51
|
Zhang C, Wang G, Zheng Z, Maddipati KR, Zhang X, Dyson G, Williams P, Duncan SA, Kaufman RJ, Zhang K. Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology 2012; 55:1070-82. [PMID: 22095841 PMCID: PMC3319338 DOI: 10.1002/hep.24783] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/28/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED cAMP responsive element-binding protein, hepatocyte specific (CREBH), is a liver-specific transcription factor localized in the endoplasmic reticulum (ER) membrane. Our previous work demonstrated that CREBH is activated by ER stress or inflammatory stimuli to induce an acute-phase hepatic inflammation. Here, we demonstrate that CREBH is a key metabolic regulator of hepatic lipogenesis, fatty acid (FA) oxidation, and lipolysis under metabolic stress. Saturated FA, insulin signals, or an atherogenic high-fat diet can induce CREBH activation in the liver. Under the normal chow diet, CrebH knockout mice display a modest decrease in hepatic lipid contents, but an increase in plasma triglycerides (TGs). After having been fed an atherogenic high-fat (AHF) diet, massive accumulation of hepatic lipid metabolites and significant increase in plasma TG levels were observed in the CrebH knockout mice. Along with the hypertriglyceridemia phenotype, the CrebH null mice displayed significantly reduced body-weight gain, diminished abdominal fat, and increased nonalcoholic steatohepatitis activities under the AHF diet. Gene-expression analysis and chromatin-immunoprecipitation assay indicated that CREBH is required to activate the expression of the genes encoding functions involved in de novo lipogenesis, TG and cholesterol biosynthesis, FA elongation and oxidation, lipolysis, and lipid transport. Supporting the role of CREBH in lipogenesis and lipolysis, forced expression of an activated form of CREBH protein in the liver significantly increases accumulation of hepatic lipids, but reduces plasma TG levels in mice. CONCLUSION All together, our study shows that CREBH plays a key role in maintaining lipid homeostasis by regulating the expression of the genes involved in hepatic lipogenesis, FA oxidation, and lipolysis under metabolic stress. The identification of CREBH as a stress-inducible metabolic regulator has important implications in the understanding and treatment of metabolic disease.
Collapse
Affiliation(s)
- Chunbin Zhang
- Center for Molecular Medicine and Genetics, The Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Guohui Wang
- Center for Molecular Medicine and Genetics, The Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ze Zheng
- Center for Molecular Medicine and Genetics, The Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Krishna Rao Maddipati
- Kamanos Cancer Institute, The Wayne State University School of Medicine, Detroit, MI 48201, USA, Department of pathology, The Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xuebao Zhang
- Center for Molecular Medicine and Genetics, The Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Gregory Dyson
- Kamanos Cancer Institute, The Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Paul Williams
- Center for Molecular Medicine and Genetics, The Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen A. Duncan
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Randal J. Kaufman
- Neuroscience, Aging, and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, The Wayne State University School of Medicine, Detroit, MI 48201, USA, Department of Immunology and Microbiology, The Wayne State University School of Medicine, Detroit, MI 48201, USA, Kamanos Cancer Institute, The Wayne State University School of Medicine, Detroit, MI 48201, USA,Correspondence to: Kezhong Zhang, Ph.D., Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI 48201, USA. Tel: 313-577-2669; FAX: 313-577-5218;
| |
Collapse
|
52
|
Jheng JR, Lin CY, Horng JT, Lau KS. Inhibition of enterovirus 71 entry by transcription factor XBP1. Biochem Biophys Res Commun 2012; 420:882-7. [PMID: 22469468 DOI: 10.1016/j.bbrc.2012.03.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/20/2012] [Indexed: 01/22/2023]
Abstract
Inositol-requiring enzyme 1 (IRE1) plays an important role in the endoplasmic reticulum (ER), or unfolded protein, stress response by activating its downstream transcription factor X-box-binding protein 1 (XBP1). We demonstrated previously that enterovirus 71 (EV71) upregulated XBP1 mRNA levels but did not activate spliced XBP1 (XBP1s) mRNA or its downstream target genes, EDEM and chaperones. In this study, we investigated further this regulatory mechanism and found that IRE1 was phosphorylated and activated after EV71 infection, whereas its downstream XBP1s protein level decreased. We also found that XBP1s was not cleaved directly by 2A(pro), but that cleavage of eukaryotic translation initiation factor 4G by the EV71 2A(pro) protein may contribute to the decrease in XBP1s expression. Knockdown of XBP1 increased viral protein expression, and the synthesis of EV71 viral protein and the production of EV71 viral particles were inhibited in XBP1-overexpressing RD cells. When incubated with replication-deficient and UV-irradiated EV71, XBP1-overexpressing RD cells exhibited reduced viral RNA levels, suggesting that the inhibition of XBP1s by viral infection may underlie viral entry, which is required for viral replication. Our findings are the first indication of the ability of XBP1 to inhibit viral entry, possibly via its transcriptional activity in regulating molecules in the endocytic machinery.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan
| | | | | | | |
Collapse
|
53
|
Brunner JM, Plattet P, Doucey MA, Rosso L, Curie T, Montagner A, Wittek R, Vandelvelde M, Zurbriggen A, Hirling H, Desvergne B. Morbillivirus glycoprotein expression induces ER stress, alters Ca2+ homeostasis and results in the release of vasostatin. PLoS One 2012; 7:e32803. [PMID: 22403712 PMCID: PMC3293893 DOI: 10.1371/journal.pone.0032803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 02/04/2012] [Indexed: 11/26/2022] Open
Abstract
Although the pathology of Morbillivirus in the central nervous system (CNS) is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV) that we inoculated into two different cell systems: a monkey cell line (Vero) and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H) markedly accumulated in the endoplasmic reticulum (ER). This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT), another ER resident chaperon critically involved in the response to misfolded proteins and in Ca(2+) homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca(2+) homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses.
Collapse
Affiliation(s)
- Jean-Marc Brunner
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Institut de Biotechnologie, University of Lausanne, Lausanne, Switzerland
| | - Philippe Plattet
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marie-Agnès Doucey
- Division of Experimental Oncology, Multidisciplinary Oncology Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Lia Rosso
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Thomas Curie
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Montagner
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Riccardo Wittek
- Institut de Biotechnologie, University of Lausanne, Lausanne, Switzerland
| | - Marc Vandelvelde
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andreas Zurbriggen
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Harald Hirling
- Brain Mind Institute, Faculté des Sciences de la Vie, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Béatrice Desvergne
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
54
|
Srinivasan R, Richards CI, Xiao C, Rhee D, Pantoja R, Dougherty DA, Miwa JM, Lester HA. Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response. Mol Pharmacol 2012; 81:759-69. [PMID: 22379121 DOI: 10.1124/mol.112.077792] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We report the first observation that endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) can decrease when a central nervous system drug acts as an intracellular pharmacological chaperone for its classic receptor. Transient expression of α4β2 nicotinic receptors (nAChRs) in Neuro-2a cells induced the nuclear translocation of activating transcription factor 6 (ATF6), which is part of the UPR. Cells were exposed for 48 h to the full agonist nicotine, the partial agonist cytisine, or the competitive antagonist dihydro-β-erythroidine; we also tested mutant nAChRs that readily exit the ER. Each of these four manipulations increased Sec24D-enhanced green fluorescent protein fluorescence of condensed ER exit sites and attenuated translocation of ATF6-enhanced green fluorescent protein to the nucleus. However, we found no correlation among the manipulations regarding other tested parameters [i.e., changes in nAChR stoichiometry (α4(2)β2(3) versus α4(3)β2(2)), changes in ER and trans-Golgi structures, or the degree of nAChR up-regulation at the plasma membrane]. The four manipulations activated 0 to 0.4% of nAChRs, which shows that activation of the nAChR channel did not underlie the reduced ER stress. Nicotine also attenuated endogenously expressed ATF6 translocation and phosphorylation of eukaryotic initiation factor 2α in mouse cortical neurons transfected with α4β2 nAChRs. We conclude that, when nicotine accelerates ER export of α4β2 nAChRs, this suppresses ER stress and the UPR. Suppression of a sustained UPR may explain the apparent neuroprotective effect that causes the inverse correlation between a person's history of tobacco use and susceptibility to developing Parkinson's disease. This suggests a novel mechanism for neuroprotection by nicotine.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Kato H, Nakajima S, Saito Y, Takahashi S, Katoh R, Kitamura M. mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ 2012; 19:310-20. [PMID: 21779001 PMCID: PMC3263505 DOI: 10.1038/cdd.2011.98] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 01/11/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) has a key role in the regulation of an array of cellular function. We found that rapamycin, an inhibitor of mTOR complex 1 (mTORC1), attenuated endoplasmic reticulum (ER) stress-induced apoptosis. Among three major branches of the unfolded protein response, rapamycin selectively suppressed the IRE1-JNK signaling without affecting PERK and ATF6 pathways. ER stress rapidly induced activation of mTORC1, which was responsible for induction of the IRE1-JNK pathway and apoptosis. Activation of mTORC1 reduced Akt phosphorylation, which was an event upstream of IRE-JNK signaling and consequent apoptosis. In vivo, administration with rapamycin significantly suppressed renal tubular injury and apoptosis in tunicamycin-treated mice. It was associated with enhanced phosphorylation of Akt and suppression of JNK activity in the kidney. These results disclosed that, under ER stress conditions, mTORC1 causes apoptosis through suppression of Akt and consequent induction of the IRE1-JNK pathway.
Collapse
Affiliation(s)
- H Kato
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - S Nakajima
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Y Saito
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - S Takahashi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - R Katoh
- Department of Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - M Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
56
|
Maguire JA, Mulugeta S, Beers MF. Multiple ways to die: delineation of the unfolded protein response and apoptosis induced by Surfactant Protein C BRICHOS mutants. Int J Biochem Cell Biol 2011; 44:101-12. [PMID: 22016030 DOI: 10.1016/j.biocel.2011.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/22/2011] [Accepted: 10/06/2011] [Indexed: 02/06/2023]
Abstract
Epithelial cell dysfunction is now recognized as an important mechanism in the pathogenesis of interstitial lung diseases. Surfactant Protein C (SP-C), an alveolar type II cell specific protein, has contributed to this concept with the observation that heterozygous expression of SFTPC gene mutations are associated with chronic interstitial lung disease. We have shown that transient expression of aggregation prone mutant SP-C isoforms (SP-C BRICHOS) destabilize ER quality control mechanisms resulting in the intracellular accumulation of aggregating propeptide, inhibition of the ubiquitin/proteasome system, and activation of apoptosis. The goal of the present study was to define signaling pathways linking the unfolded protein response (UPR) and subsequent ER stress with intrinsic apoptosis events observed following mutant SP-C expression. In vitro expression of the SP-C BRICHOS mutant, SP-C(Δexon4), was used as a model system. Here we show stimulation of a broad ER stress response in both transfected A549 and HEK293 cells with activation of all 3 canonical sensing pathways, IRE1/XBP-1, ATF6, and PERK/eIF2α. SP-C(Δexon4) expression also resulted in activation of caspase 3, but failed to stimulate expression of the apoptosis mediating transcription factors ATF4/CHOP. However, inhibition of either caspase 4 or c-jun kinase (JNK) each blocked caspase 3 mediated cell death. Taken together, these results suggest that expression of SP-C BRICHOS mutants induce apoptosis through multiple UPR signaling pathways, and provide new therapeutic targets for the amelioration of ER stress induced cytotoxicity observed in fibrotic lung remodeling.
Collapse
Affiliation(s)
- Jean Ann Maguire
- Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4539, United States
| | | | | |
Collapse
|
57
|
Franceschelli S, Moltedo O, Amodio G, Tajana G, Remondelli P. In the Huh7 Hepatoma Cells Diclofenac and Indomethacin Activate Differently the Unfolded Protein Response and Induce ER Stress Apoptosis. Open Biochem J 2011; 5:45-51. [PMID: 21966325 PMCID: PMC3182409 DOI: 10.2174/1874091x01105010045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/21/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are cyclooxygenases (COXs) inhibitors frequently used in the treatment of acute and chronic inflammation. Side effects of NSAIDs are often due to their ability to induce apoptosis. Located at the Endoplasmic Reticulum membranes a tripartite signalling pathway, collectively known as the Unfolded Protein Response (UPR), decides survival or death of cells exposed to cytotoxic agents. To shed light on the molecular events responsible for the cytotoxicity of NSAIDs, we analysed the ability of diclofenac and indomethacin to activate the UPR in the human hepatoma cell line Huh7. We report that both NSAIDs can induce differently the single arms of the UPR. We show that indomethacin turns on the PERK and, only in part, the ATF6 and IRE1 pathways. Instead, diclofenac reduces the expression of ATF6 and does not stimulate the IRE1 endonuclease, which drives the expression of the prosurvival factor XBP1. Diclofenac, as well as indomethacin, is able to activate efficiently only the PERK pathway of the UPR, which induces the expression of the proapoptotic GADD153/CHOP protein. Our results highlight the importance of the UPR in evaluating the potential of drugs to induce apoptosis.
Collapse
Affiliation(s)
- Silvia Franceschelli
- Dipartimento di Scienze Farmaceutiche e Biomediche, University of Salerno, via Ponte Don Melillo, I-84084, Fisciano-Salerno, Italy
| | | | | | | | | |
Collapse
|
58
|
Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, Wek RC. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell 2011; 22:4390-405. [PMID: 21917591 PMCID: PMC3216664 DOI: 10.1091/mbc.e11-06-0510] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This study shows that the eIF2 kinase PERK is required not only for translational control but also for activation of ATF6 and its target genes in the unfolded protein response. The PERK pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the endoplasmic reticulum to the Golgi for intramembrane proteolysis and activation of ATF6. Disruptions of the endoplasmic reticulum (ER) that perturb protein folding cause ER stress and elicit an unfolded protein response (UPR) that involves translational and transcriptional changes in gene expression aimed at expanding the ER processing capacity and alleviating cellular injury. Three ER stress sensors (PERK, ATF6, and IRE1) implement the UPR. PERK phosphorylation of the α subunit of eIF2 during ER stress represses protein synthesis, which prevents further influx of ER client proteins. Phosphorylation of eIF2α (eIF2α∼P) also induces preferential translation of ATF4, a transcription activator of the integrated stress response. In this study we show that the PERK/eIF2α∼P/ATF4 pathway is required not only for translational control, but also for activation of ATF6 and its target genes. The PERK pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the ER to the Golgi for intramembrane proteolysis and activation of ATF6. As a consequence, liver-specific depletion of PERK significantly reduces both the translational and transcriptional phases of the UPR, leading to reduced protein chaperone expression, disruptions of lipid metabolism, and enhanced apoptosis. These findings show that the regulatory networks of the UPR are fully integrated and help explain the diverse biological defects associated with loss of PERK.
Collapse
Affiliation(s)
- Brian F Teske
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Peña J, Harris E. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem 2011; 286:14226-36. [PMID: 21385877 DOI: 10.1074/jbc.m111.222703] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Flaviviruses, such as dengue virus (DENV), depend on the host endoplasmic reticulum for translation, replication, and packaging of their genomes. Here we report that DENV-2 infection modulates the unfolded protein response in a time-dependent manner. We show that early DENV-2 infection triggers and then suppresses PERK-mediated eIF2α phosphorylation and that in mid and late DENV-2 infection, the IRE1-XBP1 and ATF6 pathways are activated, respectively. Activation of IRE1-XBP1 correlated with induction of downstream targets GRP78, CHOP, and GADD34. Furthermore, induction of CHOP did not induce apoptotic markers, such as suppression of anti-apoptotic protein Bcl-2, activation of caspase-9 or caspase-3, and cleavage of poly(ADP-ribose) polymerase. Finally, we show that DENV-2 replication is affected in PERK(-/-) and IRE1(-/-) mouse embryo fibroblasts when compared with wild-type mouse embryo fibroblasts. These results demonstrate that time-dependent activation of the unfolded protein response by DENV-2 can override inhibition of translation, prevent apoptosis, and prolong the viral life cycle.
Collapse
Affiliation(s)
- José Peña
- Division of Infectious Diseases and Vaccinology, School of Public Health, and Graduate Group in Microbiology, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-7354, USA.
| | | |
Collapse
|
60
|
Latreille M, Laberge MK, Bourret G, Yamani L, Larose L. Deletion of Nck1 attenuates hepatic ER stress signaling and improves glucose tolerance and insulin signaling in liver of obese mice. Am J Physiol Endocrinol Metab 2011; 300:E423-34. [PMID: 20587749 DOI: 10.1152/ajpendo.00088.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity has been shown to create stress in the endoplasmic reticulum (ER), and that initiates the activation of the unfolded protein response (UPR). This has been reported to cause insulin resistance in selective tissues through activation of the inositol-requiring enzyme 1α (IRE1α)-c-Jun NH(2)-terminal kinase (JNK) pathway, which results in the phosphorylation of the insulin receptor substrate-1 (IRS-1) at an inhibitory site and blocks insulin receptor signaling. In this study, we report that the Src homology domain-containing adaptor protein Nck1, previously shown to modulate the UPR, is of functional importance in obesity-induced ER stress signaling and inhibition of insulin actions. We have examined obese Nck1(-/-) and Nck1(+/+) mice for glucose tolerance, insulin sensitivity, and signaling as well as for ER stress markers and IRS-1 phosphorylation at Ser(307). Our findings show that obese Nck1-deficient mice display improved glucose disposal accompanied by enhanced insulin signaling in liver. This correlates with attenuated IRE1α and JNK activation and IRS-1 phosphorylation at Ser(307) compared with obese wild-type mice. Consistent with our in vivo data, we report that downregulation of Nck1 using siRNA in HepG2 cells results in decreased thapsigargin-induced IRE1α activation and signaling and IRS-1 phosphorylation at Ser(307), whereas it markedly enhances insulin signaling. Overall, in liver and in cultured cells, we show that depletion of Nck1 attenuates the UPR signal and its inhibitory action on insulin signaling. Taken all together, our findings implicate Nck1 in regulating the UPR, which secondary to obesity impairs glucose homeostasis and insulin actions.
Collapse
Affiliation(s)
- Mathieu Latreille
- Polypeptide Hormone Laboratory, Department of Experimental Medicine, Research Institute of the McGill University Health Centre, McGill University, 3640 University Street, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
61
|
Gentile CL, Frye MA, Pagliassotti MJ. Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease. Biofactors 2011; 37:8-16. [PMID: 21328622 PMCID: PMC3080031 DOI: 10.1002/biof.135] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/10/2010] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a burgeoning public health concern in westernized nations. The obesity-related disorder is associated with an increased risk of cardiovascular disease, type 2 diabetes and liver failure. Although the underlying pathogenesis of NAFLD is unclear, increasing evidence suggests that excess saturated fatty acids presented to or stored within the liver may play a role in both the development and progression of the disorder. A putative mechanism linking saturated fatty acids to NAFLD may be endoplasmic reticulum (ER) stress. Specifically, excess saturated fatty acids may induce an ER stress response that, if left unabated, can activate stress signaling pathways, cause hepatocyte cell death, and eventually lead to liver dysfunction. In the current review we discuss the involvement of saturated fatty acids in the pathogenesis of NAFLD with particular emphasis on the role of ER stress.
Collapse
Affiliation(s)
- Christopher L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Melinda A. Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Michael J. Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
62
|
Abstract
The unfolded protein response (UPR) is a conserved, intracellular signaling pathway activated by endoplasmic reticulum (ER) stress. In mammalian cells, the UPR is controlled by three ER-resident transmembrane proteins: inositol-requiring enyzme-1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor-6 (ATF6), by which cytoprotective mechanisms are initiated to restore ER functions. However, if cellular homeostasis is not restored by the UPR's initial events, UPR signaling triggers apoptotic cell death, which correlates with the pathogenesis of a wide range of human diseases. The intrinsic function of the UPR in regulating cell survival and death suggests its importance as a mechanistic link between ER stress and disease pathogenesis. Understanding UPR regulatory molecules or signaling pathways involved in disease pathogenesis is critical to establishing therapeutic strategies. For this purpose, several experimental tools have been developed to evaluate individual UPR components. In this chapter, we present methods to monitor and quantify activation of individual UPR signaling pathways in mammalian cells and tissues, and we review strategies to artificially and selectively activate individual UPR signaling pathways using chemical-genetic approaches.
Collapse
Affiliation(s)
- Nobuhiko Hiramatsu
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
63
|
Zhao Y, Tian T, Huang T, Nakajima S, Saito Y, Takahashi S, Yao J, Paton AW, Paton JC, Kitamura M. Subtilase cytotoxin activates MAP kinases through PERK and IRE1 branches of the unfolded protein response. Toxicol Sci 2010; 120:79-86. [PMID: 21147958 DOI: 10.1093/toxsci/kfq368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recent reports suggested involvement of mitogen-activated protein (MAP) kinases in the pathogenesis of Shiga toxin-induced hemolytic uremic syndrome (HUS). In the present study, we investigated a role for subtilase cytotoxin (SubAB), a possible trigger for HUS, in the regulation of MAP kinases. Treatment of cells with SubAB caused phosphorylation of c-Jun NH(2)-terminal kinase, extracellular signal-regulated kinase (ERK), and p38 MAP kinase. It was associated with activation of activator protein 1 (AP-1) and induction of AP-1-dependent transcription. SubAB induced the unfolded protein response (UPR) and consequently caused MAP kinase activation. SubAB led to induction of three major branches of the UPR, and the protein kinase-like endoplasmic reticulum kinase and inositol-requiring ER-to-nucleus signal kinase 1 pathways were responsible for the activation of MAP kinases. These results elucidated the potential of SubAB to trigger MAP kinase pathways via the UPR, which may contribute to the pathogenesis of Shiga toxin-induced HUS.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Yan Y, Gao YY, Liu BQ, Niu XF, Zhuang Y, Wang HQ. Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response. BMC Cancer 2010; 10:445. [PMID: 20723265 PMCID: PMC2931494 DOI: 10.1186/1471-2407-10-445] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 08/20/2010] [Indexed: 11/10/2022] Open
Abstract
Background Resveratrol (RES), a natural phytoalexin found at high levels in grapes and red wine, has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. However, the underlying molecular mechanisms are at present only partially understood. Method The effects of RES on activation of unfolded protein responses (UPR) were evaluated using Western blotting, semi-quantitative and real-time RT-PCR. Cell death was evaluated using Annexin V/PI staining and subsequent FACS. Results Similar as tunicamycin, treatment with RES lead to the activation of all 3 branches of the UPR, with early splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2α consistent with ER resident kinase (PERK) activation, activating transcription factor 6 (ATF6) splicing, and increase in expression levels of the downstream molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt's lymphoma Raji and Daudi cell lines. RES was shown to induce cell death, which could be attenuated by thwarting upregulation of CHOP. Conclusions Our data suggest that activation of the apoptotic arm of the UPR and its downstream effector CHOP/GADD153 is involved, at least in part, in RES-induced apoptosis in Burkitt's lymphoma cells.
Collapse
Affiliation(s)
- Ying Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110001, China
| | | | | | | | | | | |
Collapse
|
65
|
Ng CL, Oresic K, Tortorella D. TRAM1 is involved in disposal of ER membrane degradation substrates. Exp Cell Res 2010; 316:2113-22. [PMID: 20430023 DOI: 10.1016/j.yexcr.2010.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/12/2010] [Accepted: 04/12/2010] [Indexed: 11/28/2022]
Abstract
ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-kappaB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6(M241T) and US2, but not the soluble degradation substrate alpha(1)-antitrypsin null(HK). These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins.
Collapse
Affiliation(s)
- Caroline L Ng
- One Gustave L. Levy Place, Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
66
|
Toko H, Takahashi H, Kayama Y, Okada S, Minamino T, Terasaki F, Kitaura Y, Komuro I. ATF6 is important under both pathological and physiological states in the heart. J Mol Cell Cardiol 2010; 49:113-20. [PMID: 20380836 DOI: 10.1016/j.yjmcc.2010.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 01/05/2023]
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) evokes the ER stress response, including activating transcription factor 6 (ATF6), a key transcriptional activator to maintain cellular homeostasis. The ER stress has recently been reported to cause various diseases, but the role of ATF6 in the heart remains unknown. We clarified the role of ATF6 in the heart. The ATF6 activity was increased in the murine heart after myocardial infarction (MI). Treatment of mice with 4-(2-aminoethyl) benzenesulfonyl fluoride, an inhibitor of ATF6, further reduced cardiac function and increased the mortality rate at 14days after MI. Pharmacological inhibition of ATF6 induced dilatation of left ventricle and depression of cardiac function even in sham-operated murine hearts. The transgenic mice that expressed dominant negative mutant of ATF6 showed larger left ventricular dimension and reduced fractional shortening compared with wild-type littermates, resulting in death of heart failure at approximately 8weeks of age. In contrast, cardiac function after MI was better in transgenic mice that expressed constitutively active mutant of ATF6, compared with wild-type littermates. These results suggest that activation of the ER stress response factor ATF6 plays a critical role in not only protecting hearts under the pathological state but also maintaining cardiac function under the physiological state.
Collapse
Affiliation(s)
- Hauhiro Toko
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Jheng JR, Lau KS, Tang WF, Wu MS, Horng JT. Endoplasmic reticulum stress is induced and modulated by enterovirus 71. Cell Microbiol 2010; 12:796-813. [PMID: 20070307 DOI: 10.1111/j.1462-5822.2010.01434.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Picornavirus infection alters the endoplasmic reticulum (ER) membrane but it is unclear whether this induces ER stress. Infection of rhabdomyosarcoma cells with enterovirus 71 (EV71), a picornavirus, caused overexpression of the ER-resident chaperone proteins, BiP and calreticulin, and phosphorylation of eIF2alpha, but infection with UV-inactivated virus did not, indicating that ER stress was induced by viral replication and not by viral attachment or entry. Silencing (si)RNA knockdown demonstrated that phosphorylation of eIF2alpha was dependent on PKR: eIF2alpha phosphorylation was reduced by siPKR but not by siPERK. We provided evidence showing that PERK is upstream of PKR and is thus able to negatively regulate the PKR-eIF2alpha pathway. Pulse-chase experiments revealed that EV71 infection inhibited translation and activation of ATF6. Expression of BiP at the protein level was activated by a virus-dependent, ATF6-independent mechanism. EV71 upregulated XBP1 mRNA level, but neither IRE1-mediated XBP1 splicing nor its active spliced protein was detected, and its downstream gene, EDEM, was not activated. Epigenetic BiP overexpression alleviated EV71-induced ER stress and reduced viral protein expression and replication. Our results suggest that EV71 infection induces ER stress but modifies the outcome to assist viral replication.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
68
|
Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta Mol Basis Dis 2010; 1802:167-85. [DOI: 10.1016/j.bbadis.2009.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 12/16/2022]
|
69
|
The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 2009; 4:e8342. [PMID: 20020050 PMCID: PMC2791231 DOI: 10.1371/journal.pone.0008342] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/20/2009] [Indexed: 01/12/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER)-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR), which includes the inositol-requiring enzyme 1 (IRE-1), activating transcription factor 6 (ATF6) and PKR-like ER kinase (PERK) pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1) increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) and inhibitory effects of a dominant-negative form of eIF2α on GRP78 promoter activity, (2) increased translation of activating transcription factor 4 (ATF4) mRNA, and (3) ATF4-dependent activation of the C/EBP homologous protein (CHOP) gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN) signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1) degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.
Collapse
|
70
|
How transcription factors can adjust the gene expression floodgates. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 102:16-37. [PMID: 20025898 DOI: 10.1016/j.pbiomolbio.2009.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/17/2009] [Accepted: 12/07/2009] [Indexed: 12/18/2022]
Abstract
The rate of transcription initiation is the main level of quantitative control of gene expression, primarily responsible for the accumulation of mRNAs in the cell. Many, if not all, molecular actors involved in transcription initiation are known but the mechanisms underlying the frequency of initiations, remain elusive. To make the connection between transcription factors and the frequency of transcription initiation, intricated aspects of this complex activity are classified i) depending on whether or not the DNA-bound transcription factors directly activate the commitment to transcription and ii) on the destructive or non-destructive effect of transcription initiation on the stability of promoter complexes. Two possible sources of synergy allowing the combinatorial specificity of transcription factors action are compared, for binding to DNA and for recruiting transcription machineries. Tentative formulations are proposed to discriminate the different micro-reversible modes of DNA binding cooperativity modulating the specificity and dosage of transcription initiation.
Collapse
|
71
|
Davies MJ, Miranda E, Roussel BD, Kaufman RJ, Marciniak SJ, Lomas DA. Neuroserpin polymers activate NF-kappaB by a calcium signaling pathway that is independent of the unfolded protein response. J Biol Chem 2009; 284:18202-9. [PMID: 19423713 PMCID: PMC2709363 DOI: 10.1074/jbc.m109.010744] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Indexed: 01/21/2023] Open
Abstract
The autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies is characterized by the accumulation of ordered polymers of mutant neuroserpin within the endoplasmic reticulum of neurones. We show here that intracellular neuroserpin polymers activate NF-kappaB by a pathway that is independent of the IRE1, ATF6, and PERK limbs of the canonical unfolded protein response but is dependent on intracellular calcium. This pathway provides a mechanism for cells to sense and react to the accumulation of folded structures of mutant serpins within the endoplasmic reticulum. Our results provide strong support for the endoplasmic reticulum overload response being independent of the unfolded protein response.
Collapse
Affiliation(s)
- Mark J. Davies
- From the Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Elena Miranda
- From the Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Benoit D. Roussel
- From the Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Randal J. Kaufman
- the Departments of Biological Chemistry and Internal Medicine and the Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Stefan J. Marciniak
- From the Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - David A. Lomas
- From the Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom and
| |
Collapse
|
72
|
Yamazaki H, Hiramatsu N, Hayakawa K, Tagawa Y, Okamura M, Ogata R, Huang T, Nakajima S, Yao J, Paton AW, Paton JC, Kitamura M. Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. THE JOURNAL OF IMMUNOLOGY 2009; 183:1480-7. [PMID: 19561103 DOI: 10.4049/jimmunol.0900017] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Shiga toxin has the potential to induce expression of inflammation-associated genes, although the underlying mechanisms are not well understood. We examined the effects of subtilase cytotoxin (SubAB), an AB(5) toxin produced by some Shiga toxigenic Escherichia coli, on the activation of NF-kappaB. SubAB is known to be a protease which selectively degrades GRP78/Bip. Treatment of NRK-52E cells with SubAB caused rapid cleavage of GRP78. Following the degradation of GRP78, transient activation of NF-kappaB was observed with a peak at 6-12 h; the activation subsided within 24 h despite the continuous absence of intact GRP78. The activation of NF-kappaB was preceded by transient phosphorylation of Akt. Treatment of the cells with a selective inhibitor of Akt1/2 or an inhibitor of PI3K attenuated SubAB-induced NF-kappaB activation, suggesting that activation of Akt is an event upstream of NF-kappaB. Degradation of GRP78 caused the unfolded protein response (UPR), and inducers of the UPR mimicked the stimulatory effects of SubAB on Akt and NF-kappaB. SubAB triggered the three major branches of the UPR including the IRE1-XBP1, PERK, and ATF6 pathways. Dominant-negative inhibition of IRE1alpha, XBP1, or PERK did not attenuate activation of NF-kappaB by SubAB. In contrast, genetic and pharmacological inhibition of ATF6 significantly suppressed SubAB-triggered Akt phosphorylation and NF-kappaB activation. These results suggested that loss of GRP78 by SubAB leads to transient phosphorylation of Akt and consequent activation of NF-kappaB through the ATF6 branch of the UPR.
Collapse
Affiliation(s)
- Hiroaki Yamazaki
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Sung SC, Chao CY, Jeng KS, Yang JY, Lai MMC. The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6. Virology 2009; 387:402-13. [PMID: 19304306 PMCID: PMC7103415 DOI: 10.1016/j.virol.2009.02.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/05/2009] [Accepted: 02/11/2009] [Indexed: 02/04/2023]
Abstract
The 8ab protein of SARS-CoV is a group-specific accessory protein, which is lost when the virus was transmitted from animals to humans due to a 29-nucleotide deletion in the ORF8ab region. Here we found that 8ab protein is associated with ER membrane at luminal surface. 8ab protein was found to up-regulate the synthesis of endogenous ER-resident chaperons involved in protein folding through the activation of the transcription factor ATF6, while it showed no effect on the CHOP induction and XBP1 splicing associated with the unfolded protein response (UPR). When ectopically expressed in mammalian cells, 8ab induced the proteolysis of ATF6 and the translocation of its cleaved DNA-binding and transcription-activation domains from the ER to the nucleus. Finally, we showed that 8ab binds to the luminal domain of ATF6. These findings suggest that 8ab could modulate the UPR by activating ATF6 to facilitate protein folding and processing. Thus, the loss of 8ab in SARS-CoV through viral evolution in animals may play a role in its pathogenicity.
Collapse
Affiliation(s)
- Shu-Chiun Sung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
74
|
ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci U S A 2008; 105:10519-24. [PMID: 18650380 DOI: 10.1073/pnas.0800939105] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathways that allow quiescent disseminated cancer cells to survive during prolonged dormancy periods are unknown. Here, we identify the transcription factor ATF6alpha as a pivotal survival factor for quiescent but not proliferative squamous carcinoma cells. ATF6alpha is essential for the adaptation of dormant cells to chemotherapy, nutritional stress, and, most importantly, the in vivo microenvironment. Mechanism analysis showed that MKK6 and p38alpha/beta contribute to regulating nuclear translocation and transcriptional activation of ATF6alpha in dormant cancer cells. Downstream, ATF6alpha induces survival through the up-regulation of Rheb and activation of mTOR signaling independent of Akt. Down-regulation of ATF6alpha or Rheb reverted dormant tumor cell resistance to rapamycin and induced pronounced killing only of dormant cancer cells in vivo. Knocking down ATF6alpha also prolonged the survival of nude mice bearing dormant tumor cells. Targeting survival signaling by the ATF6alpha-Rheb-mTOR pathway in dormant tumor cells may favor the eradication of residual disease during dormancy periods.
Collapse
|
75
|
Mamady H, Storey KB. Coping with the stress: expression of ATF4, ATF6, and downstream targets in organs of hibernating ground squirrels. Arch Biochem Biophys 2008; 477:77-85. [PMID: 18541136 DOI: 10.1016/j.abb.2008.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/16/2008] [Accepted: 05/17/2008] [Indexed: 11/16/2022]
Abstract
Perturbation of the endoplasmic reticulum (ER) protein folding apparatus via any one of several environmental or metabolic stresses rapidly triggers a complex program of cellular responses that is termed the unfolded protein response (UPR). Stresses that trigger this response in mammals can include low temperature, hypoxia, ischemia, and oxidative stress. All of these can be natural features of mammalian hibernation, and hence the UPR might be integral to long term survival in a state of cold torpor. The present study analyzes changes in gene and/or protein expression of multiple markers of the UPR in tissues of euthermic (control) versus hibernating ground squirrels, Spermophilus tridecemlineatus. Immunoblot analysis of ATF4 protein expression revealed strong increases of 1.9- to 2.5-fold in brown adipose tissue, skeletal muscle, and brain during hibernation. However, transcript levels of atf4 were unchanged or lowered which suggests that ATF4 protein levels were regulated at the translational level. Subcellular localization studies showed that ATF4 translocated into the nucleus during hibernation, as did its cofactor, the phosphorylated form of CREB-1, which rose by 25- to 39-fold in nuclear extracts of brain and skeletal muscle of torpid animals. The responses of other proteins involved in the UPR including p-PERK, ATF6, GADD153, and GADD34 were also evaluated. The data suggest that ATF4 up-regulation may play an important role in coordinating gene expression responses that support the hibernating phenotype.
Collapse
Affiliation(s)
- Hapsatou Mamady
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6
| | | |
Collapse
|
76
|
Papp S, Zhang X, Szabo E, Michalak M, Opas M. Expression of endoplasmic reticulum chaperones in cardiac development. Open Cardiovasc Med J 2008; 2:31-5. [PMID: 18949096 PMCID: PMC2570582 DOI: 10.2174/1874192400802010031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 11/22/2022] Open
Abstract
To determine if cardiogenesis causes endoplasmic reticulum stress, we examined chaperone expression. Many cardiac pathologies cause activation of the fetal gene program, and we asked the reverse: could activation of the fetal gene program during development induce endoplasmic reticulum stress/chaperones? We found stress related chaperones were more abundant in embryonic compared to adult hearts, indicating endoplasmic reticulum stress during normal cardiac development. To determine the degree of stress, we investigated endoplasmic reticulum stress pathways during cardiogenesis. We detected higher levels of ATF6alpha, caspase 7 and 12 in adult hearts. Thus, during embryonic development, there is large protein synthetic load but there is no endoplasmic reticulum stress. In adult hearts, chaperones are less abundant but there are increased levels of ATF6alpha and ER stress-activated caspases. Thus, protein synthesis during embryonic development does not seem to be as intense a stress as is required for apoptosis that is found during postnatal remodelling.
Collapse
Affiliation(s)
- Sylvia Papp
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
77
|
Lai WL, Wong NS. The PERK/eIF2α signaling pathway of Unfolded Protein Response is essential for N-(4-hydroxyphenyl)retinamide (4HPR)-induced cytotoxicity in cancer cells. Exp Cell Res 2008; 314:1667-82. [DOI: 10.1016/j.yexcr.2008.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 02/06/2008] [Accepted: 02/08/2008] [Indexed: 01/22/2023]
|
78
|
The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J Nutr Biochem 2008; 19:567-76. [PMID: 18430557 DOI: 10.1016/j.jnutbio.2007.10.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 08/27/2007] [Accepted: 10/02/2007] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a serious obesity-related disorder. NAFLD encompasses a wide spectrum of hepatic derangements ranging from a surfeit of fat in the liver (steatosis) to lipid surplus accompanied by fibrosis and cellular death (nonalcoholic steatohepatitis or NASH). The most widely accepted model to explain the progression from simple NAFLD to NASH is the "two-hit hypothesis," wherein fat over accumulation per se is not sufficient to induce the progression to statohepatitis, but renders the liver more susceptible to "second hits" that, once imposed upon the steatotic liver, cause further aberrations that culminate in the development of NASH. However, in light of recent data from our laboratory and elsewhere, we propose that an increased ratio of saturated-to-unsaturated fatty acids delivered to or stored within the liver may, in part, mediate the progression from simple steatosis to NASH. The molecular mechanisms that mediate the effect of saturated fatty acids are unclear, although proinflammatory cytokines, reactive oxygen species, and endoplasmic reticulum stress may all play a role. Collectively, these data suggest that saturated fatty acids may represent an intrinsic second hit to the liver that hastens the development of NASH.
Collapse
|
79
|
Tanaka AR, Kano F, Ueda K, Murata M. The ABCA1 Q597R mutant undergoes trafficking from the ER upon ER stress. Biochem Biophys Res Commun 2008; 369:1174-8. [PMID: 18343215 DOI: 10.1016/j.bbrc.2008.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
Mutations in ATP binding cassette transporter 1 (ABCA1), a membrane protein associated with cellular cholesterol efflux, cause Tangier disease (TD). Previously, we showed that an ABCA1 Q597R mutant (QR) identified in TD is retained in the endoplasmic reticulum. Here, we report that QR trafficking to the plasma membrane was rapidly induced by thapsigargin or DTT, indicating that ER stress-induced QR trafficking. However, pharmacological rescue of ABCA1 activity was not observed. The trafficking was dependent on COPII components and occurred via the ER-Golgi intermediate compartments. Furthermore, we found that QR was more sensitive to ER stress than ATF6, a transcription factor associated with the ER stress response. These results suggest that thapsigargin can be effective in correcting trafficking defects, and raise the possibility that ER stress-induced trafficking is involved in ER quality control.
Collapse
Affiliation(s)
- Arowu R Tanaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
80
|
Yokouchi M, Hiramatsu N, Hayakawa K, Okamura M, Du S, Kasai A, Takano Y, Shitamura A, Shimada T, Yao J, Kitamura M. Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response. J Biol Chem 2007; 283:4252-60. [PMID: 18086661 DOI: 10.1074/jbc.m705951200] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cadmium triggers apoptosis of LLC-PK1 cells through induction of endoplasmic reticulum (ER) stress. We found that cadmium caused generation of reactive oxygen species (ROS) and that cadmium-induced ER stress was inhibited by antioxidants. In contrast, suppression of ER stress did not attenuate cadmium-triggered oxidative stress, suggesting that ER stress occurs downstream of oxidative stress. Exposure of the cells to either O(2)(*), H(2)O(2), or ONOO(-) caused apoptosis, whereas ER stress was induced only by O(2)(*) or ONOO(-). Transfection with manganese superoxide dismutase significantly attenuated cadmium-induced ER stress and apoptosis, whereas pharmacological inhibition of ONOO(-) was ineffective. Interestingly, transfection with catalase attenuated cadmium-induced apoptosis without affecting the level of ER stress. O(2)(*) caused activation of the activating transcription factor 6-CCAAT/enhancer-binding protein-homologous protein (CHOP) and the inositol-requiring ER-to-nucleus signal kinase 1-X-box-binding protein 1 (XBP1) proapoptotic cascades, and overexpression of manganese superoxide dismutase attenuated cadmium-triggered induction of both pathways. Furthermore, phosphorylation of proapoptotic c-Jun N-terminal kinase by O(2)(*) or cadmium was suppressed by dominant-negative inhibition of XBP1. These data elucidated 1) cadmium caused ER stress via generation of ROS, 2) O(2)(*) was selectively involved in cadmium-triggered, ER stress-mediated apoptosis through activation of the activating transcription factor 6-CHOP and inositol-requiring ER-to-nucleus signal kinase 1-XBP1 pathways, and 3) phosphorylation of JNK was caused by O(2)(*)-triggered activation of XBP1.
Collapse
Affiliation(s)
- Makiko Yokouchi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Shimokato 1110, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P. IRE1 signaling affects cell fate during the unfolded protein response. Science 2007; 318:944-9. [PMID: 17991856 DOI: 10.1126/science.1146361] [Citation(s) in RCA: 1091] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endoplasmic reticulum (ER) stress activates a set of signaling pathways, collectively termed the unfolded protein response (UPR). The three UPR branches (IRE1, PERK, and ATF6) promote cell survival by reducing misfolded protein levels. UPR signaling also promotes apoptotic cell death if ER stress is not alleviated. How the UPR integrates its cytoprotective and proapoptotic outputs to select between life or death cell fates is unknown. We found that IRE1 and ATF6 activities were attenuated by persistent ER stress in human cells. By contrast, PERK signaling, including translational inhibition and proapoptotic transcription regulator Chop induction, was maintained. When IRE1 activity was sustained artificially, cell survival was enhanced, suggesting a causal link between the duration of UPR branch signaling and life or death cell fate after ER stress. Key findings from our studies in cell culture were recapitulated in photoreceptors expressing mutant rhodopsin in animal models of retinitis pigmentosa.
Collapse
Affiliation(s)
- Jonathan H Lin
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Kerbiriou M, Le Drévo MA, Férec C, Trouvé P. Coupling cystic fibrosis to endoplasmic reticulum stress: Differential role of Grp78 and ATF6. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1236-49. [PMID: 18022401 DOI: 10.1016/j.bbadis.2007.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 01/23/2023]
Abstract
Cystic fibrosis (CF) is the most common Caucasian autosomal recessive disease. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, which is a chloride (Cl(-)) channel. The most common mutation leads to a missing phenylalanine at position 508 (DeltaF508). The DeltaF508-CFTR protein is misfolded and retained in the endoplasmic reticulum and may trigger the unfolded protein response (UPR). Furthermore, CF is accompanied by inflammation and infection, which are also involved in the UPR. To date, the UPR transducer ATF6 and ER stress sensor Grp78 have been used as UPR markers. Therefore, our aim was to study the activation of ATF6 and Grp78 in transfected human epithelial cells expressing the DeltaF508-CFTR protein, and we showed that they are activated in these cells. We investigated the effect of exogenous UPR inducers thapsigargin (Tg) and tunicamycin (Tu) on Grp78 and ATF6 expression. Whereas the cells reacted to the UPR induction, we show a difference in the electrophoretic pattern of ATF6. The Grp78/ATF6 complex was previously described, but its stability during UPR is controversial. Using co-immunoprecipitation we show that it is stable in DeltaF508-CFTR-expressing cells and is maintained under UPR conditions. Finally, using siRNA, we show that decreased ATF6 expression induces increased cAMP-dependent halide flux through DeltaF508-CFTR due to its increased membrane localization. Therefore, our results suggest that UPR may be triggered in CF and that ATF6 may be a therapeutic target.
Collapse
|
83
|
Aturaliya RN, Fink JL, Davis MJ, Teasdale MS, Hanson KA, Miranda KC, Forrest ARR, Grimmond SM, Suzuki H, Kanamori M, Kai C, Kawai J, Carninci P, Hayashizaki Y, Teasdale RD. Subcellular localization of mammalian type II membrane proteins. Traffic 2007; 7:613-25. [PMID: 16643283 DOI: 10.1111/j.1600-0854.2006.00407.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Application of a computational membrane organization prediction pipeline, MemO, identified putative type II membrane proteins as proteins predicted to encode a single alpha-helical transmembrane domain (TMD) and no signal peptides. MemO was applied to RIKEN's mouse isoform protein set to identify 1436 non-overlapping genomic regions or transcriptional units (TUs), which encode exclusively type II membrane proteins. Proteins with overlapping predicted InterPro and TMDs were reviewed to discard false positive predictions resulting in a dataset comprised of 1831 transcripts in 1408 TUs. This dataset was used to develop a systematic protocol to document subcellular localization of type II membrane proteins. This approach combines mining of published literature to identify subcellular localization data and a high-throughput, polymerase chain reaction (PCR)-based approach to experimentally characterize subcellular localization. These approaches have provided localization data for 244 and 169 proteins. Type II membrane proteins are localized to all major organelle compartments; however, some biases were observed towards the early secretory pathway and punctate structures. Collectively, this study reports the subcellular localization of 26% of the defined dataset. All reported localization data are presented in the LOCATE database (http://www.locate.imb.uq.edu.au).
Collapse
Affiliation(s)
- Rajith N Aturaliya
- Institute for Molecular Bioscience and ARC Centre in Bioinformatics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Endo S, Hiramatsu N, Hayakawa K, Okamura M, Kasai A, Tagawa Y, Sawada N, Yao J, Kitamura M. Geranylgeranylacetone, an inducer of the 70-kDa heat shock protein (HSP70), elicits unfolded protein response and coordinates cellular fate independently of HSP70. Mol Pharmacol 2007; 72:1337-48. [PMID: 17702888 DOI: 10.1124/mol.107.039164] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Geranylgeranylacetone (GGA), an antiulcer agent, has the ability to induce 70-kDa heat shock protein (HSP70) in various cell types and to protect cells from apoptogenic insults. However, little is known about effects of GGA on other HSP families of molecules. We found that, at concentrations >/=100 microM, GGA caused selective expression of 78-kDa glucose-regulated protein (GRP78), an HSP70 family member inducible by endoplasmic reticulum (ER) stress, without affecting the level of HSP70 in various cell types. Induction of ER stress by GGA was also evidenced by expression of another endogenous marker, CCAAT/enhancer-binding protein-homologous protein (CHOP); decreased activity of ER stress-responsive alkaline phosphatase; and unfolded protein response (UPR), including activation of the activating transcription factor 6 (ATF6) pathway and the inositol-requiring ER-to-nucleus signal kinase 1-X-box-binding protein 1 (IRE1-XBP1) pathway. Incubation of mesangial cells with GGA caused significant apoptosis, which was attenuated by transfection with inhibitors of caspase-12 (i.e., a dominant-negative mutant of caspase-12 and MAGE-3). Dominant-negative suppression of IRE1 or XBP1 significantly attenuated apoptosis without affecting the levels of CHOP and GRP78. Inhibition of c-Jun NH(2)-terminal kinase, the molecule downstream of IRE1, by 1,9-pyrazoloanthrone (SP600125) did not improve cell survival. Blockade of ATF6 by 4-(2-aminoethyl) benzenesulfonyl fluoride enhanced apoptosis by GGA, and it was correlated with attenuated induction of both GRP78 and CHOP. Overexpression of GRP78 or dominant-negative inhibition of CHOP significantly attenuated GGA-induced apoptosis. These results suggested that GGA triggers both proapoptotic (IRE1-XBP1, ATF6-CHOP) and antiapoptotic (ATF6-GRP78) UPR and thereby coordinates cellular fate even without induction of HSP70.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Shimokato 1110, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Tazi KA, Bièche I, Paradis V, Guichard C, Laurendeau I, Dargère D, Legrand A, Fay M, Pedruzzi E, Robin MA, Cazals-Hatem D, Tellier Z, Bernuau D, Feldmann G, Vidaud M, Lebrec D, Ogier-Denis E, Moreau R. In vivo altered unfolded protein response and apoptosis in livers from lipopolysaccharide-challenged cirrhotic rats. J Hepatol 2007; 46:1075-88. [PMID: 17399843 DOI: 10.1016/j.jhep.2007.01.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 01/10/2007] [Accepted: 01/16/2007] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Endoplasmic reticulum (ER)-related unfolded protein response (UPR) is mediated by PKR-like ER kinase (PERK), ATF6 and IRE1. PERK phosphorylates eukaryotic translation initiation factor-2alpha (eIF2alpha) to attenuate protein synthesis, including in NF-kappaB-dependent antiapoptotic proteins. We hypothesized that an altered UPR in the liver may sensitize cirrhotic livers to LPS-induced, TNFalpha-mediated apoptosis. Thus, we examined in vivo UPR and NF-kappaB activity in livers from cirrhotic and normal LPS-challenged rats. METHODS Livers were harvested in rats that did or did not receive LPS. RESULTS Under baseline conditions, no UPR was found in normal livers while PERK/eIF2alpha and ATF6 pathways were activated in cirrhotic livers. After LPS, in normal livers, the PERK/eIF2alpha pathway was transiently activated. ATF6 and IRE1 were activated. In cirrhotic livers, the PERK/eIF2alpha pathway remained elevated. ATF6 and IRE1 pathways were altered. LPS-induced, NF-kappaB-dependent antiapoptotic proteins increased in normal livers whereas their expression was blunted at the posttranscriptional level in cirrhotic livers. CONCLUSIONS Cirrhotic livers exhibit partial UPR activation in the basal state and full UPR, although altered, after LPS challenge. Sustained eIF2alpha phosphorylation, a hallmark of cirrhotic liver UPR, is associated with a lack of LPS-induced accumulation of NF-kappaB-dependent antiapoptotic proteins which may sensitize cirrhotic livers to LPS/TNFalpha-mediated apoptosis.
Collapse
Affiliation(s)
- Khalid A Tazi
- INSERM U773, Centre de Recherche Bichat-Beaujon CRB3, Paris 75018, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Papp S, Fadel MP, Kim H, McCulloch CA, Opas M. Calreticulin affects fibronectin-based cell-substratum adhesion via the regulation of c-Src activity. J Biol Chem 2007; 282:16585-98. [PMID: 17389592 DOI: 10.1074/jbc.m701011200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Calreticulin is an endoplasmic reticulum Ca2+-storage protein, which influences gene expression and cell adhesion. In this study, we show that calreticulin induces fibronectin gene expression and matrix deposition, leading to differences in cell spreading and focal adhesion formation in cells differentially expressing calreticulin. We further show that these effects of calreticulin occur via a c-Src-regulated pathway and that c-Src activity is inversely related to calreticulin abundance. Since c-Src is an important regulator of focal contact turnover, we investigated the effect of c-Src inhibition on cells differentially expressing calreticulin. Inhibition of c-Src rescued the poorly adhesive phenotype of the calreticulin-underexpressing cells in that they became well spread, commenced formation of numerous focal contacts, and deposited a rich fibronectin matrix. Importantly, we show that c-Src activity is dependent on releasable Ca2+ from the endoplasmic reticulum, thus implicating Ca2+-sensitive pathways that are affected by calreticulin in cell-substratum adhesion. We propose that calreticulin affects fibronectin synthesis and matrix assembly via the regulation of fibronectin gene expression. In parallel, calcium-dependent effects of calreticulin on c-Src activity influence the formation and/or stability of focal contacts, which are instrumental in matrix assembly and remodeling.
Collapse
Affiliation(s)
- Sylvia Papp
- Department of Laboratory Medicine and Pathobiology and Canadian Institutes of Health Research Group in Matrix Dynamics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
87
|
Nagy G, Kardon T, Wunderlich L, Szarka A, Kiss A, Schaff Z, Bánhegyi G, Mandl J. Acetaminophen induces ER dependent signaling in mouse liver. Arch Biochem Biophys 2006; 459:273-9. [PMID: 17207453 DOI: 10.1016/j.abb.2006.11.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 11/20/2006] [Accepted: 11/21/2006] [Indexed: 01/10/2023]
Abstract
Role of endoplasmic reticulum (ER) in liver injury by acetaminophen (AAP) was studied in vivo in mice. Sublethal dose of AAP resulted in a decrease in microsomal total glutathione and in the reduced-to-total glutathione ratio; redox state of thiols of ER resident oxidoreductases ERp72, PDI was shifted towards the oxidized form; ER stress-responsive transcription factor ATF6 was activated. Transcriptional activation and elevated expression of GADD153/CHOP, an ER stress-responsive proapoptotic transcription factor, was observed upon AAP addition. Transient activation of the ER-resident caspase-12 was shown followed by an elevation in procaspase-12 level. Caspase-3 and caspase-8 activation could not be detected. AAP treatment resulted in an increased apoptosis of hepatocytes. Buthionine-sulfoximine treatment was unable to mimic the effects by AAP indicating that glutathione depletion itself is insufficient to provoke apoptosis. The results show that intraluminal redox imbalance of the ER and consequential activation of signaling processes and proapoptotic events are involved in hepatocellular damage caused by AAP overdose.
Collapse
Affiliation(s)
- Gábor Nagy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest POB 260, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Liang G, Audas TE, Li Y, Cockram GP, Dean JD, Martyn AC, Kokame K, Lu R. Luman/CREB3 induces transcription of the endoplasmic reticulum (ER) stress response protein Herp through an ER stress response element. Mol Cell Biol 2006; 26:7999-8010. [PMID: 16940180 PMCID: PMC1636730 DOI: 10.1128/mcb.01046-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Luman/CREB3 (also called LZIP) is an endoplasmic reticulum (ER) membrane-bound transcription factor which is believed to undergo regulated intramembrane proteolysis in response to cellular cues. We previously found that Luman activates transcription from the unfolded protein response element. Here we report the identification of Herp, a gene involved in ER stress-associated protein degradation (ERAD), as a direct target of Luman. We found that Luman was transcriptionally induced and proteolytically activated by the ER stress inducer thaspsigargin. Overexpression of Luman activated transcription of cellular Herp via ER stress response element II (ERSE-II; ATTGG-N-CCACG) in the promoter region. Mutagenesis studies and chromatin immunoprecipitation assays showed that Luman physically associates with the Herp promoter, specifically the second half-site (CCACG) of ERSE-II. Luman was also necessary for the full activation of Herp during the ER stress response, since Luman small interfering RNA knockdown or functional repression by a dominant negative mutant attenuated Herp gene expression. Like Herp, overexpression of Luman protected cells against ER stress-induced apoptosis. With Luman structurally similar to ATF6 but resembling XBP1 in DNA-binding specificities, we propose that Luman is a novel factor that plays a role in ERAD and a converging point for various signaling pathways channeling through the ER.
Collapse
Affiliation(s)
- Genqing Liang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | | | |
Collapse
|