51
|
Nelson ND, Dodson LM, Escudero L, Sukumar AT, Williams CL, Mihalek I, Baldan A, Baird DM, Bertuch AA. The C-Terminal Extension Unique to the Long Isoform of the Shelterin Component TIN2 Enhances Its Interaction with TRF2 in a Phosphorylation- and Dyskeratosis Congenita Cluster-Dependent Fashion. Mol Cell Biol 2018; 38:e00025-18. [PMID: 29581185 PMCID: PMC5974431 DOI: 10.1128/mcb.00025-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/18/2018] [Indexed: 01/08/2023] Open
Abstract
TIN2 is central to the shelterin complex, linking the telomeric proteins TRF1 and TRF2 with TPP1/POT1. Mutations in TINF2, which encodes TIN2, that are found in dyskeratosis congenita (DC) result in very short telomeres and cluster in a region shared by the two TIN2 isoforms, TIN2S (short) and TIN2L (long). Here we show that TIN2L, but not TIN2S, is phosphorylated. TRF2 interacts more with TIN2L than TIN2S, and both the DC cluster and phosphorylation promote this enhanced interaction. The binding of TIN2L, but not TIN2S, is affected by TRF2-F120, which is also required for TRF2's interaction with end processing factors such as Apollo. Conversely, TRF1 interacts more with TIN2S than with TIN2L. A DC-associated mutation further reduces TIN2L-TRF1, but not TIN2S-TRF1, interaction. Cells overexpressing TIN2L or phosphomimetic TIN2L are permissive to telomere elongation, whereas cells overexpressing TIN2S or phosphodead TIN2L are not. Telomere lengths are unchanged in cell lines in which TIN2L expression has been eliminated by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated mutation. These results indicate that TIN2 isoforms are biochemically and functionally distinguishable and that shelterin composition could be fundamentally altered in patients with TINF2 mutations.
Collapse
Affiliation(s)
- Nya D Nelson
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Lois M Dodson
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Laura Escudero
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ann T Sukumar
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher L Williams
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Ivana Mihalek
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Alessandro Baldan
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alison A Bertuch
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
52
|
Perea SE, Baladrón I, Valenzuela C, Perera Y. CIGB-300: A peptide-based drug that impairs the Protein Kinase CK2-mediated phosphorylation. Semin Oncol 2018; 45:58-67. [PMID: 30318085 DOI: 10.1053/j.seminoncol.2018.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 01/09/2023]
Abstract
Protein kinase CK2, formerly referred to as casein kinase II, is a serine/threonine kinase often found overexpressed in solid tumors and hematologic malignancies that phosphorylates many substrates integral to the hallmarks of cancer. CK2 has emerged as a viable oncology target having been experimentally validated with different kinase inhibitors, including small molecule ATP-competitors, synthetic peptides, and antisense oligonucleotides. To date only two CK2 inhibitors, CIGB-300 and CX-4945, have entered the clinic in phase 1-2 trials. This review provides information on CIGB-300, a cell-permeable cyclic peptide that inhibits CK2-mediated phosphorylation by targeting the substrate phosphoacceptor domain. We review data that support the concept of CK2 as an anticancer target, address the mechanism of action, and summarize preclinical studies showing antiangiogenic and antimetastatic effects as well as synergism with anticancer drugs in preclinical models. We also summarize early clinical research (phase 1/2 trials) of CIGB-300 in cervical cancer, including data in combination with chemoradiotherapy. The clinical data demonstrate the safety, tolerability, and clinical effects of intratumoral injections of CIGB-300 and provide the foundation for future phase 3 clinical trials in locally advanced cervical cancer in combination with standard chemoradiotherapy.
Collapse
Affiliation(s)
- Silvio E Perea
- Molecular Oncology Laboratory, Biomedical Research Area, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Idania Baladrón
- Clinical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Carmen Valenzuela
- Clinical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yasser Perera
- Molecular Oncology Laboratory, Biomedical Research Area, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
53
|
Wang L, Chandaka GK, Foehring RC, Callaway JC, Armstrong WE. Changes in potassium channel modulation may underlie afterhyperpolarization plasticity in oxytocin neurons during late pregnancy. J Neurophysiol 2018. [PMID: 29537926 DOI: 10.1152/jn.00608.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) neurons exhibit larger afterhyperpolarizations (AHPs) following spike trains during late pregnancy and lactation, times when these neurons fire in bursts and release more OT associated with labor and lactation. Calcium-dependent AHPs mediated by SK channels show this plasticity, and are reduced when the channel complex is phosphorylated by casein kinase 2 (CK2), and increased when dephosphorylated by protein phosphatase (PP)2A, by altering Ca2+ sensitivity. We compared AHP currents in supraoptic OT neurons after CK2 inhibition with 4,5,6,7-tetrabromobenzotriazole (TBB), or PP1-PP2A inhibition with okadaic acid (OA), to determine the roles of these enzymes in AHP plasticity, focusing on the peak current at 100 ms representing the SK-mediated, medium AHP (ImAHP). In slices from virgin and two groups of pregnant rats [embryonic days (E18-19, or E20-21], ImAHPs were evoked with 3-, 10-, and 17-spike trains (20 Hz). With 3-spike trains, TBB increased the ImAHP to the greatest extent in virgin compared with both groups of pregnant animals. A difference between virgins and E20-21 rats was also evident with a 10-spike train but the increases in ImAHPs were similar among groups with 17-spike trains. In contrast, OA, while consistently reducing the ImAHP in all cases, showed no differential effects among groups. In Western blots, CK2α, CK2β, PP2A-A, PP2A-B, and PP2A-C were found in supraoptic lysates, and expression of CK2α and CK2β was reduced in E20-21 rats. Coimmunoprecipitation revealed that calmodulin, CK2α, and PP2A-C were associated with SK3 protein. The results suggest that a downregulation of SK3-associated CK2α during late pregnancy may increase the sensitivity of the SK calmodulin (Ca2+) sensor for ImAHP, contributing to the enhanced ImAHP. NEW & NOTEWORTHY The article demonstrates for the first time that enhancement in spike afterhyperpolarizations in oxytocin neurons during pregnancy may be related to a downregulation in the small-conductance Ca2+-activated potassium channels (SK)/calmodulin binding protein casein kinase 2, which phosphorylates the SK channel complex and reduces its Ca2+ sensitivity.
Collapse
Affiliation(s)
- Lie Wang
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Giri Kumar Chandaka
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee.,Neuroscience Institute, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Joseph C Callaway
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee.,Neuroscience Institute, University of Tennessee Health Science Center , Memphis, Tennessee
| | - William E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee.,Neuroscience Institute, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
54
|
|
55
|
Deoxynucleosides with benzimidazoles as aglycone moiety are potent anticancer agents. Eur J Pharmacol 2018; 820:146-155. [DOI: 10.1016/j.ejphar.2017.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
56
|
Functional interplay between the transcription factors USF1 and PDX-1 and protein kinase CK2 in pancreatic β-cells. Sci Rep 2017; 7:16367. [PMID: 29180680 PMCID: PMC5703852 DOI: 10.1038/s41598-017-16590-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
Glucose homeostasis is regulated by insulin, which is produced in the β-cells of the pancreas. The synthesis of insulin is controlled by several transcription factors including PDX-1, USF1 and USF2. Both, PDX-1 and USF1 were identified as substrates for protein kinase CK2. Here, we have analysed the interplay of PDX-1, USF1 and CK2 in the regulation of PDX-1 gene transcription. We found that the PDX-1 promoter is dose-dependently transactivated by PDX-1 and transrepressed by USF1. With increasing glucose concentrations the transrepression of the PDX-1 promoter by USF1 is successively abrogated. PDX-1 binding to its own promoter was not influenced by glucose, whereas USF1 binding to the PDX-1 promoter was reduced. The same effect was observed after inhibition of the protein kinase activity by three different inhibitors or by using a phospho-mutant of USF1. Moreover, phosphorylation of USF1 by CK2 seems to strengthen the interaction between USF1 and PDX-1. Thus, CK2 is a negative regulator of the USF1-dependent PDX-1 transcription. Moreover, upon inhibition of CK2 in primary islets, insulin expression as well as insulin secretion were enhanced without affecting the viability of the cells. Therefore, inhibition of CK2 activity may be a promising approach to stimulate insulin production in pancreatic β-cells.
Collapse
|
57
|
Abbineni PS, Coorssen JR. Application of High-Throughput Assays to Examine Phospho-Modulation of the Late Steps of Regulated Exocytosis. High Throughput 2017; 6:ht6040017. [PMID: 29479054 PMCID: PMC5748596 DOI: 10.3390/ht6040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/19/2023] Open
Abstract
Abstract: Regulated exocytosis enables a range of physiological functions including neurotransmission, and the late steps (i.e., docking, priming and Ca2+-triggered membrane fusion) are modulated by a highly conserved set of proteins and lipids. Many of the molecular components and biochemical interactions required have been identified; the precise mechanistic steps they modulate and the biochemical interactions that need to occur across steps are still the subject of intense investigation. Particularly, although the involvement of phosphorylation in modulating exocytosis has been intensively investigated over the past three decades, it is unclear which phosphorylation events are a conserved part of the fundamental fusion mechanism and/or serve as part of the physiological fusion machine (e.g., to modulate Ca2+ sensitivity). Here, the homotypic fusion of cortical vesicles was monitored by utilizing new high-throughput, cost-effective assays to assess the influence of 17 small molecule phospho-modulators on docking/priming, Ca2+ sensitivity and membrane fusion. Specific phosphatases and casein kinase 2 are implicated in modulating the Ca2+ sensitivity of fusion, whereas sphingosine kinase is implicated in modulating the ability of vesicles to fuse. These results indicate the presence of multiple kinases and phosphatases on the vesicles and critical phosphorylation sites on vesicle membrane proteins and lipids that directly influence late steps of regulated exocytosis.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Jens R Coorssen
- Faculty of Applied Health Sciences and Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
58
|
Halogen and Hydrogen Bonding in Multicomponent Crystals of Tetrabromo-1H-Benzotriazole. CRYSTALS 2017. [DOI: 10.3390/cryst7110332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
59
|
Rajasekaran SS, Illies C, Shears SB, Wang H, Ayala TS, Martins JO, Daré E, Berggren PO, Barker CJ. Protein kinase- and lipase inhibitors of inositide metabolism deplete IP 7 indirectly in pancreatic β-cells: Off-target effects on cellular bioenergetics and direct effects on IP6K activity. Cell Signal 2017; 42:127-133. [PMID: 29042286 PMCID: PMC5765549 DOI: 10.1016/j.cellsig.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022]
Abstract
Inositol pyrophosphates have emerged as important regulators of many critical cellular processes from vesicle trafficking and cytoskeletal rearrangement to telomere length regulation and apoptosis. We have previously demonstrated that 5-di-phosphoinositol pentakisphosphate, IP7, is at a high level in pancreatic β-cells and is important for insulin exocytosis. To better understand IP7 regulation in β-cells, we used an insulin secreting cell line, HIT-T15, to screen a number of different pharmacological inhibitors of inositide metabolism for their impact on cellular IP7. Although the inhibitors have diverse targets, they all perturbed IP7 levels. This made us suspicious that indirect, off-target effects of the inhibitors could be involved. It is known that IP7 levels are decreased by metabolic poisons. The fact that the inositol hexakisphosphate kinases (IP6Ks) have a high Km for ATP makes IP7 synthesis potentially vulnerable to ATP depletion. Furthermore, many kinase inhibitors are targeted to the ATP binding site of kinases, but given the similarity of such sites, high specificity is difficult to achieve. Here, we show that IP7 concentrations in HIT-T15 cells were reduced by inhibitors of PI3K (wortmannin, LY294002), PI4K (Phenylarsine Oxide, PAO), PLC (U73122) and the insulin receptor (HNMPA). Each of these inhibitors also decreased the ATP/ADP ratio. Thus reagents that compromise energy metabolism reduce IP7 indirectly. Additionally, PAO, U73122 and LY294002 also directly inhibited the activity of purified IP6K. These data are of particular concern for those studying signal transduction in pancreatic β-cells, but also highlight the fact that employment of these inhibitors could have erroneously suggested the involvement of key signal transduction pathways in various cellular processes. Conversely, IP7’s role in cellular signal transduction is likely to have been underestimated. In pancreatic β-cells several inhibitors of signal transduction reduce IP7 levels. There is a positive correlation between IP7 reduction and decrease in ATP/ADP. Inhibitors deplete IP7 levels indirectly by decreasing ATP/ADP levels. Some purportedly specific cell-signaling inhibitors directly target IP6K activity. Caution is required in interpreting data obtained using inhibitors of inositide metabolism.
Collapse
Affiliation(s)
- Subu Surendran Rajasekaran
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Christopher Illies
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Stephen B Shears
- Signal Transduction Laboratory/Inositol Signaling Group, NIEHS, Building 101, Room F239, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Huanchen Wang
- Signal Transduction Laboratory/Inositol Signaling Group, NIEHS, Building 101, Room F239, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Thais S Ayala
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisabetta Daré
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| | - Christopher J Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
60
|
Berman JM, Mironova E, Stockand JD. Physiological regulation of the epithelial Na + channel by casein kinase II. Am J Physiol Renal Physiol 2017; 314:F367-F372. [PMID: 29021227 DOI: 10.1152/ajprenal.00469.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
epithelial Na+ channel, ENaC, is the final arbiter of sodium excretion in the kidneys. As such, discretionary control of ENaC by hormones is critical to the fine-tuning of electrolyte and water excretion and, consequently, blood pressure. Casein kinase 2 (CK2) phosphorylates ENaC. Phosphorylation by CK2 is necessary for normal ENaC activity. We tested the physiological importance of CK2 regulation of ENaC as the degree to which ENaC activity is dependent on CK2 phosphorylation in the living organism is unknown. This was addressed using patch-clamp analysis of ENaC in completely split-open collecting ducts and whole animal physiological studies of sodium excretion in mice. We also used ENaC-harboring CK2 phosphorylation site mutations to elaborate the mechanism. We found that ENaC activity in ex vivo preparations of murine collecting duct had a significant decrease in activity in response to selective antagonism of CK2. In whole animal experiments selective antagonism of CK2 caused a natriuresis similar to benzamil, but not additive to benzamil, suggesting an ENaC-dependent mechanism. Regulation of ENaC by CK2 was abolished by mutation of the canonical CK2 phosphorylation sites in beta and gamma ENaC. Together, these results demonstrate that the appropriate regulation of ENaC by CK2 is necessary for the normal physiological role played by this key renal ion channel in the fine-tuning of sodium excretion.
Collapse
Affiliation(s)
- Jonathan M Berman
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
61
|
Buontempo F, McCubrey JA, Orsini E, Ruzzene M, Cappellini A, Lonetti A, Evangelisti C, Chiarini F, Evangelisti C, Barata JT, Martelli AM. Therapeutic targeting of CK2 in acute and chronic leukemias. Leukemia 2017; 32:1-10. [PMID: 28951560 PMCID: PMC5770594 DOI: 10.1038/leu.2017.301] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022]
Abstract
CK2 is a ubiquitously expressed, constitutively active Ser/Thr protein kinase, which is considered the most pleiotropic protein kinase in the human kinome. Such a pleiotropy explains the involvement of CK2 in many cellular events. However, its predominant roles are stimulation of cell growth and prevention of apoptosis. High levels of CK2 messenger RNA and protein are associated with CK2 pathological functions in human cancers. Over the last decade, basic and translational studies have provided evidence of CK2 as a pivotal molecule driving the growth of different blood malignancies. CK2 overexpression has been demonstrated in nearly all the types of hematological cancers, including acute and chronic leukemias, where CK2 is a key regulator of signaling networks critical for cell proliferation, survival and drug resistance. The findings that emerged from these studies suggest that CK2 could be a valuable therapeutic target in leukemias and supported the initiation of clinical trials using CK2 antagonists. In this review, we summarize the recent advances on the understanding of the signaling pathways involved in CK2 inhibition-mediated effects with a particular emphasis on the combinatorial use of CK2 inhibitors as novel therapeutic strategies for treating both acute and chronic leukemia patients.
Collapse
Affiliation(s)
- F Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - E Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - M Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - A Cappellini
- Department of Human, Social and Health Sciences, University of Cassino, Cassino, Italy
| | - A Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - C Evangelisti
- Institute of Molecular Genetics, National Research Council, Bologna, Italy.,Cell and Molecular Biology Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - F Chiarini
- Institute of Molecular Genetics, National Research Council, Bologna, Italy.,Cell and Molecular Biology Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - C Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - J T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - A M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
62
|
Padilla-Benavides T, Nasipak BT, Paskavitz AL, Haokip DT, Schnabl JM, Nickerson JA, Imbalzano AN. Casein kinase 2-mediated phosphorylation of Brahma-related gene 1 controls myoblast proliferation and contributes to SWI/SNF complex composition. J Biol Chem 2017; 292:18592-18607. [PMID: 28939766 PMCID: PMC5682968 DOI: 10.1074/jbc.m117.799676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/06/2017] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation is modulated in part by chromatin-remodeling enzymes that control gene accessibility by altering chromatin compaction or nucleosome positioning. Brahma-related gene 1 (Brg1), a catalytic subunit of the mammalian SWI/SNF chromatin-remodeling enzymes, is required for both myoblast proliferation and differentiation, and the control of Brg1 phosphorylation by calcineurin, PKCβ1, and p38 regulates the transition to differentiation. However, we hypothesized that Brg1 activity might be regulated by additional kinases. Here, we report that Brg1 is also a target of casein kinase 2 (CK2), a serine/threonine kinase, in proliferating myoblasts. We found that CK2 interacts with Brg1, and mutation of putative phosphorylation sites to non-phosphorylatable (Ser to Ala, SA) or phosphomimetic residues (Ser to Glu, SE) reduced Brg1 phosphorylation by CK2. Although BRG1-deleted myoblasts that ectopically express the SA-Brg1 mutant proliferated similarly to the parental cells or cells ectopically expressing wild-type (WT) Brg1, ectopic expression of the SE-Brg1 mutant reduced proliferation and increased cell death, similar to observations from cells lacking Brg1. Moreover, pharmacological inhibition of CK2 increased myoblast proliferation. Furthermore, the Pax7 promoter, which controls expression of a key transcription factor required for myoblast proliferation, was in an inaccessible chromatin state in the SE-Brg1 mutant, suggesting that hyperphosphorylated Brg1 cannot remodel chromatin. WT-, SA-, and SE-Brg1 exhibited distinct differences in interacting with and affecting expression of the SWI/SNF subunits Baf155 and Baf170 and displayed differential sub-nuclear localization. Our results indicate that CK2-mediated phosphorylation of Brg1 regulates myoblast proliferation and provides insight into one mechanism by which composition of the mammalian SWI/SNF enzyme complex is regulated.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Brian T Nasipak
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Amanda L Paskavitz
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Dominic T Haokip
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Jake M Schnabl
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Jeffrey A Nickerson
- the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Anthony N Imbalzano
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| |
Collapse
|
63
|
Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases. mBio 2017; 8:mBio.01213-17. [PMID: 28851847 PMCID: PMC5574712 DOI: 10.1128/mbio.01213-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the β-transducin repeat-containing protein (β-TrCP), a regulator of NF-κB activation. β-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits β-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of β-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of β-TrCP and ending with incorporation of the NSP1–β-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif. Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the virus to inhibit host innate immune responses is to hijack cellular cullin-RING E3 ubiquitin ligases (CRLs) and redirect their targeting activity to the degradation of cellular proteins crucial for interferon expression. This task is accomplished through the rotavirus nonstructural protein NSP1, which incorporates itself into a CRL and serves as a substrate recognition subunit. The substrate recognized by the NSP1 of many human and porcine rotaviruses is β-TrCP, a protein that regulates the transcription factor NF-κB. In this study, we show that formation of NSP1 CRLs is a highly regulated stepwise process initiated by CKII phosphorylation of the β-TrCP recognition motif in NSP1. This modification triggers recruitment of the β-TrCP substrate and induces subsequent changes in a highly conserved NSP1 RING domain that allow anchoring of the NSP1–β-TrCP complex to a cullin scaffold.
Collapse
|
64
|
Lin F, Cao SB, Ma XS, Sun HX. Inhibition of casein kinase 2 blocks G 2/M transition in early embryo mitosis but not in oocyte meiosis in mouse. J Reprod Dev 2017; 63:319-324. [PMID: 28367932 PMCID: PMC5481635 DOI: 10.1262/jrd.2016-064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Casein kinase 2 (CK2) is a highly conserved, ubiquitously expressed serine/threonine protein kinase with hundreds of substrates. The role of CK2 in the G2/M transition of oocytes, zygotes, and 2-cell embryos was studied in mouse by enzyme activity inhibition using the specific inhibitor 4, 5, 6, 7-tetrabromobenzotriazole (TBB). Zygotes and 2-cell embryos were arrested at G2 phase by TBB treatment, and DNA damage was increased in the female pronucleus of arrested zygotes. Further developmental ability of arrested zygotes was reduced, but that of arrested 2-cell embryos was not affected after releasing from inhibition. By contrast, the G2/M transition in oocytes was not affected by TBB. These results indicate that CK2 activity is essential for mitotic G2/M transition in early embryos but not for meiotic G2/M transition in oocytes.
Collapse
Affiliation(s)
- Fei Lin
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shi-Bing Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Shan Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Xiang Sun
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
65
|
Kos-Braun IC, Jung I, Koš M. Tor1 and CK2 kinases control a switch between alternative ribosome biogenesis pathways in a growth-dependent manner. PLoS Biol 2017; 15:e2000245. [PMID: 28282370 PMCID: PMC5345768 DOI: 10.1371/journal.pbio.2000245] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Ribosome biogenesis is a major energy-consuming process in the cell that has to be rapidly down-regulated in response to stress or nutrient depletion. The target of rapamycin 1 (Tor1) pathway regulates synthesis of ribosomal RNA (rRNA) at the level of transcription initiation. It remains unclear whether ribosome biogenesis is also controlled directly at the posttranscriptional level. We show that Tor1 and casein kinase 2 (CK2) kinases regulate a rapid switch between a productive and a non-productive pre-rRNA processing pathways in yeast. Under stress, the pre-rRNA continues to be synthesized; however, it is processed differently, and no new ribosomes are produced. Strikingly, the control of the switch does not require the Sch9 kinase, indicating that an unrecognized Tor Complex 1 (TORC1) signaling branch involving CK2 kinase directly regulates ribosome biogenesis at the posttranscriptional level. The yeast Saccharomyces cerevisiae must, as a single-celled microorganism, rapidly respond to changes in its environment and carefully balance its energy needs with the available resources. One of the major energy-consuming processes in the cell is the production of ribosomes. Ribosome biogenesis is highly dynamic and complex and requires the coordinated action of myriads of factors and RNAs. It begins with the synthesis of the precursor ribosomal RNA (rRNA), which is concurrently cleaved, modified, folded, and assembled together with ribosomal proteins into mature ribosomal subunits. It is known that in response to depletion of nutrients, yeast quickly represses the transcription of genes encoding rRNAs and ribosomal proteins. In this study, we reveal that yeast also rapidly switches to an alternative rRNA processing pathway, in which the precursor rRNA is cleaved differently and the ribosome biogenesis is arrested at a distinct stage. We demonstrate that the choice between the two alternative pathways is controlled by the target of rapamycin complex 1 (TORC1) and casein kinase 2 (CK2) kinase, but does not require Tap42p and Sch9p, which are currently thought to be the major effectors of TORC1. Our results indicate the existence of a so far unidentified branch of TORC1 signaling regulating ribosomes biogenesis at the posttranscriptional level.
Collapse
Affiliation(s)
| | - Ilona Jung
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Martin Koš
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
66
|
ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2. PLoS One 2017; 12:e0173260. [PMID: 28273138 PMCID: PMC5342230 DOI: 10.1371/journal.pone.0173260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit.
Collapse
|
67
|
Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel) 2017; 10:E18. [PMID: 28134850 PMCID: PMC5374422 DOI: 10.3390/ph10010018] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
CK2 genes are overexpressed in many human cancers, and most often overexpression is associated with worse prognosis. Site-specific expression in mice leads to cancer development (e.g., breast, lymphoma) indicating the oncogenic nature of CK2. CK2 is involved in many key aspects of cancer including inhibition of apoptosis, modulation of signaling pathways, DNA damage response, and cell cycle regulation. A number of CK2 inhibitors are now available and have been shown to have activity against various cancers in vitro and in pre-clinical models. Some of these inhibitors are now undergoing exploration in clinical trials as well. In this review, we will examine some of the major cancers in which CK2 inhibition has promise based on in vitro and pre-clinical studies, the proposed cellular and signaling mechanisms of anti-cancer activity by CK2 inhibitors, and the current or recent clinical trials using CK2 inhibitors.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Charina E Ortega
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Ayesha Sheikh
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Migi Lee
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Hussein Abdul-Rassoul
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Kevan L Hartshorn
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Isabel Dominguez
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
68
|
Medley JC, Kabara MM, Stubenvoll MD, DeMeyer LE, Song MH. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos. Biol Open 2017; 6:17-28. [PMID: 27881437 PMCID: PMC5278433 DOI: 10.1242/bio.022418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/15/2016] [Indexed: 11/28/2022] Open
Abstract
Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2) in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α) of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner.
Collapse
Affiliation(s)
- Jeffrey C Medley
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Megan M Kabara
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | | | - Lauren E DeMeyer
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
69
|
Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry. Nat Chem Biol 2016; 12:822-30. [DOI: 10.1038/nchembio.2150] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
70
|
Armengot L, Caldarella E, Marquès-Bueno MM, Martínez MC. The Protein Kinase CK2 Mediates Cross-Talk between Auxin- and Salicylic Acid-Signaling Pathways in the Regulation of PINOID Transcription. PLoS One 2016; 11:e0157168. [PMID: 27275924 PMCID: PMC4898841 DOI: 10.1371/journal.pone.0157168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/25/2016] [Indexed: 01/08/2023] Open
Abstract
The protein kinase CK2 is a ubiquitous and highly conserved enzyme, the activity of which is vital for eukaryotic cells. We recently demonstrated that CK2 modulates salicylic acid (SA) homeostasis in Arabidopsis thaliana, and that functional interplay between CK2 and SA sustains transcriptional expression of PIN-FORMED (PIN) genes. In this work, we show that CK2 also plays a key role in the transcriptional regulation of PINOID (PID), an AGC protein kinase that modulates the apical/basal localization of auxin-efflux transporters. We show that PID transcription is up-regulated by auxin and by SA and that CK2 is involved in both pathways. On the one hand, CK2 activity is required for proteosome-dependent degradation of AXR3, a member of the AUX/IAA family of auxin transcriptional repressors that must be degraded to activate auxin-responsive gene expression. On the other hand, the role of CK2 in SA homeostasis and, indirectly, in SA-driven PID transcription, was confirmed by using Arabidopsis NahG transgenic plants, which cannot accumulate SA. In conclusion, our results evidence a role for CK2 as a functional link in the negative cross-talk between auxin- and SA-signaling.
Collapse
Affiliation(s)
- Laia Armengot
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Eleonora Caldarella
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Maria Mar Marquès-Bueno
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - M. Carmen Martínez
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- * E-mail:
| |
Collapse
|
71
|
El Hage K, Bereau T, Jakobsen S, Meuwly M. Impact of Quadrupolar Electrostatics on Atoms Adjacent to the Sigma-Hole in Condensed-Phase Simulations. J Chem Theory Comput 2016; 12:3008-19. [PMID: 27158892 DOI: 10.1021/acs.jctc.6b00202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halogenation is one of the cases for which advanced molecular simulation methods are mandatory for quantitative and predictive studies. The present work provides a systematic investigation of the importance of higher-order multipoles on specific sites of halobenzenes, other than the halogen, for static and dynamic properties in condensed-phase simulations. For that purpose, solute-solvent interactions using point charge (PC), multipole (MTP), and hybrid point charge/multipole (HYB) electrostatic models are analyzed in regions of halogen bonding and extended to regions of π orbitals of phenyl carbons. Using molecular dynamics simulations and quantum chemical methods, it is found that the sigma-hole does not only affect the halogen and the carbon bound to it but its effect extends to the carbons adjacent to the CX bond. This effect increases with the magnitude of the positive potential of the sigma-hole. With the MTP and HYB3 models, all hydration free energies of the PhX compounds are reproduced within 0.1 kcal/mol. Analysis of pair distribution functions and hydration free energies of halogenated benzenes provides a microscopic explanation why "point charge"-based representations with off-site charges fail in reproducing thermodynamic properties of the sigma-hole. Application of the hybrid models to study protein-ligand binding demonstrates both their accuracy and computational efficiency.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Tristan Bereau
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Sofie Jakobsen
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Markus Meuwly
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
72
|
Mohl BP, Roy P. Cellular Casein Kinase 2 and Protein Phosphatase 2A Modulate Replication Site Assembly of Bluetongue Virus. J Biol Chem 2016; 291:14566-74. [PMID: 27226558 PMCID: PMC4938178 DOI: 10.1074/jbc.m116.714766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/13/2022] Open
Abstract
A number of cytoplasmic replicating viruses produce cytoplasmic inclusion bodies or protein aggregates; however, a hallmark of viruses of the Reoviridae family is that they utilize these sites for purposes of replication and capsid assembly, functioning as viral assembly factories. Here we have used bluetongue virus (BTV) as a model system for this broad family of important viruses to understand the mechanisms regulating inclusion body assembly. Newly synthesized viral proteins interact with sequestered viral RNA molecules prior to capsid assembly and double-stranded RNA synthesis within viral inclusion bodies (VIBs). VIBs are predominantly comprised of a BTV-encoded non-structural protein 2 (NS2). Previous in vitro studies indicated that casein kinase 2 (CK2) mediated the phosphorylation of NS2, which regulated the propensity of NS2 to form larger aggregates. Using targeted pharmacological reagents, specific mutation in the viral genome by reverse genetics and confocal microscopy, here we demonstrate that CK2 activity is important for BTV replication. Furthermore, we show that a novel host cell factor, protein phosphatase 2A, is involved in NS2 dephosphorylation and that, together with CK2, it regulates VIB morphology and virus replication. Thus, these two host enzymes influence the dynamic nature of VIB assembly/disassembly, and these concerted activities may be relevant to the assembly and the release of these cores from VIBs.
Collapse
Affiliation(s)
- Bjorn-Patrick Mohl
- From the Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Polly Roy
- From the Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| |
Collapse
|
73
|
González N, Moresco JJ, Cabezas F, de la Vega E, Bustos F, Yates JR, Olguín HC. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors. PLoS One 2016; 11:e0154919. [PMID: 27144531 PMCID: PMC4856311 DOI: 10.1371/journal.pone.0154919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (re)acquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate.
Collapse
Affiliation(s)
- Natalia González
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - James J. Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, United States of America
| | - Felipe Cabezas
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Eduardo de la Vega
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Francisco Bustos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, United States of America
| | - Hugo C. Olguín
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- * E-mail:
| |
Collapse
|
74
|
Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine 2016; 7:191-204. [PMID: 27322472 PMCID: PMC4909369 DOI: 10.1016/j.ebiom.2016.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/24/2016] [Accepted: 03/24/2016] [Indexed: 12/28/2022] Open
Abstract
Alpha-synuclein (αSyn) interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR) and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs. Extracellular αSyn disrupts lipid raft platforms with consequent mislocalization of several pre- and post-synaptic proteins. αSyn-driven changes in raft-partitioning of proteins blunt neurotransmission and LTP. Cholesterol loading and inhibition of CK2 restore αSyn-induced alterations of the post-synaptic density assembly.
Alpha-synuclein (αSyn), a cytosolic protein that can be released from neurons, becomes pathogenic when expressed at high levels, as in Parkinson's disease, due to multiplication of αSyn gene. We show that the mechanism responsible for the defects in synaptic vesicles mobilization and post-synaptic activity induced by extracellular αSyn is the fragmentation of lipid rafts, cholesterol-rich microdomains of the plasma membrane. Moreover restoration of lipid raft platforms and raft-partitioning of surface proteins prevents the alteration of synaptic transmission caused by exposure of neurons to αSyn.
Collapse
|
75
|
Bagchi RA, Wang R, Jahan F, Wigle JT, Czubryt MP. Regulation of scleraxis transcriptional activity by serine phosphorylation. J Mol Cell Cardiol 2016; 92:140-8. [PMID: 26883788 DOI: 10.1016/j.yjmcc.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
Cardiac fibroblasts are the major extracellular matrix producing cells in the heart. Our laboratory was the first to demonstrate that the transcription factor scleraxis induces collagen 1α2 expression in both cardiac fibroblasts and myofibroblasts. Here we identify a novel post-translational mechanism by which scleraxis activity is regulated and determine its effect on transcription of genes targeted by scleraxis. Putative serine phosphorylation sites on scleraxis were revealed by in silico analysis using motif prediction software. Mutation of key serine residues to alanine, which cannot be phosphorylated, significantly attenuated the expression of fibrillar type I collagen and myofibroblast marker genes that are normally induced by scleraxis. Down-regulation of collagen 1α2 expression was due to reduced binding of the non-phosphorylated scleraxis mutant to specific E-box DNA-binding sites within the promoter as determined by chromatin immunoprecipitation in human cardiac myofibroblast cells and by electrophoretic mobility shift assay. This is the first evidence suggesting that scleraxis is phosphorylated under basal conditions. The phosphorylation sequence matched that targeted by Casein Kinase 2, and inhibition of this kinase activity disrupted the ability of scleraxis to modulate the expression of its target genes while also attenuating TGFβ-induced expression of type I collagen and myofibroblast phenotype conversion marker genes. These results demonstrate a novel mechanism for regulation of scleraxis activity, which may prove to be tractable for pharmacologic manipulation.
Collapse
Affiliation(s)
- Rushita A Bagchi
- St. Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryan Wang
- St. Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fahmida Jahan
- St. Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeffrey T Wigle
- St. Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P Czubryt
- St. Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
76
|
Rosenberger AFN, Morrema THJ, Gerritsen WH, van Haastert ES, Snkhchyan H, Hilhorst R, Rozemuller AJM, Scheltens P, van der Vies SM, Hoozemans JJM. Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer's disease pathology. J Neuroinflammation 2016; 13:4. [PMID: 26732432 PMCID: PMC4702323 DOI: 10.1186/s12974-015-0470-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. In addition to the occurrence of amyloid deposits and widespread tau pathology, AD is associated with a neuroinflammatory response characterized by the activation of microglia and astrocytes. Protein kinase 2 (CK2, former casein kinase II) is involved in a wide variety of cellular processes. Previous studies on CK2 in AD showed controversial results, and the involvement of CK2 in neuroinflammation in AD remains elusive. METHODS In this study, we used immunohistochemical and immunofluorescent staining methods to investigate the localization of CK2 in the hippocampus and temporal cortex of patients with AD and non-demented controls. We compared protein levels with Western blotting analysis, and we investigated CK2 activity in human U373 astrocytoma cells and human primary adult astrocytes stimulated with IL-1β or TNF-α. RESULTS We report increased levels of CK2 in the hippocampus and temporal cortex of AD patients compared to non-demented controls. Immunohistochemical analysis shows CK2 immunoreactivity in astrocytes in AD and control cases. In AD, the presence of CK2 immunoreactive astrocytes is increased. CK2 immunopositive astrocytes are associated with amyloid deposits, suggesting an involvement of CK2 in the neuroinflammatory response. In U373 cells and human primary astrocytes, the selective CK2 inhibitor CX-4945 shows a dose-dependent reduction of the IL-1β or TNF-α induced MCP-1 and IL-6 secretion. CONCLUSIONS This data suggests that CK2 in astrocytes is involved in the neuroinflammatory response in AD. The reduction in pro-inflammatory cytokine secretion by human astrocytes using the selective CK2 inhibitor CX-4945 indicates that CK2 could be a potential target to modulate neuroinflammation in AD.
Collapse
Affiliation(s)
- Andrea F N Rosenberger
- Alzheimer center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands.
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Tjado H J Morrema
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Wouter H Gerritsen
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Elise S van Haastert
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Hripsime Snkhchyan
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Riet Hilhorst
- PamGene International BV, Wolvenhoek 10, 5211 HH, 's-Hertogenbosch, The Netherlands.
| | - Annemieke J M Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Philip Scheltens
- Alzheimer center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands.
| | - Saskia M van der Vies
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
77
|
Caly L, Li HM, Jans D. Host Factors Modulating RSV Infection: Use of Small Interfering RNAs to Probe Functional Importance. Methods Mol Biol 2016; 1442:93-117. [PMID: 27464690 DOI: 10.1007/978-1-4939-3687-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants and the elderly worldwide [1], the protein-protein interactions between the host cell and virus remain poorly understood. We have used a focused small interfering RNA (siRNA) approach to knock-down and examine the role(s) of various host cell proteins. Here, we describe approaches for casein kinase 2α (CK2α) as a key example. We show how to study the effect of host gene (CK2α) knockdown using siRNA on cell-associated and released virus titers, using both quantitative RT-PCR, which measures the level of viral RNA, and plaque assay, which measures infectious virus directly. Both assays identified reduced viral titers with CK2α gene knock-down, indicating that it is likely required for efficient viral assembly and/or release. Effects were confirmed in RSV infected cells using the specific CK2α inhibitor 4,5,6,7-tetrabromobenzotriazole, revealing a similar reduction in viral titers as CK2α specific siRNA. This demonstrates that siRNA can be used to characterize critical host cell-RSV protein-protein interactions, and establishes CK2α as a future druggable target.
Collapse
Affiliation(s)
- Leon Caly
- Biochemistry and Molecular Biology, Monash University, Bldg. 77, Wellington Road, Clayton, VIC, 3800, Australia.
| | - Hong-Mei Li
- Biochemistry and Molecular Biology, Monash University, Bldg. 77, Wellington Road, Clayton, VIC, 3800, Australia
| | - David Jans
- Biochemistry and Molecular Biology, Monash University, Bldg. 77, Wellington Road, Clayton, VIC, 3800, Australia
| |
Collapse
|
78
|
Łukowska-Chojnacka E, Wińska P, Wielechowska M, Poprzeczko M, Bretner M. Synthesis of novel polybrominated benzimidazole derivatives-potential CK2 inhibitors with anticancer and proapoptotic activity. Bioorg Med Chem 2015; 24:735-41. [PMID: 26778657 DOI: 10.1016/j.bmc.2015.12.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 11/29/2022]
Abstract
The efficient method for the synthesis of novel cell permeable inhibitors of protein kinase CK2 with anticancer and proapoptotic activity has been developed. A series of polybrominated benzimiadazole derivatives substituted by various cyanoalkyl groups have been synthesized. Cyanoethyl derivatives were obtained by Michael type addition of 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi) and 4,5,6,7-tetrabromo-2-methyl-1H-benzimidazole to acrylonitrile, whilst cyanomethyl, cyanopropyl and cyanobutyl analogs by N-alkylation of 4,5,6,7-tetrabromo-1H-benzimidazole and 4,5,6,7-tetrabromo-2-methyl-1H-benzimidazole with appropriate cyanoalkyl halides. The inhibitory activity against protein kinase rhCK2α catalytic subunit and cytotoxicity against two human cancer cell lines: acute lymphocytic leukemia (CCRF-CEM) and breast (MCF-7) were evaluated for all newly synthesized compounds. Additionally, the proapoptotic activity toward leukemia cells and intracellular inhibition of CK2 for the most cytotoxic derivatives have been performed, demonstrating 4,5,6,7-tetrabromo-2-methyl-1H-benzimidazole as a new selective inhibitor of rhCK2 with twenty-fold better proapoptotic activity than parental compound (TBBi).
Collapse
Affiliation(s)
- Edyta Łukowska-Chojnacka
- Faculty of Chemistry, Institute of Biotechnology, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| | - Patrycja Wińska
- Faculty of Chemistry, Institute of Biotechnology, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Institute of Biotechnology, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Martyna Poprzeczko
- Faculty of Chemistry, Institute of Biotechnology, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Maria Bretner
- Faculty of Chemistry, Institute of Biotechnology, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
79
|
Cozza G, Salvi M, Banerjee S, Tibaldi E, Tagliabracci VS, Dixon JE, Pinna LA. A new role for sphingosine: Up-regulation of Fam20C, the genuine casein kinase that phosphorylates secreted proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1718-26. [DOI: 10.1016/j.bbapap.2015.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
|
80
|
Modulatory role of the anti-apoptotic protein kinase CK2 in the sub-cellular localization of Fas associated death domain protein (FADD). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2885-96. [PMID: 26253696 DOI: 10.1016/j.bbamcr.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022]
Abstract
The Fas associated death domain protein (FADD) is the key adaptor molecule of the apoptotic signal triggered by death receptors of the TNF-R1 superfamily. Besides its crucial role in the apoptotic machinery, FADD has proved to be important in many biological processes like tumorigenesis, embryonic development or cell cycle progression. In a process to decipher the regulatory mechanisms underlying FADD regulation, we identified the anti-apoptotic kinase, CK2, as a new partner and regulator of FADD sub-cellular localization. The blockade of CK2 activity induced FADD re-localization within the cell. Moreover, cytoplasmic FADD was increased when CK2β was knocked down. In vitro kinase and pull down assays confirmed that FADD could be phosphorylated by the CK2 holoenzyme. We found that phosphorylation is weak with CK2α alone and optimal in the presence of stoichiometric amounts of CK2α catalytic and CK2β regulatory subunit, showing that FADD phosphorylation is undertaken by the CK2 holoenzyme in a CK2β-driven fashion. We found that CK2 can phosphorylate FADD on the serine 200 and that this phosphorylation is important for nuclear localization of FADD. Altogether, our results show for the first time that multifaceted kinase, CK2, phosphorylates FADD and is involved in its sub-cellular localization. This work uncovered an important role of CK2 in stable FADD nuclear localization.
Collapse
|
81
|
Briguglio I, Piras S, Corona P, Gavini E, Nieddu M, Boatto G, Carta A. Benzotriazole: An overview on its versatile biological behavior. Eur J Med Chem 2015; 97:612-48. [PMID: 25293580 PMCID: PMC7115563 DOI: 10.1016/j.ejmech.2014.09.089] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 12/13/2022]
Abstract
Discovered in late 1960, azoles are heterocyclic compounds class which constitute the largest group of available antifungal drugs. Particularly, the imidazole ring is the chemical component that confers activity to azoles. Triazoles are obtained by a slight modification of this ring and similar or improved activities as well as less adverse effects are reported for triazole derivatives. Consequently, it is not surprising that benzimidazole/benzotriazole derivatives have been found to be biologically active. Since benzimidazole has been widely investigated, this review is focused on defining the place of benzotriazole derivatives in biomedical research, highlighting their versatile biological properties, the mode of action and Structure Activity Relationship (SAR) studies for a variety of antimicrobial, antiparasitic, and even antitumor, choleretic, cholesterol-lowering agents.
Collapse
Affiliation(s)
- I Briguglio
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - S Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - P Corona
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - E Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - M Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - G Boatto
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - A Carta
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy.
| |
Collapse
|
82
|
Winiewska M, Kucińska K, Makowska M, Poznański J, Shugar D. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1708-17. [PMID: 25891901 DOI: 10.1016/j.bbapap.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
Abstract
The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Maria Winiewska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Katarzyna Kucińska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Małgorzata Makowska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland.
| | - David Shugar
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland.
| |
Collapse
|
83
|
Du M, Liu J, Chen X, Xie Y, Yuan C, Xiang Y, Sun B, Lan K, Chen M, James SJ, Zhang Y, Zhong J, Xiao H. Casein kinase II controls TBK1/IRF3 activation in IFN response against viral infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4477-88. [PMID: 25810395 DOI: 10.4049/jimmunol.1402777] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/19/2015] [Indexed: 01/12/2023]
Abstract
By sensing viral nucleic acids, host innate receptors elicit signaling pathways converging on TBK1-IFN regulatory factor (IRF)3 axis in mediating IFN-αβ induction and defense mechanisms. In contrast, viruses have evolved with diverse immune evasion/interference mechanisms to undermine innate receptor signaling and IFN response. In this regard, approaches enabling host to overcome such immune evasion/interference mechanisms are urgently needed to combat infections by epidemic/pandemic viruses. In this study, we report that protein kinase CK2 serves as a key component controlling TBK1 and IRF3 activation in IFN-inducing TLR, RIG-I-like receptors, and cGAS/STING signaling pathways. Accordingly, knocking down of CK2 expression or genetic ablation of its kinase activity resulted in elevated IFN-αβ response in response to infection by DNA and RNA viruses. Moreover, PP2A was identified as one of the intermediate phosphatases responsible for CK2-regulated IFN response, suggesting that CK2 may regulate TBK1 and IRF3 activation indirectly. Importantly, blockade of CK2 activity by small molecule inhibitor was able to activate TBK1, whereby eliciting effective host defense mechanisms against hepatitis C virus infection. Taken together, our results identify CK2 as a novel regulator of TBK1 and IRF3 and suggest that targeting CK2 by small molecular inhibitor may be a viable approach to prevent and treat viral infections.
Collapse
Affiliation(s)
- Min Du
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinghua Liu
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Chen
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yadong Xie
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chuanping Yuan
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Xiang
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Sun
- Unit of Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Lan
- Unit of Tumor Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Sharmy J James
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117597; and
| | - Yongliang Zhang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117597; and
| | - Jin Zhong
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Xiao
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; Vaccine Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
84
|
Persch E, Dumele O, Diederich F. Molekulare Erkennung in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408487] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
85
|
Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed Engl 2015; 54:3290-327. [PMID: 25630692 DOI: 10.1002/anie.201408487] [Citation(s) in RCA: 449] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | | | | |
Collapse
|
86
|
Ormanns S, Neumann J, Horst D, Kirchner T, Jung A. WNT signaling and distant metastasis in colon cancer through transcriptional activity of nuclear β-Catenin depend on active PI3K signaling. Oncotarget 2015; 5:2999-3011. [PMID: 24930890 PMCID: PMC4102786 DOI: 10.18632/oncotarget.1626] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We determined whether active PI3K signaling together with nuclear accumulation of β-Catenin is necessary to fully activate canonical WNT signaling and examined the association of both signaling pathways with colon cancer progression. Using reporter gene assays we examined the activation of β-Catenin mediated transcription upon PI3K inhibition with or without β-Catenin nuclear accumulation. Ectopically induced as well as constitutively active WNT signaling strictly required PI3K activity whereas PI3K inhibition had no effect on β-Catenin subcellular localization but impaired β-Catenin binding to WNT target gene promoters and decreased WNT target gene expression. Transcriptional activity of nuclear β-Catenin depended on active PI3K signaling as nuclear accumulation of β-Catenin failed to induce WNT reporter gene transcription upon PI3K inhibition. PI3K dependend transcriptional transactivation of β-Catenin relies on events beyond phosphorylation at the AKT target site serine 552, as S552D-phosphomimetic β-Catenin mutants were unable to restore WNT signaling when inhibiting PI3K. To study the prognostic value of PI3K pathway activation (activating PIK3CA mutations or loss of PTEN expression) and nuclear β-Catenin expression, both variables were determined in 55 matched pairs of primary right sided colon cancer cases with or without distant metastasis. Activating mutations in the PIK3CA gene or loss of PTEN expression did not correlate with distant metastasis while high nuclear β-Catenin expression combined with activation of the PI3K pathway identified cases in which distant metastasis had occurred. Activation of the PI3K pathway was not associated with nuclear β-Catenin expression. We conclude that the transcriptional activity of nuclear β-Catenin depends on PI3K activity. However, PI3K on its own does not affect β-Catenin subcellular localization. Both factors synergize for full WNT signaling activity and are associated with distant metastasis in colon cancer. Thus, the detection of high nuclear β-Catenin expression and simultaneous PI3K pathway activation identifies colon cancer patients with a high risk for distant metastasis.
Collapse
Affiliation(s)
- Steffen Ormanns
- Institute of Pathology, Ludwig Maximilians Universität, Munich, Germany
| | | | | | | | | |
Collapse
|
87
|
Iori E, Ruzzene M, Zanin S, Sbrignadello S, Pinna LA, Tessari P. Effects of CK2 inhibition in cultured fibroblasts from Type 1 Diabetic patients with or without nephropathy. Growth Factors 2015; 33:259-66. [PMID: 26340273 DOI: 10.3109/08977194.2015.1073725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CK2 is a multifunctional, pleiotropic protein kinase involved in the regulation of cell proliferation and survival. Since fibroblasts from Type 1 Diabetes patients (T1DM) with Nephropathy exhibit increased proliferation, we studied cell viability, basal CK2 expression and activity, and response to specific CK2 inhibitors TBB (4,5,6,7-tetrabenzotriazole) and CX4945, in fibroblasts from T1DM patients either with (T1DM+) or without (T1DM-) Nephropathy, and from healthy controls (N). We tested expression and phosphorylation of CK2-specific molecular targets. In untreated fibroblasts from T1DM+, the cell viability was higher than in both N and T1DM-. CK2 inhibitors significantly reduced cell viability in all groups, but more promptly and with a larger effect in T1DM+. Differences in CK2-dependent phosphorylation sites were detected. In conclusion, our results unveil a higher dependence of T1DM+ cells on CK2 for their survival, despite a similar expression and a lower activity of this kinase compared with those of normal cells.
Collapse
Affiliation(s)
| | - Maria Ruzzene
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
| | - Sofia Zanin
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
| | | | - Lorenzo Alberto Pinna
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
- c Venetian Institute of Molecular Medicine , Padova , Italy
| | | |
Collapse
|
88
|
Moreira-Ramos S, Rojas DA, Montes M, Urbina F, Miralles VJ, Maldonado E. Casein kinase 2 inhibits HomolD-directed transcription by Rrn7 in Schizosaccharomyces pombe. FEBS J 2014; 282:491-503. [PMID: 25410910 DOI: 10.1111/febs.13157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 10/13/2014] [Accepted: 11/19/2014] [Indexed: 11/27/2022]
Abstract
In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA analogue element called the HomolD box. The HomolD-binding protein Rrn7 forms a complex with the RNA polymerase II machinery. Despite the importance of ribosome biogenesis to cell survival, the mechanisms involved in the regulation of transcription of eukaryotic RPGs are unknown. In this study, we identified Rrn7 as a new substrate of the pleiotropic casein kinase 2 (CK2), which is a regulator of basal transcription. Recombinant Rrn7 from S. pombe, which is often used as a model organism for studying eukaryotic transcription, interacted with CK2 in vitro and in vivo. Furthermore, CK2-mediated phosphorylation of Rrn7 inhibited its HomolD-directed transcriptional activity and ability to bind to an oligonucleotide containing a HomolD box in vitro. Mutation of Rrn7 at Thr67 abolished these effects, indicating that this residue is a critical CK2 phosphorylation site. Finally, Rrn7 interacted with the regulatory subunit of CK2 in vivo, inhibition of CK2 in vivo potentiated ribosomal protein gene transcription, and chromatin immunoprecipitation analyses identified that the catalytic subunit of CK2 was associated with the rpk5 gene promoter in S. pombe. Taken together, these data suggest that CK2 inhibits ribosomal protein gene transcription in S. pombe via phosphorylation of Rrn7 at Thr67.
Collapse
|
89
|
Winiewska M, Makowska M, Maj P, Wielechowska M, Bretner M, Poznański J, Shugar D. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2. Biochem Biophys Res Commun 2014; 456:282-7. [PMID: 25450618 DOI: 10.1016/j.bbrc.2014.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 11/19/2014] [Indexed: 01/20/2023]
Abstract
The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC50) and biophysical methods (thermal stability of protein-ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein-ligand complexes shows that the heat of ligand binding (Hbind) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between Hbind and ligand pKa. Screening, based on fluorescence-monitored thermal unfolding of protein-ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site.
Collapse
Affiliation(s)
- Maria Winiewska
- Institute of Biochemistry and Biophysics PAS, Warszawa, Poland
| | | | - Piotr Maj
- Institute of Biochemistry and Biophysics PAS, Warszawa, Poland; Nencki Institute of Experimental Biology PAS, Warszawa, Poland
| | | | - Maria Bretner
- Warsaw University of Technology, Faculty of Chemistry, Warszawa, Poland
| | | | - David Shugar
- Institute of Biochemistry and Biophysics PAS, Warszawa, Poland
| |
Collapse
|
90
|
Zhang S, Yang YL, Wang Y, You B, Dai Y, Chan G, Hsieh D, Kim IJ, Fang LT, Au A, Stoppler HJ, Xu Z, Jablons DM, You L. CK2α, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:93. [PMID: 25422081 PMCID: PMC4254219 DOI: 10.1186/s13046-014-0093-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022]
Abstract
Background The Hedgehog (Hh) signaling pathway has been implicated in stem cell maintenance and its activation is aberrant in several types of cancer including mesothelioma. Protein kinase CK2 affects several cell signaling pathways through the mechanism of phosphorylation. Methods Protein and mRNA levels of CK2α and Gli1 were tested by quantitative RT-PCR and immunohistochemistry staining in mesothelioma samples and cell lines. Down-regulated Gli1 expression and transcriptional activity were demonstrated by RT-PCR, Western blot and luciferase reporter assay. Results In this study, we show that CK2α is over-expressed and a positive regulator of Hegdehog/Gli1 signaling in human malignant pleural mesothelioma. First of all, we found that the mRNA levels of CK2α and Gli1 were broadly elevated and correlated (n = 52, r = 0.401, P < 0.05), compared with LP9 (a normal mesothelial cell line). We then investigated their expression at the protein level, and found that all the 7 mesothelioma cell lines tested showed positive staining in CK2α and Gli1 immunohistochemistry. Correlation analysis by Pearson test for CK2α and Gli1 expression in the 75 mesothelioma tumors and the 7 mesothelioma cell lines showed that the two protein expression was significantly correlated (n = 82, r = 0.554, P < 0.01). Furthermore, we demonstrated that Gli1 expression and transcriptional activity were down-regulated after CK2α was silenced in two mesothelioma cell lines (H28 and H2052). CK2α siRNA also down-regulated the expression of Hh target genes in these cell lines. Moreover, treatment with a small-molecule CK2α inhibitor CX-4945 led to dose-dependent inhibition of Gli1 expression and transcriptional activity. Conversely, forced over-expression of CK2α resulted in an increase in Gli1 transcriptional activity in H28 cells. Conclusions Thus, we report for the first time that over-expressed CK2α positively regulate Hh/Gli1 signaling in human mesothelioma. Electronic supplementary material The online version of this article (doi:10.1186/s13046-014-0093-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shulin Zhang
- Department of Thoracic Surgery, The Fifth Hospital of Dalian, Dalian, 116021, P.R. China. .,Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Yucheng Wang
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Bin You
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA. .,Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, P.R. China.
| | - Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Geraldine Chan
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - David Hsieh
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Il-Jin Kim
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Li Tai Fang
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Alfred Au
- Division of Diagnostic Pathology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Hubert J Stoppler
- Tissue Core, Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
91
|
Leung KKK, Shilton BH. Quinone reductase 2 is an adventitious target of protein kinase CK2 inhibitors TBBz (TBI) and DMAT. Biochemistry 2014; 54:47-59. [PMID: 25379648 DOI: 10.1021/bi500959t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Quinone reductase 2 (NQO2) exhibits off-target interactions with two protein kinase CK2 inhibitors, 4,5,6,7-1H-tetrabromobenzimidazole (TBBz) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT). TBBz and DMAT induce apoptosis in cells expressing an inhibitor-resistant CK2, suggesting that the interaction with NQO2 may mediate some of their pharmacological effects. In this study, we have fully characterized the binding of TBBz and DMAT to NQO2. Fluorescence titrations showed that TBBz and DMAT bind oxidized NQO2 in the low nanomolar range; in the case of TBBz, the affinity for NQO2 was 40-fold greater than its affinity for CK2. A related CK2 inhibitor, 4,5,6,7-tetrabromobenzotriazole (TBB), which failed to cause apoptosis in cells expressing inhibitor-resistant CK2, binds NQO2 with an affinity 1000-fold lower than those of TBBz and DMAT. Kinetic analysis indicated that DMAT inhibits NQO2 by binding with similar affinities to the oxidized and reduced forms. Crystal structure analysis showed that DMAT binds reduced NQO2 in a manner different from that in the oxidized state. In oxidized NQO2, TBBz and DMAT are deeply buried in the active site and make direct hydrogen and halogen bonds to the enzyme. In reduced NQO2, DMAT occupies a more peripheral region and hydrogen and halogen bonds with the enzyme are mediated through three water molecules. Therefore, although TBB, TBBz, and DMAT are all potent inhibitors of CK2, they exhibit different activity profiles toward NQO2. We conclude that the active site of NQO2 is fundamentally different from the ATP binding site of CK2 and the inhibition of NQO2 by CK2 inhibitors is adventitious.
Collapse
Affiliation(s)
- Kevin K K Leung
- Department of Biochemistry, University of Western Ontario , London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
92
|
Lupp S, Götz C, Khadouma S, Horbach T, Dimova EY, Bohrer AM, Kietzmann T, Montenarh M. The upstream stimulatory factor USF1 is regulated by protein kinase CK2 phosphorylation. Cell Signal 2014; 26:2809-17. [PMID: 25194820 DOI: 10.1016/j.cellsig.2014.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022]
Abstract
The upstream stimulatory factors 1 (USF1) and 2 (USF2) are transcription factors which bind to E-box motifs of various promoters regulating a variety of different cellular processes. Only little is known about the regulation of USFs. Here, we identified protein kinase CK2 as an enzyme that phosphorylates USF1 but not USF2. Using deletion mutants and point mutants we were able to identify threonine 100 as the major phosphorylation site for CK2. It is well known that USF1 and USF2 form hetero-dimers. Binding studies revealed that the inhibition of CK2 kinase activity by a specific inhibitor enhanced binding of USF1 to USF2. Furthermore, transactivation studies showed that the inhibition of CK2 phosphorylation of USF1 stimulated transcription from the glucokinase promoter as well as the fatty acid synthetase promoter but not from the heme oxygenase-1 promoter. Thus, we have shown for the first time that CK2 phosphorylation of USF1 modulates two functionally important properties of USF1, namely hetero-dimerization and transactivation.
Collapse
Affiliation(s)
- Sarah Lupp
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany.
| | - Sunia Khadouma
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Tina Horbach
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anna-Maria Bohrer
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
93
|
Russo M, Spagnuolo C, Bilotto S, Tedesco I, Maiani G, Russo GL. Inhibition of protein kinase CK2 by quercetin enhances CD95-mediated apoptosis in a human thymus-derived T cell line. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
94
|
Jin CH, Jun KY, Lee E, Kim S, Kwon Y, Kim K, Na Y. Ethyl 2-(benzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate analogues as a new scaffold for protein kinase casein kinase 2 inhibitor. Bioorg Med Chem 2014; 22:4553-65. [PMID: 25131958 DOI: 10.1016/j.bmc.2014.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Protein kinase casein kinase 2 (PKCK2) is a constitutively active, growth factor-independent serine/threonine kinase, and changes in PKCK2 expression or its activity are reported in many cancer cells. To develop a novel PKCK2 inhibitor(s), we first performed cell-based phenotypic screening using 4000 chemicals purchased from ChemDiv chemical libraries (2000: randomly selected; 2000: kinase-biased) and performed in vitro kinase assay-based screening using hits found from the first screening. We identified compound 24 (C24)[(Z)-ethyl 5-(4-chlorophenyl)-2-(3,4-dihydroxybenzylidene)-7-methyl-3-oxo-3,5-dihydro-2H-thiazolo[3,2-a] pyrimidine-6-carboxylate] as a novel inhibitor of PKCK2 that is more potent and selective than 4,5,6,7-tetrabromobenzotriazole (TBB). In particular, compound 24 [half maximal inhibitory concentration (IC50)=0.56μM] inhibited PKCK2 2.2-fold more efficiently than did TBB (IC50=1.24μM), which is quite specific toward PKCK2 with respect to ATP binding, in a panel of 31 human protein kinases. The Ki values of compound 24 and TBB for PKCK2 were 0.78μM and 2.70μM, respectively. Treatment of cells with compound 24 inhibited endogenous PKCK2 activity and showed anti-proliferative and pro-apoptotic effects against stomach and hepatocellular cancer cell lines more efficiently than did TBB. As expected, compound 24 also enabled tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-resistant cancer cells to be sensitive toward TRAIL. In comparing the molecular docking of compound 24 bound to PKCK2α versus previously reported complexes of PKCK2 with other inhibitors, our findings suggest a new scaffold for specific PKCK2α inhibitors. Thus, compound 24 appears to be a selective, cell-permeable, potent, and novel PKCK2 inhibitor worthy of further characterization.
Collapse
Affiliation(s)
- Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eunjung Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea
| | - Seongrak Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea; Integrated Genomic Research Center for Metabolic Regulation, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kunhong Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea; Integrated Genomic Research Center for Metabolic Regulation, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 487-010, Republic of Korea.
| |
Collapse
|
95
|
Protein kinase CK2 is required for Wntless internalization and Wnt secretion. Cell Signal 2014; 26:2601-5. [PMID: 25178265 DOI: 10.1016/j.cellsig.2014.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 11/23/2022]
Abstract
Wnt proteins are lipid modified signaling molecules that have essential functions in development and adult tissue homeostasis. Secretion of Wnt is mediated by the transmembrane protein Wntless, which binds Wnt and transports it from the endoplasmic reticulum to the cell surface for release. To maintain efficient Wnt secretion, Wntless is recycled back to the Golgi and the endoplasmic reticulum through endocytosis and retromer dependent endosome to Golgi transport. We have previously identified protein kinase CK2 (CK2) in a genome-wide screen for regulators of Wnt signaling in Caenorhabditis elegans. Here, we show that CK2 function is required in Wnt producing cells for Wnt secretion. This function is evolutionarily conserved, as inhibition of CK2 activity interferes with Wnt5a secretion from mammalian cells. Mechanistically, we show that inhibition of CK2 function results in enhanced plasma membrane localization of Wls in C. elegans and mammalian cells, consistent with the notion that CK2 is involved in the regulation of Wls internalization.
Collapse
|
96
|
Chen SR, Zhou HY, Byun HS, Chen H, Pan HL. Casein kinase II regulates N-methyl-D-aspartate receptor activity in spinal cords and pain hypersensitivity induced by nerve injury. J Pharmacol Exp Ther 2014; 350:301-12. [PMID: 24898266 PMCID: PMC4109487 DOI: 10.1124/jpet.114.215855] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/02/2014] [Indexed: 12/18/2022] Open
Abstract
Increased N-methyl-d-aspartate receptor (NMDAR) activity and phosphorylation in the spinal cord are critically involved in the synaptic plasticity and central sensitization associated with neuropathic pain. However, the mechanisms underlying increased NMDAR activity in neuropathic pain conditions remain poorly understood. Here we show that peripheral nerve injury induces a large GluN2A-mediated increase in NMDAR activity in spinal lamina II, but not lamina I, neurons. However, NMDAR currents in spinal dorsal horn neurons are not significantly altered in rat models of diabetic neuropathic pain and resiniferatoxin-induced painful neuropathy (postherpedic neuralgia). Inhibition of protein tyrosine kinases or protein kinase C has little effect on NMDAR currents potentiated by nerve injury. Strikingly, casein kinase II (CK2) inhibitors normalize increased NMDAR currents of dorsal horn neurons in nerve-injured rats. In addition, inhibition of calcineurin, but not protein phosphatase 1/2A, augments NMDAR currents only in control rats. CK2 inhibition blocks the increase in spinal NMDAR activity by the calcineurin inhibitor in control rats. Furthermore, nerve injury significantly increases CK2α and CK2β protein levels in the spinal cord. In addition, inhibition of CK2 or CK2β knockdown at the spinal level substantially reverses pain hypersensitivity induced by nerve injury. Our study indicates that neuropathic pain conditions with different etiologies do not share the same mechanisms, and increased spinal NMDAR activity is distinctly associated with traumatic nerve injury. CK2 plays a prominent role in the potentiation of NMDAR activity in the spinal dorsal horn and may represent a new target for treatments of chronic pain caused by nerve injury.
Collapse
Affiliation(s)
- Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong-Yi Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hee Sun Byun
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
97
|
Cozza G, Girardi C, Ranchio A, Lolli G, Sarno S, Orzeszko A, Kazimierczuk Z, Battistutta R, Ruzzene M, Pinna LA. Cell-permeable dual inhibitors of protein kinases CK2 and PIM-1: structural features and pharmacological potential. Cell Mol Life Sci 2014; 71:3173-85. [PMID: 24442476 PMCID: PMC11113908 DOI: 10.1007/s00018-013-1552-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/05/2013] [Accepted: 12/30/2013] [Indexed: 11/28/2022]
Abstract
It has been proposed that dual inhibitors of protein kinases CK2 and PIM-1 are tools particularly valuable to induce apoptosis of cancer cells, a property, however, implying cell permeability, which is lacking in the case of selective CK2/PIM-1 inhibitors developed so far. To fill this gap, we have derivatized the scaffold of the promiscuous CK2 inhibitor TBI with a deoxyribose moiety, generating TDB, a selective, cell-permeable inhibitor of CK2 and PIM-1. Here, we shed light on the structural features underlying the potency and narrow selectivity of TDB by exploiting a number of TDB analogs and by solving the 3D structure of the TDB/CK2 complex at 1.25 Å resolution, one of the highest reported so far for this kinase. We also show that the cytotoxic efficacy of TDB is almost entirely due to apoptosis, is accompanied by parallel inhibition of cellular CK2 and PIM-1, and is superior to both those observed combining individual inhibitors of CK2 and PIM-1 and by treating cells with the CK2 inhibitor CX4945. These data, in conjunction with the observations that cancer cells are more susceptible than non-cancer cells to TDB and that such a sensitivity is maintained in a multi-drug resistance background, highlight the pharmacological potential of this compound.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Cristina Girardi
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Ranchio
- Department of Chemical Sciences and Venetian Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Graziano Lolli
- Department of Chemical Sciences and Venetian Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw Life Sciences University, Warsaw, Poland
| | | | - Roberto Battistutta
- Department of Chemical Sciences and Venetian Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Lorenzo A. Pinna
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- CNR, Institute of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
98
|
Platholi J, Federman A, Detert JA, Heerdt P, Hemmings HC. Regulation of protein phosphatase 1I by Cdc25C-associated kinase 1 (C-TAK1) and PFTAIRE protein kinase. J Biol Chem 2014; 289:23893-900. [PMID: 25028520 DOI: 10.1074/jbc.m114.557744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 1I (PP-1I) is a major endogenous form of protein phosphatase 1 (PP-1) that consists of the core catalytic subunit PP-1c and the regulatory subunit inhibitor 2 (I-2). Phosphorylation of the Thr-72 residue of I-2 is required for activation of PP-1I. We studied the effects of two protein kinases identified previously in purified brain PP-1I by mass spectrometry, Cdc25C-associated kinase 1 (C-TAK1) and PFTAIRE (PFTK1) kinase, for their ability to regulate PP-1I. Purified C-TAK1 phosphorylated I-2 in reconstituted PP-1I (PP-1c. I-2) on Ser-71, which resulted in partial inhibition of its ATP-dependent phosphatase activity and inhibited subsequent phosphorylation of Thr-72 by the exogenous activating kinase GSK-3. In contrast, purified PFTK1 phosphorylated I-2 at Ser-86, a site known to potentiate Thr-72 phosphorylation and activation of PP-1I phosphatase activity by GSK-3. These findings indicate that brain PP-1I associates with and is regulated by the associated protein kinases C-TAK1 and PFTK1. Multisite phosphorylation of the I-2 regulatory subunit of PP-1I leads to activation or inactivation of PP-1I through bidirectional modulation of Thr-72 phosphorylation, the critical activating residue of I-2.
Collapse
Affiliation(s)
- Jimcy Platholi
- From the Departments of Anesthesiology and Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Anna Federman
- From the Departments of Anesthesiology and Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | | | - Paul Heerdt
- From the Departments of Anesthesiology and Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Hugh C Hemmings
- From the Departments of Anesthesiology and Pharmacology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
99
|
Synthesis of novel chiral TBBt derivatives with hydroxyl moiety. Studies on inhibition of human protein kinase CK2α and cytotoxicity properties. Eur J Med Chem 2014; 84:364-74. [PMID: 25036794 DOI: 10.1016/j.ejmech.2014.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/26/2014] [Accepted: 07/06/2014] [Indexed: 11/20/2022]
Abstract
The efficient method for the synthesis of novel 4,5,6,7-tetrabromo-1H-benzotriazole (TBBt) derivatives bearing a single stereogenic center has been developed. New compounds with a variety of substituents at the meta- and para-position of the phenyl ring are reported. All of the presented compounds were obtained using classical synthetic methods, such as bromination of benzotriazole, and its subsequent alkylation by monotosylated arylpropane-1,3-diols, which in turn have been synthesized through reduction of the corresponding prochiral β-keto esters, and the selective monotosylation of the primary hydroxyl group. The influence of the new and previously reported N-hydroxyalkyl TBBt derivatives on the activity of human protein kinase CK2α catalytic subunit was examined. The most active were derivatives with N-hydroxyalkyl substituents (IC50 in 0.80-7.35 μM range). A binding mode of (R)-1-(4,5,6,7-tetrabromo-2H-benzotriazol-2-yl)butan-3-ol 7b to hCK2α has been proposed based on in silico docking studies. Additionally, MTT-based cytotoxicity tests demonstrated high activities of novel 1-aryl-3-TBBt-propan-1-ol and 3-TBBt-propan-1,2-diol derivatives against human peripheral blood T lymphoblast (CCRF-CEM), and moderate anti-tumor activities against human breast adenocarcinoma (MCF7) cell lines.
Collapse
|
100
|
Lee S, Pant HC, Shea TB. Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics. J Cell Sci 2014; 127:4064-77. [PMID: 25015294 DOI: 10.1242/jcs.153346] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-terminal neurofilament phosphorylation mediates cation-dependent self-association leading to neurofilament incorporation into the stationary axonal cytoskeleton. Multiple kinases phosphorylate the C-terminal domains of the heavy neurofilament subunit (NF-H), including cyclin-dependent protein kinase 5 (CDK5), mitogen-activated protein kinases (MAPKs), casein kinase 1 and 2 (CK1 and CK2) and glycogen synthase kinase 3β (GSK3β). The respective contributions of these kinases have been confounded because they phosphorylate multiple substrates in addition to neurofilaments and display extensive interaction. Herein, differentiated NB2a/d1 cells were transfected with constructs expressing GFP-tagged NF-H, isolated NF-H sidearms and NF-H lacking the distal-most 187 amino acids. Cultures were treated with roscovitine, PD98059, Li(+), D4476, tetrabromobenzotriazole and calyculin, which are active against CDK5, MKK1 (also known as MAP2K1), GSK3β, CK1, CK2 and protein phosphatase 1 (PP1), respectively. Sequential phosphorylation by CDK5 and GSK3β mediated the neurofilament-neurofilament associations. The MAPK pathway (i.e. MKK1 to ERK1/2) was found to downregulate GSK3β, and CK1 activated PP1, both of which promoted axonal transport and restricted neurofilament-neurofilament associations to axonal neurites. The MAPK pathway and CDK5, but not CK1 and GSK3β, inhibited neurofilament proteolysis. These findings indicate that phosphorylation of neurofilaments by the proline-directed MAPK pathway and CDK5 counterbalance the impact of phosphorylation of neurofilaments by the non-proline-directed CK1 and GSK3β.
Collapse
Affiliation(s)
- Sangmook Lee
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harish C Pant
- Cytoskeletal Protein Regulation Section, NIH, NINDS, Bethesda, MD 20892, USA
| | - Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|