun N, Zeng L, Li Z, Yang W, Liang Y, Ma Z, Tang H. Osthole attenuates myocardial ischemia/reperfusion injury in rats by inhibiting apoptosis and inflammation. Am J Transl Res 2018; 10:1109-1116. [PMID: 29736204 PMCID: PMC5934570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
This study was performed to evaluate the cardioprotective effects of osthole (OST) in a rat model of myocardial ischemia/reperfusion injury (MI/RI) and the underlying mechanism. We exposed rat hearts to left anterior descending coronary artery ligation for 30 min followed by 24 h of reperfusion. The results showed that pretreatment with OST ameliorated MI/RI as evidenced by histopathological examination. Moreover, the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay demonstrated that OST suppressed myocardial apoptosis, which may be related to an increase in the Bcl-2/Bax ratio and inhibition of caspase-3 and caspase-9 activation. Furthermore, we determined that OST ameliorated impaired mitochondrial morphology and the oxidation system; OST also attenuated levels of pro-inflammatory cytokines, including tumor necrosis factor α and interleukins 6 and 1β. In conclusion, OST exerted a strong favorable cardioprotective effect on MI/RI, possibly by suppressing the inflammatory response and inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Jingguo Wu
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, People’s Republic of China
| | - Yang Yang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, People’s Republic of China
| | - Nan Xun
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, People’s Republic of China
| | - Lijin Zeng
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, People’s Republic of China
| | - Zhenyu Li
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, People’s Republic of China
| | - Wen Yang
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, People’s Republic of China
| | - Yanbing Liang
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, People’s Republic of China
| | - Zhongfu Ma
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, People’s Republic of China
| | - Hao Tang
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, People’s Republic of China
| |
Collapse
|
63
|
Ma L, Ma X, Kong F, Guo J, Shi H, Zhu J, Zou Y, Ge J. Mammalian target of rapamycin inhibition attenuates myocardial ischaemia-reperfusion injury in hypertrophic heart. J Cell Mol Med 2018; 22:1708-1719. [PMID: 29314656 PMCID: PMC5824378 DOI: 10.1111/jcmm.13451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Pathological cardiac hypertrophy aggravated myocardial infarction and is causally related to autophagy dysfunction and increased oxidative stress. Rapamycin is an inhibitor of serine/threonine kinase mammalian target of rapamycin (mTOR) involved in the regulation of autophagy as well as oxidative/nitrative stress. Here, we demonstrated that rapamycin ameliorates myocardial ischaemia reperfusion injury by rescuing the defective cytoprotective mechanisms in hypertrophic heart. Our results showed that chronic rapamycin treatment markedly reduced the phosphorylated mTOR and ribosomal protein S6 expression, but not Akt in both normal and aortic-banded mice. Moreover, chronic rapamycin treatment significantly mitigated TAC-induced autophagy dysfunction demonstrated by prompted Beclin-1 activation, elevated LC3-II/LC3-I ratio and increased autophagosome abundance. Most importantly, we found that MI/R-induced myocardial injury was markedly reduced by rapamycin treatment manifested by the inhibition of myocardial apoptosis, the reduction of myocardial infarct size and the improvement of cardiac function in hypertrophic heart. Mechanically, rapamycin reduced the MI/R-induced iNOS/gp91phox protein expression and decreased the generation of NO and superoxide, as well as the cytotoxic peroxynitrite. Moreover, rapamycin significantly mitigated MI/R-induced endoplasmic reticulum stress and mitochondrial impairment demonstrated by reduced Caspase-12 activity, inhibited CHOP activation, decreased cytoplasmic Cyto-C release and preserved intact mitochondria. In addition, inhibition of mTOR also enhanced the phosphorylated ERK and eNOS, and inactivated GSK3β, a pivotal downstream target of Akt and ERK signallings. Taken together, these results suggest that mTOR signalling protects against MI/R injury through autophagy induction and ERK-mediated antioxidative and anti-nitrative stress in mice with hypertrophic myocardium.
Collapse
Affiliation(s)
- Lei‐Lei Ma
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
- Department of Critical Care MedicineZhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Xin Ma
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Fei‐Juan Kong
- Department of Endocrinology and MetabolismShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun‐Jie Guo
- Department of CardiologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Hong‐Tao Shi
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Jian‐Bing Zhu
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Yun‐Zeng Zou
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Jun‐Bo Ge
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
| |
Collapse
|
64
|
Hypertrophied myocardium is vulnerable to ischemia/reperfusion injury and refractory to rapamycin-induced protection due to increased oxidative/nitrative stress. Clin Sci (Lond) 2018; 132:93-110. [PMID: 29175946 DOI: 10.1042/cs20171471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022]
Abstract
Left ventricular hypertrophy (LVH) is causally related to increased morbidity and mortality following acute myocardial infarction (AMI) via still unknown mechanisms. Although rapamycin exerts cardioprotective effects against myocardial ischemia/reperfusion (MI/R) injury in normal animals, whether rapamycin-elicited cardioprotection is altered in the presence of LVH has yet to be determined. Pressure overload induced cardiac hypertrophied mice and sham-operated controls were exposed to AMI by coronary artery ligation, and treated with vehicle or rapamycin 10 min before reperfusion. Rapamycin produced marked cardioprotection in normal control mice, whereas pressure overload induced cardiac hypertrophied mice manifested enhanced myocardial injury, and was refractory to rapamycin-elicited cardioprotection evidenced by augmented infarct size, aggravated cardiomyocyte apoptosis, and worsening cardiac function. Rapamycin alleviated MI/R injury via ERK-dependent antioxidative pathways in normal mice, whereas cardiac hypertrophied mice manifested markedly exacerbated oxidative/nitrative stress after MI/R evidenced by the increased iNOS/gp91phox expression, superoxide production, total NO metabolites, and nitrotyrosine content. Moreover, scavenging superoxide or peroxynitrite by selective gp91phox assembly inhibitor gp91ds-tat or ONOO- scavenger EUK134 markedly ameliorated MI/R injury, as shown by reduced myocardial oxidative/nitrative stress, alleviated myocardial infarction, hindered cardiomyocyte apoptosis, and improved cardiac function in aortic-banded mice. However, no additional cardioprotective effects were achieved when we combined rapamycin and gp91ds-tat or EUK134 in ischemic/reperfused hearts with or without LVH. These results suggest that cardiac hypertrophy attenuated rapamycin-induced cardioprotection by increasing oxidative/nitrative stress and scavenging superoxide/peroxynitrite protects the hypertrophied heart from MI/R.
Collapse
|
65
|
Samidurai A, Salloum FN, Durrant D, Chernova OB, Kukreja RC, Das A. Chronic treatment with novel nanoformulated micelles of rapamycin, Rapatar, protects diabetic heart against ischaemia/reperfusion injury. Br J Pharmacol 2017; 174:4771-4784. [PMID: 28967097 PMCID: PMC5727242 DOI: 10.1111/bph.14059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/17/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Enhanced mammalian target of rapamycin (mTOR) signalling contributes to the pathogenesis of diabetes and plays a critical role in myocardial ischaemia/reperfusion (I/R) injury. Rapatar is a novel nanoformulated micellar of rapamycin, a putative inhibitor of mTOR that has been rationally designed to increase water solubility of rapamycin to facilitate p.o. administration and enhance bioavailability. We examined the effect of Rapatar on the metabolic status and protection against myocardial I/R injury in type 2 diabetic mice. EXPERIMENTAL APPROACH Adult male db/db mice were treated daily for 10 weeks with Rapatar (0.75 mg·kg-1 ·day-1 , p.o.) or vehicle. Isolated hearts were connected to a Langendorff perfusion system and subjected to global ischaemia (30 min) and reperfusion (1 h). KEY RESULTS Rapatar reduced fasting plasma glucose and triglyceride levels, prevented the gain in body weight and also improved glucose tolerance and insulin sensitivity in db/db mice compared with control. Cardiac function was improved following Rapatar treatment in db/db mice. Myocardial infarct size was reduced in Rapatar-treated mice with improved post-ischaemic rate-force product. Western blot analyses demonstrated a significant inhibition of phosphorylation of ribosomal protein S6 (downstream target of mTORC1), but not Akt (Ser473 , target of mTORC2) following chronic treatment with Rapatar. Rapatar also induced phosphorylation of AMPK, STAT3, ERK1/2 and glycogen synthase kinase 3β, without interfering with phosphorylation of p38. CONCLUSION AND IMPLICATIONS Our studies indicate that chronic treatment with Rapatar improves metabolic status and cardiac function with a reduction of infarct size following myocardial I/R injury in diabetic mice.
Collapse
Affiliation(s)
- Arun Samidurai
- Pauley Heart Center, Division of CardiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Fadi N Salloum
- Pauley Heart Center, Division of CardiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - David Durrant
- Pauley Heart Center, Division of CardiologyVirginia Commonwealth UniversityRichmondVAUSA
| | | | - Rakesh C Kukreja
- Pauley Heart Center, Division of CardiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Anindita Das
- Pauley Heart Center, Division of CardiologyVirginia Commonwealth UniversityRichmondVAUSA
| |
Collapse
|
66
|
Chen GH, Xu CS, Zhang J, Li Q, Cui HH, Li XD, Chang LP, Tang RJ, Xu JY, Tian XQ, Huang PS, Xu J, Jin C, Yang YJ. Inhibition of miR-128-3p by Tongxinluo Protects Human Cardiomyocytes from Ischemia/reperfusion Injury via Upregulation of p70s6k1/p-p70s6k1. Front Pharmacol 2017; 8:775. [PMID: 29163161 PMCID: PMC5670141 DOI: 10.3389/fphar.2017.00775] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
Background and Aims: Tongxinluo (TXL) is a multifunctional traditional Chinese medicine that has been widely used to treat cardiovascular and cerebrovascular diseases. However, no studies have explored whether TXL can protect human cardiomyocytes (HCMs) from ischemia/reperfusion (I/R) injury. Reperfusion Injury Salvage Kinase (RISK) pathway activation was previously demonstrated to protect the hearts against I/R injury and it is generally activated via Akt or (and) Erk 1/2, and their common downstream protein, ribosomal protein S6 kinase (p70s6k). In addition, prior studies proved that TXL treatment of cells promoted secretion of VEGF, which could be stimulated by the increased phosphorylation of one p70s6k subtype, p70s6k1. Consequently, we hypothesized TXL could protect HCMs from I/R injury by activating p70s6k1 and investigated the underlying mechanism. Methods and Results: HCMs were exposed to hypoxia (18 h) and reoxygenation (2 h) (H/R), with or without TXL pretreatment. H/R reduced mitochondrial membrane potential, increased bax/bcl-2 ratios and cytochrome C levels and induced HCM apoptosis. TXL preconditioning reversed these H/R-induced changes in a dose-dependent manner and was most effective at 400 μg/mL. The anti-apoptotic effect of TXL was abrogated by rapamycin, an inhibitor of p70s6k. However, inhibitors of Erk1/2 (U0126) or Akt (LY294002) failed to inhibit the protective effect of TXL. TXL increased p70s6k1 expression and, thus, enhanced its phosphorylation. Furthermore, transfection of cardiomyocytes with siRNA to p70s6k1 abolished the protective effects of TXL. Among the micro-RNAs (miR-145-5p, miR-128-3p and miR-497-5p) previously reported to target p70s6k1, TXL downregulated miR-128-3p in HCMs during H/R, but had no effects on miR-145-5p and miR-497-5p. An in vivo study confirmed the role of the p70s6k1 pathway in the infarct-sparing effect of TXL, demonstrating that TXL decreased miR-128-3p levels in the rat myocardium during I/R. Transfection of HCMs with a hsa-miR-128-3p mimic eliminated the protective effects of TXL. Conclusions: The miR-128-3p/p70s6k1 signaling pathway is involved in protection by TXL against HCM apoptosis during H/R. Overexpression of p70s6k1 is, therefore, a potential new strategy for alleviating myocardial reperfusion injury.
Collapse
Affiliation(s)
- Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuan-Sheng Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qing Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He-He Cui
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiang-Dong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ping Chang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Rui-Jie Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia-Qiu Tian
- Department of Surgical Intensive Care Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Pei-Sen Huang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
67
|
Suhara T, Baba Y, Shimada BK, Higa JK, Matsui T. The mTOR Signaling Pathway in Myocardial Dysfunction in Type 2 Diabetes Mellitus. Curr Diab Rep 2017; 17:38. [PMID: 28434143 PMCID: PMC8219468 DOI: 10.1007/s11892-017-0865-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW T2DM (type 2 diabetes mellitus) is a risk factor for heart failure. The mTOR (mechanistic target of rapamycin) is a key mediator of the insulin signaling pathway. We will discuss the role of mTOR in myocardial dysfunction in T2DM. RECENT FINDINGS In T2DM, chronically activated mTOR induces multiple pathological events, including a negative feedback loop that suppresses IRS (insulin receptor substrate)-1. While short-term treatment with rapamycin, an mTOR inhibitor, is a promising strategy for cardiac diseases such as acute myocardial infarction and cardiac hypertrophy in T2DM, there are many concerns about chronic usage of rapamycin. Two mTOR complexes, mTORC1 and mTORC2, affect many molecules and processes via distinct signaling pathways that regulate cardiomyocyte function and survival. Understanding mechanisms underlying mTOR-mediated pathophysiological features in the heart is essential for developing effective therapies for cardiac diseases in the context of T2DM.
Collapse
Affiliation(s)
- Tomohiro Suhara
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St., BSB no. 110, Honolulu, HI, 96813, USA
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuichi Baba
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St., BSB no. 110, Honolulu, HI, 96813, USA
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Briana K Shimada
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St., BSB no. 110, Honolulu, HI, 96813, USA
| | - Jason K Higa
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St., BSB no. 110, Honolulu, HI, 96813, USA
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St., BSB no. 110, Honolulu, HI, 96813, USA.
| |
Collapse
|
68
|
Wang J, Maimaitili Y, Zheng H, Yu J, Guo H, Ma HP, Chen CL. The influence of rapamycin on the early cardioprotective effect of hypoxic preconditioning on cardiomyocytes. Arch Med Sci 2017; 13:947-955. [PMID: 28721162 PMCID: PMC5507107 DOI: 10.5114/aoms.2016.59712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The purpose of this study was to examine the effects of rapamycin on the cardioprotective effect of hypoxic preconditioning (HPC) and on the mammalian target of rapamycin (mTOR)-mediated hypoxia-inducible factor 1 (HIF-1) signaling pathway. MATERIAL AND METHODS Primary cardiomyocytes were isolated from rat pups and underwent rapamycin and/or HPC, followed by hypoxia/re-oxygenation (H/R) injury. Cell viability and cell injury were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and qRT-PCR was used to measure HIF-1α and mTOR mRNA expression. A Langendorff heart perfusion model was conducted to observe the effect of rapamycin. RESULTS Rapamycin treatment nearly abolished the cardioprotective effect of HPC in cardiomyocytes, reduced cell viability (p = 0.007) and increased cell damage (p = 0.032). HIF-1α and mTOR mRNA expression increased in cardiomyocytes undergoing I/R injury within 2 h after HPC. After rapamycin treatment, mTOR mRNA expression and HPC-induced HIF-1α mRNA expression were both reduced (p < 0.001). A Langendorff heart perfusion model in rat hearts showed that rapamycin greatly attenuated the cardioprotective effect of HPC in terms of heart rate, LVDP, and dp/dtmax (all, p < 0.029). CONCLUSIONS Rapamycin, through inhibition of mTOR, reduces the elevated HIF-1α expression at an early stage of HPC, and attenuates the early cardioprotective effect of HPC.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - YiLiyaer Maimaitili
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hong Zheng
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin Yu
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hai Guo
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hai-Ping Ma
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chun-Ling Chen
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
69
|
Wang Y, Cui L, Xu H, Liu S, Zhu F, Yan F, Shen S, Zhu M. TRPV1 agonism inhibits endothelial cell inflammation via activation of eNOS/NO pathway. Atherosclerosis 2017; 260:13-19. [DOI: 10.1016/j.atherosclerosis.2017.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/05/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022]
|
70
|
Kaur A, Sharma S. Mammalian target of rapamycin (mTOR) as a potential therapeutic target in various diseases. Inflammopharmacology 2017; 25:293-312. [PMID: 28417246 DOI: 10.1007/s10787-017-0336-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/28/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that belongs to Phosphatidylinositol-3-kinase related kinase superfamily. The signaling pathways of mTOR are integrated through the protein complexes of mTORC1 and mTORC2. mTORC1 controls protein synthesis, cell growth, proliferation, autophagy, cell metabolism, and stress responses, whereas mTORC2 seems to regulate cell survival and polarity. Dysregulation of the mTOR pathway has been implicated in the pathophysiology of a number of disease conditions, including cancer, cardiovascular, neurodegenerative, and various renal diseases. The hyperactivation of the mTOR pathway leads to increase in cell growth and proliferation and also has been documented to stimulate tumor growth. Therefore, investigation of the involvement of mTOR and its downstream pathways in various diseases intensively preoccupied scientific community. The present review is focussed on recent advances in the understanding of the mTOR signaling pathway and its role in health and various diseases.
Collapse
Affiliation(s)
- Avileen Kaur
- Cardiovascular Division, Department of Pharmacology, I. S. F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Saurabh Sharma
- Cardiovascular Division, Department of Pharmacology, I. S. F. College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
71
|
Wu J, Yu J, Xie P, Maimaitili Y, Wang J, Yang L, Ma H, Zhang X, Yang Y, Zheng H. Sevoflurane postconditioning protects the myocardium against ischemia/reperfusion injury via activation of the JAK2-STAT3 pathway. PeerJ 2017; 5:e3196. [PMID: 28392989 PMCID: PMC5382923 DOI: 10.7717/peerj.3196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/17/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sevoflurane postconditioning (S-post) has similar cardioprotective effects as ischemic preconditioning. However, the underlying mechanism of S-post has not been fully elucidated. Janus kinase signaling transduction/transcription activator (JAK2-STAT3) plays an important role in cardioprotection. The purpose of this study was to determine whether the cardioprotective effects of S-post are associated with activation of the JAK2-STAT3 signal pathway. METHODS An adult male Sprague-Dawley (SD) rat model of myocardial ischemia/reperfusion (I/R) injury was established using the Langendorff isolated heart perfusion apparatus. At the beginning of reperfusion, 2.4% sevoflurane alone or in combination with AG490 (a JAK2 selective inhibitor) was used as a postconditioning treatment. The cardiac function indicators, myocardial infarct size, lactic dehydrogenase (LDH) release, mitochondrial ultrastructure, mitochondrial reactive oxygen species (ROS) generation rates, ATP content, protein expression of p-JAK, p-STAT3, Bcl-2 and Bax were measured. RESULTS Compared with the I/R group, S-post significantly increased the expression of p-JAK, p-STAT3 and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the myocardial infarction areas, improved the cardiac function indicators and the mitochondrial ultrastructure, decreased the mitochondrial ROS and increased the ATP content. However, the cardioprotective effects of S-post were abolished by treatment with a JAK2 selective inhibitor (p < 0.05). CONCLUSION This study demonstrates that the cardioprotective effects of S-post are associated with the activation of JAK2-STAT3. The mechanism may be related to an increased expression of p-JAK2 and p-STAT3 after S-post, which reduced mitochondrial ROS generation and increased mitochondrial ATP content, thereby reducing apoptosis and myocardial infarct size.
Collapse
Affiliation(s)
- Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Jin Yu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Peng Xie
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Yiliyaer Maimaitili
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Long Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Haiping Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Xing Zhang
- Department of Aerospace Medicine, Fourth Military Medical University , Xi'an, Shanxi , China
| | - Yining Yang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| |
Collapse
|
72
|
Reperfusion Therapy with Rapamycin Attenuates Myocardial Infarction through Activation of AKT and ERK. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4619720. [PMID: 28373901 PMCID: PMC5360974 DOI: 10.1155/2017/4619720] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/14/2017] [Indexed: 01/04/2023]
Abstract
Prompt coronary reperfusion is the gold standard for minimizing injury following acute myocardial infarction. Rapamycin, mammalian target of Rapamycin (mTOR) inhibitor, exerts preconditioning-like cardioprotective effects against ischemia/reperfusion (I/R) injury. We hypothesized that Rapamycin, given at the onset of reperfusion, reduces myocardial infarct size through modulation of mTOR complexes. Adult C57 male mice were subjected to 30 min of myocardial ischemia followed by reperfusion for 1 hour/24 hours. Rapamycin (0.25 mg/kg) or DMSO (7.5%) was injected intracardially at the onset of reperfusion. Post-I/R survival (87%) and cardiac function (fractional shortening, FS: 28.63 ± 3.01%) were improved in Rapamycin-treated mice compared to DMSO (survival: 63%, FS: 17.4 ± 2.6%). Rapamycin caused significant reduction in myocardial infarct size (IS: 26.2 ± 2.2%) and apoptosis (2.87 ± 0.64%) as compared to DMSO-treated mice (IS: 47.0 ± 2.3%; apoptosis: 7.39 ± 0.81%). Rapamycin induced phosphorylation of AKT S473 (target of mTORC2) but abolished ribosomal protein S6 phosphorylation (target of mTORC1) after I/R. Rapamycin induced phosphorylation of ERK1/2 but inhibited p38 phosphorylation. Infarct-limiting effect of Rapamycin was abolished with ERK inhibitor, PD98059. Rapamycin also attenuated Bax and increased Bcl-2/Bax ratio. These results suggest that reperfusion therapy with Rapamycin protects the heart against I/R injury by selective activation of mTORC2 and ERK with concurrent inhibition of mTORC1 and p38.
Collapse
|
73
|
Hashemzaei M, Entezari Heravi R, Rezaee R, Roohbakhsh A, Karimi G. Regulation of autophagy by some natural products as a potential therapeutic strategy for cardiovascular disorders. Eur J Pharmacol 2017; 802:44-51. [PMID: 28238768 DOI: 10.1016/j.ejphar.2017.02.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/09/2023]
Abstract
Autophagy is a lysosomal degradation process through which long-lived and misfolded proteins and organelles are sequestered, degraded by lysosomes, and recycled. Autophagy is an essential part of cardiomyocyte homeostasis and increases the survival of cells following cellular stress and starvation. Recent studies made clear that dysregulation of autophagy in the cardiovascular system leads to heart hypertrophy and failure. In this manner, autophagy seems to be an attractive target in the new treatment of cardiovascular diseases. Although limited activation of autophagy is generally considered to be cardioprotective, excessive autophagy leads to cell death and cardiac atrophy. Natural products such as resveratrol, berberine, and curcumin that are present in our diet, can trigger autophagy via canonical (Beclin-1-dependent) and non-canonical (Beclin-1-independent) pathways. The autophagy-modifying capacity of these compounds should be taken into consideration for designing novel therapeutic agents. This review focuses on the role of autophagy in the cardioprotective effects of these compounds.
Collapse
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Reza Entezari Heravi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ramin Rezaee
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
74
|
Insights for Oxidative Stress and mTOR Signaling in Myocardial Ischemia/Reperfusion Injury under Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6437467. [PMID: 28298952 PMCID: PMC5337354 DOI: 10.1155/2017/6437467] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus (DM) displays a high morbidity. The diabetic heart is susceptible to myocardial ischemia/reperfusion (MI/R) injury. Impaired activation of prosurvival pathways, endoplasmic reticulum (ER) stress, increased basal oxidative state, and decreased antioxidant defense and autophagy may render diabetic hearts more vulnerable to MI/R injury. Oxidative stress and mTOR signaling crucially regulate cardiometabolism, affecting MI/R injury under diabetes. Producing reactive oxygen species (ROS) and reactive nitrogen species (RNS), uncoupling nitric oxide synthase (NOS), and disturbing the mitochondrial quality control may be three major mechanisms of oxidative stress. mTOR signaling presents both cardioprotective and cardiotoxic effects on the diabetic heart, which interplays with oxidative stress directly or indirectly. Antihyperglycemic agent metformin and newly found free radicals scavengers, Sirt1 and CTRP9, may serve as promising pharmacological therapeutic targets. In this review, we will focus on the role of oxidative stress and mTOR signaling in the pathophysiology of MI/R injury in diabetes and discuss potential mechanisms and their interactions in an effort to provide some evidence for cardiometabolic targeted therapies for ischemic heart disease (IHD).
Collapse
|
75
|
Propofol postconditioning attenuates hippocampus ischemia-reperfusion injury via modulating JAK2/STAT3 pathway in rats after autogenous orthotropic liver transplantation. Brain Res 2017; 1657:202-207. [DOI: 10.1016/j.brainres.2016.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 09/29/2016] [Accepted: 12/15/2016] [Indexed: 11/21/2022]
|
76
|
Wang H, Li YY, Qiu LY, Yan YF, Liao ZP, Chen HP. Involvement of DJ‑1 in ischemic preconditioning‑induced delayed cardioprotection in vivo. Mol Med Rep 2016; 15:995-1001. [PMID: 28035392 DOI: 10.3892/mmr.2016.6091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/01/2016] [Indexed: 11/06/2022] Open
Abstract
DJ‑1 protein, as a multifunctional intracellular protein, has been demonstrated to serve a critical role in regulating cell survival and oxidative stress. To provide in vivo evidence that DJ‑1 is involved in the delayed cardioprotection induced by ischemic preconditioning (IPC) against oxidative stress caused by ischemia/reperfusion (I/R), the present study subjected male Sprague‑Dawley rats to IPC (3 cycles of 5‑min coronary occlusion/5‑min reperfusion) 24 h prior to I/R (30‑min coronary occlusion/120‑min reperfusion). A lentiviral vector containing short hairpin RNA was injected into the left ventricle three weeks prior to IPC, to knockdown DJ‑1 in situ. Lactate dehydrogenase (LDH) and creatine kinase‑MB (CK‑MB) release, infarct size, cardiac function, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities, malondialdehyde (MDA), intracellular reactive oxygen species (ROS), and DJ‑1 protein expression levels were assessed. IPC caused a significant increase in the expression levels of DJ‑1 protein. In addition, IPC reduced LDH and CK‑MB release, attenuated myocardial infarct size, improved cardiac function following I/R, and inhibited the elevation of ROS and MDA and the decrease in activities of the antioxidant enzymes SOD, CAT and GPx. However, in situ knockdown of DJ‑1 attenuated the IPC‑induced delayed cardioprotection, and reversed the inhibitory effect of IPC on I/R‑induced oxidative stress. The present study therefore provided novel evidence that DJ‑1 is involved in the delayed cardioprotection of IPC against I/R injury in vivo. Notably, DJ‑1 is required for IPC to inhibit I/R‑induced oxidative stress.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuan-Yuan Li
- Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling-Yu Qiu
- Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu-Feng Yan
- Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhang-Ping Liao
- Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - He-Ping Chen
- Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
77
|
Unacylated ghrelin analog prevents myocardial reperfusion injury independently of permeability transition pore. Basic Res Cardiol 2016; 112:4. [PMID: 27995363 DOI: 10.1007/s00395-016-0595-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
Reperfusion injury is responsible for an important part of myocardial infarct establishment due notably to triggering cardiomyocytes death at the first minutes of reperfusion. AZP-531 is an optimized analog of unacylated ghrelin currently in clinical development in several metabolic diseases. We investigated a potential cardioprotective effect of AZP-531 in ischemia/reperfusion (IR) and the molecular underlying mechanism(s) involved in this protection. In vivo postconditioning with AZP-531 in C57BL6 mouse IR model decreased infarct size. Western blot analysis on areas at risk from the different mouse groups showed that AZP-531 activates Akt, ERK1-2 as well as S6 and 4EBP1, mTORC1 effectors. We also showed an inhibition of caspase 3 cleavage and Bax translocation to the mitochondria. AZP-531 also stimulated the expression of antioxidants and was capable of decreasing mitochondrial H2O2 production, contributing to the reduction of ROS accumulation. AZP-531 exhibits cardioprotective effect when administrated for postconditioning in C57BL6 mouse IR model. Treatment with AZP-531 rescued the myocardium from cell death at early reperfusion by stimulating protein synthesis, inhibiting Bax/caspase 3-induced apoptosis as well as ROS accumulation and oxidative stress-induced necrosis. AZP-531 may prove useful in the treatment of IR injury.
Collapse
|
78
|
Parry TL, Willis MS. Cardiac ubiquitin ligases: Their role in cardiac metabolism, autophagy, cardioprotection and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2259-2269. [PMID: 27421947 PMCID: PMC5159290 DOI: 10.1016/j.bbadis.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Both the ubiquitin-proteasome system (UPS) and the lysosomal autophagy system have emerged as complementary key players responsible for the turnover of cellular proteins. The regulation of protein turnover is critical to cardiomyocytes as post-mitotic cells with very limited regenerative capacity. In this focused review, we describe the emerging interface between the UPS and autophagy, with E3's regulating autophagy at two critical points through multiple mechanisms. Moreover, we discuss recent insights in how both the UPS and autophagy can alter metabolism at various levels, to present new ways to think about therapeutically regulating autophagy in a focused manner to optimize disease-specific cardioprotection, without harming the overall homeostasis of protein quality control. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
79
|
Zhang Y, He S, Du X, Jiang Y, Tian B, Xu S. Rapamycin suppresses hypoxia/reoxygenation-induced islet injury by up-regulation of miR-21 via PI3K/Akt signalling pathway. Cell Prolif 2016; 50. [PMID: 27683229 DOI: 10.1111/cpr.12306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/01/2016] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Increasing evidences indicate that microRNAs may play a critical role in the regulation of hypoxia/reoxygenation (H/R) injury, and their expression is associated with mTORC activity. We propose that rapamycin modulates H/R-induced islets injury by regulating microRNA expression. MATERIALS AND METHODS We investigated whether rapamycin treatment could alter the expression profile of miRNAs in islets. Furthermore, we assessed the islet apoptosis and function after H/R or syngeneic islet transplantation. RESULTS We found that rapamycin treatment significantly decreased H/R-induced islet apoptosis, and improved islet function in vivo and in vitro, and that miR-21 gene transcription is controlled by rapamycin. When the PI3k/Akt signalling pathways was blocked by wortmannin, the up-regulative effects of rapamycin on miR-21 expression were inhibited in vitro. Furthermore, our study clearly demonstrates that miR-21 is essential for the rapamycin-mediated protection islets against H/R injury. DISCUSSION Our findings indicate that up-regulation of miR-21 function in islets by treatment with rapamycin or overexpression of the miR-21 could represent a potential new therapy for the treatment of H/R injury. CONCLUSION The results of this study clearly suggest that rapamycin exerts its inhibitory effects on islets H/R injury by inducing miR-21 expression via PI3K/Akt.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Sirong He
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaojion Du
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yaowen Jiang
- Department of Emergency, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bole Tian
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Xu
- Department of Emergency, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
80
|
Scutellarin protects cardiomyocyte ischemia–reperfusion injury by reducing apoptosis and oxidative stress. Life Sci 2016; 157:200-207. [DOI: 10.1016/j.lfs.2016.01.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/10/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
|
81
|
Saeedi Saravi SS, Ghazi-Khansari M, Ejtemaei Mehr S, Nobakht M, Mousavi SE, Dehpour AR. Contribution of mammalian target of rapamycin in the pathophysiology of cirrhotic cardiomyopathy. World J Gastroenterol 2016; 22:4685-94. [PMID: 27217700 PMCID: PMC4870075 DOI: 10.3748/wjg.v22.i19.4685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/27/2016] [Accepted: 03/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of mammalian target of rapamycin (mTOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition.
METHODS: Male albino Wistar rats weighing 100-120 g were treated with tetrachloride carbon (CCl4) for 8 wk to induce cirrhosis. Subsequently, animals were administered rapamycin (2 mg/kg per day). The QTc intervals were calculated in a 5-min electrocardiogram. Then, the left ventricular papillary muscles were isolated to examine inotropic responsiveness to β-adrenergic stimulation using a standard organ bath equipped by Powerlab system. Phosphorylated-mTOR localization in left ventricles was immunohistochemically assessed, and ventricular tumor necrosis factor (TNF)-α was measured. Western blot was used to measure levels of ventricular phosphorylated-mTOR protein.
RESULTS: Cirrhosis was confirmed by hematoxylin and eosin staining of liver tissues, visual observation of lethargy, weight loss, jaundice, brown urine, ascites, liver stiffness, and a significant increase of spleen weight (P < 0.001). A significant prolongation in QTc intervals occurred in cirrhotic rats exposed to CCl4 (P < 0.001), while this prolongation was decreased with rapamycin treatment (P < 0.01). CCl4-induced cirrhosis caused a significant decrease of contractile responsiveness to isoproterenol stimulation and a significant increase in cardiac TNF-α. These findings were correlated with data from western blot and immunohistochemical studies on phosphorylated-mTOR expression in left ventricles. Phosphorylated-mTOR was significantly enhanced in cirrhotic rats, especially in the endothelium, compared to controls. Rapamycin treatment significantly increased contractile force and myocardial localization of phosphorylated-mTOR and decreased cardiac TNF-α concentration compared to cirrhotic rats with no treatment.
CONCLUSION: In this study, we demonstrated a potential role for cardiac mTOR in the pathophysiology of cirrhotic cardiomyopathy. Rapamycin normalized the inotropic effect and altered phosphorylated-mTOR expression and myocardial localization in cirrhotic rats.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Mahmoud Ghazi-Khansari
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Shahram Ejtemaei Mehr
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Maliheh Nobakht
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Seyyedeh Elaheh Mousavi
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Ahmad Reza Dehpour
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| |
Collapse
|
82
|
Role of JAK-STAT pathway in reducing cardiomyocytes hypoxia/reoxygenation injury induced by S1P postconditioning. Eur J Pharmacol 2016; 784:129-36. [PMID: 27215146 DOI: 10.1016/j.ejphar.2016.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023]
Abstract
This experiment was designed to explore the protection of sphingosine1-phosphate (S1P) postconditioning on rat myocardial cells injured by hypoxia/reoxygenation acting via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signal pathway. The data showed that S1P could significantly increase cell viability, lower the rate of apoptosis, decrease the content of lactate dehydrogenase (LDH) and caspase3 activity in the culture medium, increase the activity of total superoxide dismutase (T-SOD) and manganese superoxide dismutase (Mn-SOD), reduce the loss of mitochondrial membrane potential and the fluorescence intensity of intracellular calcium, as well as increase the phosphorylation of JAK2 and STAT3 in comparison with the H/R group. When the JAK inhibitor AG490 or the STAT inhibitor stattic were added, the effects of S1P were inhibited. Our date shows that S1P protects H9c2 cells from hypoxia/reoxygenation injury and that the protection by S1P was inhibited by AG490 and stattic. Therefore S1P protects H9c2 cells against hypoxia/reoxygenation injury via the JAK-STAT pathway.
Collapse
|
83
|
Deng XS, Meng X, Song R, Fullerton D, Jaggers J. Rapamycin Decreases the Osteogenic Response in Aortic Valve Interstitial Cells Through the Stat3 Pathway. Ann Thorac Surg 2016; 102:1229-38. [PMID: 27209607 DOI: 10.1016/j.athoracsur.2016.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is an age-related and slowly progressive valvular disorder. We have previously found that the increased inflammatory and osteogenic responses to Toll-like receptor 4 (TLR4) stimulation is correlated with lower signal transducer and activator of transcription 3 (Stat3) activity in aortic valve interstitial cells (AVICs). Rapamycin, a drug used clinically, induces feedback activation of Akt. Akt in turn may upregulate Stat3. Therefore we hypothesized that rapamycin will decrease TLR4-induced osteogenic response in human AVICs through modulation of Stat3 activity. METHODS AVICs were isolated from normal valves taken from the explanted hearts of patients undergoing transplantation. Cells were treated with TLR4 ligand lipopolysaccharide (LPS) or rapamycin, or both. The osteogenic markers runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and bone morphogenetic protein 2 (BMP-2), as well as activation of Stat3 and its associated signaling molecules, were analyzed. RESULTS LPS induces the expression of RUNX2, ALP, and BMP-2. Rapamycin decreased both the baseline and LPS-induced expression of RUNX2, ALP, and BMP-2. Rapamycin also decreased calcium deposit formation. Rapamycin activated both Stat3 and Akt in AVICs. Suppression of Akt resulted in abolishment of Stat3 activation. Inhibition of Stat3 enhanced expression of RUNX2, ALP, and BMP-2 at baseline and in response to LPS. CONCLUSIONS Rapamycin inhibits TLR4-induced osteogenic responses in AVICs by activation of Stat3 through Akt. Rapamycin may alleviate inflammation-induced initiation and progression of CAVD.
Collapse
Affiliation(s)
- Xin-Sheng Deng
- Department of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xianzhong Meng
- Department of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rui Song
- Department of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Fullerton
- Department of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James Jaggers
- Department of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
84
|
Understanding STAT3 signaling in cardiac ischemia. Basic Res Cardiol 2016; 111:27. [PMID: 27017613 DOI: 10.1007/s00395-016-0543-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 01/25/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. It remains one of the greatest challenges to global health and will continue to dominate mortality trends in the future. Acute myocardial infarction results in 7.4 million deaths globally per annum. Current management strategies are centered on restoration of coronary blood flow via percutaneous coronary intervention, coronary artery bypass grafting and administration of anti-platelet agents. Such myocardial reperfusion accounts for 40-50 % of the final infarct size in most cases. Signaling transducer and activator of transcription 3 (STAT3) has been shown to have cardioprotective effects via canonical and non-canonical activation and modulation of mitochondrial and transcriptional responses. A significant body of in vitro and in vivo evidence suggests that activation of the STAT3 signal transduction pathway results in a cardio protective response to ischemia and attempts have been made to modulate this with therapeutic effect. Not only is STAT3 important for cardiomyocyte function, but it also modulates the cardiac microenvironment and communicates with cardiac fibroblasts. To this end, we here review the current evidence supporting the manipulation of STAT3 for therapeutic benefit in cardiac ischemia and identify areas for future research.
Collapse
|
85
|
Lv J, Wang X, Liu S, Liang P, Feng M, Zhang L, Xu A. Protective effect of Fenofibrate in renal ischemia reperfusion injury: Involved in suppressing kinase 2 (JAK2)/transcription 3 (STAT3)/p53 signaling activation. ACTA ACUST UNITED AC 2015; 63:236-42. [DOI: 10.1016/j.patbio.2015.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022]
|
86
|
Elatoside C protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes through the reduction of endoplasmic reticulum stress partially depending on STAT3 activation. Apoptosis 2015; 19:1727-35. [PMID: 25326083 DOI: 10.1007/s10495-014-1039-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis has been suggested to contribute to myocardial ischemia-reperfusion (I/R) injury. Elatoside C is one of the major triterpenoid compounds isolated from Aralia elata that is known to be cardioprotective. However, its effects on I/R injury to cardiac myocytes have not been clarified. This study aimed to investigate the possible protective effect of Elatoside C against hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocyte injury and its underlying mechanisms. H9c2 cardiomyocytes were subjected to H/R in the presence of Elatoside C. Our results showed that Elatoside C (25 μM) treatment provided significant protection against H/R-induced cell death, as evidenced by improved cell viability, maintained mitochondrial membrane potential, diminished mitochondrial ROS, and reduced apoptotic cardiomyocytes (P < 0.05). These changes were associated with the inhibition of ER stress-associated apoptosis markers (GRP78, CHOP, Caspase-12 and JNK), as well as the increased phosphorylation of STAT3 and an increased Bcl2/Bax ratio. Moreover, these effects of Elatoside C were prevented by the STAT3 inhibitor Stattic. Taken together, these results suggested that Elatoside C can alleviate H/R-induced cardiomyocyte apoptosis most likely by activating the STAT3 pathways and reducing ER stress-associated apoptosis.
Collapse
|
87
|
Grevengoed TJ, Cooper DE, Young PA, Ellis JM, Coleman RA. Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation. FASEB J 2015. [PMID: 26220174 DOI: 10.1096/fj.15-272732] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Because hearts with a temporally induced knockout of acyl-CoA synthetase 1 (Acsl1(T-/-)) are virtually unable to oxidize fatty acids, glucose use increases 8-fold to compensate. This metabolic switch activates mechanistic target of rapamycin complex 1 (mTORC1), which initiates growth by increasing protein and RNA synthesis and fatty acid metabolism, while decreasing autophagy. Compared with controls, Acsl1(T-/-) hearts contained 3 times more mitochondria with abnormal structure and displayed a 35-43% lower respiratory function. To study the effects of mTORC1 activation on mitochondrial structure and function, mTORC1 was inhibited by treating Acsl1(T-/-) and littermate control mice with rapamycin or vehicle alone for 2 wk. Rapamycin treatment normalized mitochondrial structure, number, and the maximal respiration rate in Acsl1(T-/-) hearts, but did not improve ADP-stimulated oxygen consumption, which was likely caused by the 33-51% lower ATP synthase activity present in both vehicle- and rapamycin-treated Acsl1(T-/-) hearts. The turnover of microtubule associated protein light chain 3b in Acsl1(T-/-) hearts was 88% lower than controls, indicating a diminished rate of autophagy. Rapamycin treatment increased autophagy to a rate that was 3.1-fold higher than in controls, allowing the formation of autophagolysosomes and the clearance of damaged mitochondria. Thus, long-chain acyl-CoA synthetase isoform 1 (ACSL1) deficiency in the heart activated mTORC1, thereby inhibiting autophagy and increasing the number of damaged mitochondria.
Collapse
Affiliation(s)
- Trisha J Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Pamela A Young
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jessica M Ellis
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
88
|
Durrant DE, Das A, Dyer S, Tavallai S, Dent P, Kukreja RC. Targeted Inhibition of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Sensitizes Pancreatic Cancer Cells to Doxorubicin without Exacerbating Cardiac Toxicity. Mol Pharmacol 2015; 88:512-23. [PMID: 26101222 DOI: 10.1124/mol.115.099143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer has the lowest 5-year survival rate of all major cancers despite decades of effort to design and implement novel, more effective treatment options. In this study, we tested whether the dual phosphoinositide 3-kinase/mechanistic target of rapamycin inhibitor BEZ235 (BEZ) potentiates the antitumor effects of doxorubicin (DOX) against pancreatic cancer. Cotreatment of BEZ235 with DOX resulted in dose-dependent inhibition of the phosphoinositide 3-kinase/mechanistic target of rapamycin survival pathway, which corresponded with an increase in poly ADP ribose polymerase cleavage. Moreover, BEZ cotreatment significantly improved the effects of DOX toward both cell viability and cell death in part through reduced Bcl-2 expression and increased expression of the shorter, more cytotoxic forms of BIM. BEZ also facilitated intracellular accumulation of DOX, which led to enhanced DNA damage and reactive oxygen species generation. Furthermore, BEZ in combination with gemcitabine reduced MiaPaca2 cell proliferation but failed to increase reactive oxygen species generation or BIM expression, resulting in reduced necrosis and apoptosis. Treatment with BEZ and DOX in mice bearing tumor xenographs significantly repressed tumor growth as compared with BEZ, DOX, or gemcitabine. Additionally, in contrast to the enhanced expression seen in MiaPaca2 cells, BEZ and DOX cotreatment reduced BIM expression in H9C2 cardiomyocytes. Also, the Bcl-2/Bax ratio was increased, which was associated with a reduction in cell death. In vivo echocardiography showed decreased cardiac function with DOX treatment, which was not improved by combination treatment with BEZ. Thus, we propose that combining BEZ with DOX would be a better option for patients than current standard of care by providing a more effective tumor response without the associated increase in toxicity.
Collapse
Affiliation(s)
- David E Durrant
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Anindita Das
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Samya Dyer
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Seyedmehrad Tavallai
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Rakesh C Kukreja
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| |
Collapse
|
89
|
Das A, Salloum FN, Filippone SM, Durrant DE, Rokosh G, Bolli R, Kukreja RC. Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling. Basic Res Cardiol 2015; 110:31. [PMID: 25911189 DOI: 10.1007/s00395-015-0486-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/31/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Diabetic patients suffer augmented severity of myocardial infarction. Excessive activation of the mammalian target of rapamycin (mTOR) and decreased activation of STAT3 are implicated in diabetic complications. Considering the potent cardioprotective effect of mTOR inhibitor, rapamycin, we hypothesized that reperfusion therapy with rapamycin would reduce infarct size in the diabetic hearts through STAT3 signaling. Hearts from adult male db/db or wild type (WT) C57 mice were isolated and subjected to 30 min of normothermic global ischemia and 60 min of reperfusion in Langendorff mode. Rapamycin (100 nM) was infused at the onset of reperfusion. Myocardial infarct size (IS) was significantly reduced in rapamycin-treated mice (13.3 ± 2.4 %) compared to DMSO vehicle control (35.9 ± 0.9 %) or WT mice (27.7 ± 1.1 %). Rapamycin treatment restored phosphorylation of STAT3 and enhanced AKT phosphorylation (target of mTORC2), but significantly reduced ribosomal protein S6 phosphorylation (target of mTORC1) in the diabetic heart. To determine the cause and effect relationship of STAT3 in cardioprotection, inducible cardiac-specific STAT3-deficient (MCM TG:STAT3(flox/flox)) and WT mice (MCM TG:STAT3(flox/flox)) were made diabetic by feeding high fat diet (HFD). Rapamycin given at reperfusion reduced IS in WT mice but not in STAT3-deficient mice following I/R. Moreover, cardiomyocytes isolated from HFD-fed WT mice showed resistance against necrosis (trypan blue staining) and apoptosis (TUNEL assay) when treated with rapamycin during reoxygenation following simulated ischemia. Such protection was absent in cardiomyocytes from HFD-fed STAT3-deficient mice. STAT3 signaling plays critical role in reducing IS and attenuates cardiomyocyte death following reperfusion therapy with rapamycin in diabetic heart.
Collapse
Affiliation(s)
- Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA,
| | | | | | | | | | | | | |
Collapse
|
90
|
Huang L, Dai K, Chen M, Zhou W, Wang X, Chen J, Zhou W. The AMPK Agonist PT1 and mTOR Inhibitor 3HOI-BA-01 Protect Cardiomyocytes After Ischemia Through Induction of Autophagy. J Cardiovasc Pharmacol Ther 2015; 21:70-81. [PMID: 25868658 DOI: 10.1177/1074248415581177] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myocardial ischemia has become one of the main causes of sudden cardiac death worldwide. Autophagy has been demonstrated to protect cardiomyocytes from ischemia/reperfusion (I/R)-induced damage. A novel small molecule compound 2-Chloro-5-[[5-[[5-(4,5-Dimethyl-2-nitrophenyl)-2-furanyl]methylene]-4,5-dihydro-4-oxo-2-thiazolyl]amino]benzoic acid (PT1) has been previously shown to specifically activate 5'-adenosine monophosphate-activated protein kinase (AMPK). Because AMPK activation effectively induces autophagy, we tested the protective efficacy of PT1 on cardiomyocytes after oxygen glucose deprivation/reoxygenation (OGD/R) in vitro. Mouse neonatal cardiomyocytes were treated with PT1 after OGD/R. 3-[4-(1,3-benzodioxol-5-yl)-2-oxo-3-buten-1-yl]-3-hydroxy-1,3-dihydro-2H-indol-2-one (3HOI-BA-01), a novel small compound showing potent inhibitory effect on mammalian target of rapamycin (mTOR) activation, was also tested for its cardioprotective effect, based on the established relationship between mTOR signaling and autophagy. Cell survival and autophagy-related signal pathways were examined after treatment with these agents. Our data indicate that both PT1 and 3HOI-BA-01 enhance cell survival after OGD/R. As expected, both PT1 and 3HOI-BA-01 induced autophagy in cardiomyocytes through activating AMPK pathway and inhibiting mTOR signaling, respectively. Induction of autophagy by PT1 and 3HOI-BA-01 was responsible for their cardioprotective effect, since inhibition of autophagy abolished the protective efficacy. Furthermore, simultaneous administration of PT1 and 3HOI-BA-01 profoundly upregulated autophagy after OGD/R and significantly promoted survival of cardiomyocytes. In vivo administration of PT1 and 3HOI-BA-01 in a murine myocardial (I/R injury model remarkably reduced infarct size and induced autophagy. Taken together, our research suggests that PT1 and 3HOI-BA-01 could be promising therapeutic agents for myocardial ischemia.
Collapse
Affiliation(s)
- Ling Huang
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Manhua Chen
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China
| | - Wenping Zhou
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China
| | - Xiaoling Wang
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China
| | - Jing Chen
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China
| |
Collapse
|
91
|
Orogo AM, Gustafsson ÅB. Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circ Res 2015; 116:489-503. [PMID: 25634972 DOI: 10.1161/circresaha.116.303791] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Autophagy is an evolutionarily conserved process by which long-lived proteins and organelles are sequestered by autophagosomes and subsequently degraded by lysosomes for recycling. Autophagy is important for maintaining cardiac homeostasis and is a survival mechanism that is upregulated during stress or starvation. Accumulating evidence suggests that dysregulated or reduced autophagy is associated with heart failure and aging. Thus, modulating autophagy represents an attractive future therapeutic target for treating cardiovascular disease. Activation of autophagy is generally considered to be cardioprotective, whereas excessive autophagy can lead to cell death and cardiac atrophy. It is important to understand how autophagy is regulated to identify ideal therapeutic targets for treating disease. Here, we discuss the key proteins in the core autophagy machinery and describe upstream regulators that respond to extracellular and intracellular signals to tightly coordinate autophagic activity. We review various genetic and pharmacological studies that demonstrate the important role of autophagy in the heart and consider the advantages and limitations of approaches that modulate autophagy.
Collapse
Affiliation(s)
- Amabel M Orogo
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla
| | - Åsa B Gustafsson
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla.
| |
Collapse
|
92
|
Qingnaoyizhi decoction suppresses the formation of glial fibrillary acidic protein-positive cells in cultured neural stem cells by inhibiting the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. J TRADIT CHIN MED 2015; 35:69-76. [PMID: 25842731 DOI: 10.1016/s0254-6272(15)30011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Inactivation of the Janus kinase 2 in treated NSCs. Furthermore, QNYZD may play a direct role in suppressing the formation of GFAP-positive cells and enhancing neuronal differentiation by inhibiting JAK2/STAT3 activation. Overall, these results provide insights into the possible mechanism underlying QNYZD-mediated neurogenesis. (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling axis plays a crucial role in determining the fate of neural stem cells (NSCs). Qingnaoyizhi decoction (QNYZD) has been used for the treatment of vascular dementia and has shown to improve synaptic remodeling. The aim of this study was to evaluate the effect of cerebrospinal fluid (CSF) containing QNYZD (CSF-QNYZD) on the differentiation of cultured NSCs and the involvement of the JAK2/STAT3 pathway. METHODS The protein expression levels of glial fibrillary acidic protein (GFAP), tubulin, drosophila mothers against decapentaplegic protein (SMAD-1), STAT3, and phosphorylated-STAT3 were detected by western immunoblot analysis in the groups: control, CSF, JAK/STAT inhibitor (AG490), CSF-QNYZD, and CSF-XDZ (CSF-Xidezhen). The differentiation of NSCs was determined by immunofluorescence staining. The proliferation of NSCs was measured using the Cell Counting Kit-8 proliferation assay. RESULTS Compared with the control group, CSF-QNYZD and AG490 significantly increased the number and expression of tubulin-positive cells, reduced the number and expression of GFAP-positive cells, and down-regulated the expression of p-STAT3. However, CSF-QNYZD also decreased the expression of SMAD-1 and STAT3. CONCLUSION Enhanced neuronal differentiation may be associated with the down-regulation of glial differentiation instead of promoting proliferation in treated NSCs. Furthermore, QNYZD may play a direct role in suppressing the formation of GFAP-positive cells and enhancing neuronal differentiation by inhibiting JAK2/STAT3 activation. Overall, these results provide insights into the possible mechanism underlying QNYZD-mediated neurogenesis.
Collapse
|
93
|
Rapamycin protection of livers from ischemia and reperfusion injury is dependent on both autophagy induction and mammalian target of rapamycin complex 2-Akt activation. Transplantation 2015; 99:48-55. [PMID: 25340604 DOI: 10.1097/tp.0000000000000476] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Although rapamycin (RPM) have been studied extensively in ischemia models, its functional mechanisms remains to be defined. METHODS We determined how RPM impacted the pathogenesis of ischemia-reperfusion injury (IRI) in a murine liver partial warm ischemia model, with emphasis on its regulation of hepatocyte death. RESULTS Rapamycin protected livers from IRI in the presence of fully developed liver inflammatory immune response. Rapamycin enhanced liver autophagy induction at the reperfusion stage. Dual mammalian (mechanistic) target of rapamycin (mTOR)1/2 inhibitor Torin 1, despite its ability to induced autophagy, failed to protect livers from IRI. The treatment with RPM, but not Torin 1, resulted in the enhanced activation of the mTORC2-Akt signaling pathway activation in livers after reperfusion. Inactivation of Akt by Triciribine abolished the liver protective effect of RPM. The differential cytoprotective effect of RPM and Torin 1 was confirmed in vitro in hepatocyte cultures. Rapamycin, but not Trin 1, protected hepatocytes from stress and tumor necrosis factor-α induced cell death; and inhibition of autophagy by chloroquine or Akt by Triciribine abolished RPM-mediated cytoprotection. CONCLUSION Rapamycin protected livers from IRI by both autophagy and mTORC2-Akt activation mechanisms.
Collapse
|
94
|
Li X, Jiang L, Lin S, He Y, Shen G, Cai Z, Ling M, Ni J, Zhang H, Zhang M. Inhibition of mTORC1 renders cardiac protection against lipopolysaccharide. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8432-8442. [PMID: 25674207 PMCID: PMC4313975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Sepsis-induced cardiac dysfunction is a severe clinical problem. It is evident that rapamycin can protect heart from pathological injuries. However, there are no data demonstrating rapamycin reverse cardiac dysfunction induced by sepsis. In this study, Lipopolysaccharide (LPS) was administrated to mice and H9c2 cells. After treatment, we further determined cardiac function by echocardiography, ANP, BNP and inflammatory markers by qPCR and apoptosis by TUNEL staining. Moreover, mTORC1 signaling pathway and Akt activity were measured by Western blots. We found that rapamycin attenuated cardiac dysfunction, increase in ANP and BNP as well as apoptosis induced by LPS both in mice and in H9c2 cells. Unexpectedly, LPS did not significantly affect the mRNA levels of TNF-α and IL-6. Furthermore, rapamycin further reduced the decrease in mTORC1 signaling and Akt activity induced by LPS. In conclusion, rapamycin can protect heart from LPS induced damages by inhibition mTORC1 signaling and elevation of Akt activity.
Collapse
Affiliation(s)
- Xiang Li
- Department of ICU, Minhang Hospital, Fudan UniversityMinhang, Shanghai 201199, People’s Republic of China
- Department of Pathology, Gansu Provincial HospitalLanzhou 730000, Gansu, People’s Republic of China
| | - Lijing Jiang
- Department of ICU, Minhang Hospital, Fudan UniversityMinhang, Shanghai 201199, People’s Republic of China
| | - Shenghui Lin
- Department of Cardiology, Jinjiang Hospital of Quanzhou Medical CollegeJinjiang 362200, Fujian, People’s Republic of China
| | - Yunfen He
- Minhang District Maternal and Child Health Hospital of ShanghaiMinhang, Shanghai 201199, People’s Republic of China
| | - Guofeng Shen
- Department of ICU, Minhang Hospital, Fudan UniversityMinhang, Shanghai 201199, People’s Republic of China
| | - Zhenlin Cai
- Department of ICU, Minhang Hospital, Fudan UniversityMinhang, Shanghai 201199, People’s Republic of China
| | - Meirong Ling
- Department of ICU, Minhang Hospital, Fudan UniversityMinhang, Shanghai 201199, People’s Republic of China
| | - Jindi Ni
- Department of ICU, Minhang Hospital, Fudan UniversityMinhang, Shanghai 201199, People’s Republic of China
| | - Hao Zhang
- Department of ICU, Minhang Hospital, Fudan UniversityMinhang, Shanghai 201199, People’s Republic of China
| | - Min Zhang
- Department of Pathology, Gansu Provincial HospitalLanzhou 730000, Gansu, People’s Republic of China
| |
Collapse
|
95
|
Cardio-protective signalling by glyceryl trinitrate and cariporide in a model of donor heart preservation. Heart Lung Circ 2014; 24:306-18. [PMID: 25459486 DOI: 10.1016/j.hlc.2014.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Storage of donor hearts in cardioplegic solutions supplemented with agents that mimic the ischaemic preconditioning response enhanced their post-reperfusion function. The present study examines the minimisation of cell death and activation of pro-survival signalling directed towards maintenance of mitochondrial homeostasis in hearts arrested and stored in two such agents, glyceryl-trinitrate, a nitric oxide donor and cariporide, (a sodium-hydrogen exchange inhibitor). METHODS After baseline functional measurement, isolated working rat hearts were arrested and stored for 6h at 4°C in either Celsior(®), Celsior(®) containing 0.1mg/ml glyceryl-trinitrate, 10μM cariporide or both agents. After reperfusion, function was remeasured. Hearts were then processed for immunoblotting or histology. RESULTS Necrotic and apoptotic markers present in the Celsior(®) group post-reperfusion were abolished by glyceryl-trinitrate, cariporide or both. Increased phosphorylation of ERK and Bcl2, after reperfusion in groups stored in glyceryl-trinitrate, cariporide or both along with increased phospho-STAT3 levels in the glyceryl-trinitrate/cariporide group correlated with functional recovery. Inhibition of STAT3 phosphorylation blocked recovery. No phospho-Akt increase was seen in any treatment. CONCLUSIONS Activation of signalling pathways that favour mitophagy activation (ERK and Bcl2 phosphorylation) and maintenance of mitochondrial transition pore closure after reperfusion (STAT3 and ERK phosphorylation) were crucial for functional recovery of the donor heart.
Collapse
|
96
|
Tian F, Dong L, Zhou Y, Shao Y, Li W, Zhang H, Wang F. Rapamycin-Induced apoptosis in HGF-stimulated lens epithelial cells by AKT/mTOR, ERK and JAK2/STAT3 pathways. Int J Mol Sci 2014; 15:13833-48. [PMID: 25116684 PMCID: PMC4159827 DOI: 10.3390/ijms150813833] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 01/19/2023] Open
Abstract
Hepatocyte growth factor (HGF) induced the proliferation of lens epithelial cells (LECs) and may be a major cause of posterior capsule opacification (PCO), which is the most frequent postoperative complication of cataract surgery. To date, several agents that can block LECs proliferation have been studied, but none have been used in clinic. Recently, accumulating evidence has suggested rapamycin, the inhibitor of mTOR (mammalian target of Rapamycin), was associated with the induction of apoptosis in LECs. The purpose of our study was to investigate the potential effects of rapamycin on HGF-induced LECs and the underlying mechanisms by which rapamycin exerted its actions. Using cell proliferation, cell viability and flow cytometric apoptosis assays, we found that rapamycin potently not only suppressed proliferation but also induced the apoptosis of LECs in a dose-dependent manner under HGF administration. Further investigation of the underlying mechanism using siRNA transfection revealed that rapamycin could promote apoptosis of LECs via inhibiting HGF-induced phosphorylation of AKT/mTOR, ERK and JAK2/STAT3 signaling molecules. Moreover, the forced expression of AKT, ERK and STAT3 could induce a significant suppression of apoptosis in these cells after treatment of rapamycin. Together, these findings suggested that rapamycin-induced apoptosis in HGF-stimulated LECs is accompanied by inhibition of AKT/mTOR, ERK and JAK2/STAT3 pathways, which supports its use to inhibit PCO in preclinical studies and provides theoretical foundation for future possible practice.
Collapse
Affiliation(s)
- Fang Tian
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Lijie Dong
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Yu Zhou
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Yan Shao
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Wenbo Li
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Hong Zhang
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Fei Wang
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| |
Collapse
|
97
|
Zheng P, Liu J, Mai S, Yuan Y, Wang Y, Dai G. Regulation of signal transducer and activator of transcription 3 and apoptotic pathways by betaine attenuates isoproterenol-induced acute myocardial injury in rats. Hum Exp Toxicol 2014; 34:538-47. [PMID: 25080425 DOI: 10.1177/0960327114543936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present study was designed to investigate the cardioprotective effects of betaine on acute myocardial ischemia induced experimentally in rats focusing on regulation of signal transducer and activator of transcription 3 (STAT3) and apoptotic pathways as the potential mechanism underlying the drug effect. Male Sprague Dawley rats were treated with betaine (100, 200, and 400 mg/kg) orally for 40 days. Acute myocardial ischemic injury was induced in rats by subcutaneous injection of isoproterenol (85 mg/kg), for two consecutive days. Serum cardiac marker enzyme, histopathological variables and expression of protein levels were analyzed. Oral administration of betaine (200 and 400 mg/kg) significantly reduced the level of cardiac marker enzyme in the serum and prevented left ventricular remodeling. Western blot analysis showed that isoproterenol-induced phosphorylation of STAT3 was maintained or further enhanced by betaine treatment in myocardium. Furthermore, betaine (200 and 400 mg/kg) treatment increased the ventricular expression of Bcl-2 and reduced the level of Bax, therefore causing a significant increase in the ratio of Bcl-2/Bax. The protective role of betaine on myocardial damage was further confirmed by histopathological examination. In summary, our results showed that betaine pretreatment attenuated isoproterenol-induced acute myocardial ischemia via the regulation of STAT3 and apoptotic pathways.
Collapse
Affiliation(s)
- P Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - J Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - S Mai
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Y Yuan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Y Wang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - G Dai
- Department of Pharmaceutical Engineering, College of Chemical and Materials Engineering, Kaili University, Kaili, Guizhou, People's Republic of China
| |
Collapse
|
98
|
Hernández-Reséndiz S, Zazueta C. PHO-ERK1/2 interaction with mitochondria regulates the permeability transition pore in cardioprotective signaling. Life Sci 2014; 108:13-21. [PMID: 24835217 DOI: 10.1016/j.lfs.2014.04.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/03/2014] [Accepted: 04/30/2014] [Indexed: 12/24/2022]
Abstract
AIMS The molecular mechanism(s) by which extracellular signal-regulated kinase 1/2 (ERK1/2) and other kinases communicate with downstream targets have not been fully determined. Multiprotein signaling complexes undergoing spatiotemporal redistribution may enhance their interaction with effector proteins promoting cardioprotective response. Particularly, it has been proposed that some active kinases in association with caveolae may converge into mitochondria. Therefore, in this study we investigate if PHO-ERK1/2 interaction with mitochondria may provide a mechanistic link in the regulation of these organelles in cardioprotective signaling. MAIN METHODS Using a model of dilated cardiomyopathy followed by ischemia-reperfusion injury, we determined ERK1/2 signaling at the level of mitochondria and evaluated its effect on the permeability transition pore. KEY FINDINGS The most important finding of the present study is that, under cardioprotective conditions, a subpopulation of activated ERK1/2 was directed to the mitochondrial membranes through vesicular trafficking, concurring with increased phosphorylation of mitochondrial proteins and inhibition of the mitochondrial permeability transition pore opening. In addition, our results suggest that vesicles enriched with caveolin-3 could form structures that may drive ERK1/2, GSK3β and Akt to mitochondria. SIGNIFICANCE Signaling complexes including PHO-ERK, PHO-Akt, PHO-eNOS and caveolin-3 contribute to cardioprotection by directly targeting the mitochondrial proteome and regulating the opening of the permeability transition pore in this model.
Collapse
Affiliation(s)
- Sauri Hernández-Reséndiz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, I.Ch., Juan Badiano No. 1, Colonia Sección XVI, Mexico 14080, DF, Mexico
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, I.Ch., Juan Badiano No. 1, Colonia Sección XVI, Mexico 14080, DF, Mexico.
| |
Collapse
|
99
|
Abstract
The protein kinase mammalian or mechanistic target of rapamycin (mTOR) is an atypical serine/threonine kinase that exerts its main cellular functions by interacting with specific adaptor proteins to form 2 different multiprotein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 regulates protein synthesis, cell growth and proliferation, autophagy, cell metabolism, and stress responses, whereas mTORC2 seems to regulate cell survival and polarity. The mTOR pathway plays a key regulatory function in cardiovascular physiology and pathology. However, the majority of information available about mTOR function in the cardiovascular system is related to the role of mTORC1 in the unstressed and stressed heart. mTORC1 is required for embryonic cardiovascular development and for postnatal maintenance of cardiac structure and function. In addition, mTORC1 is necessary for cardiac adaptation to pressure overload and development of compensatory hypertrophy. However, partial and selective pharmacological and genetic inhibition of mTORC1 was shown to extend life span in mammals, reduce pathological hypertrophy and heart failure caused by increased load or genetic cardiomyopathies, reduce myocardial damage after acute and chronic myocardial infarction, and reduce cardiac derangements caused by metabolic disorders. The optimal therapeutic strategy to target mTORC1 and increase cardioprotection is under intense investigation. This article reviews the information available regarding the effects exerted by mTOR signaling in cardiovascular physiology and pathological states.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ (S.S., J.S.); IRCCS Neuromed, Pozzilli, Italy (S.S., M.V.); and Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University Sapienza, Rome, Italy (M.V.)
| | | | | |
Collapse
|
100
|
Das A, Durrant D, Koka S, Salloum FN, Xi L, Kukreja RC. Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem 2013; 289:4145-60. [PMID: 24371138 DOI: 10.1074/jbc.m113.521062] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elevated mammalian target of rapamycin (mTOR) signaling contributes to the pathogenesis of diabetes, with increased morbidity and mortality, mainly because of cardiovascular complications. Because mTOR inhibition with rapamycin protects against ischemia/reperfusion injury, we hypothesized that rapamycin would prevent cardiac dysfunction associated with type 2 diabetes (T2D). We also investigated the possible mechanisms and novel protein targets involved in rapamycin-induced preservation of cardiac function in T2D mice. Adult male leptin receptor null, homozygous db/db, or wild type mice were treated daily for 28 days with vehicle (5% DMSO) or rapamycin (0.25 mg/kg, intraperitoneally). Cardiac function was monitored by echocardiography, and protein targets were identified by proteomics analysis. Rapamycin treatment significantly reduced body weight, heart weight, plasma glucose, triglyceride, and insulin levels in db/db mice. Fractional shortening was improved by rapamycin treatment in db/db mice. Oxidative stress as measured by glutathione levels and lipid peroxidation was significantly reduced in rapamycin-treated db/db hearts. Rapamycin blocked the enhanced phosphorylation of mTOR and S6, but not AKT in db/db hearts. Proteomic (by two-dimensional gel and mass spectrometry) and Western blot analyses identified significant changes in several cytoskeletal/contractile proteins (myosin light chain MLY2, myosin heavy chain 6, myosin-binding protein C), glucose metabolism proteins (pyruvate dehydrogenase E1, PYGB, Pgm2), and antioxidant proteins (peroxiredoxin 5, ferritin heavy chain 1) following rapamycin treatment in db/db heart. These results show that chronic rapamycin treatment prevents cardiac dysfunction in T2D mice, possibly through attenuation of oxidative stress and alteration of antioxidants and contractile as well as glucose metabolic protein expression.
Collapse
Affiliation(s)
- Anindita Das
- From the Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | | | | | | | | |
Collapse
|