51
|
Roles of Notch Signaling in the Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23116241. [PMID: 35682918 PMCID: PMC9181414 DOI: 10.3390/ijms23116241] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The Notch signaling pathway is an architecturally simple signaling mechanism, well known for its role in cell fate regulation during organ development and in tissue homeostasis. In keeping with its importance for normal development, dysregulation of Notch signaling is increasingly associated with different types of tumors, and proteins in the Notch signaling pathway can act as oncogenes or tumor suppressors, depending on the cellular context and tumor type. In addition to a role as a driver of tumor initiation and progression in the tumor cells carrying oncogenic mutations, it is an emerging realization that Notch signaling also plays a role in non-mutated cells in the tumor microenvironment. In this review, we discuss how aberrant Notch signaling can affect three types of cells in the tumor stroma-cancer-associated fibroblasts, immune cells and vascular cells-and how this influences their interactions with the tumor cells. Insights into the roles of Notch in cells of the tumor environment and the impact on tumor-stroma interactions will lead to a deeper understanding of Notch signaling in cancer and inspire new strategies for Notch-based tumor therapy.
Collapse
|
52
|
Lidonnici J, Santoro MM, Oberkersch RE. Cancer-Induced Metabolic Rewiring of Tumor Endothelial Cells. Cancers (Basel) 2022; 14:cancers14112735. [PMID: 35681715 PMCID: PMC9179421 DOI: 10.3390/cancers14112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Angiogenesis, the formation of new blood vessels from preexisting ones, is a complex and demanding biological process that plays an important role in physiological, as well as pathological conditions, including cancer. During tumor growth, the induction of angiogenesis allows tumor cells to grow, invade, and metastasize. Recent evidence supports endothelial cell metabolism as a critical regulator of angiogenesis. However, whether and how tumor endothelial cells rewire their metabolism in cancer remains elusive. In this review, we discussed the metabolic signatures of tumor endothelial cells and their symbiotic, competitive, and mechanical metabolic interactions with tumor cells. We also discussed the recent works that may provide a rationale for attractive metabolic targets and strategies for developing specific therapies against tumor angiogenesis. Abstract Cancer is a leading cause of death worldwide. If left untreated, tumors tend to grow and spread uncontrolled until the patient dies. To support this growth, cancer cells need large amounts of nutrients and growth factors that are supplied and distributed to the tumor tissue by the vascular system. The aberrant tumor vasculature shows deep morphological, molecular, and metabolic differences compared to the blood vessels belonging to the non-malignant tissues (also referred as normal). A better understanding of the metabolic mechanisms driving the differences between normal and tumor vasculature will allow the designing of new drugs with a higher specificity of action and fewer side effects to target tumors and improve a patient’s life expectancy. In this review, we aim to summarize the main features of tumor endothelial cells (TECs) and shed light on the critical metabolic pathways that characterize these cells. A better understanding of such mechanisms will help to design innovative therapeutic strategies in healthy and diseased angiogenesis.
Collapse
|
53
|
Manocha E, Consonni A, Baggi F, Ciusani E, Cocce V, Paino F, Tremolada C, Caruso A, Alessandri G. CD146+ Pericytes Subset Isolated from Human Micro-Fragmented Fat Tissue Display a Strong Interaction with Endothelial Cells: A Potential Cell Target for Therapeutic Angiogenesis. Int J Mol Sci 2022; 23:ijms23105806. [PMID: 35628617 PMCID: PMC9144360 DOI: 10.3390/ijms23105806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Pericytes (PCs) are mesenchymal stromal cells (MSCs) that function as support cells and play a role in tissue regeneration and, in particular, vascular homeostasis. PCs promote endothelial cells (ECs) survival which is critical for vessel stabilization, maturation, and remodeling. In this study, PCs were isolated from human micro-fragmented adipose tissue (MFAT) obtained from fat lipoaspirate and were characterized as NG2+/PDGFRβ+/CD105+ cells. Here, we tested the fat-derived PCs for the dispensability of the CD146 marker with the aim of better understanding the role of these PC subpopulations on angiogenesis. Cells from both CD146-positive (CD146+) and negative (CD146−) populations were observed to interact with human umbilical vein ECs (HUVECs). In addition, fat-derived PCs were able to induce angiogenesis of ECs in spheroids assay; and conditioned medium (CM) from both PCs and fat tissue itself led to the proliferation of ECs, thereby marking their role in angiogenesis stimulation. However, we found that CD146+ cells were more responsive to PDGF-BB-stimulated migration, adhesion, and angiogenic interaction with ECs, possibly owing to their higher expression of NCAM/CD56 than the corresponding CD146− subpopulation. We conclude that in fat tissue, CD146-expressing cells may represent a more mature pericyte subpopulation that may have higher efficacy in controlling and stimulating vascular regeneration and stabilization than their CD146-negative counterpart.
Collapse
Affiliation(s)
- Ekta Manocha
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.C.); (G.A.)
- Correspondence:
| | - Alessandra Consonni
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.C.); (F.B.)
| | - Fulvio Baggi
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.C.); (F.B.)
| | - Emilio Ciusani
- Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Valentina Cocce
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (V.C.); (F.P.)
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (V.C.); (F.P.)
| | - Carlo Tremolada
- Department of Stem Cells and Regenerative Medicine, Image Institute, 20122 Milan, Italy;
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.C.); (G.A.)
| | - Giulio Alessandri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.C.); (G.A.)
- Department of Stem Cells and Regenerative Medicine, Image Institute, 20122 Milan, Italy;
| |
Collapse
|
54
|
Acquired αSMA Expression in Pericytes Coincides with Aberrant Vascular Structure and Function in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14102448. [PMID: 35626052 PMCID: PMC9139959 DOI: 10.3390/cancers14102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
The subpopulations of tumor pericytes undergo pathological phenotype switching, affecting their normal function in upholding structural stability and cross-communication with other cells. In the case of pancreatic ductal adenocarcinoma (PDAC), a significant portion of blood vessels are covered by an α-smooth muscle actin (αSMA)-expressing pericyte, which is normally absent from capillary pericytes. The DesminlowαSMAhigh phenotype was significantly correlated with intratumoral hypoxia and vascular leakiness. Using an in vitro co-culture system, we demonstrated that cancer cell-derived exosomes could induce ectopic αSMA expression in pericytes. Exosome-treated αSMA+ pericytes presented altered pericyte markers and an acquired immune-modulatory feature. αSMA+ pericytes were also linked to morphological and biomechanical changes in the pericyte. The PDAC exosome was sufficient to induce αSMA expression by normal pericytes of the healthy pancreas in vivo, and the vessels with αSMA+ pericytes were leaky. This study demonstrated that tumor pericyte heterogeneity could be dictated by cancer cells, and a subpopulation of these pericytes confers a pathological feature.
Collapse
|
55
|
Shukla P, Yeleswarapu S, Heinrich M, Prakash J, Pati F. Mimicking Tumor Microenvironment by 3D Bioprinting: 3D Cancer Modeling. Biofabrication 2022; 14. [PMID: 35512666 DOI: 10.1088/1758-5090/ac6d11] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
The tumor microenvironment typically comprises cancer cells, tumor vasculature, stromal components like fibroblasts, and host immune cells that assemble to support tumorigenesis. However, preexisting classic cancer models like 2D cell culture methods, 3D cancer spheroids, and tumor organoids seem to lack essential tumor microenvironment components. 3D bioprinting offers enormous advantages for developing in vitro tumor models by allowing user-controlled deposition of multiple biomaterials, cells, and biomolecules in a predefined architecture. This review highlights the recent developments in 3D cancer modeling using different bioprinting techniques to recreate the TME. 3D bioprinters enable fabrication of high-resolution microstructures to reproduce TME intricacies. Furthermore, 3D bioprinted models can be applied as a preclinical model for versatile research applications in the tumor biology and pharmaceutical industries. These models provide an opportunity to develop high-throughput drug screening platforms and can further be developed to suit individual patient requirements hence giving a boost to the field of personalized anti-cancer therapeutics. We underlined the various ways the existing studies have tried to mimic the TME, mimic the hallmark events of cancer growth and metastasis within the 3D bioprinted models and showcase the 3D drug-tumor interaction and further utilization of such models to develop personalized medicine.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| | - Sriya Yeleswarapu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| | - Marcel Heinrich
- Department of Biomaterials, Science and Technology, University of Twente Faculty of Science and Technology, Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, University of Twente Faculty of Science and Technology, Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| |
Collapse
|
56
|
He R, Chou C, Chen L, Stoller M, Kang M, Ho SP. Insights Into Pulp Biomineralization in Human Teeth. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.883336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IntroductionMineralized pulp (MP) compromises tooth function and its causation is unknown. The hypothesis of this study is that pulp mineralization is associated with pulpal tissue adaptation, increased mineral densities, and decreased permeabilities of tubular dentin and cementum. Methods will include correlative spatial mapping of physicochemical and biochemical characteristics of pulp, and contextualize these properties within the dentin-pulp complex (DPC) to reveal the inherent vunerabilities of pulp.MethodsSpecimens (N = 25) were scanned using micro X-ray computed tomography (micro-XCT) to visualize MP and measure mineral density (MD). Elemental spatial maps of MP were acquired using synchrotron X-ray fluorescence microprobe (μXRF) and energy dispersive X-ray spectroscopy (EDX). Extracted pulp tissues were sectioned for immunolabelling and the sections were imaged using a light microscope. Microscale morphologies and nanoscale ultrastructures of MP were imaged using scanning electron (SEM) and scanning transmission electron microscopy (STEM) techniques.ResultsHeterogeneous distribution of MD from 200 to 2,200 mg/cc, and an average MD of 892 (±407) mg/cc were observed. Highly mineralized pulp with increased number of occluded tubules, reduced pore diameter in cementum, and decreased connectivity in lateral channels were observed. H&E, trichrome, and von Kossa staining showed lower cell and collagen densities, and mineralized regions in pulp. The biomolecules osteopontin (OPN), osteocalcin (OCN), osterix (OSX), and bone sialoprotein (BSP) were immunolocalized around PGP 9.5 positive neurovascular bundles in MP. SEM and STEM revealed a wide range of nano/micro particulates in dentin tubules and spherulitic mineral aggregates in the collagen with intrafibrillar mineral surrounding neurovascular bundles. EDX and μXRF showed elevated counts of Ca, P, Mg, and Zn inside pulp and at the dentin-pulp interface (DPI) in the DPC.ConclusionColocalization of physical and chemical, and biomolecular compositions in MP suggest primary and secondary biomineralization pathways in pulp and dentin at a tissue level, and altered fluid dynamics at an organ level. Elevated counts of Zn at the mineralizing front in MP indicated its role in pulp biomineralization. These observations underpin the inherent mechano- and chemo-responsiveness of the neurovascular DPC and help elucidate the clinical subtleties related to pulpitis, dentin-bridge, and pulp stone formation.
Collapse
|
57
|
Zhou H, Wang M, Zhang Y, Su Q, Xie Z, Chen X, Yan R, Li P, Li T, Qin X, Yang H, Wu C, You F, Li S, Liu Y. Functions and clinical significance of mechanical tumor microenvironment: cancer cell sensing, mechanobiology and metastasis. Cancer Commun (Lond) 2022; 42:374-400. [PMID: 35470988 PMCID: PMC9118059 DOI: 10.1002/cac2.12294] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Dynamic and heterogeneous interaction between tumor cells and the surrounding microenvironment fuels the occurrence, progression, invasion, and metastasis of solid tumors. In this process, the tumor microenvironment (TME) fractures cellular and matrix architecture normality through biochemical and mechanical means, abetting tumorigenesis and treatment resistance. Tumor cells sense and respond to the strength, direction, and duration of mechanical cues in the TME by various mechanotransduction pathways. However, far less understood is the comprehensive perspective of the functions and mechanisms of mechanotransduction. Due to the great therapeutic difficulties brought by the mechanical changes in the TME, emerging studies have focused on targeting the adverse mechanical factors in the TME to attenuate disease rather than conventionally targeting tumor cells themselves, which has been proven to be a potential therapeutic approach. In this review, we discussed the origins and roles of mechanical factors in the TME, cell sensing, mechano‐biological coupling and signal transduction, in vitro construction of the tumor mechanical microenvironment, applications and clinical significance in the TME.
Collapse
Affiliation(s)
- Hanying Zhou
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Meng Wang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Qingqing Su
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Zhengxin Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Ran Yan
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China.,Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Fengming You
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China.,Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
58
|
Dasgupta S, Saha A, Ganguly N, Bhuniya A, Dhar S, Guha I, Ghosh T, Sarkar A, Ghosh S, Roy K, Das T, Banerjee S, Pal C, Baral R, Bose A. NLGP regulates RGS5-TGFβ axis to promote pericyte-dependent vascular normalization during restricted tumor growth. FASEB J 2022; 36:e22268. [PMID: 35363396 DOI: 10.1096/fj.202101093r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/05/2022] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Altered RGS5-associated intracellular pericyte signaling and its abnormal crosstalk with endothelial cells (ECs) result chaotic tumor-vasculature, prevent effective drug delivery, promote immune-evasion and many more to ensure ultimate tumor progression. Moreover, the frequency of lethal-RGS5high pericytes within tumor was found to increase with disease progression, which signifies the presence of altered cell death pathway within tumor microenvironment (TME). In this study, we checked whether and how neem leaf glycoprotein (NLGP)-immunotherapy-mediated tumor growth restriction is associated with modification of pericytes' signaling, functions and its interaction with ECs. Analysis of pericytes isolated from tumors of NLGP treated mice suggested that NLGP treatment promotes apoptosis of NG2+ RGS5high -fuctionally altered pericytes by downregulating intra-tumoral TGFβ, along with maintenance of more matured RGS5neg pericytes. NLGP-mediated inhibition of TGFβ within TME rescues binding of RGS5 with Gαi and thereby termination of PI3K-AKT mediated survival signaling by downregulating Bcl2 and initiating pJNK mediated apoptosis. Limited availability of TGFβ also prevents complex-formation between RGS5 and Smad2 and rapid RGS5 nuclear translocation to mitigate alternate immunoregulatory functions of RGS5high tumor-pericytes. We also observed binding of Ang1 from pericytes with Tie2 on ECs in NLGP-treated tumor, which support re-association of pericytes with endothelium and subsequent vessel stabilization. Furthermore, NLGP-therapy- associated RGS5 deficiency relieved CD4+ and CD8+ T cells from anergy by regulating 'alternate-APC-like' immunomodulatory characters of tumor-pericytes. Taken together, present study described the mechanisms of NLGP's effectiveness in normalizing tumor-vasculature by chiefly modulating pericyte-biology and EC-pericyte interactions in tumor-host to further strengthen its translational potential as single modality treatment.
Collapse
Affiliation(s)
- Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Kamalika Roy
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
59
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
60
|
Maishi N, Sakurai Y, Hatakeyama H, Umeyama Y, Nakamura T, Endo R, Alam MT, Li C, Annan DAM, Kikuchi H, Morimoto H, Morimoto M, Akiyama K, Ohga N, Hida Y, Harashima H, Hida K. Novel antiangiogenic therapy targeting biglycan using tumor endothelial cell-specific liposomal siRNA delivery system. Cancer Sci 2022; 113:1855-1867. [PMID: 35266253 PMCID: PMC9128192 DOI: 10.1111/cas.15323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022] Open
Abstract
Tumor blood vessels play important roles in tumor progression and metastasis. Targeting tumor endothelial cells (TECs) is one of the strategies for cancer therapy. We previously reported that biglycan, a small leucine‐rich proteoglycan, is highly expressed in TECs. TECs utilize biglycan in an autocrine manner for migration and angiogenesis. Furthermore, TEC‐derived biglycan stimulates tumor cell migration in a paracrine manner leading to tumor cell intravasation and metastasis. In this study, we explored the therapeutic effect of biglycan inhibition in the TECs of renal cell carcinoma using an in vivo siRNA delivery system known as a multifunctional envelope‐type nanodevice (MEND), which contains a unique pH‐sensitive cationic lipid. To specifically deliver MEND into TECs, we incorporated cyclo(Arg–Gly–Asp–d–Phe–Lys) (cRGD) into MEND because αVβ3 integrin, a receptor for cRGD, is selective and highly expressed in TECs. We developed RGD‐MEND‐encapsulating siRNA against biglycan. First, we confirmed that MEND was delivered into OS‐RC‐2 tumor‐derived TECs and induced in vitro RNAi‐mediated gene silencing. MEND was then injected intravenously into OS‐RC‐2 tumor‐bearing mice. Flow cytometry analysis demonstrated that MEND was specifically delivered into TECs. Quantitative RT‐PCR indicated that biglycan was knocked down by biglycan siRNA‐containing MEND. Finally, we analyzed the therapeutic effect of biglycan silencing by MEND in TECs. Tumor growth was inhibited by biglycan siRNA‐containing MEND. Tumor microenvironmental factors such as fibrosis were also normalized using biglycan inhibition in TECs. Biglycan in TECs can be a novel target for cancer treatment.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Membrane Transport and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroto Hatakeyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yui Umeyama
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mohammad Towfik Alam
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Cong Li
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Dorcas Akuba-Muhyia Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hirofumi Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Morimoto
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
61
|
Romayor I, García-Vaquero ML, Márquez J, Arteta B, Barceló R, Benedicto A. Discoidin Domain Receptor 2 Expression as Worse Prognostic Marker in Invasive Breast Cancer. Breast J 2022; 2022:5169405. [PMID: 35711892 PMCID: PMC9187291 DOI: 10.1155/2022/5169405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/10/2022] [Indexed: 01/01/2023]
Abstract
Discoidin domain receptor 2 (DDR2) is arising as a promising therapeutic target in breast carcinoma (BC). The ability of DDR2 to bind to collagen promotes protumoral responses in cancer cells that influence the tumor microenvironment (TME). Nonetheless, the interrelation between DDR2 expression and TME modulation during BC progression remains poorly known. For this reason, we aim to evaluate the correlation between intratumoral expression of DDR2 and the infiltration of the main TME cell populations, cancer-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs). First, collagen and DDR2 expression levels were analyzed in human invasive BC samples. Then, DDR2 status correlation with tumor aggressiveness and patient survival were retrieved from different databases. Subsequently, the main pathways, cell types, and tissues correlated with DDR2 expression in BC were obtained through bioinformatics approach. Finally, we studied the association of DDR2 expression with the recruitment of CAFs and TAMs. Our findings showed that, together with the expected overexpression of TME markers, DDR2 was upregulated in tumor samples. Besides, we uncovered that altered TME markers were linked to DDR2 expression in invasive BC patients. Consequently, DDR2 modulates the stromal reaction through CAFs and TAMs infiltration and could be used as a potential worse prognostic factor in the treatment response of invasive BC.
Collapse
Affiliation(s)
- Irene Romayor
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Marina Luque García-Vaquero
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca9, Spain
| | - Joana Márquez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ramón Barceló
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Oncology Service, Basurto University Hospital, 48002 Bilbao, Spain
| | - Aitor Benedicto
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
62
|
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022; 19:337-354. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small-molecular drugs are extensively used in cancer therapy, while they have issues of nonspecific distribution and consequent side effects. Nanomedicines that incorporate chemotherapeutic drugs have been developed to enhance the therapeutic efficacy of these drugs and reduce their side effects. One of the promising strategies is to prepare nanomedicines by harnessing the unique tumor microenvironment (TME). AREAS COVERED The TME contains numerous cell types that specifically express specific antibodies on the surface including tumor vascular endothelial cells, tumor-associated adipocytes, tumor-associated fibroblasts, tumor-associated immune cells and cancer stem cells. The physicochemical environment is characterized with a low pH, hypoxia, and a high redox potential resulting from tumor-specific metabolism. The intelligent nanomedicines can be categorized into two groups: the first group which is rapidly responsive to extracellular chemical/biological factors in the TME and the second one which actively and/or specifically targets cellular components in the TME. EXPERT OPINION In this paper, we review recent progress of nanomedicines by harnessing the TME and illustrate the principles and advantages of different strategies for designing nanomedicines, which are of great significance for exploring novel nanomedicines or translating current nanomedicines into clinical practice. We will discuss the challenges and prospects of preparing nanomedicines to utilize or alter the TME for achieving effective, safe anticancer treatment.
Collapse
Affiliation(s)
- Yinggang Li
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonglan Chen
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyu Duan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Youping Li
- Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
63
|
Is Sphingosine-1-Phosphate a Regulator of Tumor Vascular Functionality? Cancers (Basel) 2022; 14:cancers14051302. [PMID: 35267610 PMCID: PMC8909747 DOI: 10.3390/cancers14051302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite substantial theoretical and experimental support for using vascular normalization as cancer therapy, effectively achieving this strategy in the clinic remains complex. In the present paper, we propose a novel potential approach for the induction of tumor vascular normalization, reduction of hypoxia, and improvement of conventional treatment in cancer patients. This approach consists of the pharmacological modulation of a patient’s plasma S1P levels which through a PDGF signaling can enhance tumor vasculature functionality and reduce hypoxia. This approach is proposed following a clinical observation in pancreatic adenocarcinoma patients and pre-clinical data in different in vivo tumor models, and is supported by a review of the literature describing the biological role of S1P in vascular functionality regulation. Abstract Increasing evidence indicates that tumor vasculature normalization could be an appropriate strategy to increase therapies’ efficacy in solid tumors by decreasing hypoxia and improving drug delivery. We searched for a novel approach that reduces hypoxia and enhances chemotherapy efficacy in pancreatic adenocarcinoma which is characterized by disrupted blood vasculature associated with poor patient survival. Clinical significance of plasma levels of the angiogenic lipid sphingosine-1-phosphate (S1P) was assessed at baseline in 175 patients. High plasma S1P concentration was found to be a favorable prognostic/predictive marker in advanced/metastatic pancreatic adenocarcinoma patients treated by gemcitabine alone but not in patients receiving a combination gemcitabine and PDGFR-inhibitor. In pancreatic adenocarcinoma PDX models, oral administration of an S1P lyase inhibitor (LX2931) significantly increased plasma S1P levels, decreased tumor expression of the hypoxia marker (CA IX), and enhanced chemotherapy efficacy when combined with gemcitabine treatment. The direct effect of S1P on tumor oxygenation was assessed by administration of S1P onto tumor-grafted CAM model and measuring intra-tumoral pO2 using a tissue oxygen monitor. S1P increased pO2 in a tumor-CAM model. Thus, increasing plasma S1P is a promising strategy to decrease tumor hypoxia and enhance therapy efficacy in solid tumors. S1P may act as a tumor vasculature normalizer.
Collapse
|
64
|
Perspectives on Vascular Regulation of Mechanisms Controlling Selective Immune Cell Function in the Tumor Immune Response. Int J Mol Sci 2022; 23:ijms23042313. [PMID: 35216427 PMCID: PMC8877013 DOI: 10.3390/ijms23042313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
The vasculature plays a major role in regulating the tumor immune cell response although the underlying mechanisms explaining such effects remain poorly understood. This review discusses current knowledge on known vascular functions with a viewpoint on how they may yield distinct immune responses. The vasculature might directly influence selective immune cell infiltration into tumors by its cell surface expression of cell adhesion molecules, expression of cytokines, cell junction properties, focal adhesions, cytoskeleton and functional capacity. This will alter the tumor microenvironment and unleash a plethora of responses that will influence the tumor’s immune status. Despite our current knowledge of numerous mechanisms operating, the field is underexplored in that few functions providing a high degree of specificity have yet been provided in relation to the enormous divergence of responses apparent in human cancers. Further exploration of this field is much warranted.
Collapse
|
65
|
Yoshida Y, Yuki K, Dan S, Yamazaki K, Noda M. Suppression of tumor metastasis by a RECK-activating small molecule. Sci Rep 2022; 12:2319. [PMID: 35149728 PMCID: PMC8837781 DOI: 10.1038/s41598-022-06288-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
RECK encodes a membrane-anchored protease-regulator which is often downregulated in a wide variety of cancers, and reduced RECK expression often correlates with poorer prognoses. In mouse models, forced expression of RECK in tumor xenografts results in suppression of tumor angiogenesis, invasion, and metastasis. RECK mutations, however, are rare in cancer genomes, suggesting that agents that re-activate dormant RECK may be of clinical value. We found a potent RECK-inducer, DSK638, that inhibits spontaneous lung metastasis in our mouse xenograft model. Induction of RECK expression involves SP1 sites in its promoter and may be mediated by KLF2. DSK638 also upregulates MXI1, an endogenous MYC-antagonist, and inhibition of metastasis by DSK638 is dependent on both RECK and MXI1. This study demonstrates the utility of our approach (using a simple reporter assay followed by multiple phenotypic assays) and DSK638 itself (as a reference compound) in finding potential metastasis-suppressing drugs.
Collapse
Affiliation(s)
- Yoko Yoshida
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan. .,Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan.
| | - Kanako Yuki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
66
|
Kameda Y, Chuaychob S, Tanaka M, Liu Y, Okada R, Fujimoto K, Nakamura T, Yokokawa R. Three-dimensional tissue model in direct contact with an on-chip vascular bed enabled by removable membranes. LAB ON A CHIP 2022; 22:641-651. [PMID: 35018934 DOI: 10.1039/d1lc00751c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) tissue culture is a powerful tool for understanding physiological events. However, 3D tissues still have limitations in their size, culture period, and maturity, which are caused by the lack of nutrients and oxygen supply through the vasculature. Here, we propose a new method for culturing a 3D tissue-a spheroid-directly on an 'on-chip vascular bed'. The method can be applied to any 3D tissue because the vascular bed is preformed, so that angiogenic factors from the tissue are not necessary to induce vasculature. The essential component of the assay system is the removable membrane that initially separates the 3D tissue culture well and the microchannel in which a uniform vascular bed is formed, and then allows the tissue to be settled directly onto the vascular bed following its removal. This in vitro system offers a new technique for evaluating the effects of vasculature on 3D tissues.
Collapse
Affiliation(s)
- Yoshikazu Kameda
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Surachada Chuaychob
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Yang Liu
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Ryu Okada
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
67
|
Allen BD, Limoli CL. Breaking barriers: Neurodegenerative repercussions of radiotherapy induced damage on the blood-brain and blood-tumor barrier. Free Radic Biol Med 2022; 178:189-201. [PMID: 34875340 PMCID: PMC8925982 DOI: 10.1016/j.freeradbiomed.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Exposure to radiation during the treatment of CNS tumors leads to detrimental damage of the blood brain barrier (BBB) in normal tissue. Effects are characterized by leakage of the vasculature which exposes the brain to a host of neurotoxic agents potentially leading to white matter necrosis, parenchymal calcification, and an increased chance of stroke. Vasculature of the blood tumor barrier (BTB) is irregular leading to poorly perfused and hypoxic tissue throughout the tumor that becomes resistant to radiation. While current clinical applications of cranial radiotherapy use dose fractionation to reduce normal tissue damage, these treatments still cause significant alterations to the cells that make up the neurovascular unit of the BBB and BTB. Damage to the vasculature manifests as reduction in tight junction proteins, alterations to membrane transporters, impaired cell signaling, apoptosis, and cellular senescence. While radiotherapy treatments are detrimental to normal tissue, adapting combined strategies with radiation targeted to damage the BTB could aid in drug delivery. Understanding differences between the BBB and the BTB may provide valuable insight allowing clinicians to improve treatment outcomes. Leveraging this information should allow advances in the development of therapeutic modalities that will protect the normal tissue while simultaneously improving CNS tumor treatments.
Collapse
Affiliation(s)
- Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA, 92697, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
68
|
An CZ, Li CQ, Song LB, He YF, Chen W, Liu B, Zhao YD. A simple fluorescent strategy for liver capillary labeling with carbon quantum dot-lectin nanoprobe. Analyst 2022; 147:1952-1960. [DOI: 10.1039/d1an02364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on lycopersicon esculentum lectin that can target vascular endothelial cells and carbon quantum dots, we designed a carbon-based probe for the fluorescence labeling and imaging of hepatic blood vessels of liver tissue sections.
Collapse
Affiliation(s)
- Chang-Zhi An
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Chao-Qing Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Lai-Bo Song
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yan-Fei He
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
69
|
Oudenaarden C, Sjölund J, Pietras K. Upregulated functional gene expression programmes in tumour pericytes mark progression in patients with low-grade glioma. Mol Oncol 2022; 16:405-421. [PMID: 34018679 PMCID: PMC8763650 DOI: 10.1002/1878-0261.13016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Pericytes conceivably play important roles in the tumour microenvironment of glioblastoma multiforme (GBM) by allowing for an aberrant vasculature and acting as a component in the perivascular niche that supports glioma stem-like cells. However, a lack of specific markers has hampered in-depth elucidation of the functional contribution of pericytes to GBM. This study provides a comprehensive computational biology approach to annotate pericyte marker genes in the GBM vasculature through integration of data from single-cell RNA-sequencing studies of both mouse and human tissue, as well as bulk tumour and healthy tissue gene expression data from patients with GBM. We identified distinct vascular- and immune-related gene expression programmes in tumour pericytes that we assessed for association with GBM characteristics and patient survival. Most compellingly, pericyte gene signatures that were upregulated in tumours compared with normal brain tissue were indicative of progression of low-grade gliomas into high-grade glioma, suggested by a markedly shorter overall survival. Our results underline the functional importance of tumour pericytes in low-grade glioma and may serve as a starting point for efforts for precision targeting of pericytes.
Collapse
Affiliation(s)
- Clara Oudenaarden
- Division of Translational Cancer ResearchDepartment of Laboratory MedicineLund University Cancer CentreLund UniversitySweden
| | - Jonas Sjölund
- Division of Translational Cancer ResearchDepartment of Laboratory MedicineLund University Cancer CentreLund UniversitySweden
| | - Kristian Pietras
- Division of Translational Cancer ResearchDepartment of Laboratory MedicineLund University Cancer CentreLund UniversitySweden
| |
Collapse
|
70
|
Kemp SS, Lin PK, Sun Z, Castaño MA, Yrigoin K, Penn MR, Davis GE. Molecular basis for pericyte-induced capillary tube network assembly and maturation. Front Cell Dev Biol 2022; 10:943533. [PMID: 36072343 PMCID: PMC9441561 DOI: 10.3389/fcell.2022.943533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Here we address the functional importance and role of pericytes in capillary tube network assembly, an essential process that is required for vascularized tissue development, maintenance, and health. Healthy capillaries may be directly capable of suppressing human disease. Considerable advances have occurred in our understanding of the molecular and signaling requirements controlling EC lumen and tube formation in 3D extracellular matrices. A combination of SCF, IL-3, SDF-1α, FGF-2 and insulin ("Factors") in conjunction with integrin- and MT1-MMP-induced signaling are required for EC sprouting behavior and tube formation under serum-free defined conditions. Pericyte recruitment to the abluminal EC tube surface results in elongated and narrow tube diameters and deposition of the vascular basement membrane. In contrast, EC tubes in the absence of pericytes continue to widen and shorten over time and fail to deposit basement membranes. Pericyte invasion, recruitment and proliferation in 3D matrices requires the presence of ECs. A detailed analysis identified that EC-derived PDGF-BB, PDGF-DD, ET-1, HB-EGF, and TGFβ1 are necessary for pericyte recruitment, proliferation, and basement membrane deposition. Blockade of these individual factors causes significant pericyte inhibition, but combined blockade profoundly interferes with these events, resulting in markedly widened EC tubes without basement membranes, like when pericytes are absent.
Collapse
Affiliation(s)
- Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Prisca K Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Zheying Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Maria A Castaño
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Ksenia Yrigoin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Marlena R Penn
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| |
Collapse
|
71
|
Ramajayam KK, Newton DA, Haemmerich D. Selecting ideal drugs for encapsulation in thermosensitive liposomes and other triggered nanoparticles. Int J Hyperthermia 2022; 39:998-1009. [PMID: 35876089 PMCID: PMC9774053 DOI: 10.1080/02656736.2022.2086303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Thermosensitive liposomes (TSL) and other triggered drug delivery systems (DDS) are promising therapeutic strategies for targeted drug delivery. However, successful designs with candidate drugs depend on many variables, including nanoparticle formulation, drug properties, and cancer cell properties. We developed a computational model based on experimental data to predict the potential efficacies of drugs when used with triggered DDS, such as TSL. METHODS A computer model based on the Krogh cylinder was developed to predict uptake and cell survival with four anthracyclines when delivered by intravascular triggered DDS (e.g., TSL): doxorubicin (DOX), idarubicin (IDA), pirarubicin (PIR), and aclarubicin (ACLA). We simulated three tumor types derived from SVR angiosarcoma, LLC lung cancer, or SCC-1 oral carcinoma cells. In vitro cellular drug uptake and cytotoxicity data were obtained experimentally and incorporated into the model. RESULTS For all three cell lines, ACLA and IDA had the fastest cell uptake, with slower uptake for DOX and PIR. Cytotoxicity was highest for IDA and lowest for ACLA. The computer model predicted the highest tumor drug uptake for ACLA and IDA, resulting from their rapid cell uptake. Overall, IDA was most effective and produced the lowest tumor survival fraction, with DOX being the second best. Perivascular drug penetration was reduced for drugs with rapid cell uptake, potentially limiting delivery to cancer cells distant from the vasculature. CONCLUSION Combining simple in vitro experiments with a computer model could provide a powerful screening tool to evaluate the potential efficacy of candidate investigative drugs preceding TSL encapsulation and in vivo studies.
Collapse
Affiliation(s)
- Krishna K. Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Danforth A. Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425,Corresponding author: (D. Haemmerich)
| |
Collapse
|
72
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
73
|
Liang J, Wang S, Zhang G, He B, Bie Q, Zhang B. A New Antitumor Direction: Tumor-Specific Endothelial Cells. Front Oncol 2021; 11:756334. [PMID: 34988011 PMCID: PMC8721012 DOI: 10.3389/fonc.2021.756334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Targeting tumor blood vessels is an important strategy for tumor therapies. At present, antiangiogenic drugs are known to have significant clinical effects, but severe drug resistance and side effects also occur. Therefore, new specific targets for tumor and new treatment methods must be developed. Tumor-specific endothelial cells (TECs) are the main targets of antiangiogenic therapy. This review summarizes the differences between TECs and normal endothelial cells, assesses the heterogeneity of TECs, compares tumorigenesis and development between TECs and normal endothelial cells, and explains the interaction between TECs and the tumor microenvironment. A full and in-depth understanding of TECs may provide new insights for specific antitumor angiogenesis therapies.
Collapse
Affiliation(s)
- Jing Liang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Shouqi Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Guowei Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
74
|
Elorza Ridaura I, Sorrentino S, Moroni L. Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101837. [PMID: 34693660 PMCID: PMC8655224 DOI: 10.1002/advs.202101837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Indexed: 05/10/2023]
Abstract
Neurovascular disorders, which involve the vascular and nervous systems, are common. Research on such disorders usually focuses on either vascular or nervous components, without looking at how they interact. Adopting a neurovascular perspective is essential to improve current treatments. Therefore, comparing molecular processes known to be involved in both systems separately can provide insight into promising areas of future research. Since development and regeneration share many mechanisms, comparing signaling molecules involved in both the developing vascular and nervous systems and shedding light to those that they have in common can reveal processes, which have not yet been studied from a regenerative perspective, yet hold great potential. Hence, this review discusses and compares processes involved in the development of the vascular and nervous systems, in order to provide an overview of the molecular mechanisms, which are most promising with regards to treatment for neurovascular disorders. Vascular endothelial growth factor, semaphorins, and ephrins are found to hold the most potential, while fibroblast growth factor, bone morphogenic protein, slits, and sonic hedgehog are shown to participate in both the developing vascular and nervous systems, yet have not been studied at the neurovascular level, therefore being of special interest for future research.
Collapse
Affiliation(s)
- Idoia Elorza Ridaura
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefano Sorrentino
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| |
Collapse
|
75
|
Kümper M, Hessenthaler S, Zamek J, Niland S, Pach E, Mauch C, Zigrino P. LOSS OF ENDOTHELIAL CELL MMP14 REDUCES MELANOMA GROWTH AND METASTASIS BY INCREASING TUMOR VESSEL STABILITY. J Invest Dermatol 2021; 142:1923-1933.e5. [DOI: 10.1016/j.jid.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
|
76
|
Suprabasin: Role in human cancers and other diseases. Mol Biol Rep 2021; 49:1453-1461. [PMID: 34775572 DOI: 10.1007/s11033-021-06897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Suprabasin (SBSN), a gene with unknown function located in q13 region of chromosome 19, was first found to be expressed in the basal layer of the stratified epithelium in mouse and human tissues and was thought to be a potential precursor of keratinized capsules. However, in recent years, significant progress has been made in the study of SBSN in a variety of human diseases. One common theme appears to be the effect of SBSN on tumor progression, such as invasion, metastasis and resistance. However, the function and mechanism of action of SBSN is still elusive. In this study, we reviewed the literature on SBSN in the PubMed database to identify the basic characteristics, biological functions, and roles of SBSN in cancer and other diseases. In particular, we focused on the potential mechanisms of SBSN activity, to improve our understanding of the complex function of this protein and provide a theoretical basis for further research on the role of SBSN in cancer and other diseases.
Collapse
|
77
|
Bordbari S, Mörchen B, Pylaeva E, Siakaeva E, Spyra I, Domnich M, Droege F, Kanaan O, Lang KS, Schadendorf D, Lang S, Helfrich I, Jablonska J. SIRT1-mediated deacetylation of FOXO3a transcription factor supports pro-angiogenic activity of interferon-deficient tumor-associated neutrophils. Int J Cancer 2021; 150:1198-1211. [PMID: 34751438 DOI: 10.1002/ijc.33871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/06/2022]
Abstract
Angiogenesis plays an important role during tumor growth and metastasis. We could previously show that Type I interferon (IFN)-deficient tumor-associated neutrophils (TANs) show strong pro-angiogenic activity, and stimulate tumor angiogenesis and growth. However, the exact mechanism responsible for their pro-angiogenic shift is not clear. Here, we set out to delineate the molecular mechanism and factors regulating pro-angiogenic properties of neutrophils in the context of Type I IFN availability. We demonstrate that neutrophils from IFN-deficient (Ifnar1-/- ) mice efficiently release pro-angiogenic factors, such as VEGF, MMP9 or BV8, and thus significantly support the vascular normalization of tumors by increasing the maturation of perivascular cells. Mechanistically, we could show here that the expression of pro-angiogenic factors in neutrophils is controlled by the transcription factor forkhead box protein O3a (FOXO3a), which activity depends on its post-translational modifications, such as deacetylation or phosphorylation. In TANs isolated from Ifnar1-/- mice, we observe significantly elevated SIRT1, resulting in SIRT1-mediated deacetylation of FOXO3a, its nuclear retention and activation. Activated FOXO3a supports in turn the transcription of pro-angiogenic genes in TANs. In the absence of SIRT1, or after its inhibition in neutrophils, elevated kinase MEK/ERK and PI3K/AKT activity is observed, leading to FOXO3a phosphorylation, cytoplasmic transfer and inactivation. In summary, we have found that FOXO3a is a key transcription factor controlling the angiogenic switch of neutrophils. Post-translational FOXO3a modifications regulate its transcriptional activity and, as a result, the expression of pro-angiogenic factors supporting development of vascular network in growing tumors. Therefore, targeting FOXO3a activity could provide a novel strategy of antiangiogenic targeted therapy for cancer.
Collapse
Affiliation(s)
- Sharareh Bordbari
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Britta Mörchen
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, University Duisburg-Essen, West German Cancer Center, Essen, Germany
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elena Siakaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ilona Spyra
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Maksim Domnich
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Freya Droege
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Kanaan
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karl Sebastian Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, University Duisburg-Essen, West German Cancer Center, Essen, Germany.,German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, University Duisburg-Essen, West German Cancer Center, Essen, Germany.,German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany.,Department of Dermatology and Allergology, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
78
|
RGS5-TGFβ-Smad2/3 axis switches pro- to anti-apoptotic signaling in tumor-residing pericytes, assisting tumor growth. Cell Death Differ 2021; 28:3052-3076. [PMID: 34012071 PMCID: PMC8564526 DOI: 10.1038/s41418-021-00801-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Regulator-of-G-protein-signaling-5 (RGS5), a pro-apoptotic/anti-proliferative protein, is a signature molecule of tumor-associated pericytes, highly expressed in several cancers, and is associated with tumor growth and poor prognosis. Surprisingly, despite the negative influence of intrinsic RGS5 expression on pericyte survival, RGS5highpericytes accumulate in progressively growing tumors. However, responsible factor(s) and altered-pathway(s) are yet to report. RGS5 binds with Gαi/q and promotes pericyte apoptosis in vitro, subsequently blocking GPCR-downstream PI3K-AKT signaling leading to Bcl2 downregulation and promotion of PUMA-p53-Bax-mediated mitochondrial damage. However, within tumor microenvironment (TME), TGFβ appeared to limit the cytocidal action of RGS5 in tumor-residing RGS5highpericytes. We observed that in the presence of high RGS5 concentrations, TGFβ-TGFβR interactions in the tumor-associated pericytes lead to the promotion of pSmad2-RGS5 binding and nuclear trafficking of RGS5, which coordinately suppressed RGS5-Gαi/q and pSmad2/3-Smad4 pairing. The RGS5-TGFβ-pSmad2 axis thus mitigates both RGS5- and TGFβ-dependent cellular apoptosis, resulting in sustained pericyte survival/expansion within the TME by rescuing PI3K-AKT signaling and preventing mitochondrial damage and caspase activation. This study reports a novel mechanism by which TGFβ fortifies and promotes survival of tumor pericytes by switching pro- to anti-apoptotic RGS5 signaling in TME. Understanding this altered RGS5 signaling might prove beneficial in designing future cancer therapy.
Collapse
|
79
|
Park M, Kim J, Kim T, Kim S, Park W, Ha KS, Cho SH, Won MH, Lee JH, Kwon YG, Kim YM. REDD1 is a determinant of low-dose metronomic doxorubicin-elicited endothelial cell dysfunction through downregulation of VEGFR-2/3 expression. Exp Mol Med 2021; 53:1612-1622. [PMID: 34697389 PMCID: PMC8568908 DOI: 10.1038/s12276-021-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Low-dose metronomic chemotherapy (LDMC) inhibits tumor angiogenesis and growth by targeting tumor-associated endothelial cells, but the molecular mechanism has not been fully elucidated. Here, we examined the functional role of regulated in development and DNA damage responses 1 (REDD1), an inhibitor of mammalian target of rapamycin complex 1 (mTORC1), in LDMC-mediated endothelial cell dysfunction. Low-dose doxorubicin (DOX) treatment induced REDD1 expression in cultured vascular and lymphatic endothelial cells and subsequently repressed the mRNA expression of mTORC1-dependent translation of vascular endothelial growth factor receptor (Vegfr)-2/3, resulting in the inhibition of VEGF-mediated angiogenesis and lymphangiogenesis. These regulatory effects of DOX-induced REDD1 expression were additionally confirmed by loss- and gain-of-function studies. Furthermore, LDMC with DOX significantly suppressed tumor angiogenesis, lymphangiogenesis, vascular permeability, growth, and metastasis in B16 melanoma-bearing wild-type but not Redd1-deficient mice. Altogether, our findings indicate that REDD1 is a crucial determinant of LDMC-mediated functional dysregulation of tumor vascular and lymphatic endothelial cells by translational repression of Vegfr-2/3 transcripts, supporting the potential therapeutic properties of REDD1 in highly progressive or metastatic tumors.
Collapse
Affiliation(s)
- Minsik Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Joohwan Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Taesam Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Suji Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Wonjin Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Kwon-Soo Ha
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Sung Hwan Cho
- grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Moo-Ho Won
- grid.412010.60000 0001 0707 9039Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Jeong-Hyung Lee
- grid.412010.60000 0001 0707 9039Department of Biochemistry, Kangwon National University, Chuncheon, Gangwon-Do 24341 Republic of Korea
| | - Young-Guen Kwon
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Young-Myeong Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea ,grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| |
Collapse
|
80
|
Seynhaeve ALB, Ten Hagen TLM. An adapted dorsal skinfold model used for 4D intravital followed by whole-mount imaging to reveal endothelial cell-pericyte association. Sci Rep 2021; 11:20389. [PMID: 34650162 PMCID: PMC8517006 DOI: 10.1038/s41598-021-99939-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023] Open
Abstract
Endothelial cells and pericytes are highly dynamic vascular cells and several subtypes, based on their spatiotemporal dynamics or molecular expression, are believed to exist. The interaction between endothelial cells and pericytes is of importance in many aspects ranging from basic development to diseases like cancer. Identification of spatiotemporal dynamics is particularly interesting and methods to studies these are in demand. Here we describe the technical details of a method combining the benefits of high resolution intravital imaging and whole-mount histology. With intravital imaging using an adapted light weight dorsal skinfold chamber we identified blood flow patterns and spatiotemporal subtypes of endothelial cells and pericytes in a 4D (XYZ, spatial+T, time dimension) manner as representative examples for this model. Thereafter the tissue was extracted and stained as a whole-mount, by which the position and volumetric space of endothelial cells as well as pericytes were maintained, to identify molecular subtypes. Integration of the two imaging methods enabled 4D dissection of endothelial cell-pericyte association at the molecular level.
Collapse
Affiliation(s)
- Ann L B Seynhaeve
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015CE, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015CE, Rotterdam, The Netherlands
| |
Collapse
|
81
|
Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies CDL. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv Drug Deliv Rev 2021; 177:113847. [PMID: 34182018 DOI: 10.1016/j.addr.2021.113847] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Successful delivery of drugs and nanomedicine to tumors requires a functional vascular network, extravasation across the capillary wall, penetration through the extracellular matrix, and cellular uptake. Nanomedicine has many merits, but penetration deep into the tumor interstitium remains a challenge. Failure of cancer treatment can be caused by insufficient delivery of the therapeutic agents. After intravenous administration, nanomedicines are often found in off-target organs and the tumor extracellular matrix close to the capillary wall. With circulating microbubbles, ultrasound exposure focused toward the tumor shows great promise in improving the delivery of therapeutic agents. In this review, we address the impact of focused ultrasound and microbubbles to overcome barriers for drug delivery such as perfusion, extravasation, and transport through the extracellular matrix. Furthermore, we discuss the induction of an immune response with ultrasound and delivery of immunotherapeutics. The review discusses mainly preclinical results and ends with a summary of ongoing clinical trials.
Collapse
Affiliation(s)
- Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway.
| | - Krister Vikedal
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matilde Maardalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Kurbatskaya
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | | |
Collapse
|
82
|
Yang T, Xiao H, Liu X, Wang Z, Zhang Q, Wei N, Guo X. Vascular Normalization: A New Window Opened for Cancer Therapies. Front Oncol 2021; 11:719836. [PMID: 34476218 PMCID: PMC8406857 DOI: 10.3389/fonc.2021.719836] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Preclinical and clinical antiangiogenic approaches, with multiple side effects such as resistance, have not been proved to be very successful in treating tumor blood vessels which are important targets for tumor therapy. Meanwhile, restoring aberrant tumor blood vessels, known as tumor vascular normalization, has been shown not only capable of reducing tumor invasion and metastasis but also of enhancing the effectiveness of chemotherapy, radiation therapy, and immunotherapy. In addition to the introduction of such methods of promoting tumor vascular normalization such as maintaining the balance between proangiogenic and antiangiogenic factors and targeting endothelial cell metabolism, microRNAs, and the extracellular matrix, the latest molecular mechanisms and the potential connections between them were primarily explored. In particular, the immunotherapy-induced normalization of blood vessels further promotes infiltration of immune effector cells, which in turn improves immunotherapy, thus forming an enhanced loop. Thus, immunotherapy in combination with antiangiogenic agents is recommended. Finally, we introduce the imaging technologies and serum markers, which can be used to determine the window for tumor vascular normalization.
Collapse
Affiliation(s)
- Ting Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongqi Xiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoxia Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbai Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nianjin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinggang Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
83
|
Distinctive Properties of Endothelial Cells from Tumor and Normal Tissue in Human Breast Cancer. Int J Mol Sci 2021; 22:ijms22168862. [PMID: 34445568 PMCID: PMC8396343 DOI: 10.3390/ijms22168862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironments shape aggressiveness and are largely maintained by the conditions of angiogenesis formation. Thus, endothelial cells’ (ECs) biological reactions are crucial to understand and control the design of efficient therapies. In this work, we used models of ECs to represent a breast cancer tumor site as well as the same, healthy tissue. Cells characterization was performed at the transcriptome and protein expression levels, and the cells functional biological responses (angiogenesis and permeability) were assessed. We showed that the expression of proteins specific to ECs (ACE+, VWF+), their differentiation (CD31+, CD 133+, CD105+, CD34-), their adhesion properties (ICAM-1+, VCAM-1+, CD62-L+), and their barrier formation (ZO-1+) were all downregulated in tumor-derived ECs. NGS-based differential transcriptome analysis confirmed CD31-lowered expression and pointed to the increase of Ephrin-B2 and SNCAIP, indicative of dedifferentiation. Functional assays confirmed these differences; angiogenesis was impaired while permeability increased in tumor-derived ECs, as further validated by the distinctly enhanced VEGF production in response to hypoxia, reflecting the tumor conditions. This work showed that endothelial cells differed highly significantly, both phenotypically and functionally, in the tumor site as compared to the normal corresponding tissue, thus influencing the tumor microenvironment.
Collapse
|
84
|
Magnussen AL, Mills IG. Vascular normalisation as the stepping stone into tumour microenvironment transformation. Br J Cancer 2021; 125:324-336. [PMID: 33828258 PMCID: PMC8329166 DOI: 10.1038/s41416-021-01330-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/17/2021] [Accepted: 02/17/2021] [Indexed: 02/01/2023] Open
Abstract
A functional vascular system is indispensable for drug delivery and fundamental for responsiveness of the tumour microenvironment to such medication. At the same time, the progression of a tumour is defined by the interactions of the cancer cells with their surrounding environment, including neovessels, and the vascular network continues to be the major route for the dissemination of tumour cells in cancer, facilitating metastasis. So how can this apparent conflict be reconciled? Vessel normalisation-in which redundant structures are pruned and the abnormal vasculature is stabilised and remodelled-is generally considered to be beneficial in the course of anti-cancer treatments. A causality between normalised vasculature and improved response to medication and treatment is observed. For this reason, it is important to discern the consequence of vessel normalisation on the tumour microenvironment and to modulate the vasculature advantageously. This article will highlight the challenges of controlled neovascular remodelling and outline how vascular normalisation can shape disease management.
Collapse
Affiliation(s)
- Anette L Magnussen
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, UK.
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
85
|
Kremheller J, Brandstaeter S, Schrefler BA, Wall WA. Validation and parameter optimization of a hybrid embedded/homogenized solid tumor perfusion model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3508. [PMID: 34231326 DOI: 10.1002/cnm.3508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The goal of this paper is to investigate the validity of a hybrid embedded/homogenized in-silico approach for modeling perfusion through solid tumors. The rationale behind this novel idea is that only the larger blood vessels have to be explicitly resolved while the smaller scales of the vasculature are homogenized. As opposed to typical discrete or fully resolved 1D-3D models, the required data can be obtained with in-vivo imaging techniques since the morphology of the smaller vessels is not necessary. By contrast, the larger vessels, whose topology and structure is attainable noninvasively, are resolved and embedded as one-dimensional inclusions into the three-dimensional tissue domain which is modeled as a porous medium. A sound mortar-type formulation is employed to couple the two representations of the vasculature. We validate the hybrid model and optimize its parameters by comparing its results to a corresponding fully resolved model based on several well-defined metrics. These tests are performed on a complex data set of three different tumor types with heterogeneous vascular architectures. The correspondence of the hybrid model in terms of mean representative elementary volume blood and interstitial fluid pressures is excellent with relative errors of less than 4%. Larger, but less important and explicable errors are present in terms of blood flow in the smaller, homogenized vessels. We finally discuss and demonstrate how the hybrid model can be further improved to apply it for studies on tumor perfusion and the efficacy of drug delivery.
Collapse
Affiliation(s)
- Johannes Kremheller
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| | | | - Bernhard A Schrefler
- Institute for Advanced Study, Technical University of Munich, München, Germany
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| |
Collapse
|
86
|
Makimoto A, Fang J, Maeda H. Development of a Selective Tumor-Targeted Drug Delivery System: Hydroxypropyl-Acrylamide Polymer-Conjugated Pirarubicin (P-THP) for Pediatric Solid Tumors. Cancers (Basel) 2021; 13:cancers13153698. [PMID: 34359599 PMCID: PMC8345214 DOI: 10.3390/cancers13153698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Hydroxypropyl acrylamide polymer-conjugated pirarubicin (P-THP), an innovative polymer-conjugated anticancer agent, theoretically has highly tumor-specific distribution via the enhanced permeability and retention (EPR) effect. While anthracyclines are extremely important in the treatment of most pediatric solid tumors, P-THP may serve as a less toxic and more effective substitute for conventional anthracyclines in both newly diagnosed and refractory/recurrent pediatric cancers. Abstract Most pediatric cancers are highly chemo-sensitive, and cytotoxic chemotherapy has always been the mainstay of treatment. Anthracyclines are highly effective against most types of childhood cancer, such as neuroblastoma, hepatoblastoma, nephroblastoma, rhabdomyosarcoma, Ewing sarcoma, and so forth. However, acute and chronic cardiotoxicity, one of the major disadvantages of anthracycline use, limits their utility and effectiveness. Hydroxypropyl acrylamide polymer-conjugated pirarubicin (P-THP), which targets tumor tissue highly selectively via the enhanced permeability and retention (EPR) effect, and secondarily releases active pirarubicin molecules quickly into the acidic environment surrounding the tumor. Although, the latter rarely occurs in the non-acidic environment surrounding normal tissue. This mechanism has the potential to minimize acute and chronic toxicities, including cardiotoxicity, as well as maximize the efficacy of chemotherapy through synergy with tumor-targeting accumulation of the active molecules and possible dose-escalation. Simply replacing doxorubicin with P-THP in a given regimen can improve outcomes in anthracycline-sensitive pediatric cancers with little risk of adverse effects, such as cardiotoxicity. As cancer is a dynamic disease showing intra-tumoral heterogeneity during its course, continued parallel development of cytotoxic agents and molecular targeting agents is necessary to find potentially more effective treatments.
Collapse
Affiliation(s)
- Atsushi Makimoto
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, Tokyo 183-8561, Japan
- Correspondence: ; Tel.: +81-42-300-5111 (ext. 5177)
| | - Jun Fang
- Faculty of Pharmaceutical Science, Sojo University, Kumamoto 860-0082, Japan;
| | - Hiroshi Maeda
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan;
- Department of Microbiology, Kumamoto University School of Medicine, Kumamoto 862-0954, Japan
- Tohoku University, Miyagi 980-8572, Japan
- Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
87
|
Recent Advances in Glioma Therapy: Combining Vascular Normalization and Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:cancers13153686. [PMID: 34359588 PMCID: PMC8345045 DOI: 10.3390/cancers13153686] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) accounts for more than 50% of all primary malignancies of the brain. Current standard treatment regimen for GBM includes maximal surgical resection followed by radiation and adjuvant chemotherapy. However, due to the heterogeneity of the tumor cells, tumor recurrence is often inevitable. The prognosis of patients with glioma is, thus, dismal. Glioma is a highly angiogenic tumor yet immunologically cold. As such, evolving studies have focused on designing strategies that specifically target the tyrosine kinase receptors of angiokines and encourage immune infiltration. Recent promising results from immunotherapies on other cancer types have prompted further investigations of this therapy in GBM. In this article, we reviewed the pathological angiogenesis and immune reactivity in glioma, as well as its target for drug development, and we discussed future directions in glioma therapy.
Collapse
|
88
|
Gaggianesi M, Di Franco S, Pantina VD, Porcelli G, D'Accardo C, Verona F, Veschi V, Colarossi L, Faldetta N, Pistone G, Bongiorno MR, Todaro M, Stassi G. Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. Front Oncol 2021; 11:702642. [PMID: 34354950 PMCID: PMC8330815 DOI: 10.3389/fonc.2021.702642] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in cancer patient management and in the development of targeted therapies, systemic chemotherapy is currently used as a first-line treatment for many cancer types. After an initial partial response, patients become refractory to standard therapy fostering rapid tumor progression. Compelling evidence highlights that the resistance to chemotherapeutic regimens is a peculiarity of a subpopulation of cancer cells within tumor mass, known as cancer stem cells (CSCs). This cellular compartment is endowed with tumor-initiating and metastasis formation capabilities. CSC chemoresistance is sustained by a plethora of grow factors and cytokines released by neighboring tumor microenvironment (TME), which is mainly composed by adipocytes, cancer-associated fibroblasts (CAFs), immune and endothelial cells. TME strengthens CSC refractoriness to standard and targeted therapies by enhancing survival signaling pathways, DNA repair machinery, expression of drug efflux transporters and anti-apoptotic proteins. In the last years many efforts have been made to understand CSC-TME crosstalk and develop therapeutic strategy halting this interplay. Here, we report the combinatorial approaches, which perturb the interaction network between CSCs and the different component of TME.
Collapse
Affiliation(s)
- Miriam Gaggianesi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | | | - Naida Faldetta
- Department of Surgery, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
89
|
Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc Natl Acad Sci U S A 2021; 118:2023868118. [PMID: 34266948 PMCID: PMC8307381 DOI: 10.1073/pnas.2023868118] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A significant pool of HER2+ breast cancer patients are either unresponsive or become resistant to standards of care. New therapeutic approaches exploiting the tumor microenvironment, including immunotherapies, are attractive. Hypoxia shapes the tumor microenvironment toward therapy resistance and metastasis. Here, we report a role for AXL receptor tyrosine kinase in the hypoxic response by promoting HIF-1α expression. Interfering with Axl in a preclinical model of HER2+ breast cancer normalizes the blood vessels and promotes a proinflammatory microenvironment that enhances immunotherapy response to reduce the primary and metastatic tumor burdens. Clinical trials so far suggest that achieving immunotherapy responses in HER2+ cancers might be challenging, and our data might provide an important insight to circumvent a roadblock. Hypoxia is an important phenomenon in solid tumors that contributes to metastasis, tumor microenvironment (TME) deregulation, and resistance to therapies. The receptor tyrosine kinase AXL is an HIF target, but its roles during hypoxic stress leading to the TME deregulation are not well defined. We report here that the mammary gland–specific deletion of Axl in a HER2+ mouse model of breast cancer leads to a normalization of the blood vessels, a proinflammatory TME, and a reduction of lung metastases by dampening the hypoxic response in tumor cells. During hypoxia, interfering with AXL reduces HIF-1α levels altering the hypoxic response leading to a reduction of hypoxia-induced epithelial-to-mesenchymal transition (EMT), invasion, and production of key cytokines for macrophages behaviors. These observations suggest that inhibition of Axl generates a suitable setting to increase immunotherapy. Accordingly, combining pharmacological inhibition of Axl with anti–PD-1 in a preclinical model of HER2+ breast cancer reduces the primary tumor and metastatic burdens, suggesting a potential therapeutic approach to manage HER2+ patients whose tumors present high hypoxic features.
Collapse
|
90
|
Yang Y, Wu G, Li Q, Zheng Y, Liu M, Zhou L, Chen Z, Wang Y, Guo Q, Ji R, Zhou Y. Angiogenesis-Related Immune Signatures Correlate With Prognosis, Tumor Microenvironment, and Therapeutic Sensitivity in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:690206. [PMID: 34262941 PMCID: PMC8273615 DOI: 10.3389/fmolb.2021.690206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the highly heterogeneous cancers that lacks an effective risk model for prognosis prediction. Therefore, we searched for angiogenesis-related immune genes that affected the prognosis of HCC to construct a risk model and studied the role of this model in HCC. Methods: In this study, we collected the transcriptome data of HCC from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database. Pearson correlation analysis was performed to identify the association between immune genes and angiogenesis-related genes. Consensus clustering was applied to divide patients into clusters A and B. Subsequently, we studied the differentially expressed angiogenesis-related immune genes (DEari-genes) that affected the prognosis of HCC. The most significant features were identified by least absolute shrinkage and selection operator (LASSO) regression, and a risk model was constructed. The reliability of the risk model was evaluated in the TCGA discovery cohort and the ICGC validation cohort. In addition, we compared the novel risk model to the previous models based on ROC analysis. ssGSEA analysis was used for function evaluation, and pRRophetic was utilized to predict the sensitivity of administering chemotherapeutic agents. Results: Cluster A patients had favorable survival rates. A total of 23 DEari-genes were correlated with the prognosis of HCC. A five-gene (including BIRC5, KITLG, PGF, SPP1, and SHC1) signature-based risk model was constructed. After regrouping the HCC patients by the median score, we could effectively discriminate between them based on the adverse survival outcome, the unique tumor immune microenvironment, and low chemosensitivity. Conclusion: The five-gene signature-based risk score established by ari-genes showed a promising clinical prediction value.
Collapse
Affiliation(s)
- Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Guozhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qiang Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Lingshan Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Zhaofeng Chen
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
91
|
Kim TH, Jeon WY, Ji Y, Park EJ, Yoon DS, Lee NH, Park SM, Mandakhbayar N, Lee JH, Lee HH, Kim HW. Electricity auto-generating skin patch promotes wound healing process by activation of mechanosensitive ion channels. Biomaterials 2021; 275:120948. [PMID: 34157562 DOI: 10.1016/j.biomaterials.2021.120948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
Electricity constitutes a natural biophysical component that preserves tissue homeostasis and modulates many biological processes, including the repair of damaged tissues. Wound healing involves intricate cellular events, such as inflammation, angiogenesis, matrix synthesis, and epithelialization whereby multiple cell types sense the environmental cues to rebuild the structure and functions. Here, we report that electricity auto-generating glucose-responsive enzymatic-biofuel-cell (EBC) skin patch stimulates the wound healing process. Rat wounded-skin model and in vitro cell cultures showed that EBC accelerated wound healing by modulating inflammation while stimulating angiogenesis, fibroblast fuctionality and matrix synthesis. Of note, EBC-activated cellular bahaviors were linked to the signalings involved with calcium influx, which predominantly dependent on the mechanosensitive ion channels, primarily Piezo1. Inhibition of Piezo1-receptor impaired the EBC-induced key functions of both fibroblasts and endothelial cells in the wound healing. This study highlights the significant roles of electricity played in wound healing through activated mechanosensitive ion channels and the calcium influx, and suggests the possibility of the electricity auto-generating EBC-based skin patch for use as a wound healing device.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Won-Yong Jeon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; School of Chemical Engineering, Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yunseong Ji
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Eun Ju Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sung-Min Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
92
|
Dzobo K, Dandara C. Architecture of Cancer-Associated Fibroblasts in Tumor Microenvironment: Mapping Their Origins, Heterogeneity, and Role in Cancer Therapy Resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 24:314-339. [PMID: 32496970 DOI: 10.1089/omi.2020.0023] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor stroma, a key component of the tumor microenvironment (TME), is a key determinant of response and resistance to cancer treatment. The stromal cells, extracellular matrix (ECM), and blood vessels influence cancer cell response to therapy and play key roles in tumor relapse and therapeutic outcomes. Of the stromal cells present in the TME, much attention has been given to cancer-associated fibroblasts (CAFs) as they are the most abundant and important in cancer initiation, progression, and therapy resistance. Besides releasing several factors, CAFs also synthesize the ECM, a key component of the tumor stroma. In this expert review, we examine the role of CAFs in the regulation of tumor cell behavior and reveal how CAF-derived factors and signaling influence tumor cell heterogeneity and development of novel strategies to combat cancer. Importantly, CAFs display both phenotypic and functional heterogeneity, with significant ramifications on CAF-directed therapies. Principal anti-cancer therapies targeting CAFs take the form of: (1) CAFs' ablation through use of immunotherapies, (2) re-education of CAFs to normalize the cells, (3) cellular therapies involving CAFs delivering drugs such as oncolytic adenoviruses, and (4) stromal depletion via targeting the ECM and its related signaling. The CAFs' heterogeneity could be a result of different cellular origins and the cancer-specific tumor microenvironmental effects, underscoring the need for further multiomics and biochemical studies on CAFs and the subsets. Lastly, we present recent advances in therapeutic targeting of CAFs and the success of such endeavors or their lack thereof. We recommend that to advance global public health and personalized medicine, treatments in the oncology clinic should be combinatorial in nature, strategically targeting both cancer cells and stromal cells, and their interactions.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
93
|
Understanding the Heterogeneity of Human Pericyte Subsets in Blood-Brain Barrier Homeostasis and Neurological Diseases. Cells 2021; 10:cells10040890. [PMID: 33919664 PMCID: PMC8069782 DOI: 10.3390/cells10040890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Pericytes are increasingly recognized as being important in the control of blood–brain barrier permeability and vascular flow. Research on this important cell type has been hindered by widespread confusion regarding the phenotypic identity and nomenclature of pericytes and other perivascular cell types. In addition, pericyte heterogeneity and mouse–human species differences have contributed to confusion. Herein we summarize our present knowledge on the identification of pericytes and pericyte subsets in humans, primarily focusing on recent findings in humans and nonhuman primates. Precise identification and definition of pericytes and pericyte subsets in humans may help us to better understand pericyte biology and develop new therapeutic approaches specifically targeting disease-associated pericyte subsets.
Collapse
|
94
|
Girolamo F, de Trizio I, Errede M, Longo G, d'Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021; 18:14. [PMID: 33743764 PMCID: PMC7980348 DOI: 10.1186/s12987-021-00242-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Central nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches. ![]()
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Intensive Care Unit, Department of Intensive Care, Regional Hospital of Lugano, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Molecular Biology Unit, University of Bari School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| |
Collapse
|
95
|
Girolamo F, de Trizio I, Errede M, Longo G, d’Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021. [DOI: 10.1186/s12987-021-00242-7 union select null--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCentral nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches.
Collapse
|
96
|
Su H, Cantrell AC, Zeng H, Zhu SH, Chen JX. Emerging Role of Pericytes and Their Secretome in the Heart. Cells 2021; 10:548. [PMID: 33806335 PMCID: PMC8001346 DOI: 10.3390/cells10030548] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Pericytes, as mural cells covering microvascular capillaries, play an essential role in vascular remodeling and maintaining vascular functions and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. They actively interact with endothelial cells, vascular smooth muscle cells (VSMCs), fibroblasts, and other cells via the mechanisms involved in the secretome. The secretome of pericytes, along with diverse molecules including proinflammatory cytokines, angiogenic growth factors, and the extracellular matrix (ECM), has great impacts on the formation, stabilization, and remodeling of vasculature, as well as on regenerative processes. Emerging evidence also indicates that pericytes work as mesenchymal cells or progenitor cells in cardiovascular regeneration. Their capacity for differentiation also contributes to vascular remodeling in different ways. Previous studies primarily focused on the roles of pericytes in organs such as the brain, retina, lung, and kidney; very few studies have focused on pericytes in the heart. In this review, following a brief introduction of the origin and fundamental characteristics of pericytes, we focus on pericyte functions and mechanisms with respect to heart disease, ending with the promising use of cardiac pericytes in the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Han Su
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Aubrey C Cantrell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shai-Hong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
97
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
98
|
Bkaily G, Abou Abdallah N, Simon Y, Jazzar A, Jacques D. Vascular smooth muscle remodeling in health and disease. Can J Physiol Pharmacol 2021; 99:171-178. [PMID: 32853532 DOI: 10.1139/cjpp-2020-0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In blood vessels, vascular smooth muscle cells (VSMCs) generally exist in two major phenotypes: contractile and non-contractile (synthetic). The contractile phenotype is predominant and includes quiescent or differentiated VSMCs, which function as the regulators of blood vessel diameter and blood flow. According to some literature in the field, contractile VSMCs do not switch to the non-contractile phenotype due to the activation of specific transcription factors that are considered as guardians of the contractile phenotype. However, a vast amount of the literature uses the terms remodeling and phenotype switching of contractile VSMCs interchangeably based mainly on studies dealing with atherosclerosis. The use of the terms remodeling and switching to describe changes in phenotype based on morphological criteria can be confusing. The term remodeling was first used to describe morphological changes in the heart and was soon used to describe phenotype changes of contractile VSMCs based on morphological criteria. The latter were introduced in early studies, and new molecular criteria were later added, including changes in gene expression, which could be irreversible. In this review, we will discuss the different views concerning remodeling and possible switching of contractile VSMCs to a non-contractile phenotype. We conclude that only remodeling of contractile VSMCs may take place upon vascular injury and disease.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Nadia Abou Abdallah
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Yanick Simon
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Ashley Jazzar
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| |
Collapse
|
99
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
100
|
Esteves M, Monteiro MP, Duarte JA. The effects of vascularization on tumor development: A systematic review and meta-analysis of pre-clinical studies. Crit Rev Oncol Hematol 2021; 159:103245. [PMID: 33508446 DOI: 10.1016/j.critrevonc.2021.103245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE This review aimed to systematize and quantify the existing evidence about the effect of tumor vascularization on its growth, in preclinical studies. METHODOLOGY A computerized research on databases PubMed, Scopus and EBSCO was performed to identify studies that evaluate both the vascularization parameters and the development of the tumors in animal models and the mean differences were calculated through a random effects model. RESULTS Thirteen studies met the inclusion criteria and were included in the systematic review, of which, 6 studies were included in the meta-analysis. Besides tumor vascular density that all studies evaluated, 3 studies analysed the tumor perfusion, 2 studies the tumor hypoxia and 3 studies assessed the grade of vessel maturation. Most of the studies (11) related decreased tumor vascularization and a concomitant inhibition of tumor growth or metastasis development. Quantitatively, the decrease in tumor vascularization contributed to a significant decrease in the tumor growing rate of 5.23 (-9.20, -1.26). CONCLUSION A reduced level of tumor vascularization seems to be able to inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Mário Esteves
- Department of Physical Medicine and Rehabilitation, Hospital-Escola, Fernando Pessoa University, Avenida Fernando Pessoa 150, 4420-096 Gondomar, Portugal; Laboratory of Biochemistry and Experimental Morphology, CIAFEL, R. Dr. Plácido Costa 91, 4200-450 Porto, Portugal.
| | - Mariana P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - José Alberto Duarte
- CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido Costa 91, 4200-450 Porto, Portugal; Instituto Universitário de Ciências da Saúde, R. Central da Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|