51
|
Harrison RS, Sharpe PC, Singh Y, Fairlie DP. Amyloid peptides and proteins in review. Rev Physiol Biochem Pharmacol 2007; 159:1-77. [PMID: 17846922 DOI: 10.1007/112_2007_0701] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amyloids are filamentous protein deposits ranging in size from nanometres to microns and composed of aggregated peptide beta-sheets formed from parallel or anti-parallel alignments of peptide beta-strands. Amyloid-forming proteins have attracted a great deal of recent attention because of their association with over 30 diseases, notably neurodegenerative conditions like Alzheimer's, Huntington's, Parkinson's, Creutzfeldt-Jacob and prion disorders, but also systemic diseases such as amyotrophic lateral sclerosis (Lou Gehrig's disease) and type II diabetes. These diseases are all thought to involve important conformational changes in proteins, sometimes termed misfolding, that usually produce beta-sheet structures with a strong tendency to aggregate into water-insoluble fibrous polymers. Reasons for such conformational changes in vivo are still unclear. Intermediate aggregated state(s), rather than precipitated insoluble polymeric aggregates, have recently been implicated in cellular toxicity and may be the source of aberrant pathology in amyloid diseases. Numerous in vitro studies of short and medium length peptides that form amyloids have provided some clues to amyloid formation, with an alpha-helix to beta-sheet folding transition sometimes implicated as an intermediary step leading to amyloid formation. More recently, quite a few non-pathological amyloidogenic proteins have also been identified and physiological properties have been ascribed, challenging previous implications that amyloids were always disease causing. This article summarises a great deal of current knowledge on the occurrence, structure, folding pathways, chemistry and biology associated with amyloidogenic peptides and proteins and highlights some key factors that have been found to influence amyloidogenesis.
Collapse
Affiliation(s)
- R S Harrison
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, QLD 4072, Brisbane, Australia
| | | | | | | |
Collapse
|
52
|
Liu Y, Cui D, Hoshii Y, Kawano H, Une Y, Gondo T, Ishihara T. Induction of Murine AA Amyloidosis by Various Homogeneous Amyloid Fibrils and Amyloid-like Synthetic Peptides. Scand J Immunol 2007; 66:495-500. [DOI: 10.1111/j.1365-3083.2007.02005.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Pepys MB, Tennent GA, Booth DR, Bellotti V, Lovat LB, Tan SY, Persey MR, Hutchinson WL, Booth SE, Madhoo S, Soutar AK, Hawkins PN, Van Zyl-Smit R, Campistol JM, Fraser PE, Radford SE, Robinson CV, Sunde M, Serpell LC, Blake CC. Molecular mechanisms of fibrillogenesis and the protective role of amyloid P component: two possible avenues for therapy. CIBA FOUNDATION SYMPOSIUM 2007; 199:73-81; discussion 81-9. [PMID: 8915605 DOI: 10.1002/9780470514924.ch6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amyloid deposits regress when the supply of fibril precursor proteins is sufficiently reduced, indicating that amyloid fibrils are degradable in vivo. Serum amyloid P component (SAP), a universal constituent of amyloid deposits, efficiently protects amyloid fibrils from proteolysis in vitro, and may contribute to persistence of amyloid in vivo. Drugs that prevent binding of SAP to amyloid fibrils in vivo should therefore promote regression of amyloid and we are actively seeking such agents. A complementary strategy is identification of critical molecular processes in fibrillogenesis as targets for pharmacological intervention. All amyloidogenic variants of apolipoprotein AI contain an additional positive charge in the N-terminal fibrillogenic region of the protein. This is unlikely to be a coincidence and should be informative about amyloidogenesis by this protein. The two amyloidogenic variants of human lysozyme, caused by the first natural mutations found in its gene, provide a particularly powerful model system because both the crystal structure and folding pathways of wild-type lysozyme are so well characterized. The amyloidogenic variant lysozymes have similar 3D crystal structures to the wild type, but are notably less thermostable. They unfold on heating, lose enzymic activity, and aggregate to form amyloid fibrils in vitro.
Collapse
Affiliation(s)
- M B Pepys
- Immunological Medicine Unit, Royal Postgraduate Medical School, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Eklund KK. Mast cells in the pathogenesis of rheumatic diseases and as potential targets for anti-rheumatic therapy. Immunol Rev 2007; 217:38-52. [PMID: 17498050 DOI: 10.1111/j.1600-065x.2007.00504.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increasing evidence suggests that mast cells (MCs), in addition to acute allergic reactions, are involved in the pathogenesis of chronic inflammatory diseases and in particular in rheumatoid arthritis (RA). MCs reside in connective tissues and in synovial tissue of joints. They produce an array of proinflammatory mediators, tissue destructive proteases, and cytokines, most prominently tumor necrosis factor-alpha, which is one of the key cytokines in the pathogenesis of RA. MCs may also participate in the development of secondary or amyloid A amyloidosis, as the partial degradation of the serum amyloid A (SAA) protein by MCs leads to the generation of a highly amyloidogenic N-terminal fragment of SAA. MCs may contribute to the pathogenesis of connective tissue diseases, scleroderma, vasculitic syndromes, and systemic lupus erythematosus, although the data available are limited. Inhibition of the most important growth factor receptor of human MCs, c-Kit, by the selective tyrosine kinase inhibitor imatinib mesylate, induces apoptosis of synovial tissue MCs. As MCs are long-lived cells, induction of their apoptosis could be a feasible approach to inhibit their functions. Preliminary findings suggest that a drug that inhibits c-Kit could have anti-rheumatic activity in the treatment of patients with RA and spondyloarthropathies.
Collapse
Affiliation(s)
- Kari K Eklund
- Division of Rheumatology, Helsinki University Central Hospital, Helsinki, Finland.
| |
Collapse
|
55
|
Magy N, Benson MD, Liepnieks JJ, Kluve-Beckerman B. Cellular events associated with the initial phase of AA amyloidogenesis: insights from a human monocyte model. Amyloid 2007; 14:51-63. [PMID: 17453625 DOI: 10.1080/13506120601116575] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Reactive amyloidosis is a systemic protein deposition disease that develops in association with chronic inflammation. The deposits are composed of extracellular, fibrillar masses of amyloid A (AA) protein, an N-terminal fragment of the acute-phase serum protein serum amyloid A (SAA). The pathogenic conversion of SAA into amyloid has been studied in two human cell culture models, peritoneal cells and peripheral blood monocytes. Human monocyte cultures proved more robust than either mouse or human peritoneal cells at initiating amyloid formation in the absence of a preformed nidus such as amyloid-enhancing factor and particularly well suited for examination of individual cells undergoing amyloid formation. Amyloid-producing monocyte cultures were stained with Congo red and Alcian blue for detection of amyloid and glycosaminglycans, respectively; immunocytochemistry was performed to identify SAA/AA, CD68, CD14, lysosomal protein Lamp-1, and early endosomal protein EEA1. SAA interaction with monocytes was also visualized directly via fluorescence confocal microscopy. Amyloid was initially detected only in intracellular vesicles, but with time was seen extracellularly. Morphologic changes in lysosomes were noted during the early phase of amyloid formation, suggesting that exocytosis of fibrils may occur via lysosome-derived vesicles. Cultures engaged in amyloid formation remained metabolically active; no cytotoxic effects were observed. Mimicking in vivo phenomena, amyloid formation was accompanied by increased glycosaminoglycan content and C-terminal processing of SAA. The ability of human monocytes to endocytose and intracellularly transform SAA into amyloid via a mechanism that requires and maintains, rather than compromises, metabolic activity distinguishes them as a useful model for probing earliest events in the disease process.
Collapse
Affiliation(s)
- Nadine Magy
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis 46202-5126, USA
| | | | | | | |
Collapse
|
56
|
AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinformatics 2007; 8:65. [PMID: 17324296 PMCID: PMC1828741 DOI: 10.1186/1471-2105-8-65] [Citation(s) in RCA: 751] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/27/2007] [Indexed: 01/08/2023] Open
Abstract
Background Protein aggregation correlates with the development of several debilitating human disorders of growing incidence, such as Alzheimer's and Parkinson's diseases. On the biotechnological side, protein production is often hampered by the accumulation of recombinant proteins into aggregates. Thus, the development of methods to anticipate the aggregation properties of polypeptides is receiving increasing attention. AGGRESCAN is a web-based software for the prediction of aggregation-prone segments in protein sequences, the analysis of the effect of mutations on protein aggregation propensities and the comparison of the aggregation properties of different proteins or protein sets. Results AGGRESCAN is based on an aggregation-propensity scale for natural amino acids derived from in vivo experiments and on the assumption that short and specific sequence stretches modulate protein aggregation. The algorithm is shown to identify a series of protein fragments involved in the aggregation of disease-related proteins and to predict the effect of genetic mutations on their deposition propensities. It also provides new insights into the differential aggregation properties displayed by globular proteins, natively unfolded polypeptides, amyloidogenic proteins and proteins found in bacterial inclusion bodies. Conclusion By identifying aggregation-prone segments in proteins, AGGRESCAN shall facilitate (i) the identification of possible therapeutic targets for anti-depositional strategies in conformational diseases and (ii) the anticipation of aggregation phenomena during storage or recombinant production of bioactive polypeptides or polypeptide sets.
Collapse
|
57
|
Niemi K, Baumann MH, Kovanen PT, Eklund KK. Serum amyloid A (SAA) activates human mast cells which leads into degradation of SAA and generation of an amyloidogenic SAA fragment. Biochim Biophys Acta Mol Basis Dis 2006; 1762:424-30. [PMID: 16483749 DOI: 10.1016/j.bbadis.2006.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 01/05/2006] [Accepted: 01/05/2006] [Indexed: 12/27/2022]
Abstract
Serum amyloid A (SAA) is a precursor for the amyloid A in AA type of amyloidosis. Distribution of mast cells in tissues is similar to the distribution of amyloid deposits in secondary AA-amyloidosis. Therefore, we studied whether mast cells could be involved in SAA metabolism. Human mast cell line (HMC-1) cells were cultured with recombinant human apoSAA (rhSAA), and the production of tumour necrosis factor (TNF)-alpha and interleukin (IL)-1 beta was determined by ELISA. RhSAA and human SAA (huSAA) were incubated with human chymase, tryptase or with intact human mast cell (huMC) in cultures, and degradation of SAA was followed by gel electrophoresis, liquid chromatography and mass spectrometry. SAA induced dose-dependent production of TNF-alpha and IL-1 beta in HMC-1 cells. Tryptase, chymase, and huMC granules degraded efficiently the SAA protein. Degradation of SAA by tryptase, but not by chymase, released a highly amyloidogenic N-terminal fragment of SAA. Finally, incubation of huMC with rhSAA alone resulted in degradation of SAA and formation of protofibrillar intermediates. These results suggest a pathogenic role for mast cells in AA-amyloidosis.
Collapse
Affiliation(s)
- Katri Niemi
- Protein Chemistry Unit, Institute of Biomedicine and Neuroscience Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | | | | | | |
Collapse
|
58
|
Gazit E. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool. FEBS J 2006; 272:5971-8. [PMID: 16302962 DOI: 10.1111/j.1742-4658.2005.05022.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of amyloid fibrils is associated with various human medical disorders of unrelated origin. Recent research indicates that self-assembled amyloid fibrils are also involved in physiological processes in several micro-organisms. Yet, the molecular basis for the recognition and self-assembly processes mediating the formation of such structures from their soluble protein precursors is not fully understood. Short peptide models have provided novel insight into the mechanistic issues of amyloid formation, revealing that very short peptides (as short as a tetrapeptide) contain all the necessary molecular information for forming typical amyloid fibrils. A careful analysis of short peptides has not only facilitated the identification of molecular recognition modules that promote the interaction and self-assembly of fibrils but also revealed that aromatic interactions are important in many cases of amyloid formation. The realization of the role of aromatic moieties in fibril formation is currently being used to develop novel inhibitors that can serve as therapeutic agents to treat amyloid-associated disorders.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
59
|
Tartaglia GG, Cavalli A, Pellarin R, Caflisch A. Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 2005; 14:2723-34. [PMID: 16195556 PMCID: PMC2253302 DOI: 10.1110/ps.051471205] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The reliable identification of beta-aggregating stretches in protein sequences is essential for the development of therapeutic agents for Alzheimer's and Parkinson's diseases, as well as other pathological conditions associated with protein deposition. Here, a model based on physicochemical properties and computational design of beta-aggregating peptide sequences is shown to be able to predict the aggregation rate over a large set of natural polypeptide sequences. Furthermore, the model identifies aggregation-prone fragments within proteins and predicts the parallel or anti-parallel beta-sheet organization in fibrils. The model recognizes different beta-aggregating segments in mammalian and nonmammalian prion proteins, providing insights into the species barrier for the transmission of the prion disease.
Collapse
Affiliation(s)
- Gian Gaetano Tartaglia
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
60
|
Wang L, Lashuel HA, Colón W. From hexamer to amyloid: marginal stability of apolipoprotein SAA2.2 leads to in vitro fibril formation at physiological temperature. Amyloid 2005; 12:139-48. [PMID: 16194868 DOI: 10.1080/13506120500223084] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Serum amyloid A (SAA) is a major acute phase reactant and a small apolipoprotein of high density lipoproteins (HDL) in the serum. In cases of prolonged inflammation, SAA may form amyloid fibrils, leading to the disease of amyloid A (AA) amyloidosis. Recently, we have shown that murine SAA2.2, a non-amyloidogenic isoform in vivo, forms a hexamer in vitro containing a putative central channel. It is reported herein that upon thermal denaturation, hexameric SAA2.2 irreversibly dissociates to a misfolded monomer at physiological temperature, formation of which coincides with a significant loss of alpha-helical and gain of beta-sheet structure. When SAA2.2 is incubated for several days at 37 degrees C, sedimentation analytical ultracentrifugation reveals the presence of soluble high molecular weight aggregates, which upon further incubation undergo subsequent self-assembly into amyloid fibrils. Limited proteolysis experiments suggest that the in vitro amyloidogenecity of SAA2.2 is related to structural alteration in its N-terminus. Our observation that SAA2.2 can form amyloid fibrils in vitro at physiological temperatures suggests that SAA2.2's inability to cause amyloidosis may be related to other factors, such as the stabilization of hexameric SAA2.2 (possibly through ligand binding), and/or the slow kinetics of aberrant misfolding and self-assembly.
Collapse
Affiliation(s)
- Limin Wang
- Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | | | | |
Collapse
|
61
|
Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC. Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci U S A 2005; 102:315-20. [PMID: 15630094 PMCID: PMC544296 DOI: 10.1073/pnas.0406847102] [Citation(s) in RCA: 501] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 11/30/2004] [Indexed: 12/20/2022] Open
Abstract
The molecular structure of the amyloid fibril has remained elusive because of the difficulty of growing well diffracting crystals. By using a sequence-designed polypeptide, we have produced crystals of an amyloid fiber. These crystals diffract to high resolution (1 A) by electron and x-ray diffraction, enabling us to determine a detailed structure for amyloid. The structure reveals that the polypeptides form fibrous crystals composed of antiparallel beta-sheets in a cross-beta arrangement, characteristic of all amyloid fibers, and allows us to determine the side-chain packing within an amyloid fiber. The antiparallel beta-sheets are zipped together by means of pi-bonding between adjacent phenylalanine rings and salt-bridges between charge pairs (glutamic acid-lysine), thus controlling and stabilizing the structure. These interactions are likely to be important in the formation and stability of other amyloid fibrils.
Collapse
Affiliation(s)
- O Sumner Makin
- Structural Medicine, Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
62
|
Ancsin JB. Amyloidogenesis: historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid 2003; 10:67-79. [PMID: 12964414 DOI: 10.3109/13506120309041728] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Amyloids are complex tissue deposits and each type is identified by one of 22 different proteins or peptides which become re-folded into non-native conformational intermediates and then assemble into fibrils of a highly regular structure. All amyloid deposits also contain apolipoprotein E (apoE) as well as the basement membrane (BM) components, serum amyloid P and heparan sulfate proteoglycans (HSPG), perlecan or agrin. These BM components likely contribute to the overall organization of amyloid fibrils and HSPG has been further implicated in the genesis of amyloid. A growing body of evidence, summarized in this review, suggests that heparan sulfate (HS) promotes fibrillogenesis by associating with the amyloid precursors and inducing the conformational change required for their assembly into fibrils. HS also remains associated with the nascent fibrils contributing to its stability. These activities of HS are likely mediated through specific binding sites on the precursor proteins which appear to have sequence characteristics that are unique to amyloid.
Collapse
Affiliation(s)
- John B Ancsin
- Department of Pathology, Queen's University, Syl and Molly Apps Research Center, Kingston General Hospital, Kingston, Ontario, Canada.
| |
Collapse
|
63
|
Yamada T, Okuda Y, Takasugi K, Wang L, Marks D, Benson MD, Kluve-Beckerman B. An allele of serum amyloid A1 associated with amyloidosis in both Japanese and Caucasians. Amyloid 2003; 10:7-11. [PMID: 12762135 DOI: 10.3109/13506120308995250] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Serum amyloid A1 (SAA1), one of the two isotypes of acute phase SAA, is the predominant precursor to amyloid A (AA) protein, the chief constituent of fibrillar deposits in reactive (AA) amyloidosis. Prolonged hyperexpression of SAA protein accompanying chronic inflammation is critical to, but seems not to be sufficient for, the development of AA amyloidosis. Several previous studies have investigated the possibility of linkage between SAA1 exon 3 polymorphisms and susceptibility to amyloidosis. While the SAA1.1 allele was found to have a negative association with amylodosis in Japanese subjects, it showed a positive association in Caucasians. Moriguchi and colleagues recently showed that a single nucleotide polymorphism (SNP) at position -13 in the SAA1 5' flanking region was more strongly associated with amyloidosis than was the exon 3 polymorphism. To test whether this SNP may be an amyloidogenic factor common to Japanese and Caucasians, we have analyzed the SAA1 gene in amyloid and non-amyloid patients of both ethnic groups for the presence of T or C at position -13 and for exon 3 polymorphisms (SAA1.1, 1.3 or 1.5). The frequency of the -13T allele was 0.708 and 0.521 in Japanese rheumatoid arthritis patients with and patients without AA amyloidosis, respectively, and 0.536 and 0.196 in American Caucasian patients with AA amyloidosis and control subjects, respectively. In Caucasians, the -13T allele had a stronger association with amyloidosis than did the SAA1.1 allele. These findings suggest that -13T is a genetic background for AA amyloidosis in both Japanese and Caucasians and the difference in prevalence of AA amyloidosis in the two ethnic groups may be due, at least in part, to a difference in the frequency of the -13T SAA1 allele.
Collapse
Affiliation(s)
- Toshiyuki Yamada
- Department of Clinical Pathology, Juntendo University School of Medicine, 2 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | |
Collapse
|
64
|
Wang L, Lashuel HA, Walz T, Colon W. Murine apolipoprotein serum amyloid A in solution forms a hexamer containing a central channel. Proc Natl Acad Sci U S A 2002; 99:15947-52. [PMID: 12456883 PMCID: PMC138545 DOI: 10.1073/pnas.252508399] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serum amyloid A (SAA) is a small apolipoprotein that binds to high-density lipoproteins in the serum. Although SAA seems to play a role in host defense and lipid transport and metabolism, its specific functions have not been defined. Despite the growing implications that SAA plays a role in the pathology of various diseases, a high-resolution structure of SAA is lacking because of limited solubility in the high-density lipoprotein-free form. In this study, complementary methods including glutaraldehyde cross-linking, size-exclusion chromatography, and sedimentation-velocity analytical ultracentrifugation were used to show that murine SAA2.2 in aqueous solution exists in a monomer-hexamer equilibrium. Electron microscopy of hexameric SAA2.2 revealed that the subunits are arranged in a ring forming a putative central channel. Limited trypsin proteolysis and mass spectrometry analysis identified a significantly protease-resistant SAA2.2 region comprising residues 39-86. The isolated 39-86 SAA2.2 fragment did not hexamerize, suggesting that part of the N terminus is involved in SAA2.2 hexamer formation. Circular-dichroism spectrum deconvolution and secondary-structure prediction suggest that SAA2.2 contains approximately 50% of its residues in alpha-helical conformation and <10% in beta-structure. These findings are consistent with the recent discovery that human SAA1.1 forms a membrane channel and have important implications for understanding the 3D structure, multiple functions, and pathological roles of this highly conserved protein.
Collapse
Affiliation(s)
- Limin Wang
- Department of Chemistry, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
65
|
Abstract
The major pathological hallmark of amyloid diseases is the presence of extracellular amyloid deposits. Serum amyloid A (SAA) is an apolipoprotein primarily produced in the liver. Serum protein levels can increase one thousandfold after inflammation. SAA is the precursor to the amyloid A protein found in deposits of systemic amyloid A amyloid (AA or reactive amyloid) in both mouse and human. To study the factors necessary for cerebral amyloid formation, we have created a transgenic mouse that expresses the amyloidogenic mouse Saa1 protein in the brain. Using the synapsin promoter to drive expression of the Saa1 gene, the brains of transgenic mice expressed both RNA and protein. Under noninflammatory conditions, transgenic mice do not develop AA amyloid deposits in the brain; however, induction of a systemic acute-phase response in transgenic mice enhanced amyloid deposition. This deposition was preceded by an increase in cytokine levels in the brain, suggesting that systemic inflammation may be a contributing factor to the development of cerebral amyloid. The nonsteroidal anti-inflammatory agent indomethacin reduced inflammation and protected against the deposition of AA amyloid in the brain. These studies indicate that inflammation plays an important role in the process of amyloid deposition, and inhibition of inflammatory cascades may attenuate amyloidogenic processes, such as Alzheimer's disease.
Collapse
|
66
|
Hirakura Y, Carreras I, Sipe JD, Kagan BL. Channel formation by serum amyloid A: a potential mechanism for amyloid pathogenesis and host defense. Amyloid 2002; 9:13-23. [PMID: 12000193 DOI: 10.3109/13506120209072440] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Serum amyloid A (SAA) is a family of closely related apolipoproteins associated with high density lipoprotein (HDL). Subclasses of SAA isoforms are differentially expressed constitutively and during inflammation. During states of infection or inflammation, levels of HDL bound, acute phase isoforms of SAA rise as much as 1000-fold in the serum, suggesting that it might play a role in host defense. Following recurrent or chronic inflammation, an N-terminal peptide fragment of SAA known as amyloid A (AA) assembles into fibrils causing extensive damage to spleen, liver, and kidney, and rapidly progressing to death. In the present paper, we report the novel finding that a recombinant acute phase isoform variant of human SAA 1.1 (SAAp) readily forms ion-channels in planar lipid bilayer membranes at physiologic concentrations. These channels are voltage-independent, poorly selective, and are relatively long-lived This type of channel would place a severe metabolic strain on various kinds of cells. Expression of human SAA 1.1 in bacteria induces lysis of bacterial cells, while expression of the constitutive isoform (human SAA4) does not. Secondary structural analysis of the SAA isoforms in dicates a strong hydrophobicity of the N-terminal of the acute phase isoform relative to the constitutive SAA4 isoform, which may be responsible for the bactericidal activity of the former, in keeping with the notion that SAA 1 targets cell membranes and forms channels in them. Channel formation may thus be related to a host defense role of acute phase SAA isoforms and may also be the mechanism of end organ damage in AA and other amyloidoses.
Collapse
Affiliation(s)
- Yutaka Hirakura
- Department of Psychiatry, Neuropsychiatric Institute, UCLA School of Medicine, 90024, USA
| | | | | | | |
Collapse
|
67
|
Abstract
Amyloid fibril formation is assumed to be the molecular basis for a variety of diseases of unrelated origin. Despite its fundamental clinical importance, the mechanism of amyloid formation is not fully understood. When we analyzed a variety of short functional fragments from unrelated amyloid-forming proteins, a remarkable occurrence of aromatic residues was observed. The finding of aromatic residues in diverse fragments raises the possibility that pi-pi interactions may play a significant role in the molecular recognition and self-assembly processes that lead to amyloid formation. This is in line with the well-known central role of pi-stacking interactions in self-assembly processes in the fields of chemistry and biochemistry. We speculate that the stacking interactions may provide energetic contribution as well as order and directionality in the self-assembly of amyloid structures. Experimental data regarding amyloid formation and inhibition by short peptide analogs also support our hypothesis. The pi-stacking hypothesis suggests a new approach to understanding the self-assembly mechanism that governs amyloid formation and indicates possible ways to control this process.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
68
|
Abstract
Amyloidosis is not a single disease but a series of diseases in which there is extracellular deposition of a protein which, although it may be derived from different and unrelated sources, folds into a beta pleated sheet. There have recently been significant advances in elucidating the pathogenesis and in the treatment of this group of disorders. By identifying the source of precursor protein, treatment is aimed at eliminating or reducing the extent of deposition and is tailored for each patient. Early diagnosis is required for the optimal effect of treatment on patient survival and quality of life. An increased awareness among physicians of the spectrum of the disease and tools to aid its diagnosis is of increasing importance.
Collapse
Affiliation(s)
- M F Khan
- Amyloidosis Treatment and Research Center, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
69
|
Azriel R, Gazit E. Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 2001; 276:34156-61. [PMID: 11445568 DOI: 10.1074/jbc.m102883200] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of type II diabetes was shown to be associated with the formation of amyloid fibrils consisted of the islet amyloid polypeptide (IAPP or amylin). Recently, a short functional hexapeptide fragment of IAPP (NH(2)-NFGAIL-COOH) was found to form fibrils that are very similar to those formed by the full-length polypeptide. To better understand the specific role of the residues that compose the fragment, we performed a systematic alanine scan of the IAPP "basic amyloidogenic units." Turbidity assay experiments demonstrated that the wild-type peptide and the Asn(1) --> Ala and Gly(3) --> Ala peptides had the highest rate of aggregate formation, whereas the Phe(2) --> Ala peptide did not form any detectable aggregates. Dynamic light-scattering experiments demonstrated that all peptides except the Phe(2) --> Ala form large multimeric structures. Electron microscopy and Congo red staining confirmed that the structures formed by the various peptides are indeed amyloid fibrils. Taken together, the results of our study provide clear experimental evidence for the key role of phenylalanine residue in amyloid formation by IAPP. In contrast, glycine, a residue that was suggested to facilitate amyloid formation in other systems, has only a minor role, if any, in this case. Our results are discussed in the context of the remarkable occurrence of aromatic residues in short functional fragments and potent inhibitors of amyloid-related polypeptides. We hypothesize that pi-pi interactions may play a significant role in the molecular recognition and self-assembly processes that lead to amyloid formation.
Collapse
Affiliation(s)
- R Azriel
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | |
Collapse
|
70
|
Kluve-Beckerman B, Manaloor J, Liepnieks JJ. Binding, trafficking and accumulation of serum amyloid A in peritoneal macrophages. Scand J Immunol 2001; 53:393-400. [PMID: 11285120 DOI: 10.1046/j.1365-3083.2001.00879.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Murine serum amyloid A1.1 (SAA1.1) has been conjugated with the fluorophore Texas Red (TxR), and its interaction with peritoneal macrophages has been visualized by scanning confocal microscopy. Binding of TxR-SAA to cell surfaces was inhibited by an excess of unlabelled SAA indicating the involvement of saturable receptors. Internalized TxR-SAA was seen initially as small punctate signals which in some cells evolved into a fine fluorescent network, a pattern typical of tubular endosomes. Colocalization of TxR-SAA with Cy5-labelled low density lipoprotein (LDL) but not with Oregon Green-labelled transferrin suggested that SAA trafficked through endosomes and lysosomes for degradation rather than through recycling compartments. Consistent with this catabolic pathway, macrophages loaded with TxR-SAA lost fluorescence within several days after being shifted to a fluorophore-free medium. In sharp contrast to this, cells maintained under amyloid-forming conditions, i.e. in the presence of unlabelled SAA and amyloid-enhancing factor (AEF) before and after treatment with TxR-SAA, remained brightly fluorescent over the course of 5 days. Immunocytochemistry verified the accumulation of SAA within macrophages. These findings support the hypothesis that a decreased catabolism of internalized SAA plays a role in AA amyloid pathogenesis.
Collapse
Affiliation(s)
- B Kluve-Beckerman
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Medical Research and Library Building, Fifth Floor, 975 West Walnut Street, Indianapolis, IN, USA.
| | | | | |
Collapse
|
71
|
Röcken C, Stix B, Brömme D, Ansorge S, Roessner A, Bühling F. A putative role for cathepsin K in degradation of AA and AL amyloidosis. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1029-38. [PMID: 11238051 PMCID: PMC1850355 DOI: 10.1016/s0002-9440(10)64050-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2000] [Indexed: 10/18/2022]
Abstract
The aims of this study were to investigate the role of cathepsin K in the pathology of amyloidosis by demonstrating its presence in multinucleated giant cells (MGCs) adjacent to amyloid deposits, and determining its ability to degrade amyloid fibril proteins in vitro. The study was performed using autopsy and biopsy specimens from patients with AA or AL amyloidosis. In six (55%) patients with AA amyloidosis and seven (58%) patients with AL amyloidosis, variable numbers of CD68-immunoreactive MGCs were found adjacent to amyloid deposits. In each case strong cytoplasmic immunostaining for cathepsin K was found in MGCs; immunostaining of amyloid deposits was present in five (45%) patients with AA amyloidosis and three (25%) patients with AL amyloidosis. In vitro degradation experiments showed that recombinant cathepsin K completely degraded AA amyloid fibril proteins at pH 5.5 as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. Less effective degradation took place at pH 7.4 and there was no degradation in the presence of a general cysteine protease inhibitor (E64) or in the absence of cathepsin K. This is the first study to show that cathepsin K is expressed in MGCs adjacent to amyloid deposits and to demonstrate its ability to degrade amyloid fibril proteins.
Collapse
Affiliation(s)
- C Röcken
- Institute of Pathology, Otto-von-Guericke-University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
72
|
Yu J, Zhu H, Guo JT, de Beer FC, Kindy MS. Expression of mouse apolipoprotein SAA1.1 in CE/J mice: isoform-specific effects on amyloidogenesis. J Transl Med 2000; 80:1797-806. [PMID: 11140693 DOI: 10.1038/labinvest.3780191] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Amyloid A (AA) amyloid deposition in mice is dependent upon isoform-specific effects of the serum amyloid A (SAA) protein. In type A mice, SAA1.1 and SAA2.1 are the major apolipoprotein-SAA isoforms found on high-density lipoproteins. During inflammation, both isoforms are increased 1000-fold, but only SAA1.1 is selectively deposited into amyloid fibrils. Previous studies showed that the CE/J mouse strain is resistant to amyloid induction. This resistance is not due to a deficiency in SAA synthesis, but is probably related to the unusual SAA isoform present. The CE/J mouse has a single acute-phase SAA protein (SAA2.2), which is a composite of the SAA1.1 and SAA2.1, with an amino terminus similar to the nonamyloidogenic SAA2.1. Recently, genetic experiments suggested that the SAA2.2 isoform might provide protection from amyloid deposition. To determine the amyloidogenic potential of the CE/J mouse, we generated SAA adenoviral vectors to express the various isoforms in vitro and in vivo. Purified recombinant SAA proteins demonstrated that SAA1.1 was fibrillogenic in vitro, whereas SAA2.2 was unable to form fibrils. Incubation of increasing concentrations of the nonamyloidogenic SAA2.2 protein with the amyloidogenic SAA1.1 did not inhibit the fibrillogenic nature of SAA1.1, or alter its ability to form extensive fibrils. Injection of the mouse SAA1.1 or SAA2.2 adenoviral vectors into mice resulted in isoform-specific expression of the SAA proteins. Amyloid induction after viral expression of the SAA1.1 protein resulted in the deposition of amyloid fibrils in the CE/J mouse, whereas SAA2.2 expression had no effect. Similar expression of the SAA2.2 protein in C57BL/6 mice did not alter amyloid deposition. These data demonstrate that the failure of the CE/J mouse to deposit amyloid is due to the structural inability of the SAA2.2 to form amyloid fibrils. This mouse provides a unique system to test the amyloidogenic potential of altered SAA proteins and to determine the important structural features of the protein.
Collapse
Affiliation(s)
- J Yu
- Department of Biochemistry, University of Kentucky, Lexington, USA
| | | | | | | | | |
Collapse
|
73
|
Uhlar CM, Whitehead AS. Serum amyloid A, the major vertebrate acute-phase reactant. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:501-23. [PMID: 10504381 DOI: 10.1046/j.1432-1327.1999.00657.x] [Citation(s) in RCA: 767] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The serum amyloid A (SAA) family comprises a number of differentially expressed apolipoproteins, acute-phase SAAs (A-SAAs) and constitutive SAAs (C-SAAs). A-SAAs are major acute-phase reactants, the in vivo concentrations of which increase by as much as 1000-fold during inflammation. A-SAA mRNAs or proteins have been identified in all vertebrates investigated to date and are highly conserved. In contrast, C-SAAs are induced minimally, if at all, during the acute-phase response and have only been found in human and mouse. Although the liver is the primary site of synthesis of both A-SAA and C-SAA, extrahepatic production has been reported for most family members in most of the mammalian species studied. In vitro, the dramatic induction of A-SAA mRNA in response to pro-inflammatory stimuli is due largely to the synergistic effects of cytokine signaling pathways, principally those of the interleukin-1 and interleukin-6 type cytokines. This induction can be enhanced by glucocorticoids. Studies of the A-SAA promoters in several mammalian species have identified a range of transcription factors that are variously involved in defining both cytokine responsiveness and cell specificity. These include NF-kappaB, C/EBP, YY1, AP-2, SAF and Sp1. A-SAA is also post-transcriptionally regulated. Although the precise role of A-SAA in host defense during inflammation has not been defined, many potential clinically important functions have been proposed for individual SAA family members. These include involvement in lipid metabolism/transport, induction of extracellular-matrix-degrading enzymes, and chemotactic recruitment of inflammatory cells to sites of inflammation. A-SAA is potentially involved in the pathogenesis of several chronic inflammatory diseases: it is the precursor of the amyloid A protein deposited in amyloid A amyloidosis, and it has also been implicated in the pathogenesis of atheroscelerosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- C M Uhlar
- Department of Pharmacology and Center for Pharmacogenetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6084, USA
| | | |
Collapse
|
74
|
Kluve-Beckerman B, Liepnieks JJ, Wang L, Benson MD. A cell culture system for the study of amyloid pathogenesis. Amyloid formation by peritoneal macrophages cultured with recombinant serum amyloid A. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:123-33. [PMID: 10393845 PMCID: PMC1866657 DOI: 10.1016/s0002-9440(10)65107-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A murine macrophage culture system that is both easy to employ and amenable to manipulation has been developed to study the cellular processes involved in AA amyloid formation. Amyloid deposition, as identified by Congo red-positive, green birefringent material, is achieved by providing cultures with recombinant serum amyloid A2 (rSAA2), a defined, readily produced, and highly amyloidogenic protein. In contrast to fibril formation, which can occur in vitro with very high concentrations of SAA and low pH, amyloid deposition in culture is dependent on metabolically active macrophages maintained in neutral pH medium containing rSAA2 at a concentration typical of that seen in acute phase serum. Although amyloid-enhancing factor is not required, its addition to culture medium results in larger and more numerous amyloid deposits. Amyloid formation in culture is accompanied by C-terminal processing of SAA and the generation of an 8.5-kd fragment analogous to amyloid A protein produced in vivo. Consistent with the possibility that impaired catabolism of SAA plays a role in AA amyloid pathogenesis, treatment of macrophages with pepstatin, an aspartic protease inhibitor, results in increased amyloid deposition. Finally, the amyloidogenicity exhibited by SAA proteins in macrophage cultures parallels that seen in vivo, eg, SAA2 is highly amyloidogenic, whereas CE/J SAA is nonamyloidogenic. The macrophage culture model presented here offers a new approach to the study of AA amyloid pathogenesis.
Collapse
Affiliation(s)
- B Kluve-Beckerman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | |
Collapse
|
75
|
Abstract
At least two forms of amyloidosis, amyloid A (AA) and prion protein (PrP), can be transmitted by dietary ingestion of an agent(s) present in crude mammalian tissues. Although the incubation time for PrP or scrapie-induced diseases to develop in experimental animals extends over months or years, AA or secondary amyloidosis in mice is inducible within a week. In response to inflammatory stimuli we hypothesize that dietary factor(s) modulate the rate at which beta-pleated sheet fibrils accumulate in most forms of amyloidosis. The critical importance of precursor protein polymorphism, cell surface proteoglycans (PG), lipids and apolipoprotein metabolism has also been addressed in this hypothesis.
Collapse
Affiliation(s)
- E S Cathcart
- Department of Medicine, Boston University School of Medicine, MA 02154, USA. cathcart,
| | | |
Collapse
|
76
|
Dubois J, Ismail AA, Chan SL, Ali-Khan Z. Fourier transform infrared spectroscopic investigation of temperature- and pressure-induced disaggregation of amyloid A. Scand J Immunol 1999; 49:376-80. [PMID: 10219762 DOI: 10.1046/j.1365-3083.1999.00508.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The conformation-sensitive amide I band in the Fourier transform infrared (FTIR) spectra of amyloid A suspensions in D2O was examined as a function of temperature (25-95 degrees C) and applied hydrostatic pressure (1-12 kbar) to assess the stability of the peptide. The principal changes observed upon heating were a significant loss of intermolecular beta-sheet structure, and an increase in the broad band centred at 1644 cm(-1) assigned to unordered structure and alpha-helices of the dissociated species. Application of hydrostatic pressure at ambient temperature resulted in a limited degree of aggregate dissociation. These structural changes were partially reversible with cooling or release of the applied pressure. Dissolving the aggregated peptide in alkaline solution (pH 12) also resulted in disaggregation. Dissociation of organ-deposited amyloid substance bears clinical relevance. The present data indicate that residual amounts of undissociated amyloid in the milieu at physiological and acidic pH may act as nucleating foci rendering dissociated amyloid to reaggregate into organized amyloid.
Collapse
Affiliation(s)
- J Dubois
- Department of Food Science and Agricultural Chemistry, Macdonald Campus of McGill University, Ste-Anne-de-Bellvue, Québec, Canada
| | | | | | | |
Collapse
|
77
|
Yamada T. Serum amyloid A (SAA): a concise review of biology, assay methods and clinical usefulness. Clin Chem Lab Med 1999; 37:381-8. [PMID: 10369107 DOI: 10.1515/cclm.1999.063] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Serum amyloid A (SAA) is a family of proteins encoded in a multigene complex. Acute phase isotypes SAA1 and SAA2 are synthesized in response to inflammatory cytokines. SAA and C-reactive protein (CRP) are now the most sensitive indicators for assessing inflammatory activity. In viral infection and kidney allograft rejection, SAA proved more useful than CRP. Development of convenient assay methods for SAA will facilitate its use in clinical laboratories.
Collapse
Affiliation(s)
- T Yamada
- Department of Clinical Pathology, Jichi Medical School, Minamikawachi, Tochigi, Japan.
| |
Collapse
|
78
|
Kirschner DA, Elliott-Bryant R, Szumowski KE, Gonnerman WA, Kindy MS, Sipe JD, Cathcart ES. In vitro amyloid fibril formation by synthetic peptides corresponding to the amino terminus of apoSAA isoforms from amyloid-susceptible and amyloid-resistant mice. J Struct Biol 1998; 124:88-98. [PMID: 9931277 DOI: 10.1006/jsbi.1998.4047] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific proteins of the apolipoprotein serum amyloid (apoSAA) family that are synthesized in large quantities during the acute, early phase of inflammation can serve as the proteinaceous precursors for amyloid fibrils. To model fibrillogenesis in such inflammatory diseases, we have used electron microscopy and X-ray diffraction to examine the structures formed by synthetic peptides corresponding in sequence to the 11 amino-terminal amino acids of murine apoSAA1, apoSAAcej, and apoSAA2 and to the 15 amino-terminal amino acids of apoSAA2. This region is reported to be the major fibrillogenic determinant of apoSAA isoforms. Both in 1 mM Tris buffer and in 35% acetonitrile, 0.1% trifluoracetic acid (ACN/TFA), all of the peptides formed macromolecular assemblies consisting of twisted, approximately 40- to 60-A-thick ribbons, which varied in width from around 40-70 A (for 11-mer apoSAA2 in Tris) up to 900 A (for the other peptides). X-ray diffraction patterns recorded from lyophilized peptides, vapor-hydrated samples, and solubilized/dried samples showed hydrogen bonding and intersheet reflections typical of a beta-pleated sheet conformation. The coherent lengths measured from the breadths of the X-ray reflections indicated that with hydration the growth of the assemblies in the intersheet stacking direction was comparable to that in the hydrogen-bonding direction, and analysis of oriented samples showed that the beta-strands were oriented perpendicular to both the long axis and the face of the assemblies. These X-ray results are consistent with the ribbon- or plate-like morphology of the individual aggregates and emphasize the polymorphic nature of amyloidogenic peptides. Our findings demonstrate that X-ray diffraction measurements on vapor-hydrated or solubilized/dried versus lyophilized, amyloidogenic peptides are a good indicator of their fibrillogenic potential. For example, from the highest to the lowest potential, the peptides examined here were ranked as: Abeta1-28 > Abeta1-40 > apoSAA1 approximately apoSAAcej > apoSAA2 > Abeta17-42. Experiments in which the three different 11-mer apoSAA isoforms were solubilized in ACN/TFA and then combined as binary mixtures showed that the ribbon morphology was not affected but that the extent of hydrogen bonding in the assemblies was substantially reduced. Our observations on the in vitro assembly of apoSAA analogs emphasize that amyloid fibril formation and morphology depend on primary sequence, length of polypeptide chain, the presence of additional fibrillogenic polypeptides, and solvent conditions.
Collapse
Affiliation(s)
- D A Kirschner
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, 02467-3811, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Liang J, Elliott-Bryant R, Hajri T, Sipe JD, Cathcart ES. A unique amyloidogenic apolipoprotein serum amyloid A (apoSAA) isoform expressed by the amyloid resistant CE/J mouse strain exhibits higher affinity for macrophages than apoSAA1 and apoSAA2 expressed by amyloid susceptible CBA/J mice. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1394:121-6. [PMID: 9767146 DOI: 10.1016/s0005-2760(98)00102-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CBA/J and other inbred strains of mice that express the amyloidogenic apolipoprotein serum amyloid A (apoSAA) apoSAA2, together with apoSAA1, are susceptible to amyloid A (AA) amyloidosis, whereas CE/J mice that express a single unique isoform, apoSAACEJ, are resistant. Studies indicate that CBA/JxCE/J hybrid mice that express apoSAA2 in the presence of apoSAACEJ are protected from amyloidogenesis. To define a mechanism by which expression of apoSAACEJ may protect from AA formation in the presence of apoSAA2, binding of recombinant apoSAA (r-apoSAA) isoforms, validated by N-terminal sequencing, to a murine macrophage cell line was investigated. Maximal specific binding occurred after incubation of radiolabeled apoSAA with IC-21 macrophages (1x105 cells/ml) for 30 min at 4 degreesC. The binding of 125I-r-apoSAA1, 125I-r-apoSAA2 and 125I-r-apoSAACEJ was specific and saturable, with an affinity (Kd) of about 2.8, 3.2 and 1.3 nM, respectively, and approximately 2-4x106 sites per cell. Competitive binding experiments indicate apoSAACEJ binds with higher affinity to macrophages than does either apoSAA1 or apoSAA2. We suggest that greater cellular affinity of apoSAACEJ compared to apoSAA2 may contribute to protection from AA amyloid in certain CBA/JxCE/J hybrid mice by interfering with interaction of apoSAA2 by macrophages and hence either membrane associated or intracellular degradation.
Collapse
Affiliation(s)
- J Liang
- The Edith Nourse Rogers Memorial DVA Hospital, Bedford, MA 01750, USA
| | | | | | | | | |
Collapse
|
80
|
Elliott-Bryant R, Liang JS, Sipe JD, Cathcart ES. Catabolism of lipid-free recombinant apolipoprotein serum amyloid A by mouse macrophages in vitro results in removal of the amyloid fibril-forming amino terminus. Scand J Immunol 1998; 48:241-7. [PMID: 9743207 DOI: 10.1046/j.1365-3083.1998.00384.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serum amyloid A fibrils are formed when the normally rapid catabolism of the acute-phase reactant apolipoprotein serum amyloid A (apoSAA) is incomplete; thus amyloidosis may be viewed as a condition of dysregulated proteolysis. There is evidence that apoSAA is dissociated from plasma high-density lipoprotein (HDL) prior to fibril formation. The objective of this study was to investigate degradation of lipid-free apoSAA by tissue macrophages derived from amyloid-susceptible CBA/J mice in vitro. Peritoneal macrophages derived from untreated (normal) mice converted apoSAA (12 kDa) to a single 4 kDa C-terminal peptide while splenic macrophages converted apoSAA to 10, 7 and 4 kDa C-terminal peptides and a 4 kDa peptide that lacked the C- and N-terminal regions. Similar patterns of proteolysis occurred when peritoneal and splenic macrophages from amyloidotic CBA/J mice were used. Conditioned medium prepared from peritoneal, but not splenic macrophages, degraded apoSAA. Specific sites of cleavage indicated activity of cathepsin G- and elastase-like neutral proteases. The data indicate that lipid-free apoSAA can be degraded by secreted or cell-associated neutral proteases that are generated by macrophages to yield peptides that lack fibrillogenic potential.
Collapse
Affiliation(s)
- R Elliott-Bryant
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730, USA
| | | | | | | |
Collapse
|
81
|
Kindy MS, King AR, Yu J, Gerardot C, Whitley J, de Beer FC. Adenoviral expression of murine serum amyloid A proteins to study amyloid fibrillogenesis. Biochem J 1998; 332 ( Pt 3):721-8. [PMID: 9620875 PMCID: PMC1219533 DOI: 10.1042/bj3320721] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Serum amyloid A (SAA) proteins are one of the most inducible acute-phase reactants and are precursors of secondary amyloidosis. In the mouse, SAA1 and SAA2 are induced in approximately equal quantities in response to amyloid induction models. These two isotypes differ in only 9 of 103 amino acid residues; however, only SAA2 is selectively deposited into amyloid fibrils. SAA expression in the CE/J mouse species is an exception in that gene duplication did not occur and the CE/J variant is a hybrid molecule sharing features of SAA1 and SAA2. However, even though it is more closely related to SAA2 it is not deposited as amyloid fibrils. We have developed an adenoviral vector system to overexpress SAA proteins in cell culture to determine the ability of these proteins to form amyloid fibrils, and to study the structural features in relation to amyloid formation. Both the SAA2 and CE/J SAA proteins were synthesized in large quantities and purified to homogeneity. Electron microscopic analysis of the SAA proteins revealed that the SAA2 protein was capable of forming amyloid fibrils, whereas the CE/J SAA was incapable. Radiolabelled SAAs were associated with normal or acute-phase high-density lipoproteins (HDLs); we examined them for their clearance from the circulation. In normal mice, SAA2 had a half-life of 70 min and CE/J SAA had a half-life of 120 min; however, in amyloid mice 50% of the SAA2 cleared in 55 min, compared with 135 min for the CE/J protein. When the SAA proteins were associated with acute-phase HDLs, SAA2 clearance was decreased to 60 min in normal mice compared with 30 min in amyloidogenic mice. Both normal and acute-phase HDLs were capable of depositing SAA2 into preformed amyloid fibrils, whereas the CE/J protein did not become associated with amyloid fibrils. This established approach opens the doors for large-scale SAA production and for the examination of specific amino acids involved in the fibrillogenic capability of the SAA2 molecule in vitro and in vivo.
Collapse
Affiliation(s)
- M S Kindy
- Department of Biochemistry, University of Kentucky School of Medicine, 800 Rose Street, Lexington, KY 40536-0084, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Kisilevsky R, Fraser PE. A beta amyloidogenesis: unique, or variation on a systemic theme? Crit Rev Biochem Mol Biol 1998; 32:361-404. [PMID: 9383610 DOI: 10.3109/10409239709082674] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For more than a century amyloid was considered to be an interesting, unique, but inconsequential pathologic entity that rarely caused significant clinical problems. We now recognize that amyloid is not one entity. In vivo it is a uniform organization of a disease, or process, specific protein co-deposited with a set of common structural components. Amyloid has been implicated in the pathogenesis of diseases affecting millions of patients. These range from Alzheimer's disease, adult-onset diabetes, consequences of prolonged renal dialysis, to the historically recognized systemic forms associated with inflammation and plasma cell disturbances. Strong evidence is emerging that even when deposited in local organ sites significant physiologic effects may ensue. With emphasis on A beta amyloid, we review the present definition, classification, and general in vivo pathogenetic events believed to be involved in the deposition of amyloids. This encompasses the need for an adequate amyloid precursor protein pool, whether precursor proteolysis is required prior to deposition, amyloidogenic amino acid sequences, fibrillogenic nucleating particles, and an in vivo microenvironment conducive to fibrillogenesis. The latter includes several components that seem to be part of all amyloids. The role these common components may play in amyloid accumulation, why amyloids tend to be associated with basement membranes, and how one may use these findings for anti-amyloid therapeutic strategies is also examined.
Collapse
Affiliation(s)
- R Kisilevsky
- Department of Pathology, Queen's University, Kingston, Ontario Canada
| | | |
Collapse
|
83
|
Ancsin JB, Kisilevsky R. Characterization of high affinity binding between laminin and the acute-phase protein, serum amyloid A. J Biol Chem 1997; 272:406-13. [PMID: 8995276 DOI: 10.1074/jbc.272.1.406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Serum amyloid A isoforms, apoSAA1 and apoSAA2, are acute-phase proteins of unknown function and can be precursors of amyloid AA peptides (AA) found in animal and human amyloid deposits. These deposits are often a complication of chronic inflammatory disorders and are associated with a local disturbance in basement membrane (BM). In the course of trying to understand the pathogenesis of this disease laminin, a major BM glycoprotein, has been discovered to bind saturably, and with high affinity to murine acute-phase apoSAA. This interaction involves a single class of binding sites, which are ionic in nature, conformation-dependent, and possibly involve sulfhydryls. Binding activity was significantly enhanced by Zn2+, an effect possibly mediated through Cys-rich zinc finger-like sequences on laminin. Collagen type IV also bound apoSAA but with lower affinity. Unexpectedly, no binding was detected for perlecan, a BM proteoglycan previously implicated in AA fibrillogenesis, although a low affinity interaction cannot be excluded. Entactin, another BM protein that functions to cross-link the BM matrix and is normally complexed with laminin, could inhibit laminin-apoSAA binding suggesting apoSAA does not bind to normal BM. Since laminin binds apoSAA with high affinity and has previously been shown to codeposit with AA amyloid fibrils, we postulate that laminin interacts with apoSAA and facilitates nucleation events leading to fibrillogenesis. This work also provides further support for the hypothesis that a disturbance in BM metabolism contributes to the genesis of amyloid. The specificity and avidity of the laminin-apoSAA interaction also implies that it may be a normal event occurring during the inflammatory process, which mediates one or more of the functions recently proposed for apoSAA.
Collapse
Affiliation(s)
- J B Ancsin
- Department of Pathology, Queen's University, Syl and Molly Apps Research Center, Kingston General Hospital, Ontario, Canada
| | | |
Collapse
|
84
|
Amino terminal region of acute phase, but not constitutive, serum amyloid A (apoSAA) specifically binds and transports cholesterol into aortic smooth muscle and HepG2 cells. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37293-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
85
|
Patel H, Bramall J, Waters H, De Beer MC, Woo P. Expression of recombinant human serum amyloid A in mammalian cells and demonstration of the region necessary for high-density lipoprotein binding and amyloid fibril formation by site-directed mutagenesis. Biochem J 1996; 318 ( Pt 3):1041-9. [PMID: 8836154 PMCID: PMC1217721 DOI: 10.1042/bj3181041] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Site-directed mutagenesis of the acute-phase human serum amyloid A (SAA1 alpha) protein was used to evaluate the importance of the N-terminal amino acid residues, namely RSFFSFLGEAF The full-length cDNA clone of SAA1 alpha (pA1.mod.) was used to create two mutations, namely Gly-8 to Asp-8 and an 11 amino acid truncation between Arg-1 and Phe-11 respectively. Wild-type and mutant cDNAs were expressed in Chinese hamster ovary (CHO) cells under the control of the human cytomegalovirus promoter, which resulted in the secretion of the processed proteins into the culture media. Wild-type recombinant human SAA (rSAA) protein was shown to have pI values of 6.0 and 6.4, similar to the human SAA isoform SAA1 alpha and SAA1 alpha desArg found in acute-phase plasma. N-terminal sequencing of 56 residues confirmed its identity with human SAA1 alpha. The total yield of wild-type rSAA measured by ELISA was between 3.5 and 30 mg/l. The two mutations resulted in reduced expression levels of the mutant SAA proteins (3-10 mg/l). Further measurements of rSAA concentration in lipid fractions of culture medium collected at a density of 1.21 g/ml (high-density liporotein; HDL) and 1.063-1.18 g/ml (very-low-density lipoprotein/low-density lipoprotein; VLDL/LDL) showed that 76% of the wild-type protein was found in the HDL fraction and the remaining 24% in the infranatant non-lipid fraction. In contrast the relative concentration of mutant rSAA in HDL and infranatant fractions was reversed. This is consistent with the previously proposed involvement of the 11 amino acid peptide in anchoring. SAA protein on to HDL3 [Turnell, Sarra, Glover, Baum, Caspi, Baltz and Pepys (1986) Mol. Biol. Med. 3, 387-407]. Wild-type rSAA protein was shown to from amyloid fibrils in vitro under acidic conditions as shown by electron microscopy, and stained positive with Congo Red and exhibited apple-green birefringence when viewed under polarized light. Under the same conditions mutSAA(G8D) and mutSAA delta 1-11 did not form amyloid fibrils. In conclusion, replacement of Gly-8 by Asp-8 or deletion of the first 11 amino acid residues at the N-terminus of rSAA diminishes its capacity to bind to HDL and decreases amyloid fibril formation.
Collapse
Affiliation(s)
- H Patel
- Department of Molecular Pathology, University College London Medical School, UK
| | | | | | | | | |
Collapse
|
86
|
Bonifácio MJ, Sakaki Y, Saraiva MJ. 'In vitro' amyloid fibril formation from transthyretin: the influence of ions and the amyloidogenicity of TTR variants. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1316:35-42. [PMID: 8634341 DOI: 10.1016/0925-4439(96)00014-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mechanisms of amyloid formation in Familial Amyloidotic Polyneuropathy (FAP) are unknown, as well as the factors determining the development of this pathology. To get some insights into this process, we have first tested a fluorimetric assay with thioflavine T, as a quantitative method for transthyretin (TTR) amyloid estimation, using amyloid isolated from post-mortem tissues of a FAP patient. Then production of amyloid fibrils from soluble TTR was achieved by acidification and optimized for protein concentration and pH. The effect of different ions such as metal and sulphate ions in the process of amyloid formation from wild type TTR was compared using a kinetic assay. Under the conditions tested sulphate diminishes the amount of amyloid formed from wild type TTR and in addition appears to promote aggregation of preexisting amyloid fibrils. The relative amyloidogenicity of three TTR variants, TTR Met30, TTR Pro55 and TTR Met119 respectively, was evaluated using a pH dependent assay. It was shown that the Pro55 variant is highly susceptible to amyloid formation as compared to the wild type protein; on the contrary, the Met119 variant is more resistant than the other TTR proteins towards precipitation into amyloid. These results are in agreement with the pathological conditions associated with these mutations. This type of assay has a wide application for testing the influence of other factors, such as therapeutical agents, on amyloid formation.
Collapse
Affiliation(s)
- M J Bonifácio
- Centro de Estudos de Paramiloidose, Hospital de Sto António, Porto, Portugal
| | | | | |
Collapse
|
87
|
Soto C, Castaño EM, Prelli F, Kumar RA, Baumann M. Apolipoprotein E increases the fibrillogenic potential of synthetic peptides derived from Alzheimer's, gelsolin and AA amyloids. FEBS Lett 1995; 371:110-4. [PMID: 7672107 DOI: 10.1016/0014-5793(95)00863-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Apolipoprotein E (apoE) has been found in association with several different types of systemic and cerebral amyloid deposits and the presence of the epsilon 4 allele constitutes a risk factor for Alzheimer's disease. It has been shown that apoE binds and promotes the fibrillogenesis in vitro of Alzheimer's amyloid beta-peptide, suggesting an important role for apoE in the modulation of amyloidogenesis. Due to the co-localization of apoE with several biochemically distinct amyloid deposits, it has been proposed that apoE plays a general role modulating and/or participating in amyloidosis. In the present study, we show for the first time that apoE, isolated from human plasma, increases fibril formation of synthetic peptides comprising the amyloidogenic sequences of gelsolin amyloid related to familial amyloidosis Finnish type, and amyloid A found in secondary amyloidosis and familial Mediterranean fever. Our results suggest that apoE acts as a general pathological chaperone in various amyloidoses by enhancing the transition from soluble peptides into amyloid-forming, pathological molecules.
Collapse
Affiliation(s)
- C Soto
- Department of Neurology, New York University Medical Center, NY 10016, USA
| | | | | | | | | |
Collapse
|
88
|
Gonnerman WA, Elliott-Bryant R, Carreras I, Sipe JD, Cathcart ES. Linkage of protection against amyloid fibril formation in the mouse to a single, autosomal dominant gene. J Exp Med 1995; 181:2249-52. [PMID: 7760010 PMCID: PMC2192067 DOI: 10.1084/jem.181.6.2249] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inbred strains of mice provide a model for studies of the pathogenesis of amyloid A (AA) amyloidosis. All susceptible strains of mice described to date codominantly express two serum amyloid A (apoSAA) isoforms, apoSAA1 and apoSAA2, of which only apoSAA2 serves as a precursor for amyloid fibrils. In previous studies, we have shown that the CE/J strain, which produces a single, novel apoSAA isoform, apoSAACE/J, is amyloid resistant. In the present study amyloid-resistant CE/J females were mated with amyloid-susceptible CBA/J males to produce F1 hybrid offspring which were then backcrossed to the parental CBA/J mouse strain. Amyloid susceptibility was determined in 30 backcrossed mice 72 h after injection of murine amyloid enhancing factor and silver nitrate. ApoSAA isoforms in plasma were separated by isoelectric focusing gel electrophoresis and visualized after immunoblotting with anti-AA antiserum. Amyloid A fibrils in spleen homogenates were denatured by formic acid and AA protein was quantified by ELISA using anti-mouse apoSAA antibodies. Values < 5 apoSAA equivalent units were considered negative. 13 mice expressed an apoSAA1 and apoSAA2 doublet characteristic of CBA/J mice, whereas 17 mice, expressed the apoSAACE/J isoform codominantly with apoSAA1 and apoSAA2. The correlation of amyloid resistance to expression of the apoSAACE/J isoform was absolute (17/17 were negative; mean score 2.6 +/- 0.17 [standard error of the mean] apoSAA equivalent units) and the correlation between amyloid susceptibility and the expression of apoSAA2/apoSAA1 was also striking (12/13 were amyloid positive; mean score 47.9 +/- 9.0 [standard error of the mean] apoSAA equivalent units (P < 0.001). This is not significantly different from the 50% segregation of apoSAA phenotypes expected for linkage to a single gene. These results indicate that a single gene governs apoSAACE/J expression and thus confers protection against amyloid deposition even in the presence of apoSAA1 and apoSAA2 isoforms and show for the first time that resistance to AA amyloidosis is a dominant trait governed by a single gene.
Collapse
Affiliation(s)
- W A Gonnerman
- E. N. Rogers Memorial Veterans Affairs Hospital, Bedford, Massachusetts 01730, USA
| | | | | | | | | |
Collapse
|
89
|
Yamada T, Kluve-Beckerman B, Liepnieks JJ, Benson MD. In vitro degradation of serum amyloid A by cathepsin D and other acid proteases: possible protection against amyloid fibril formation. Scand J Immunol 1995; 41:570-4. [PMID: 7770727 DOI: 10.1111/j.1365-3083.1995.tb03609.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of acid proteases on degradation of serum amyloid A protein (SAA) were investigated in vitro. Human recombinant SAA1 (rSAA1), when incubated with human spleen extracts at pH 3.2, was degraded in the amino-terminal portion of the molecule. This reaction was inhibited by an acid protease inhibitor, pepstatin. The degraded SAA molecules lacking nine or more amino-terminal residues, when exposed to in vitro fibril-forming conditions, failed to form Congo red positive precipitates and did not show amyloid fibril-like structure by electron microscopy. This suggests that the amino-terminal portion of SAA is essential for fibril formation. Cathepsin D, one of the lysosomal enzymes, also initiated degradation of rSAA1 at the amino-terminus. Cathepsin D immunoreactivity was detected in marginal areas of amyloid deposits in spleens from patients with reactive amyloidosis. These findings suggest that cathepsin D or similar acid proteases may be involved in SAA catabolism and may protect against amyloid formation.
Collapse
Affiliation(s)
- T Yamada
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | |
Collapse
|
90
|
Malle E, Münscher G, Müller T, Vermeer H, Ibovnik A. Quantification and mapping of antigenic determinants of serum amyloid A (SAA) protein utilizing sequence-specific immunoglobulins and Eu3+ as a specific probe for time-resolved fluorometric immunoassay. J Immunol Methods 1995; 182:131-44. [PMID: 7769239 DOI: 10.1016/0022-1759(95)00035-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Serum amyloid A (SAA) protein, the most prominent amongst acute-phase proteins, is the specific precursor protein of secondary reactive amyloidosis. The fact that SAA once released into the circulation as a 'free' protein rapidly associates with lipoproteins of the high-density range indicates a specific role in lipoprotein metabolism. In this study a new sensitive assay for quantification of human SAA protein in biological specimens using affinity-purified polyclonal antibodies and Eu3+ as a specific probe for time-resolved fluorometric immunoassay is presented. Both purified SAA and SAA-rich high-density lipoprotein particles served as reliable standards in the indirect and the direct sandwich dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA). The detection limit of the DELFIA technique presented was 4-10 ng after sample dilution of 1/2500. The intra-assay coefficient of variation averaged 4.3% whereas the inter-assay coefficient of variation averaged 6.2%. Comparison with the nephelometric assay, a widely and commonly used assay for SAA quantification in plasma, revealed correlation coefficients of 0.9428. In addition to polyclonal anti-human SAA antibodies sequence-specific antibodies raised against synthetic peptides corresponding to region; 1-17, 14-30, 27-44, 40-63, 59-72, 68-84, 79-94, and 89-104 of the human SAA amino acid sequence were studied. Sequence-specific antibodies raised against epitopes 27-44, 59-72, 68-84, and 89-104 recognize human SAA protein in the DELFIA assay whereas antibodies raised against epitopes 1-17, 14-30, 40-63 and 79-94 failed to recognize the corresponding epitopes. Results obtained from these studies indicate that the N-terminal domain (1-30) as well as epitopes 40-63 and 79-94 of human SAA are apparently masked by the environment of the lipoprotein particle. From our studies it is proposed that the epitopes 31-39, 64-78, and 95-104 may be responsible for the interaction of SAA-rich high density lipoprotein particles with peripheral cells.
Collapse
Affiliation(s)
- E Malle
- Karl-Franzens University Graz, Institute of Medical Biochemistry, Austria
| | | | | | | | | |
Collapse
|
91
|
Walley V, Kisilevsky R, Young I. Amyloid and the cardiovascular system: A review of pathogenesis and pathology with clinical correlations. Cardiovasc Pathol 1995; 4:79-102. [DOI: 10.1016/1054-8807(95)90411-l] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/1994] [Accepted: 01/23/1995] [Indexed: 12/30/2022] Open
|
92
|
Recombinant human serum amyloid A (apoSAAp) binds cholesterol and modulates cholesterol flux. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39752-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
93
|
Foyn Bruun C, Rygg M, Nordstoga K, Sletten K, Marhaug G. Serum amyloid A protein in mink during endotoxin induced inflammation and amyloidogenesis. Scand J Immunol 1994; 40:337-44. [PMID: 8091133 DOI: 10.1111/j.1365-3083.1994.tb03470.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two-dimensional electrophoresis was used to study SAA and AA proteins in mink during lipopolysaccharide-induced inflammation and amyloidogenesis. Three isotypes, SAA pI 6.8 and SAA pI 6.5 (both SAA1-like), and SAA pI 6.0 (SAA1- and SAA2-like), were identified in serum after both single and multiple LPS injections. Total SAA serum levels were highest in the early phase of induction, followed by a decrease ranging from 1 to 50% of the peak value during the rest of the experiment. The variation in the total SAA levels correlated with the total SAA mRNA levels. Low total SAA levels were seen both in non-amyloidotic and amyloidotic animals, and a general decrease of all isotypes was demonstrated. In hepatic amyloid fibrils, several AA isotypes, with amino acid sequence homologous exclusively to that of SAA2, were found. In the corresponding splenic material, fragments of histones H2A and H2B constituted most of the low molecular mass proteins, and no protein AA was detected. In spite of low serum levels and a non-specific isotype removal, the results confirm that SAA2 is amyloidogenic in mink.
Collapse
Affiliation(s)
- C Foyn Bruun
- Institute of Clinical Medicine, University of Tromsö, Norway
| | | | | | | | | |
Collapse
|
94
|
Marhaug G, Dowton SB. Serum amyloid A: an acute phase apolipoprotein and precursor of AA amyloid. BAILLIERE'S CLINICAL RHEUMATOLOGY 1994; 8:553-73. [PMID: 7525085 DOI: 10.1016/s0950-3579(05)80115-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Serum amyloid A is an acute phase protein complexed to HDL as an apoprotein. The molecular weight is 11.4-12.5 kDa in different species and the protein has from 104 to 112 amino acids, without or with an insertion of eight amino acids at position 72. The protein is very well conserved throughout evolution, indicating an important biological function. The N-terminal part of the molecule is hydrophobic and probably responsible for the lipid binding properties. The most conserved part is from position 38 to 52 and this part is therefore believed to be responsible for the until now unknown biological function. The protein is coded on chromosome 11p in man, and chromosome 7 in mice, and found in all mammals until now investigated, and also in the Peking duck. In the rat a truncated SAA mRNA has been demonstrated, but no equivalent serum protein has been reported. Acute phase SAA is first of all produced in hepatocytes after induction by cytokines, but extrahepatic expression of both acute phase and constitutive SAA proteins have been demonstrated. Several cytokines, first of all IL-1, IL-6 and TNF are involved in the induction of SAA synthesis, but the mutual importance of these cytokines seems to be cell-type specific and to vary in various experimental settings. The role of corticosteroids in SAA induction is somewhat confusing. In most in vitro studies corticosteroids show an enhancing or synergistic effect with cytokines on SAA production in cultured cell. However, in clinical studies and in vivo studies in animals an inhibitory effect of corticosteroids is evident, probably due to the all over anti-inflammatory effect of the drug. Until now no drug has been found that selectively inhibits SAA production by hepatocytes. Effective anti-inflammatory or antibacterial treatment is the only tool for reducing SAA concentration in serum and reducing the risk of developing secondary amyloidosis. The function of SAA is still unclear. Interesting theories, based on current knowledge of the lipid binding properties of the protein and the relation to macrophages, in the transportation of cholesterol from damaged tissues has been advanced. A putative role in cholesterol metabolism is supported by the findings of SAA as an inhibitor of LCAT. The potential that SAA is a modifying protein in inflammation influencing the function of neutrophils and platelets is interesting and more directly related to the inflammatory process itself.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Marhaug
- Department of Pediatrics, University of Tromsø, Norway
| | | |
Collapse
|
95
|
Affiliation(s)
- R Kisilevsky
- Department of Pathology, Queen's University, Ontario, Canada
| | | |
Collapse
|
96
|
Yamada T, Kluve-Beckerman B, Liepnieks JJ, Benson MD. Fibril formation from recombinant human serum amyloid A. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1226:323-9. [PMID: 8054364 DOI: 10.1016/0925-4439(94)90044-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three isotypes of human serum amyloid A (SAA), SAA1, SAA2 beta, and SAA4 were expressed at high levels in Escherichia coli (E. coli) using a pET vector expression system. Each SAA cDNA was ligated to the vector pET-21a(+) and transformed into E. coli, strain BL21(DE3)pLysS. Expression conditions required high concentrations of antibiotics in order to obtain a high ratio of synthesized SAA to total E. coli proteins. Each recombinant SAA (rSAA) was purified by molecular sieve chromatography followed by chromatofocusing or hydrophobic interaction chromatography. The yield of purified protein was 5-10 mg per 11 of culture. When subjected to in vitro fibril forming conditions, rSAA1 formed amyloid-like fibrils confirmed by Congo red staining and electron microscopy. In contrast, rSAA2 beta and rSAA4 showed negative Congo red staining and curvilinear or flattened fibrillar structures on electron microscopy. This suggests that SAA1 has greater potential for forming amyloid fibrils than either SAA2 beta or SAA4.
Collapse
Affiliation(s)
- T Yamada
- Department of Medicine, Indiana University School of Medicine, Indianapolis
| | | | | | | |
Collapse
|
97
|
Abstract
The biochemistry of amyloidosis as it relates to clinical medicine and experimental pathology is presented. Amyloidoses are complex disorders in which normally soluble precursors undergo pathological conformational changes and polymerize as insoluble fibrils with the beta-pleated sheet conformation. Over the past 20 years, 16 biochemically diverse proteins have been identified as fibrillar constituents of amyloid deposits; in all cases the protein-protein interactions that result in amyloid fibril formation appear to be stabilized both by the structure and the microenvironment of the precursor protein. Either genetic predisposition or dysfunctions of the immune system favor amyloid fibril formation. In particular, macrophage function is a factor in the pathogenesis of many of the amyloidoses. The diagnosis of amyloidosis involves acquisition of a tissue biopsy, staining of the specimen with Congo red, and observation of classic green birefringence on polarization microscopy. The subdiagnosis of the systemic amyloidoses involves characterization of variant or monoclonal plasma amyloid precursor proteins in the context of clinical symptoms. Treatment is generally supportive, with the use of antiinflammatory therapy, dialysis, or transplantation and genetic counseling where indicated.
Collapse
Affiliation(s)
- J D Sipe
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118
| |
Collapse
|
98
|
Syversen PV, Juul J, Marhaug G, Husby G, Sletten K. The primary structure of serum amyloid A protein in the sheep: comparison with serum amyloid A in other species. Scand J Immunol 1994; 39:88-94. [PMID: 8290897 DOI: 10.1111/j.1365-3083.1994.tb03344.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Serum amyloid A (SAA) protein was isolated from acute phase sheep sera by ultracentrifugation, gel filtration and ion-exchange chromatography. The purified protein was characterized by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing, amino acid composition and Edman degradation. Protein SAA sheep consists of 112 amino acid residues and has a blocked N-terminus. The amino acid sequence showed a high degree of homology with SAA proteins from other species, especially at positions 32 to 54, indicating that this particular part of the protein is important for its function. When compared to human protein SAA, nine inserted amino acids could be demonstrated, located in regions 69 to 77. Similar observations have been seen in cow, horse, dog, cat, and mink protein SAA. Heterogeneities were found in positions 28, 55, 63, 64, 66, 75, 77, 78, 80 and 89. Positions 63, 64, 66, 75, 77, 78 and 80 revealed the existence of a minor gene product of protein SAA sheep. The minor variant of protein SAA sheep is identical in these positions with the corresponding positions in protein SAA cow. By comparing the amino acid sequences of the different SAA proteins, two separate branches in the evolutionary pattern of protein SAA appear. One of the branches includes the species with the insertion which represents also one of the more heterogeneous part of the protein.
Collapse
Affiliation(s)
- P V Syversen
- Department of Biochemistry, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
99
|
Abstract
Serum amyloid A (SAA) proteins comprise a family of apolipoproteins coded for by at least three genes with allelic variation and a high degree of homology between species. The synthesis of certain members of the family is greatly increased in inflammation. However, SAA is not often used as an acute-phase marker despite being at least as sensitive as C-reactive protein. SAA proteins can be considered as apolipoproteins since they associate with plasma lipoproteins mainly within the high density range, perhaps through amphipathic alpha-helical structure. It is not known why certain subjects expressing SAA develop secondary systemic amyloidosis. There is still no specific function attributed to SAA; however, a popular hypothesis suggests that SAA may modulate metabolism of high density lipoproteins (HDL). This may impede the protective function of HDL against the development of atherosclerosis. The potential significance of the association between SAA and lipoproteins needs further evaluation.
Collapse
Affiliation(s)
- E Malle
- Philipps University, Department of Internal Medicine, Marburg/Lahn, Germany
| | | | | |
Collapse
|