51
|
Chugh P, Fan S, Planelles V, Maggirwar SB, Dewhurst S, Kim B. Infection of human immunodeficiency virus and intracellular viral Tat protein exert a pro-survival effect in a human microglial cell line. J Mol Biol 2006; 366:67-81. [PMID: 17157319 PMCID: PMC7127718 DOI: 10.1016/j.jmb.2006.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 10/31/2006] [Accepted: 11/02/2006] [Indexed: 02/07/2023]
Abstract
The interaction of human immunodeficiency virus type 1 (HIV-1) with CD4+ T lymphocytes is well studied and typically results in virally induced cytolysis. In contrast, relatively little is known concerning the interplay between HIV-1 and microglia. Recent findings suggest that, counter-intuitively, HIV-1 infection may extend the lifespan of microglia. We developed a novel cell line model system to confirm and mechanistically study this phenomenon. We found that transduction of a human microglial cell line with an HIV-1 vector results in a powerful cytoprotective effect following apoptotic challenge. This effect was reproduced by ectopic expression of a single virus-encoded protein, Tat. Subsequent studies showed that the pro-survival effects of intracellular Tat could be attributed to activation of the PI-3-kinase (PI3K)/Akt pathway in the microglial cell line. Furthermore, we found that expression of Tat led to decreased expression of PTEN, a negative regulator of the PI-3-K pathway. Consistent with this, decreased p53 activity and increased E2F activity were observed. Based on these findings, a model of possible regulatory circuits that intracellular Tat and HIV-1 infection engage during the cytoprotective event in microglia has been suggested. We propose that the expression of Tat may enable HIV-1 infected microglia to survive throughout the course of infection, leading to persistent HIV-1 production and infection in the central nervous system.
Collapse
Affiliation(s)
- Pauline Chugh
- Department of Microbiology and Immunology, School of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 672, Rochester, NY 14742, USA
| | | | | | | | | | | |
Collapse
|
52
|
Kim SR, Kim SU, Oh U, Jin BK. Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release. THE JOURNAL OF IMMUNOLOGY 2006; 177:4322-9. [PMID: 16982866 DOI: 10.4049/jimmunol.177.7.4322] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study examined the expression of transient receptor potential vanilloid subtype 1 (TRPV1) in microglia, and its association with microglial cell death. In vitro cell cultures, RT-PCR, Western blot analysis, and immunocytochemical staining experiments revealed that rat microglia and a human microglia cell line (HMO6) showed TRPV1 expression. Furthermore, exposure of these cells to TRPV1 agonists, capsaicin (CAP) and resiniferatoxin (RTX), triggered cell death. This effect was ameliorated by the TRPV1 antagonists, capsazepine and iodo-resiniferatoxin (I-RTX), suggesting that TRPV1 is directly involved. Further examinations revealed that TRPV1-induced toxicity was accompanied by increases in intracellular Ca(2+), and mitochondrial damage; these effects were inhibited by capsazepine, I-RTX, and the intracellular Ca(2+) chelator BAPTA-AM. Treatment of cells with CAP or RTX led to increased mitochondrial cytochrome c release and enhanced immunoreactivity to cleaved caspase-3. In contrast, the caspase-3 inhibitor z-DEVD-fmk protected microglia from CAP- or RTX-induced toxicity. In vivo, we also found that intranigral injection of CAP or 12-hydroperoxyeicosatetraenoic acid, an endogenous agonist of TRPV1, into the rat brain produced microglial damage via TRPV1 in the substantia nigra, as visualized by immunocytochemistry. To our knowledge, this study is the first to demonstrate that microglia express TRPV1, and that activation of this receptor may contribute to microglial damage via Ca(2+) signaling and mitochondrial disruption.
Collapse
Affiliation(s)
- Sang R Kim
- Brain Disease Research Center, Ajou University School of Medicine, Suwon 443-479, Korea
| | | | | | | |
Collapse
|
53
|
Ock J, Lee H, Kim S, Lee WH, Choi DK, Park EJ, Kim SH, Kim IK, Suk K. Induction of microglial apoptosis by corticotropin-releasing hormone. J Neurochem 2006; 98:962-72. [PMID: 16893426 DOI: 10.1111/j.1471-4159.2006.03933.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptides are short-chain peptides found in brain tissue, some of which function as neurotransmitters and others as hormones. Neuropeptides may directly or indirectly modulate glial functions in the CNS. In the present study, effects of various neuropeptides on the viability and inflammatory activation of cultured microglia were investigated. Vasoactive intestinal peptide, substance P, cholecystokinin and neuropeptide Y did not affect microglial cell viability, whereas corticotropin-releasing hormone (CRH) induced a classical apoptosis of mouse microglia in culture as shown by nuclear condensation and fragmentation, terminal deoxynucleotidyl transferase dUTP nick-end labeling, and cleavage of caspase 3 and poly(ADP-ribose) polymerase protein. CRH, however, did not influence nitric oxide production or expression of inflammatory genes including those encoding cytokines and chemokines, indicating that CRH did not affect the inflammatory activation of microglia. The CRH-induced microglial apoptosis appeared to involve a mitochondrial pathway and reactive oxygen species, based on the mitochondrial membrane potential change, caspase 9 activation and sensitivity to antioxidants. Taken together, our results indicate that the stress neuropeptide CRH may regulate neuroinflammation by inducing the apoptosis of microglia, the major cellular source of inflammatory mediators in the CNS.
Collapse
Affiliation(s)
- Jiyeon Ock
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Mayo L, Stein R. Characterization of LPS and interferon-γ triggered activation-induced cell death in N9 and primary microglial cells: induction of the mitochondrial gateway by nitric oxide. Cell Death Differ 2006; 14:183-6. [PMID: 16778833 DOI: 10.1038/sj.cdd.4401989] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
55
|
Gibbons HM, Dragunow M. Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide. Brain Res 2006; 1084:1-15. [PMID: 16564033 DOI: 10.1016/j.brainres.2006.02.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/21/2005] [Accepted: 02/08/2006] [Indexed: 12/21/2022]
Abstract
Microglial cells play a major role in the pathogenesis of many neurological diseases by exacerbating neuronal and non-neuronal cell death, but the mechanisms involved are unclear. To investigate the microglial-neuronal interactions, we used the murine BV-2 microglial cell line and the human neuronal-like SK-N-SH neuroblastoma cell line in a co-culture system that enabled proximity-dependent interaction and communication, a trans-well system that allowed proximity-independent communication through diffusible molecules only, and a conditioned media system through which no proximity-dependent interactions or cell-to-cell communication is possible. Activation of BV-2 cells with lipopolysaccharide and interferon-gamma (LPS/IFN-gamma) decreased viability of the BV-2 cells alone and in co-cultures with SK-N-SH cells, but not SK-N-SH cells grown alone. In contrast, activation of BV-2 cells in the trans-well and conditioned media system did not have any effect on the viability of SK-N-SH cells, suggesting that microglia must be in close proximity to the neural cells to elicit cytotoxicity. To determine the molecules involved in proximity-dependent cell death, inhibitors of microglial activation were investigated. Only the specific inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea, and hypothermia, which is known to suppress microglial iNOS expression, prevented cell death after LPS/IFN-gamma activation. These results suggest that activated microglia release nitric oxide that is, at least partially, responsible for proximity-dependent microglial-mediated neural toxicity.
Collapse
Affiliation(s)
- Hannah M Gibbons
- Signal Transduction Laboratory, Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
56
|
Suk K. Proteomics-based discovery of biomarkers and therapeutic targets in neurodegenerative diseases: perspective of microglia and neuroinflammation. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.3.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
57
|
Choi DK, Lee H, Jeong J, Lim B, Suk K. Differential effects of ethanol on glial signal transduction initiated by lipopolysaccharide and interferon-gamma. J Neurosci Res 2006; 82:225-31. [PMID: 16175582 DOI: 10.1002/jnr.20647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the pathogenic effects of alcohol abuse on brain are well established, its specific effects on the intracellular signal transduction pathways of glial cells in the central nervous system (CNS) are poorly understood. In this study, we evaluated how ethanol affects the glial signal transduction associated with inflammatory activation. Lipopolysaccharide (LPS), gangliosides, and interferon (IFN)-gamma induced the inflammatory activation of glia, which was differentially influenced by ethanol: 1) ethanol inhibited LPS- or gangliosides-induced, but not IFNgamma-induced, glial activation as demonstrated by the production of nitric oxide and the expression of inflammatory genes such as interleukin-1beta, tumor necrosis factor-alpha, IP-10, and CD86; 2) nuclear factor (NF)-kappaB or JAK/STAT1 pathway was necessary for LPS- or IFNgamma-induced glial activation, respectively; 3) ethanol inhibited LPS-induced NF-kappaB activation; and 4) ethanol did not significantly affect IFNgamma-induced STAT1/IRF-1 activation. Based on these results, ethanol seems to inhibit selectively some parts of the glial signal transduction pathways that are associated with inflammatory activation, which may lead to the deregulation of CNS inflammatory responses.
Collapse
Affiliation(s)
- Dong-Kug Choi
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | | | | | | | | |
Collapse
|
58
|
Matsuda T, Nagano T, Takemura M, Baba A. Topics on the Na+/Ca2+ Exchanger: Responses of Na+/Ca2+ Exchanger to Interferon-γ and Nitric Oxide in Cultured Microglia. J Pharmacol Sci 2006; 102:22-6. [PMID: 16960424 DOI: 10.1254/jphs.fmj06002x4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The Na(+)/Ca(2+) exchanger (NCX) plays a role in regulation of intracellular Ca(2+) levels, but little is known about the functional role of NCX in microglia. To clarify the role of NCX in microglia, we studied the responses of NCX to pathological conditions such as interferon-gamma or nitric oxide (NO) exposure. Treatment with interferon-gamma caused a biphasic increase in NCX activity. The delayed increase in NCX activity was accompanied by increases in the mRNA and protein levels. Pharmacological studies show that protein kinase C and tyrosine kinase are involved in the transient and delayed increases in NCX activity, and the extracellular signal-regulated protein kinase is involved in the delayed increase in NCX activity. On the other hand, NO causes apoptotic cell death in cultured microglia. We observed, using the specific NCX inhibitor SEA0400, that NO activates NCX activity and NCX is involved in NO-induced depletion of Ca(2+) in the endoplasmic reticulum (ER), leading to ER stress. These results suggest that NCX is involved in the regulation of Ca(2+) levels in the ER. The responses of NCX to interferon-gamma and NO implies that NCX plays a key role in microglial function.
Collapse
Affiliation(s)
- Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Japan.
| | | | | | | |
Collapse
|
59
|
Takeuchi H, Wang J, Kawanokuchi J, Mitsuma N, Mizuno T, Suzumura A. Interferon-gamma induces microglial-activation-induced cell death: a hypothetical mechanism of relapse and remission in multiple sclerosis. Neurobiol Dis 2005; 22:33-9. [PMID: 16386911 DOI: 10.1016/j.nbd.2005.09.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/19/2005] [Accepted: 09/30/2005] [Indexed: 12/25/2022] Open
Abstract
Relapse and remission are characteristics of multiple sclerosis (MS). The underlying mechanisms, however, remain uncertain. Interferon-gamma (IFN-gamma) disturbs the immunological privilege of the central nervous system (CNS) by inducing major histocompatibility complex antigen expression in CNS cells and activating microglia to become antigen-presenting and effector cells. Thus, IFN-gamma and microglia are thought to play important roles in the initiation and development of MS. Here, we show that IFN-gamma induces microglial apoptosis as the activation-induced cell death. This microglial apoptosis was associated with the up-regulation of pro-apoptosis proteins, especially Bax. Microglial apoptosis was also observed in peak EAE mice, but not in early EAE mice. Therefore, IFN-gamma may act on microglia as part of a self-limiting negative feedback system. The activation and subsequent death of microglia induced by IFN-gamma may play pivotal roles in the mechanism of MS relapse and remission.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/immunology
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/pathology
- Central Nervous System/physiopathology
- Coculture Techniques
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Feedback, Physiological/immunology
- Gliosis/immunology
- Gliosis/metabolism
- Gliosis/physiopathology
- In Situ Nick-End Labeling
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C57BL
- Microglia/immunology
- Microglia/metabolism
- Models, Neurological
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/metabolism
- Multiple Sclerosis, Relapsing-Remitting/physiopathology
- Spinal Cord/immunology
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Up-Regulation/immunology
- bcl-2-Associated X Protein/immunology
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | | | | | |
Collapse
|
60
|
Nagano T, Osakada M, Ago Y, Koyama Y, Baba A, Maeda S, Takemura M, Matsuda T. SEA0400, a specific inhibitor of the Na+-Ca2+ exchanger, attenuates sodium nitroprusside-induced apoptosis in cultured rat microglia. Br J Pharmacol 2005; 144:669-79. [PMID: 15678087 PMCID: PMC1576047 DOI: 10.1038/sj.bjp.0706104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Using SEA0400, a potent and selective inhibitor of the Na+-Ca2+ exchanger (NCX), we examined whether NCX is involved in nitric oxide (NO)-induced disturbance of endoplasmic reticulum (ER) Ca2+ homeostasis followed by apoptosis in cultured rat microglia. 2. Sodium nitroprusside (SNP), an NO donor, decreased cell viability in a dose- and time-dependent manner with apoptotic cell death in cultured microglia. 3. Treatment with SNP decreased the ER Ca2+ levels as evaluated by measuring the increase in cytosolic Ca2+ level induced by exposing cells to thapsigargin, an irreversible inhibitor of ER Ca2+-ATPase. 4. The treatment with SNP also increased mRNA expression of CHOP and GPR78, makers of ER stress. 5. SEA0400 at 0.3-1.0 microM protected microglia against SNP-induced apoptosis. 6. SEA0400 blocked not only the SNP-induced decrease in ER Ca2+ levels but also SNP-induced increase in CHOP and GRP78 mRNAs. 7. SEA0400 did not affect capacitative Ca2+ entry in the presence and absence of SNP. 8. SNP increased Na+-dependent 45Ca2+ uptake and this increase was blocked by SEA0400. 9. These results suggest that SNP induces apoptosis via the ER stress pathway and SEA0400 attenuates SNP-induced apoptosis via suppression of the ER stress in cultured microglia. Our findings imply that NCX plays a role in ER Ca2+ depletion under pathological conditions.
Collapse
Affiliation(s)
- Takayuki Nagano
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Masakazu Osakada
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yutaka Koyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akemichi Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Sadaaki Maeda
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Motohiko Takemura
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
- Author for correspondence:
| |
Collapse
|
61
|
Jung DY, Lee H, Jung BY, Ock J, Lee MS, Lee WH, Suk K. TLR4, but not TLR2, signals autoregulatory apoptosis of cultured microglia: a critical role of IFN-beta as a decision maker. THE JOURNAL OF IMMUNOLOGY 2005; 174:6467-76. [PMID: 15879150 DOI: 10.4049/jimmunol.174.10.6467] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLRs mediate diverse signaling after recognition of evolutionary conserved pathogen-associated molecular patterns such as LPS and lipopeptides. Both TLR2 and TLR4 are known to trigger a protective immune response as well as cellular apoptosis. In this study, we present evidence that TLR4, but not TLR2, mediates an autoregulatory apoptosis of activated microglia. Brain microglia underwent apoptosis upon stimulation with TLR4 ligand (LPS), but not TLR2 ligands (Pam(3)Cys-Ser-Lys(4), peptidoglycan, and lipoteichoic acid). Based on studies using TLR2-deficient or TLR4 mutant mice and TLR dominant-negative mutants, we also demonstrated that TLR4, but not TLR2, is necessary for microglial apoptosis. The critical difference between TLR2 and TLR4 signalings in microglia was IFN regulatory factor-3 (IRF-3) activation, followed by IFN-beta expression: while TLR4 agonist induced the activation of IRF-3/IFN-beta pathway, TLR2 did not. Nevertheless, both TLR2 and TLR4 agonists strongly induced NF-kappaB activation and NO production in microglia. Neutralizing Ab against IFN-beta attenuated TLR4-mediated microglial apoptosis. IFN-beta alone, however, did not induce a significant cell death. Meanwhile, TLR2 activation induced microglial apoptosis with help of IFN-beta, indicating that IFN-beta production following IRF-3 activation determines the apoptogenic action of TLR signaling. TLR4-mediated microglial apoptosis was mediated by MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-beta, and was associated with caspase-11 and -3 activation rather than Fas-associated death domain protein/caspase-8 pathway. Taken together, TLR4 appears to signal a microglial apoptosis via autocrine/paracrine IFN-beta production, which may act as an apoptotic sensitizer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antigens, Differentiation/physiology
- Antigens, Ly/biosynthesis
- Apoptosis/genetics
- Apoptosis/immunology
- Caspase 3
- Caspases/physiology
- Caspases, Initiator
- Cell Line
- DNA-Binding Proteins/metabolism
- Humans
- Interferon Regulatory Factor-3
- Interferon-beta/biosynthesis
- Interferon-beta/physiology
- Jurkat Cells
- Lipopolysaccharide Receptors/biosynthesis
- Lymphocyte Antigen 96
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/cytology
- Microglia/immunology
- Microglia/metabolism
- Myeloid Differentiation Factor 88
- Receptors, Immunologic/agonists
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Dae Young Jung
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Brain microglial cells are thought to undergo apoptosis following the exposure to inflammatory stimuli such as lipopolysaccharide (LPS) and IFNgamma, which is considered as an autoregulatory mechanism to control their own activation state. Here, we report that N-myc constitutes a novel apoptotic pathway of LPS/IFNgamma-activated microglia. The expression of N-myc was synergistically enhanced by LPS and IFNgamma in microglia. Tetracycline-based conditional expression of N-myc sensitized microglia to nitric oxide (NO)-induced apoptosis. Knockdown of N-myc expression using small interfering RNA (siRNA) attenuated LPS/IFNgamma-induced microglial apoptosis. An increase in N-myc expression, however, did not affect microglial production of NO or TNFalpha. The synergistic effect of LPS/IFNgamma on the microglial N-myc induction was mediated through Janus kinase (JAK)/STAT1 (signal transducer and activator of transcription 1) pathway. Taken together, LPS/IFNgamma-induced N-myc participated in the activation-induced cell death of microglia by sensitizing the cells to NO-induced apoptosis; however, N-myc did not influence the processes of inflammatory activation of microglia.
Collapse
Affiliation(s)
- Dae Young Jung
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | |
Collapse
|
63
|
Suk K. Regulation of Neuroinflammation by Herbal Medicine and Its Implications for Neurodegenerative Diseases. Neurosignals 2005; 14:23-33. [PMID: 15956812 DOI: 10.1159/000085383] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 09/20/2004] [Indexed: 11/19/2022] Open
Abstract
Herbal medicine has long been used to treat neural symptoms. Although the precise mechanisms of action of herbal drugs have yet to be determined, some of them have been shown to exert anti-inflammatory and/or anti-oxidant effects in a variety of peripheral systems. Now, as increasing evidence indicates that neuroglia-derived chronic inflammatory responses play a pathological role in the central nervous system, anti-inflammatory herbal medicine and its constituents are being proved to be a potent neuroprotector against various brain pathologies. Structural diversity of medicinal herbs makes them valuable source of novel lead compounds against therapeutic targets that are newly discovered by genomics, proteomics, and high-throughput screening.
Collapse
Affiliation(s)
- Kyoungho Suk
- Department of Pharmacology, Pain and Neural Injury Research Center, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
64
|
Luna-Medina R, Cortes-Canteli M, Alonso M, Santos A, Martínez A, Perez-Castillo A. Regulation of Inflammatory Response in Neural Cells in Vitro by Thiadiazolidinones Derivatives through Peroxisome Proliferator-activated Receptor γ Activation. J Biol Chem 2005; 280:21453-62. [PMID: 15817469 DOI: 10.1074/jbc.m414390200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most neurodegenerative disorders, including multiple sclerosis, Parkinson disease, and Alzheimer disease, a massive neuronal cell death occurs as a consequence of an uncontrolled inflammatory response, where activated astrocytes and microglia and their cytotoxic agents play a crucial pathological role. Current treatments for these diseases are not effective. In the present study we investigate the effect of thiadiazolidinone derivatives, which have been recently suggested to play a role in neurodegenerative disorders. We have found that thiadiazolidinones are potent neuroprotector compounds. Thiadiazolidinones inhibited inflammatory activation of cultured brain astrocytes and microglia by diminishing lipopolysaccharide-induced interleukin 6, tumor necrosis factor alpha, inducible nitric-oxide synthase, and inducible cyclooxygenase type 2 expression. In addition, thiadiazolidinones inhibited tumor necrosis factor-alpha and nitric oxide production and, concomitantly, protected cortical neurons from cell death induced by the cell-free supernatant from activated microglia. The neuroprotective effects of thiadiazolidinones are completely inhibited by the peroxisome proliferator-activated receptor gamma antagonist GW9662. In contrast the glycogen synthase kinase 3beta inhibitor LiCl did not show any effect. These findings suggest that thiadiazolidinones potently attenuate lipopolysaccharide-induced neuroinflammation and reduces neuronal death by a mechanism dependent of peroxisome proliferator-activated receptor gamma activation.
Collapse
Affiliation(s)
- Rosario Luna-Medina
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Rutónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
65
|
Chock VY, Giffard RG. Development of neonatal murine microglia in vitro: changes in response to lipopolysaccharide and ischemia-like injury. Pediatr Res 2005; 57:475-80. [PMID: 15718374 DOI: 10.1203/01.pdr.0000155758.79523.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypoxic/ischemic brain injury in the neonate can activate an inflammatory cascade, which potentiates cellular injury. The role of microglia in this inflammatory response has not been studied extensively. We used an in vitro model of murine microglia to investigate changes in microglial cytokine release and injury during early development. Isolated microglia were subjected to lipopolysaccharide (LPS) activation or injury by glucose deprivation (GD), serum deprivation (SD), or combined oxygen-glucose deprivation (OGD) for varying durations. The extent and the type of cell death were determined by trypan blue, terminal deoxynucleotidyl end-nick labeling, and annexin staining. Early-culture microglia (2-3 d in purified culture) showed significantly more apoptotic cell death after SD, GD, and OGD compared with microglia maintained in culture for 14-17 d. Measurements of tumor necrosis factor-alpha (TNF-alpha) and IL-1beta in culture media demonstrated that OGD induced greater release of both TNF-alpha and IL-1beta than LPS activation, with early-culture microglia producing more TNF-alpha compared with late-culture microglia. Microglia that are cultured for a short time are more sensitive to ischemia-like injury in vitro than those that are cultured for longer durations and may contribute to worsening brain injury by increased release of inflammatory cytokines. Inhibition of microglial activation and decreasing proinflammatory cytokine release may be targets for reduction of neonatal hypoxic/ischemic brain injury.
Collapse
Affiliation(s)
- Valerie Y Chock
- Department of Neonatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
66
|
Abstract
On one side, brain dysfunction is a poorly explored complication of sepsis. On the other side, brain dysfunction may actively contribute to the pathogenesis of sepsis. The current review aimed at summarizing the current knowledge about the reciprocal interaction between the immune and central nervous systems during sepsis. The immune-brain cross talk takes part in circumventricular organs that, being free from blood-brain-barrier, interface between brain and bloodstream, in autonomic nuclei including the vagus nerve, and finally through the damaged endothelium. Recent observations have confirmed that sepsis is associated with excessive brain inflammation and neuronal apoptosis which clinical relevance remains to be explored. In parallel, damage within autonomic nervous and neuroendocrine systems may contribute to sepsis induced organ dysfunction.
Collapse
Affiliation(s)
- Tarek Sharshar
- Attending Physician, Service de Réanimation Médicale, Hôpital Raymond Poincaré, Faculté de Médecine Paris Ile de France Ouest, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| | - Nicholas S Hopkinson
- Attending Physician, Respiratory Muscle Laboratory, Royal Brompton and Harefield NHS Trust, Fulham Road, London, SW3 6NP, United Kingdom
| | - David Orlikowski
- Attending Physician, Service de Réanimation Médicale, Hôpital Raymond Poincaré, Faculté de Médecine Paris Ile de France Ouest, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| | - Djillali Annane
- Head of ICU Department, Service de Réanimation Médicale, Hôpital Raymond Poincaré, Faculté de Médecine Paris Ile de France Ouest, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| |
Collapse
|
67
|
Sargsyan SA, Monk PN, Shaw PJ. Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia 2005; 51:241-53. [PMID: 15846792 DOI: 10.1002/glia.20210] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The central nervous system (CNS) is equipped with a variety of cell types, all of which are assigned particular roles during the development, maintenance, function and repair of neural tissue. One glial cell type, microglia, deserves particular attention, as its role in the healthy or injured CNS is incompletely understood. Evidence exists for both regenerative and degenerative functions of these glial cells during neuronal injury. This review integrates the current knowledge of the role of microglia in an adult-onset neurodegenerative disease, amyotrophic lateral sclerosis (ALS), and pays particular attention to the possible mechanisms of initiation and propagation of neuronal damage during disease onset and progression. Microglial cell properties, behavior and detected inflammatory reactions during the course of the disease are described. The neuroinflammatory changes that occur in a mouse model of ALS are summarized. The understanding of microglial function in the healthy and injured CNS could offer better diagnostic as well as therapeutic approaches for prevention, retardation, or repair of neural tissue degeneration.
Collapse
Affiliation(s)
- Siranush A Sargsyan
- Academic Neurology Unit, Medical School, University of Sheffield, Sheffield, United Kingdom
| | | | | |
Collapse
|
68
|
Lee H, Jeong J, Son E, Mosa A, Cho GJ, Choi WS, Ha JH, Kim IK, Lee MG, Kim CY, Suk K. Ethanol selectively modulates inflammatory activation signaling of brain microglia. J Neuroimmunol 2004; 156:88-95. [PMID: 15465599 DOI: 10.1016/j.jneuroim.2004.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 07/16/2004] [Accepted: 07/19/2004] [Indexed: 11/19/2022]
Abstract
In spite of well-known deleterious effects of alcohol on the nervous system in general, its specific effect on the brain immune system remains poorly understood. In order to better understand the effect of alcohol consumption on the innate immunity and inflammatory responses in the central nervous system (CNS), we sought to determine how ethanol influences inflammatory activation of microglia that function as the resident immune defense system of the brain. After treatment of BV-2 mouse microglial cells or rat primary microglia cultures with various stimuli, nitric oxide (NO) production was measured as an indicator of microglial activation. Pretreatment of the cells with ethanol (10-100 mM) for 1 h resulted in a significant decrease in lipopolysaccharide (LPS)-induced, but not interferon-gamma (IFNgamma)-induced, NO production, indicating that ethanol specifically inhibits LPS-induced inflammatory activation of microglia. This was further supported by the ethanol inhibition of LPS-induced IL-1beta expression. In addition, ethanol pretreatment selectively regulated LPS-induced NF-kappaB signaling pathway without affecting IFNgamma-induced signal transducer and activator of transcription 1 (STAT1) phosphorylation, interferon regulatory factor-1 (IRF-1) induction or IFNgamma-inducible IP-10 expression. The modulation of LPS-induced NF-kappaB by ethanol was due to the inhibition of coactivator p300. Altogether, these results suggest that acute ethanol exposure may selectively modulate signal transduction pathways associated with inflammatory activation of microglia, which may lead to derangement of CNS immune and inflammatory responses.
Collapse
Affiliation(s)
- Heasuk Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, #101 Dong-In, Joong-gu, Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Suk K, Park JH, Lee WH. Neuropeptide PACAP inhibits hypoxic activation of brain microglia: a protective mechanism against microglial neurotoxicity in ischemia. Brain Res 2004; 1026:151-6. [PMID: 15476707 DOI: 10.1016/j.brainres.2004.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 11/30/2022]
Abstract
Hypoxia is one of the important physiological stimuli that are often associated with a variety of pathological states such as ischemia, respiratory diseases, and tumorigenesis. In the central nervous system, hypoxia that is accompanied by cerebral ischemia not only causes neuronal cell injury, but may also induce pathological microglial activation. We have previously shown that hypoxia induces inflammatory activation of cultured microglia and their inducible nitric oxide synthase induction via p38 mitogen-activated protein kinase (MAPK) pathway, and a neuropeptide PACAP selectively inhibits microglial signal transduction. Based on these findings, we hypothesized that the neuropeptide may inhibit the hypoxic activation of microglia, and this may provide a neuroprotection against inflammation-induced neuronal injury. When this possibility was tested using cultured microglia and PC12 cells, we found that PACAP attenuates inflammatory activation of microglia under hypoxic condition, and protects cocultured PC12 cells from microglial neurotoxicity. In addition, the neuropeptide reduced the hypoxia-induced activation of p38 MAPK, indicating that the p38 MAPK is a molecular target of the PACAP action in microglia. The neuroprotective effects of PACAP in animal models of cerebral hypoxia/ischemia may be partly due to its direct actions on brain microglia and neurotoxic inflammation.
Collapse
Affiliation(s)
- Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, 101 Dong-In, Joong-gu, Daegu, 700-422 South Korea.
| | | | | |
Collapse
|
70
|
Suk K. Minocycline suppresses hypoxic activation of rodent microglia in culture. Neurosci Lett 2004; 366:167-71. [PMID: 15276240 DOI: 10.1016/j.neulet.2004.05.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 05/08/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Hypoxia is one of the important physiological stimuli that are often associated with a variety of pathological states such as ischemia, respiratory diseases, and tumorigenesis. In the central nervous system, hypoxia that is accompanied by cerebral ischemia not only causes neuronal cell injury, but may also induce pathological microglial activation. We have previously shown that hypoxia induces inflammatory activation of cultured microglia, and the hypoxic induction of nitric oxide production in microglia is mediated through p38 mitogen-activated protein kinase pathway. Now, we present evidence that minocycline, a tetracycline derivative, suppresses the hypoxic activation of cultured microglia by inhibiting p38 mitogen-activated protein kinase pathway. The drug markedly inhibited hypoxia-induced production of inflammatory mediators such as nitric oxide, TNFalpha, and IL-1beta as well as iNOS protein expression. The signal transduction pathway that leads to the activation of p38 mitogen-activated protein kinase was the molecular target of minocycline. Thus, the known neuroprotective effects of minocycline in animal models of cerebral ischemia may be partly due to its direct actions on brain microglia.
Collapse
Affiliation(s)
- Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, #101 Dong-In, Joong-gu, Daegu 700-422, South Korea.
| |
Collapse
|
71
|
Kim HS, Whang SY, Woo MS, Park JS, Kim WK, Han IO. Sodium butyrate suppresses interferon-gamma-, but not lipopolysaccharide-mediated induction of nitric oxide and tumor necrosis factor-alpha in microglia. J Neuroimmunol 2004; 151:85-93. [PMID: 15145607 DOI: 10.1016/j.jneuroim.2004.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 02/19/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
In the present study, we demonstrate that sodium butyrate repressed IFN-gamma-induced expression of iNOS and TNF-alpha, but had little effect on LPS-induced expression in BV2 murine microglial cells. Sodium butyrate significantly inhibited NF-kappa B binding and NF-kappa B-mediated transcription induced by IFN-gamma, suggesting that the anti-inflammatory effect of sodium butyrate is mediated via specific inhibition of the NF-kappa B pathway. IFN-gamma is a major stimulator of innate and adaptive immune response. Thus, the specific down-regulation of IFN-gamma-induced microglial activation by sodium butyrate may provide potential therapeutic strategies for a variety of inflammatory diseases in the central nervous system.
Collapse
Affiliation(s)
- Hee-Sun Kim
- Department of Neuroscience, Ewha Institute of Neuroscience and Medical Research Center, College of Medicine, Ewha Woman's University, Seoul, South Korea.
| | | | | | | | | | | |
Collapse
|
72
|
Sun M, Rothermel TA, Shuman L, Aligo JA, Xu S, Lin Y, Lamb RA, He B. Conserved cysteine-rich domain of paramyxovirus simian virus 5 V protein plays an important role in blocking apoptosis. J Virol 2004; 78:5068-78. [PMID: 15113888 PMCID: PMC400337 DOI: 10.1128/jvi.78.10.5068-5078.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The paramyxovirus family includes many well-known human and animal pathogens as well as emerging viruses such as Hendra virus and Nipah virus. The V protein of simian virus 5 (SV5), a prototype of the paramyxoviruses, contains a cysteine-rich C-terminal domain which is conserved among all paramyxovirus V proteins. The V protein can block both interferon (IFN) signaling by causing degradation of STAT1 and IFN production by blocking IRF-3 nuclear import. Previously, it was reported that recombinant SV5 lacking the C terminus of the V protein (rSV5VDeltaC) induces a severe cytopathic effect (CPE) in tissue culture whereas wild-type (wt) SV5 infection does not induce CPE. In this study, the nature of the CPE and the mechanism of the induction of CPE were investigated. Through the use of DNA fragmentation, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, and propidium iodide staining assays, it was shown that rSV5VDeltaC induced apoptosis. Expression of wt V protein prevented apoptosis induced by rSV5VDeltaC, suggesting that the V protein has an antiapoptotic function. Interestingly, rSV5VDeltaC induced apoptosis in U3A cells (a STAT1-deficient cell line) and in the presence of neutralizing antibody against IFN, suggesting that the induction of apoptosis by rSV5VDeltaC was independent of IFN and IFN-signaling pathways. Apoptosis induced by rSV5VDeltaC was blocked by a general caspase inhibitor, Z-VAD-FMK, but not by specific inhibitors against caspases 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 13, suggesting that rSV5VDeltaC-induced apoptosis can occur in a caspase 12-dependent manner. Endoplasmic reticulum stress can lead to activation of caspase 12; compared to the results seen with mock and wt SV5 infection, rSV5VDeltaC infection induced ER stress, as demonstrated by increased expression levels of known ER stress indicators GRP 78, GRP 94, and GADD153. These data suggest that rSV5VDeltaC can trigger cell death by inducing ER stress.
Collapse
Affiliation(s)
- Minghao Sun
- Department of Veterinary Science, Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Kim WK, Hwang SY, Oh ES, Piao HZ, Kim KW, Han IO. TGF-β1 Represses Activation and Resultant Death of Microglia via Inhibition of Phosphatidylinositol 3-Kinase Activity. THE JOURNAL OF IMMUNOLOGY 2004; 172:7015-23. [PMID: 15153523 DOI: 10.4049/jimmunol.172.11.7015] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Overactivation of microglial cells may cause severe brain tissue damage in various neurodegenerative diseases. Therefore, the overactivation of microglia should be repressed by any means. The present study investigated the potential mechanism and signaling pathway for the repressive effect of TGF-beta1, a major anti-inflammatory cytokine, on overactivation and resultant death of microglial cells. A bacterial endotoxin LPS stimulated expression of inducible NO synthase (iNOS) and caused death in cultured microglial cells. TGF-beta1 markedly blocked these LPS effects. However, the LPS-evoked death of microglial cells was not solely attributed to excess production of NO. Because phosphatidylinositol 3-kinase (PI3K) was previously shown to play a crucial role in iNOS expression and cell survival signals, we further studied whether PI3K signaling was associated with the suppressive effect of TGF-beta1. Like TGF-beta1, the PI3K inhibitor LY294002 blocked iNOS expression and death in cultured microglial cells. Both TGF-beta1 and LY294002 decreased the activation of caspases 3 and 11 and the mRNA expression of various kinds of inflammatory molecules caused by LPS. TGF-beta1 was further found to decrease LPS-induced activation of PI3K and Akt. TGF-beta1 and LY294002 suppressed LPS-induced p38 mitogen-activated kinase and c-Jun N-terminal kinase activity. In contrast, TGF-beta1 and LY294002 enhanced LPS-induced NF-kappaB activity. Our data indicate that TGF-beta1 protect normal or damaged brain tissue by repressing overactivation of microglial cells via inhibition of PI3K and its downstream signaling molecules.
Collapse
Affiliation(s)
- Won-Ki Kim
- Department of Pharmacology, College of Medicine, Division of Molecular Life Sciences and Center for Cell Signalling Research, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
74
|
Lee H, Cha S, Lee MS, Cho GJ, Choi WS, Suk K. Role of antiproliferative B cell translocation gene-1 as an apoptotic sensitizer in activation-induced cell death of brain microglia. THE JOURNAL OF IMMUNOLOGY 2004; 171:5802-11. [PMID: 14634089 DOI: 10.4049/jimmunol.171.11.5802] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse brain microglial cells undergo apoptosis on exposure to inflammatory stimuli, which is considered as an autoregulatory mechanism to control their own activation. Here, we present evidence that an antiproliferative B cell translocation gene 1 (BTG1) constitutes a novel apoptotic pathway of LPS/IFN-gamma-activated microglia. The expression of BTG1 was synergistically enhanced by LPS and IFN-gamma in BV-2 mouse microglial cells as well as in primary microglia cultures. Levels of BTG1 expression inversely correlated with a proliferative capacity of the microglial cells. Tetracycline-based conditional expression of BTG1 not only suppressed microglial proliferation but also increased the sensitivity of microglial cells to NO-induced apoptosis, suggesting a novel mechanism of cooperation between LPS and IFN-gamma in the induction of microglial apoptosis. An increase in BTG1 expression, however, did not affect microglial production of NO, TNF-alpha, or IL-1beta, indicating that the antiproliferative BTG1 is important in the activation-induced apoptosis of microglia, but not in the activation itself. The synergistic action of LPS and IFN-gamma in the microglial BTG1 induction and apoptosis was dependent on the Janus kinase/STAT1 pathway, but not IFN-regulatory factor-1, as demonstrated by a pharmacological inhibitor of Janus kinase (AG490), STAT1 dominant negative mutant, and IFN-regulatory factor-1-deficient mice. Taken together, antiproliferative BTG1 may participate in the activation-induced cell death of microglia by lowering the threshold for apoptosis; BTG1 increases the sensitivity of microglia to apoptogenic action of autocrine cytotoxic mediator, NO. Our results point out an important link between the proliferative state of microglia and their sensitivity to apoptogenic agents.
Collapse
Affiliation(s)
- Heasuk Lee
- Department of Anatomy and Neurobiology and Research Institute of Natural Science, Gyeongsang National University College of Medicine, Institute of Health Sciences, Jinju, Korea
| | | | | | | | | | | |
Collapse
|
75
|
Li Y, Liu L, Liu D, Woodward S, Barger SW, Mrak RE, Griffin WST. Microglial activation by uptake of fDNA via a scavenger receptor. J Neuroimmunol 2004; 147:50-5. [PMID: 14741427 PMCID: PMC3846353 DOI: 10.1016/j.jneuroim.2003.10.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fate of the fragmented DNA (fDNA) observed in neuronal nuclei in Alzheimer brain is unknown. However, its fate is suggested as fDNA is found in the cytoplasm of adjacent activated microglia. After a brief incubation with fDNA, approximately 70% of microglia had fDNA in their cytoplasm, were activated, and overexpressed interleukin-1beta. Microglial activation enhanced uptake whereas blocking scavenger receptors suppressed this uptake. These results suggest that the brain rids itself of fDNA from dying neurons through microglial uptake, activation, and overexpression of IL-1. Such overexpression of IL-1 in Alzheimer brain has been linked to Alzheimer pathogenesis.
Collapse
MESH Headings
- Alzheimer Disease/metabolism
- Animals
- Animals, Newborn
- Antibodies/pharmacology
- Antineoplastic Agents/pharmacology
- Biological Transport
- Blotting, Northern
- Brain/cytology
- Brain/physiopathology
- Case-Control Studies
- Cells, Cultured
- Cerebral Cortex/cytology
- DNA/metabolism
- Flow Cytometry/methods
- Humans
- In Situ Nick-End Labeling/methods
- Interferon-gamma/pharmacology
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/metabolism
- Phagocytes/metabolism
- Polysaccharides/pharmacology
- RNA, Messenger
- Rats
- Rats, Sprague-Dawley
- Receptors, Immunologic/metabolism
- Receptors, Lipoprotein
- Receptors, Scavenger
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Scavenger Receptors, Class B
Collapse
Affiliation(s)
- Yuekui Li
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Dongge Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pathology, Beijing Hospital, Beijing 100730, China
| | - S. Woodward
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Steven W. Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Geriatric Research Education Clinical Center, Department of Veterans Affairs Medical Center, Little Rock, AR 72205, USA
| | - Robert E. Mrak
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - W. Sue T. Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Geriatric Research Education Clinical Center, Department of Veterans Affairs Medical Center, Little Rock, AR 72205, USA
- Corresponding author. Department of Geriatrics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA, (W.S.T. Griffin)
| |
Collapse
|
76
|
Sharshar T, Annane D, de la Gradmaison GL, Brouland JP, Hopkinson NS, Gray F. The neuropathology of septic shock. Brain Pathol 2004; 14:21-33. [PMID: 14997934 PMCID: PMC8095740 DOI: 10.1111/j.1750-3639.2004.tb00494.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The neuropathological correlates of encephalopathy and autonomic dysfunction in septic shock are unclear. We performed post mortem analysis of 5 brain areas susceptible to ischemia and 5 autonomic nuclei (AN) in 23 patients who had died in our intensive care unit (ICU) from septic shock and 8 dying from non-septic shock as well as 5 controls who had died suddenly from extracranial injury. Proinflammatory cytokine (IL1-beta and TNF-alpha) and inducible nitric oxide synthase (iNOS) expression was assessed by immunocytochemistry. Abnormalities in septic shock were: hemorrhages (26%), hypercoagulability syndrome (9%), micro-abscesses (9%), multifocal necrotizing leukoencephalopathy (9%) and ischemia (100%). The incidence of cerebral hemorrhage or hypercoagulability syndrome was not related to clotting disturbances. The intensity of ischemia within susceptible areas was the same in both ICU groups, but more pronounced in the autonomic centers of septic patients (P < 0.0001). Neuronal apoptosis assessed using anti-caspase 3 immunocytochemistry and in situ end labeling was more pronounced in the autonomic nuclei of septic patients. (P < 0.0001). TNF-alpha expression did not differ between groups but vascular iNOS expression assessed by immunocytochemistry was higher in sepsis (P<0.0001) and correlated with autonomic center neuronal apoptosis (P < 0.02). We conclude that septic shock is associated with diffuse cerebral damage and specific autonomic neuronal apoptosis which may be due to circulating factors particularly iNOS.
Collapse
Affiliation(s)
- Tarek Sharshar
- Service de Réanimation Médicale, Hôpital Raymond Poincaré, Faculté de Médecine paris‐Ile de France Ouest, Garches, France
- National Heart and Lung Institute, Royal Brompton Hospital, united Kingdom
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré, Faculté de Médecine paris‐Ile de France Ouest, Garches, France
| | - Geoffroy Lorin de la Gradmaison
- Service d'Anatomo‐Pathologie et de Médecine Légale, Hôpital Rayemond poincaré Faculté de Médecine paris‐Ile de France Ouest, Garches, France
| | - Jean Philippe Brouland
- Service d'Anatomo‐Pathologie et de Médecine Légale, Hôpital Rayemond poincaré Faculté de Médecine paris‐Ile de France Ouest, Garches, France
| | | | - Françoise Gray
- Service d'Anatomo‐Pathologie et de Médecine Légale, Hôpital Rayemond poincaré Faculté de Médecine paris‐Ile de France Ouest, Garches, France
| |
Collapse
|
77
|
Sharshar T, Gray F, Lorin de la Grandmaison G, Hopkinson NS, Ross E, Dorandeu A, Orlikowski D, Raphael JC, Gajdos P, Annane D. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 2003; 362:1799-805. [PMID: 14654318 DOI: 10.1016/s0140-6736(03)14899-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Results of experimental and clinical studies have shown that septic shock is associated with cardiovascular autonomic failure. Thus, we aimed to investigate the existence of ischaemia and apoptosis within the cerebral autonomic centres that control the cardiovascular system in patients with septic shock. METHODS In a prospective cohort study, we did post-mortem examinations of supraoptic and paraventricular nuclei, cerebral amygdala, locus coeruleus, and medullary autonomic nuclei in 19 patients with septic shock, seven with non-septic shock and five who died suddenly from extracranial injury. Ischaemic and apoptotic neurons and microglial cells, and expression of tumour necrosis factor alpha (TNFalpha) and inducible nitric oxide synthase (iNOS) were scored. FINDINGS Ischaemic, neuronal, and microglial apoptosis scores differed between groups (p=0.0007, p<0.0001, and p=0.0037, respectively) and were higher in patients with septic shock than in those with non-septic shock (p=0.0033, p=0.0005, and p=0.0235, respectively), and extra-cranial injury related deaths (p=0.0027, p=0.0007, and p=0.0045, respectively). There was little microglial activation and glial expression of TNFalpha. The scores for endothelial iNOS expression were different between the three groups (p<0.0001), and were higher in septic shock than in non-septic shock (p=0.0009) and than in extracranial injury related deaths (p=0.0007). Vascular expression of iNOS also correlated (Spearman tau=0.57) with autonomic-centre neuronal apoptosis in the combined septic and non-septic shock group. INTERPRETATION Septic shock is associated with neuronal and glial apoptosis within the autonomic centres, which is strongly associated with endothelial iNOS expression.
Collapse
Affiliation(s)
- Tarek Sharshar
- Service de Réanimation Médicale, Hôpital Raymond Poincaré, Faculté de Médecine Paris, Ile de France Ouest, Garches, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Lee H, Kim YO, Kim H, Kim SY, Noh HS, Kang SS, Cho GJ, Choi WS, Suk K. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J 2003; 17:1943-4. [PMID: 12897065 DOI: 10.1096/fj.03-0057fje] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid originated from the root of a medicinal herb Scutellaria baicalensis Georgi, has been previously shown to have anti-inflammatory activities in various cell types including macrophages. In this work, we have found that wogonin is a potent neuroprotector from natural source. Wogonin inhibited inflammatory activation of cultured brain microglia by diminishing lipopolysaccharide-induced tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta, and nitric oxide (NO) production. Wogonin inhibited NO production by suppressing inducible NO synthase (iNOS) induction and NF-kappaB activation in microglia. Inhibition of inflammatory activation of microglia by wogonin led to the reduction in microglial cytotoxicity toward cocultured PC12 cells, supporting a neuroprotective role for wogonin in vitro. The neuroprotective effect of wogonin was further demonstrated in vivo using two experimental brain injury models; transient global ischemia by four-vessel occlusion and excitotoxic injury by systemic kainate injection. In both animal models, wogonin conferred neuroprotection by attenuating the death of hippocampal neurons, and the neuroprotective effect was associated with inhibition of the inflammatory activation of microglia. Hippocampal induction of inflammatory mediators such as iNOS and TNF-alpha was reduced by wogonin in the global ischemia model, and microglial activation was markedly down-regulated by wogonin in the kainate injection model as judged by microglia-specific isolectin B4 staining. Taken together, our results indicate that wogonin exerts its neuroprotective effect by inhibiting microglial activation, which is a critical component of pathogenic inflammatory responses in neurodegenerative diseases. The current study emphasizes the importance of medicinal herbs and their constituents as an invaluable source for the development of novel neuroprotective drugs.
Collapse
Affiliation(s)
- Heasuk Lee
- Department of Anatomy and Neurobiology, Research Institute of Natural Science, Gyeongsang National University College of Medicine, 92 Chilam-dong, Jinju, Kyungnam 660-751, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Han IO, Kim HS, Kim HC, Joe EH, Kim WK. Synergistic expression of inducible nitric oxide synthase by phorbol ester and interferon-gamma is mediated through NF-kappaB and ERK in microglial cells. J Neurosci Res 2003; 73:659-69. [PMID: 12929133 DOI: 10.1002/jnr.10706] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A proinflammatory cytokine IFN-gamma stimulates microglia in the injured brain; however, signaling pathways for IFN-gamma-mediated microglia activation are not well characterized. In the present study, a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) acts in concert with IFN-gamma to enhance nitric oxide (NO) production in murine microglial BV2 cells by synergistically increasing expression of inducible NO synthase (iNOS). The synergistic NO production by PMA was in part decreased by a PKC inhibitor Gö6976. PMA alone induced activation of nuclear factor-kappa B (NF-kappaB) and extracellular signal-regulated kinase (ERK) of mitogen-activated protein kinases (MAPKs) subtypes, whereas IFN-gamma alone had little effect. PMA and IFN-gamma synergistically enhanced activity of NF-kappaB, but not ERK. The inhibitors of NF-kappaB (pyrrolidine dithiocarbamate, PDTC) and ERK (1,4-diamino-2,3-dicyano-1,4 bis[2-aminophenylthio]butadiene; U0126) markedly decreased synergistic NO production in BV2 cells treated with IFN-gamma and PMA in combination. We found further that co-treatment with IFN-gamma and PMA synergistically induced interferon regulatory factor-1 (IRF-1), which is the major transcription factor for IFN-gamma-mediated iNOS expression. The present results demonstrate the cooperative interaction of multiple signaling pathways in the induction of NO production in activated microglial cells, and suggest that the functional interplay of these pathways may be important for the onset of microglia-mediated inflammatory responses in brain.
Collapse
Affiliation(s)
- Inn-Oc Han
- Research Institute, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | | | | | | | | |
Collapse
|
80
|
Kim NG, Lee H, Son E, Kwon OY, Park JY, Park JH, Cho GJ, Choi WS, Suk K. Hypoxic induction of caspase-11/caspase-1/interleukin-1beta in brain microglia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:107-14. [PMID: 12829320 DOI: 10.1016/s0169-328x(03)00135-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Caspase-11 is an inducible protease that plays an important role in both inflammation and apoptosis. Inflammatory stimuli induce and activate caspase-11, which is required for the activation of caspase-1 or interleukin-1beta (IL-1beta) converting enzyme (ICE). Caspase-1 in turn mediates the maturation of proinflammatory cytokines such as IL-1beta, which is one of the crucial mediators of neurodegeneration in the central nervous system. Here, we report that hypoxic exposure of cultured brain microglia (BV-2 mouse microglia cells and rat primary microglial cultures) induces expression and activation of caspase-11, which is accompanied by activation of caspase-1 and secretion of mature IL-1beta and IL-18. Hypoxic induction of caspase-11 was observed in both mRNA and protein levels, and was mediated through p38 mitogen-activated protein kinase pathway. Transient global ischemia in rats also induced caspase-11 expression and IL-1beta production in hippocampus supporting our in vitro findings. Caspase-11-expressing cells in hippocampus were morphologically identified as microglia. Taken together, our results indicate that hypoxia induces a sequential event-caspase-11 induction, caspase-1 activation, and IL-1beta release-in brain microglia, and point out the importance of initial caspase-11 induction in hypoxia-induced inflammatory activation of microglia.
Collapse
Affiliation(s)
- Nam-Gon Kim
- Department of Anatomy and Neurobiology, Institute of Health Sciences, and Research Institute of Natural Science, Gyeongsang National University College of Medicine, 92 Chilam-dong, Jinju, Kyungnam 660-751, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Suk K, Lee H, Kang SS, Cho GJ, Choi WS. Flavonoid baicalein attenuates activation-induced cell death of brain microglia. J Pharmacol Exp Ther 2003; 305:638-45. [PMID: 12606597 DOI: 10.1124/jpet.102.047373] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Baicalein (5,6,7-trihydroxyflavone), a flavonoid originated from the root of Chinese medicinal herb Scutellaria baicalensis, has been shown to exert anti-inflammatory and antioxidant effects, and it is a well known inhibitor of 12-lipoxygenase. We have previously reported that neuroglia undergo nitric oxide (NO)-dependent and NO-independent apoptosis upon inflammatory activation. In the current work, we asked how anti-inflammatory baicalein influences autoregulatory apoptosis of activated microglia and their NO production. Baicalein attenuated NO production and apoptosis of lipopolysaccharide (LPS)-activated, but not interferon-gamma-activated, BV-2 mouse microglial cells as well as rat primary microglia cultures. The inhibition of NO production by baicalein was due to the suppression of inducible NO synthase induction. Moreover, baicalein inhibited LPS-induced nuclear factor-kappaB (NF-kappaB) activity in BV-2 cells without affecting caspase-11 activation, interferon regulatory factor-1 induction, or signal transducer and activator of transcription-1 phosphorylation. Transfection of BV-2 cells with a p65 subunit of NF-kappaB abolished the apoptosis-attenuating effects of baicalein, indicating that the inhibition of NF-kappaB is a major mechanism of action. Baicalein, however, did not significantly affect NO donor-mediated cytotoxicity, and the apoptosis-attenuating effects of baicalein were independent of 12-lipoxygenase inhibition. Based on our previous findings that activation-induced cell death (AICD) of microglia occurs through two separate pathways (NO-dependent pathway and caspase-11-dependent pathway), our current results suggest that baicalein selectively inhibits the NO-dependent apoptotic pathway of activated microglia by suppressing cytotoxic NO production. Also, the AICD-inhibiting effects of baicalein were specific for the inflammatory stimulus that activated microglia.
Collapse
Affiliation(s)
- Kyoungho Suk
- Department of Anatomy and Neurobiology, College of Medicine, Gyeongsang National University, 92 Chilam-dong, Jinju, Kyungnam 660-751, Korea.
| | | | | | | | | |
Collapse
|
82
|
Salimi K, Moser KV, Marksteiner J, Reindl M, Humpel C. GDNF and TGF-beta1 promote cell survival in serum-free cultures of primary rat microglia. Cell Tissue Res 2003; 312:135-9. [PMID: 12712323 DOI: 10.1007/s00441-003-0711-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Accepted: 02/05/2003] [Indexed: 01/18/2023]
Abstract
Recent evidence indicates that glial cell line-derived neurotrophic factor (GDNF) may influence microglial survival, proliferation, and activation, but this has not yet been tested on isolated primary microglia. We compared the effects of individual and combined application of 10 ng/ml GDNF and 1 ng/ml transforming growth factor-beta1 (TGF-beta1) on total cell number, 5-bromo-2'-deoxyuridine (BrdU) incorporation, DNA nick-end labelling (TUNEL staining), and nitrite and lactate dehydrogenase (LDH) secretion in serum-free cultures of primary rat microglia. GDNF as well as TGF-beta1 enhanced the total number of lectin-positive cells and decreased the number of TUNEL-positive nuclei, while no effect on proliferation was observed. Both factors suppressed the secretion of nitrite during the first 4 days of culturing, and GDNF but not TGF-beta1 reduced the secretion of LDH in 2-week-old cultures. These findings suggest that GDNF and TGF-beta1 support survival of primary microglia in vitro.
Collapse
Affiliation(s)
- Kayvon Salimi
- Department of Psychiatry, Laboratory of Psychiatry, University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
83
|
Polazzi E, Contestabile A. Neuron-conditioned media differentially affect the survival of activated or unstimulated microglia: evidence for neuronal control on apoptotic elimination of activated microglia. J Neuropathol Exp Neurol 2003; 62:351-62. [PMID: 12722827 DOI: 10.1093/jnen/62.4.351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is presently unknown what types of neuronal signals maintain microglial cells resting in the normal brain or control their activation in neuropathology. Recent data suggest that microglia activation induces apoptosis and that healthy neurons are controllers of the activation state and immune functions of microglia. In the present study we have evaluated, on microglial cells in cultures, whether neurons are able to affect their survival in resting conditions or upon activation with the bacterial endotoxin, lipopolysaccharide (LPS). We report that neuron-conditioned culture media induced apoptosis of LPS-stimulated, but not of unstimulated, microglia. This effect was, however, only present when conditioned media had been exposed to differentiated neurons and not to immature ones, and was absent when glutamate receptors had been pharmacologically blocked in neuronal cultures. The effect was also blocked by heat-inactivation of the conditioned media. Media conditioned with either differentiated or undifferentiated cerebellar granule neurons positively affected the survival of unstimulated microglial cells when the standard concentration of fetal bovine serum (10%) was included in the culture media. Our results highlight the ability of differentiated neurons to maintain a controlled inflammatory state through production of factor(s) favoring the apoptotic elimination of activated microglia. They also suggest that immature neurons may, on the contrary, favor the survival of microglia during development.
Collapse
|
84
|
Ryu JK, Nagai A, Kim J, Lee MC, McLarnon JG, Kim SU. Microglial activation and cell death induced by the mitochondrial toxin 3-nitropropionic acid: in vitro and in vivo studies. Neurobiol Dis 2003; 12:121-32. [PMID: 12667467 DOI: 10.1016/s0969-9961(03)00002-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metabolic impairment of neurons has been implicated in several neurological disorders, but it is not at present known whether such metabolic impairment has deleterious effects on microglia, the phagocytic cells of the central nervous system (CNS). In the present study, we examined whether metabolic impairment induced by 3-nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, affects the function and viability of microglia in vitro and in vivo. Treatment of HMO6 human microglia cell line with 3-NP induced the elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) and activation of microglia with production of reactive oxygen species (ROS). Exposure of HMO6 cells to 3-NP also induced cell death as indicated by nuclear fragmentation in a dose- and time-dependent manner. Trolox, an antioxidant agent, was effective in reduction in ROS production and cell death caused by 3-NP. Consistent with in vitro findings, intrastriatal injection of 3-NP in adult rats resulted in an increase in ROS production in microglia in vivo, as evidenced by the oxidation of the reduced MitoTracker probe. ROS production induced by 3-NP was inhibited when trolox was coinjected with 3-NP. Caspase-3 immunoreactivity was demonstrated in OX-42+ microglia in the core and penumbra area of the 3-NP-injected striatum. Apoptotic cell death of microglia was also demonstrated by terminal deoxynucleotidyl- transferase-mediated biotin-dUTP nick end labeling reaction in the 3-NP-induced lesion area. The present results indicate that metabolic impairment in the CNS could involve both activation and cell death of microglia and contribute to pathology in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jae K Ryu
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | |
Collapse
|
85
|
Hamano H, Noguchi M, Fukui H, Issiki A, Watanabe Y. Regulation of brain cell environment on neuronal protection: role of TNFalpha in glia cells. Life Sci 2002; 72:565-74. [PMID: 12467897 DOI: 10.1016/s0024-3205(02)02252-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacterial endotoxin lipopolysaccharide (LPS) treatment of neuron-rich cells and glia-rich cells exhibited significant cell damage 12 hr after incubation, although no severe or significant cell damage induced by LPS appeared in neuron-glia co-cultured cells. Moreover, severe and significant time-dependent cell damage was induced by a larger dose treatment (10 mM) of glutamate (Glu), and this damage was seen in neuron-rich cells, neuron-glia co-cultured cells, and glia-rich cells. Examining extracellular tumor necrosis factor alpha (TNFalpha) induced by either LPS or Glu treatment, the levels of extracellular TNFalpha induced by LPS were significantly higher than those induced by Glu. These significant increases of TNFalpha were measured within 2 hr after LPS treatment in neuron-glia co-cultured cells and glia-rich cells, although no significant changes were detected in the neuron-rich cells. With Glu treatment, a significant increase in TNFalpha levels was detected after 6 hr of Glu treatment only in glia-rich cells. Our results indicate that cerebral TNFalpha is mainly produced in glia cells and that its production is dependently regulated by each stimulant. In addition, the production of TNFalpha is not directly related to the trigger of cell injury.
Collapse
Affiliation(s)
- Hiroko Hamano
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
| | | | | | | | | |
Collapse
|
86
|
Wang CC, Wu CH, Shieh JY, Wen CY. Microglial distribution and apoptosis in fetal rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:337-42. [PMID: 12480151 DOI: 10.1016/s0165-3806(02)00584-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By histochemical and immunocytochemical techniques, this study aimed to determine the possible involvement of apoptosis in regulating the microglial distribution in fetal rat brain. While microglial cells were labeled with the isolectin Griffonia simplicifolia (GSA I-B4), apoptotic cells were detected by using terminal transferase-mediated dUTP nick end-labeling (TUNEL). TUNEL-labeled cells occurred mainly in the dorsal midline along its rostral-caudal axis of the brain where lectin-labeled microglia were also observed. Occasional TUNEL-labeled cells were observed in the intermediate zone lateral to the striatum (IZS) where lectin-labeled microglia were common from embryonic day 16 (E16) onwards. Some of lectin-labeled microglia showing different morphological forms ingested TUNEL-labeled bodies. In contrast, lectin-labeled microglia showing signs of apoptosis appeared to be lacking. These results clearly demonstrated that lectin-labeled microglia were distributed in areas with and without the occurrence of a large concentration of TUNEL-labeled cells. Our studies suggest that microglia in fetal rat brain will undergo differentiation and activation rather than apoptotic death to govern their population.
Collapse
Affiliation(s)
- Chao Chuan Wang
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
87
|
Park SY, Lee H, Hur J, Kim SY, Kim H, Park JH, Cha S, Kang SS, Cho GJ, Choi WS, Suk K. Hypoxia induces nitric oxide production in mouse microglia via p38 mitogen-activated protein kinase pathway. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 107:9-16. [PMID: 12414118 DOI: 10.1016/s0169-328x(02)00421-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vitro exposure of microglial cells to hypoxia induces cellular activation. Also, in vivo studies of glial activation following ischemic hypoxia have shown that neuronal cell death is followed by microglial activation. Thus, it is likely that toxic inflammatory mediators produced by activated microglial cells under hypoxic conditions may exacerbate neuronal injury following cerebral ischemia. Nitric oxide (NO), which is known to be produced by activated microglia, may participate in this process. In the current work, we sought to determine whether and how the production of NO and the expression of inducible NO synthase (iNOS) are triggered by hypoxia in microglial cells. Exposure of established microglial cell lines as well as primary mouse microglial cultures to mild hypoxia (8 h) followed by reoxygenation (24 h) induced the production of NO and TNFalpha, indicating that hypoxia could lead to the inflammatory activation of microglia. Hypoxic induction of NO was accompanied by iNOS induction. Moreover, hypoxia induced the activation of p38 MAPK, but not ERK or JNK/SAPK, in BV-2 mouse microglial cells. SB203580, a specific inhibitor of p38 MAPK, blocked the hypoxic induction of NO and iNOS. Taken together, our results indicated that hypoxia could induce inflammatory activation of microglia, and the hypoxic induction of NO production in microglia is mediated through p38 MAPK pathway. Thus, during cerebral ischemia, hypoxia may not only directly damage neurons, but may also promote neuronal injury indirectly via microglial activation.
Collapse
Affiliation(s)
- Sun Young Park
- Department of Anatomy and Neurobiology, College of Medicine, Gyeongsang National University, 92 Chilam-dong, Jinju, Kyungnam 660-751, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
Microglia, residential macrophages in the central nervous system, can release a variety of factors including cytokines, chemokines, etc. to regulate the communication among neuronal and other types of glial cells. Microglia play immunological roles in mechanisms underlying the phagocytosis of invading microorganisms and removal of dead or damaged cells. When microglia are hyperactivated due to a certain pathological imbalance, they may cause neuronal degeneration. Pathological activation of microglia has been reported in a wide range of conditions such as cerebral ischemia, Alzheimer's disease, prion diseases, multiple sclerosis, AIDS dementia, and others. Nearly 5000 papers on microglia can be retrieved on the Web site PubMed at present (November 2001) and half of them were published within the past 5 years. Although it is not possible to read each paper in detail, as many factors as possible affecting microglial functions in in vitro culture systems are presented in this review. The factors are separated into "activators" and "inhibitors," although it is difficult to classify many of them. An overview on these factors may help in the development of a new strategy for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University; Sakai, Japan.
| |
Collapse
|
89
|
Salimi K, Moser K, Zassler B, Reindl M, Embacher N, Schermer C, Weis C, Marksteiner J, Sawada M, Humpel C. Glial cell line-derived neurotrophic factor enhances survival of GM-CSF dependent rat GMIR1-microglial cells. Neurosci Res 2002; 43:221-9. [PMID: 12103440 DOI: 10.1016/s0168-0102(02)00036-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microglial activation and proliferation occur in nearly all forms of brain injury. The aim of this study was to investigate the influence of glial cell-line derived neurotrophic factor (GDNF) on proliferation and/or survival in a GMIR1 rat microglial cell line, which proliferates in response to granulocyte-macrophage-colony stimulating factor (GM-CSF). Endogenous GDNF and its receptor, GFRalpha-1, were detected in GMIR1 cells by ELISA and immunohistochemistry/Western blot, respectively. Recombinant GDNF strongly enhanced GMIR1 cell numbers and BrdU-incorporation, an effect inhibited by GDNF blocking antibodies. Inhibition of cAMP/cGMP dependent protein kinase enhanced the GDNF-induced GMIR1 cell number. The results suggest that GDNF has synergistic survival promoting effects on microglia potentially via autocrine mechanisms.
Collapse
Affiliation(s)
- Kayvon Salimi
- Laboratory of Psychiatry, Department of Psychiatry, University of Innsbruck, Anichstrasse 35, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Hur J, Kim SY, Kim H, Cha S, Lee MS, Suk K. Induction of caspase-11 by inflammatory stimuli in rat astrocytes: lipopolysaccharide induction through p38 mitogen-activated protein kinase pathway. FEBS Lett 2001; 507:157-62. [PMID: 11684090 DOI: 10.1016/s0014-5793(01)02975-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Caspase-11 plays a crucial role in both inflammation and apoptosis. Caspase-11 not only activates caspase-1, that is required for the maturation of proinflammatory cytokines such as interleukin (IL)-1 and IL-18, but also activates caspase-3, leading to cellular apoptosis under pathological conditions. Here, we cloned the rat homolog of caspase-11, and investigated its inducibility by inflammatory stimuli and signal transduction pathways involved. Deduced amino acid sequence of rat caspase-11 showed 88.7% similarity to mouse caspase-11, and in vitro translation of rat caspase-11 cDNA yielded approximately a 43 kDa polypeptide, which was in agreement with predicted protein size generated from full-length rat caspase-11 cDNA. The expression of caspase-11 was strongly induced at both mRNA and protein levels by inflammatory stimuli such as lipopolysaccharide (LPS), interferon-gamma, and tumor necrosis factor-alpha in C6 rat glial cells as well as primary astrocytes. LPS induced activation of both p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) in C6 cells. However, SB203580 (specific inhibitor of p38 kinase), but not PD98059 (specific inhibitor of ERK kinase), inhibited LPS induction of caspase-11, indicating that induction of caspase-11 by LPS in astrocytes was mediated through the p38 MAPK pathway. Inflammatory induction of caspase-11 in astrocytes may play an important role in both inflammatory responses involving these cells and auto-regulatory apoptosis of activated astrocytes in inflammatory sites.
Collapse
Affiliation(s)
- J Hur
- Graduate School of East-West Medical Science and Research Institute for Basic Sciences, Kyunghee University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
91
|
Lee J, Hur J, Lee P, Kim JY, Cho N, Kim SY, Kim H, Lee MS, Suk K. Dual role of inflammatory stimuli in activation-induced cell death of mouse microglial cells. Initiation of two separate apoptotic pathways via induction of interferon regulatory factor-1 and caspase-11. J Biol Chem 2001; 276:32956-65. [PMID: 11402054 DOI: 10.1074/jbc.m104700200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that mouse microglial cells undergo apoptosis upon inflammatory activation and that nitric oxide (NO) is the major autocrine mediator in this process (Lee, P., Lee, J., Kim, S., Yagita, H., Lee, M. S., Kim, S. Y., Kim, H., and Suk, K. (2001) Brain Res. 892, 380-385). Here, we present evidence that interferon regulatory factor-1 (IRF-1) and caspase-11 are the essential molecules in activation-induced cell death of microglial cells. The apoptogenic action of inflammatory stimuli such as lipopolysaccharide (LPS) and interferon-gamma (IFNgamma) was mediated through the induction of IRF-1 and caspase-11 expression in two separate events. Although IRF-1 was required for NO synthesis, caspase-11 induction was necessary for NO-independent apoptotic pathway. Microglial cells from IRF-1-deficient mice showed markedly decreased NO production, and they were partially resistant to apoptosis in response to LPS/IFNgamma but were sensitive to NO donor exposure. LPS/IFNgamma treatment resulted in the induction of caspase-11 followed by activation of caspase-11, -1, and -3. Inactivation of caspase-11 by the transfection of dominant-negative mutant or treatment with the caspase inhibitors rendered microglial cells partially resistant to LPS/IFNgamma-induced apoptosis. Inhibition of both NO synthesis and caspase-11 completely blocked LPS/IFNgamma-induced cytotoxicity. These results indicated that LPS/IFNgamma not only induced the production of cytotoxic NO through IRF-1 but also initiated the NO-independent apoptotic pathway through the induction of caspase-11 expression.
Collapse
Affiliation(s)
- J Lee
- Graduate School of East-West Medical Science, Kyunghee University, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Kim H, Kim YS, Kim SY, Suk K. The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production. Neurosci Lett 2001; 309:67-71. [PMID: 11489548 DOI: 10.1016/s0304-3940(01)02028-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Flavonoids are a group of low molecular weight polyphenolic compounds derived from plants. 5,7-dihydroxy-8-methoxyflavone (Wogonin), a flavonoid originated from the root of Scutellaria baicalensis Georgi, has been shown to exert various anti-inflammatory effects such as inhibition of nitric oxide (NO) and prostaglandin E2 production in macrophages. Because glial cells have been previously shown to undergo NO-dependent apoptosis upon inflammatory activation and this auto-regulatory process may be negatively affected by exogenous factors possessing anti-inflammatory activities, we examined the effects of wogonin on NO production and activation-induced cell death of C6 rat glial cells. Activation of C6 glial cells with lipopolysaccharide (LPS), interferon-gamma, and tumor necrosis factor-alpha induced NO production followed by cell death. Pretreatment of C6 cells with wogonin before LPS and cytokine treatment dose-dependently inhibited NO production as well as death of activated C6 cells. Wogonin-mediated inhibition of NO production was accompanied by suppression of inducible nitric oxide synthase (iNOS) protein induction and nuclear factor kappa B (NF-kappaB) reporter activity. Wogonin, however, did not affect a NO donor-induced cytotoxicity. Taken together, our results indicate that wogonin inhibits activation-induced death of C6 glial cells by suppressing NO production, and these inhibitory effects of wogonin on NO production are exerted through inhibition of NF-kappaB-mediated iNOS induction.
Collapse
Affiliation(s)
- H Kim
- Department of Herbal Pharmacology, Graduate School of East-West Medical Science, Kyung Hee University, Hoegi-dong, Tongdaemun-ku, 130-701, Seoul, South Korea
| | | | | | | |
Collapse
|
93
|
Suk K, Lee J, Hur J, Kim YS, Lee M, Cha S, Yeou Kim S, Kim H. Activation-induced cell death of rat astrocytes. Brain Res 2001; 900:342-7. [PMID: 11334818 DOI: 10.1016/s0006-8993(01)02326-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inflammatory activation of astrocytes has been implicated in various neurodegenerative diseases. The elimination of activated astrocytes by apoptosis or the deactivation may be the mechanisms for auto-regulation of activated astrocytes. To test the possibility of apoptotic elimination of activated astrocytes, we examined a potential correlation between activation state of astrocytes and their viability using C6 rat glial cells and rat primary astrocyte cultures exposed to a variety of inflammatory stimuli such as lipopolysaccharide, interferon-gamma, and tumor necrosis factor-alpha. Nitric oxide production was measured to evaluate inflammatory activation of astrocytes. We found that: (i) the activation of astrocytes by the combination of lipopolysaccharide and inflammatory cytokines, but not by either alone, led to nitric oxide production followed by apoptotic cell death; (ii) the amount of nitric oxide produced by activated astrocytes was inversely proportional to the viability of the cells; (iii) inhibition of nitric oxide synthase by N-monomethyl L-arginine blocked death of activated astrocytes; and (iv) nitric oxide donors induced apoptosis of astrocytes in a caspase-dependent manner. Taken collectively, our results suggest that activated astrocytes produce nitric oxide as an autocrine mediator of caspase-dependent apoptosis, and this type of programmed cell death of astrocytes may be the underlying mechanism for the auto-regulation of inflammatory activation of astrocytes.
Collapse
Affiliation(s)
- K Suk
- Department of Herbal Pharmacology, Graduate School of East-West Medical Science, Kyung Hee University, Hoegi-dong, Tongdaemun-ku, 130-701, Seoul, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|