51
|
Polyamines stimulate the CHSY1 synthesis through the unfolding of the RNA G-quadruplex at the 5'-untraslated region. Biochem J 2018; 475:3797-3812. [PMID: 30401686 DOI: 10.1042/bcj20180672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/04/2018] [Accepted: 11/05/2018] [Indexed: 01/20/2023]
Abstract
Glycosaminoglycans (GAGs), a group of structurally related acidic polysaccharides, are primarily found as glycan moieties of proteoglycans (PGs). Among these, chondroitin sulfate (CS) and dermatan sulfate, side chains of PGs, are widely distributed in animal kingdom and show structural variations, such as sulfation patterns and degree of epimerization, which are responsible for their physiological functions through interactions with growth factors, chemokines and adhesion molecules. However, structural changes in CS, particularly the ratio of 4-O-sulfation to 6-O-sulfation (4S/6S) and CS chain length that occur during the aging process, are not fully understood. We found that 4S/6S ratio and molecular weight of CS were decreased in polyamine-depleted cells. In addition, decreased levels of chondroitin synthase 1 (CHSY1) and chondroitin 4-O-sulfotransferase 2 proteins were also observed on polyamine depletion. Interestingly, the translation initiation of CHSY1 was suppressed by a highly structured sequence (positions -202 to -117 relative to the initiation codon) containing RNA G-quadruplex (G4) structures in 5'-untranslated region. The formation of the G4s was influenced by the neighboring sequences to the G4s and polyamine stimulation of CHSY1 synthesis disappeared when the formation of the G4s was inhibited by site-directed mutagenesis. These results suggest that the destabilization of G4 structures by polyamines stimulates CHSY1 synthesis and, at least in part, contribute to the maturation of CS chains.
Collapse
|
52
|
Tamari K, Konno M, Asai A, Koseki J, Hayashi K, Kawamoto K, Murai N, Matsufuji S, Isohashi F, Satoh T, Goto N, Tanaka S, Doki Y, Mori M, Ogawa K, Ishii H. Polyamine flux suppresses histone lysine demethylases and enhances ID1 expression in cancer stem cells. Cell Death Discov 2018; 4:104. [PMID: 30455990 PMCID: PMC6234213 DOI: 10.1038/s41420-018-0117-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023] Open
Abstract
Cancer stem cells (CSCs) exhibit tumorigenic potential and can generate resistance to chemotherapy and radiotherapy. A labeled ornithine decarboxylase (ODC, a rate-limiting enzyme involved in polyamine [PA] biosynthesis) degradation motif (degron) system allows visualization of a fraction of CSC-like cells in heterogeneous tumor populations. A labeled ODC degradation motif system allowed visualization of a fraction of CSC-like cells in heterogeneous tumor populations. Using this system, analysis of polyamine flux indicated that polyamine metabolism is active in CSCs. The results showed that intracellular polyamines inhibited the activity of histone lysine 4 demethylase enzymes, including lysine-specific demethylase-1 (LSD1). Chromatin immunoprecipitation with Pol II antibody followed by massively parallel DNA sequencing, revealed the global enrichment of Pol II in transcription start sites in CSCs. Increase of polyamines within cells resulted in an enhancement of ID1 gene expression. The results of this study reveal details of metabolic pathways that drive epigenetic control of cancer cell stemness and determine effective therapeutic targets in CSCs.
Collapse
Affiliation(s)
- Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
- Department of Medical Data Science, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Ayumu Asai
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
- Department of Medical Data Science, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Jun Koseki
- Department of Medical Data Science, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Kazuhiko Hayashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
- Division of Hospital, National Institute of Radiological Sciences, Chiba, 263-8555 Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Noriyuki Murai
- Department of Molecular Biology, Jikei University School of Medicine, Tokyo, 105-8461 Japan
| | - Senya Matsufuji
- Department of Molecular Biology, Jikei University School of Medicine, Tokyo, 105-8461 Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Noriko Goto
- Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192 Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Tokyo Medical and Dental University, Tokyo, 113-8510 Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Hideshi Ishii
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
- Department of Medical Data Science, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| |
Collapse
|
53
|
Li B, Maezato Y, Kim SH, Kurihara S, Liang J, Michael AJ. Polyamine-independent growth and biofilm formation, and functional spermidine/spermine N-acetyltransferases in Staphylococcus aureus and Enterococcus faecalis. Mol Microbiol 2018; 111:159-175. [PMID: 30281855 DOI: 10.1111/mmi.14145] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2018] [Indexed: 01/07/2023]
Abstract
Polyamines such as spermidine and spermine are primordial polycations that are ubiquitously present in the three domains of life. We have found that Gram-positive bacteria Staphylococcus aureus and Enterococcus faecalis have lost either all or most polyamine biosynthetic genes, respectively, and are devoid of any polyamine when grown in polyamine-free media. In contrast to bacteria such as Pseudomonas aeruginosa, Campylobacter jejuni and Agrobacterium tumefaciens, which absolutely require polyamines for growth, S. aureus and E. faecalis grow normally over multiple subcultures in the absence of polyamines. Furthermore, S. aureus and E. faecalis form biofilms normally without polyamines, and exogenous polyamines do not stimulate growth or biofilm formation. High levels of external polyamines, including norspermidine, eventually inhibit biofilm formation through inhibition of planktonic growth. We show that spermidine/spermine N-acetyltransferase (SSAT) homologues encoded by S. aureus USA300 and E. faecalis acetylate spermidine, spermine and norspermidine, that spermine is the more preferred substrate, and that E. faecalis SSAT is almost as efficient as human SSAT with spermine as substrate. The polyamine auxotrophy, polyamine-independent growth and biofilm formation, and presence of functional polyamine N-acetyltransferases in S. aureus and E. faecalis represent a new paradigm for bacterial polyamine biology.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yukari Maezato
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sok Ho Kim
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shin Kurihara
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Michael
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
54
|
Combination Metabolomics Approach for Identifying Endogenous Substrates of Carnitine/Organic Cation Transporter OCTN1. Pharm Res 2018; 35:224. [PMID: 30280275 DOI: 10.1007/s11095-018-2507-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/18/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE Solute carrier SLC22A4 encodes the carnitine/organic cation transporter OCTN1 and is associated with inflammatory bowel disease, although little is known about how this gene is linked to pathogenesis. The aim of the present study was to identify endogenous substrates that are associated with gastrointestinal inflammation. METHODS HEK293/OCTN1 and mock cells were incubated with colon extracts isolated from dextran sodium sulfate-induced colitis mice; the subsequent cell lysates were mixed with the amino group selective reagent 3-aminopyridyl-N-hydroxysuccinimidyl carbamate (APDS), to selectively label OCTN1 substrates. Precursor ion scanning against the fragment ion of APDS was then used to identify candidate OCTN1 substrates. RESULTS Over 10,000 peaks were detected by precursor ion scanning; m/z 342 had a higher signal in HEK293/OCTN1 compared to mock cells. This peak was detected as a divalent ion that contained four APDS-derived fragments and was identified as spermine. Spermine concentration in peripheral blood mononuclear cells from octn1 gene knockout mice (octn1-/-) was significantly lower than in wild-type mice. Lipopolysaccharide-induced gene expression of inflammatory cytokines in peritoneal macrophages from octn1-/- mice was lower than in wild-type mice. CONCLUSIONS The combination metabolomics approach can provide a novel tool to identify endogenous substrates of OCTN1.
Collapse
|
55
|
Igarashi K, Kashiwagi K. Effects of polyamines on protein synthesis and growth of Escherichia coli. J Biol Chem 2018; 293:18702-18709. [PMID: 30108177 DOI: 10.1074/jbc.tm118.003465] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polyamines (PA) putrescine, spermidine, and spermine have numerous roles in the growth of both prokaryotic and eukaryotic cells. For example, it is well known that putrescine and spermidine are strongly involved in proliferation and viability of Escherichia coli cells. Studies of polyamine functions and distributions in E. coli cells have revealed that polyamines mainly exist as an RNA-polyamine complex. Polyamines stimulate the assembly of 30S ribosomal subunits and thereby increase general protein synthesis 1.5- to 2.0-fold. Moreover, these studies have shown that polyamines stimulate synthesis of 20 different proteins at the level of translation, which are strongly involved in cell growth and viability. The genes encoding these 20 different proteins were termed as the "polyamine modulon." We here review the mechanism of activation of 30S ribosomal subunits and stimulation of specific proteins. Other functions of polyamines in E. coli are also described.
Collapse
Affiliation(s)
- Kazuei Igarashi
- From the Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15, Chuo-ku, Chiba, Chiba 260-0856 and
| | - Keiko Kashiwagi
- the Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 280-0025, Japan
| |
Collapse
|
56
|
Terui Y, Yoshida T, Sakamoto A, Saito D, Oshima T, Kawazoe M, Yokoyama S, Igarashi K, Kashiwagi K. Polyamines protect nucleic acids against depurination. Int J Biochem Cell Biol 2018; 99:147-153. [PMID: 29649565 DOI: 10.1016/j.biocel.2018.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022]
Abstract
Depurination is accelerated by heat and reactive oxygen species under physiological conditions. We previously reported that polyamines are involved in mitigation of heat shock and oxidative stresses through stimulation of the synthesis of heat shock and antioxidant proteins. This time, we investigated whether polyamines are directly involved in protecting nucleic acids from thermal depurination induced by high temperature. The suppressing efficiencies of depurination of DNA by spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 50%, 60% and 80%, respectively. Mg2+ also protected nucleic acids against depurination but to a lesser degree than polyamines. Longer unusual polyamines were more effective at protecting DNA against depurination compared to standard polyamines. The tRNA depurination suppressing efficiencies of spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 60%, 70% and 80%, respectively. Standard polyamines protected tRNA and ribosomes more effectively than DNA against thermal depurination. Branched polyamines such as mitsubishine and tetrakis(3-aminopropyl)ammonium also protected RNA more effectively than DNA against depurination. These results suggest that the suppressing effect of depurination of nucleic acids (DNA and RNA) depends on the types of polyamines: i.e. to maintain functional conformation of nucleic acids at high temperature, longer and branched polyamines play important roles in protecting nucleic acids from depurination compared to standard polyamines and Mg2+.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan.
| | - Taketo Yoshida
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | | | - Tairo Oshima
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo, Japan
| | | | | | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan.
| |
Collapse
|
57
|
Igarashi K, Uemura T, Kashiwagi K. Acrolein toxicity at advanced age: present and future. Amino Acids 2018; 50:217-228. [PMID: 29249019 DOI: 10.1007/s00726-017-2527-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Abstract
It is thought that tissue damage at advanced age is mainly caused by ROS (reactive oxygen species, O2-, H2O2, and ·OH). However, it was found that acrolein (CH2=CH-CHO) is more toxic than ROS, and is mainly produced from spermine (SPM), one of the polyamines, rather than from unsaturated fatty acids. Significant amounts of SPM are present normally as SPM-ribosome complexes, and contribute to protein synthesis. However, SPM was released from ribosomes due to the degradation of ribosomal RNA by ·OH or the binding of Ca2+ to ribosomes, and acrolein was produced from free SPM by polyamine oxidases, particularly by SPM oxidase. Acrolein inactivated several proteins such as GAPDH (glycelaldehyde-3-phosphate dehydrogenase), and also stimulated MMP-9 (matrix metalloproteinase-9) activity. Acrolein-conjugated GAPDH translocated to nucleus, and caused apoptosis like nitrosylated GAPDH. Through acrolein conjugation with several proteins, acrolein causes tissue damage during brain stroke, dementia, renal failure, and primary Sjögren's syndrome. Thus, development of acrolein scavengers with less side effects is very important to maintain QOL (quality of life) of elderly people.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba, Chiba, 260-0856, Japan.
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8675, Japan.
| | - Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba, Chiba, 260-0856, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8675, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| |
Collapse
|
58
|
Zinchenko A, Berezhnoy NV, Wang S, Rosencrans WM, Korolev N, van der Maarel JR, Nordenskiöld L. Single-molecule compaction of megabase-long chromatin molecules by multivalent cations. Nucleic Acids Res 2018; 46:635-649. [PMID: 29145649 PMCID: PMC5778610 DOI: 10.1093/nar/gkx1135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 10/18/2017] [Accepted: 10/29/2017] [Indexed: 11/21/2022] Open
Abstract
To gain insight into the conformational properties and compaction of megabase-long chromatin molecules, we reconstituted chromatin from T4 phage DNA (165 kb) and recombinant human histone octamers (HO). The unimolecular compaction, induced by divalent Mg2+ or tetravalent spermine4+ cations, studied by single-molecule fluorescence microscopy (FM) and dynamic light scattering (DLS) techniques, resulted in the formation of 250-400 nm chromatin condensates. The compaction on this scale of DNA size is comparable to that of chromatin topologically associated domains (TAD) in vivo. Variation of HO loading revealed a number of unique features related to the efficiency of chromatin compaction by multivalent cations, the mechanism of compaction, and the character of partly compact chromatin structures. The observations may be relevant for how DNA accessibility in chromatin is maintained. Compaction of saturated chromatin, in turn, is accompanied by an intra-chain segregation at the level of single chromatin molecules, suggesting an intriguing scenario of selective activation/deactivation of DNA as a result of chromatin fiber heterogeneity due to the nucleosome positioning. We suggest that this chromatin, reconstituted on megabase-long DNA because of its large size, is a useful model of eukaryotic chromatin.
Collapse
Affiliation(s)
- Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Nikolay V Berezhnoy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Sai Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - William M Rosencrans
- Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346, USA
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
59
|
Kashiwagi K, Terui Y, Igarashi K. Modulation of Protein Synthesis by Polyamines in Mammalian Cells. Methods Mol Biol 2018; 1694:325-336. [PMID: 29080177 DOI: 10.1007/978-1-4939-7398-9_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyamines exist mainly as RNA-polyamine complexes in cells. Thus, we looked for proteins whose synthesis is enhanced by polyamines at the level of translation in mammalian cells. Here, we describe how synthesis of Cct2 (T-complex protein 1, β-subunit, a chaperonin assisting in the folding actin, tubulin, and several other proteins) and eEF1A (one of the elongation factors of protein synthesis) is stimulated by polyamines at the level of translation. Polyamines stimulated Cct2 synthesis through the stimulation of ribosome shunting during 5'-processive scanning of 40S ribosomal subunits from the m7G-cap to the initiation codon AUG, and eEF1A synthesis through the structural change of the unusual position of a complementary sequence to 18S rRNA in eEF1A mRNA.
Collapse
Affiliation(s)
- Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan.
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba, 260-0856, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
60
|
Igarashi K, Uemura T, Kashiwagi K. Acrolein: An Effective Biomarker for Tissue Damage Produced from Polyamines. Methods Mol Biol 2018; 1694:459-468. [PMID: 29080188 DOI: 10.1007/978-1-4939-7398-9_38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is thought that the major factor responsible for cell damage is reactive oxygen species (ROS), but our recent studies have shown that acrolein (CH2=CH-CHO) produced from spermine and spermidine is more toxic than ROS. Thus, (1) the mechanism of acrolein production during brain stroke, (2) one of the mechanisms of acrolein toxicity, and (3) the role of glutathione in acrolein detoxification are described in this chapter.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba, 260-0856, Japan.
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba, 260-0856, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| |
Collapse
|
61
|
Arruabarrena-Aristorena A, Zabala-Letona A, Carracedo A. Oil for the cancer engine: The cross-talk between oncogenic signaling and polyamine metabolism. SCIENCE ADVANCES 2018; 4:eaar2606. [PMID: 29376126 PMCID: PMC5783676 DOI: 10.1126/sciadv.aar2606] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
The study of metabolism has provided remarkable information about the biological basis and therapeutic weaknesses of cancer cells. Classic biochemistry established the importance of metabolic alterations in tumor biology and revealed the importance of various metabolite families to the tumorigenic process. We have evidence of the central role of polyamines, small polycatonic metabolites, in cell proliferation and cancer growth from these studies. However, how cancer cells activate this metabolic pathway and the molecular cues behind the oncogenic action of polyamines has remained largely obscure. In contrast to the view of metabolites as fuel (anabolic intermediates) for cancer cells, polyamines are better defined as the oil that lubricates the cancer engine because they affect the activity of biological processes. Modern research has brought back to the limelight this metabolic pathway, providing a strong link between genetic, metabolic, and signaling events in cancer. In this review, we enumerate and discuss current views of the regulation and activity of polyamine metabolism in tumor cell biology.
Collapse
Affiliation(s)
| | - Amaia Zabala-Letona
- CIC bioGUNE, Bizkaia Technology Park, 801A Building, 48160 Derio, Bizkaia, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Avenida Monforte de Lemos, Madrid, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801A Building, 48160 Derio, Bizkaia, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Avenida Monforte de Lemos, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
62
|
Wang M, Phanstiel O, von Kalm L. Evaluation of Polyamine Transport Inhibitors in a Drosophila Epithelial Model Suggests the Existence of Multiple Transport Systems. ACTA ACUST UNITED AC 2017; 5:medsci5040027. [PMID: 29135915 PMCID: PMC5753656 DOI: 10.3390/medsci5040027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022]
Abstract
Increased polyamine biosynthesis activity and an active polyamine transport system are characteristics of many cancer cell lines and polyamine depletion has been shown to be a viable anticancer strategy. Polyamine levels can be depleted by difluoromethylornithine (DFMO), an inhibitor of the key polyamine biosynthesis enzyme ornithine decarboxylase (ODC). However, malignant cells frequently circumvent DFMO therapy by up-regulating polyamine import. Therefore, there is a need to develop compounds that inhibit polyamine transport. Collectively, DFMO and a polyamine transport inhibitor (PTI) provide the basis for a combination therapy leading to effective intracellular polyamine depletion. We have previously shown that the pattern of uptake of a series of polyamine analogues in a Drosophila model epithelium shares many characteristics with mammalian cells, indicating a high degree of similarity between the mammalian and Drosophila polyamine transport systems. In this report, we focused on the utility of the Drosophila epithelial model to identify and characterize polyamine transport inhibitors. We show that a previously identified inhibitor of transport in mammalian cells has a similar activity profile in Drosophila. The Drosophila model was also used to evaluate two additional transport inhibitors. We further demonstrate that a cocktail of polyamine transport inhibitors is more effective than individual inhibitors, suggesting the existence of multiple transport systems in Drosophila. Our findings reinforce the similarity between the Drosophila and mammalian transport systems and the value of the Drosophila model to provide inexpensive early screening of molecules targeting the transport system.
Collapse
Affiliation(s)
- Minpei Wang
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA.
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| | - Laurence von Kalm
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
63
|
Menzi M, Wild B, Pradère U, Malinowska AL, Brunschweiger A, Lightfoot HL, Hall J. Towards Improved Oligonucleotide Therapeutics Through Faster Target Binding Kinetics. Chemistry 2017; 23:14221-14230. [PMID: 28746731 DOI: 10.1002/chem.201701670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 01/19/2023]
Abstract
When used as inhibitors of gene expression in vivo, oligonucleotides require modification of their structures to boost their binding affinity for complementary target RNAs. To date, hundreds of modifications have been designed and tested but few have proven to be useful. Among those investigated are mono- and polyamino-groups. These are positively charged at physiological pH and have been appended to oligonucleotides in an effort to reduce electrostatic repulsion during hybridization to RNAs, but have generally shown relatively minor benefits to binding. We conjugated spermine to uracils in oligonucleotides via a triazole linker so that the polyamine fits in the major groove of a subsequently formed RNA-duplex. The modifications produced large increases in target-binding affinity of the oligonucleotides. Using surface plasmon resonance-based assays, we showed that the increases derived mainly from faster annealing (kon ). We propose that the spermine fragments play a similar role to that of natural polyamines during oligonucleotide-target interactions in cells, and may be advantageous for oligonucleotides that operate catalytic mechanisms.
Collapse
Affiliation(s)
- Mirjam Menzi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Bettina Wild
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Ugo Pradère
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Anna L Malinowska
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Helen L Lightfoot
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
64
|
Katz AM, Tolokh IS, Pabit SA, Baker N, Onufriev AV, Pollack L. Spermine Condenses DNA, but Not RNA Duplexes. Biophys J 2017; 112:22-30. [PMID: 28076812 DOI: 10.1016/j.bpj.2016.11.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 11/17/2022] Open
Abstract
Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA and some RNAs, such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA, and compare our findings with predictions of molecular-dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence containing a mixture of 14 GC pairs and 11 AU pairs resists condensation relative to DNA of an equivalent sequence or to 25 bp poly(rA):poly(rU) RNA. A comparison of wide-angle x-ray scattering profiles with simulation results suggests that spermine is sequestered deep within the major groove of mixed-sequence RNA. This prevents condensation by limiting opportunities to bridge to other molecules and stabilizes the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds externally to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble and available for interaction with other molecules in the cell despite the presence of spermine at concentrations high enough to precipitate DNA.
Collapse
Affiliation(s)
- Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Igor S Tolokh
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Nathan Baker
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia; Department of Physics, Virginia Tech, Blacksburg, Virginia
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York.
| |
Collapse
|
65
|
Maki K, Shibata T, Kawabata SI. Transglutaminase-catalyzed incorporation of polyamines masks the DNA-binding region of the transcription factor Relish. J Biol Chem 2017; 292:6369-6380. [PMID: 28258224 DOI: 10.1074/jbc.m117.779579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
In Drosophila, the final immune deficiency (IMD) pathway-dependent signal is transmitted through proteolytic conversion of the nuclear factor-κB (NF-κB)-like transcription factor Relish to the active N-terminal fragment Relish-N. Relish-N is then translocated from the cytosol into the nucleus for the expression of IMD-controlled genes. We previously demonstrated that transglutaminase (TG) suppresses the IMD pathway by polymerizing Relish-N to inhibit its nuclear translocation. Conversely, we also demonstrated that orally ingested synthetic amines, such as monodansylcadaverine (DCA) and biotin-labeled pentylamine, are TG-dependently incorporated into Relish-N, causing the nuclear translocation of modified Relish-N in gut epithelial cells. It remains unclear, however, whether polyamine-containing Relish-N retains transcriptional activity. Here, we used mass spectrometry analysis of a recombinant Relish-N modified with DCA by TG activity after proteolytic digestion and show that the DCA-modified Gln residues are located in the DNA-binding region of Relish-N. TG-catalyzed DCA incorporation inhibited binding of Relish-N to the Rel-responsive element in the NF-κB-binding DNA sequence. Subcellular fractionation of TG-expressing Drosophila S2 cells indicated that TG was localized in both the cytosol and nucleus. Of note, natural polyamines, including spermidine and spermine, competitively inhibited TG-dependent DCA incorporation into Relish-N. Moreover, in vivo experiments demonstrated that Relish-N was modified by spermine and that this modification reduced transcription of IMD pathway-controlled cecropin A1 and diptericin genes. These findings suggest that intracellular TG regulates Relish-N-mediated transcriptional activity by incorporating polyamines into Relish-N and via protein-protein cross-linking.
Collapse
Affiliation(s)
- Kouki Maki
- From the Graduate School of Systems Life Sciences
| | - Toshio Shibata
- Institute for Advanced Study, and.,Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun-Ichiro Kawabata
- From the Graduate School of Systems Life Sciences, .,Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
66
|
Xie Y, Murray-Stewart T, Wang Y, Yu F, Li J, Marton LJ, Casero RA, Oupický D. Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy. J Control Release 2017; 246:110-119. [PMID: 28017891 PMCID: PMC5258827 DOI: 10.1016/j.jconrel.2016.12.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/15/2016] [Indexed: 01/07/2023]
Abstract
Combination of anticancer drugs with therapeutic microRNA (miRNA) has emerged as a promising anticancer strategy. However, the promise is hampered by a lack of desirable delivery systems. We report on the development of self-immolative nanoparticles capable of simultaneously delivering miR-34a mimic and targeting dysregulated polyamine metabolism in cancer. The nanoparticles were prepared from a biodegradable polycationic prodrug, named DSS-BEN, which was synthesized from a polyamine analog N1,N11-bisethylnorspermine (BENSpm). The nanoparticles were selectively disassembled in the cytoplasm where they released miRNA. Glutathione (GSH)-induced degradation of self-immolative linkers released BENSpm from the DSS-BEN polymers. MiR-34a mimic was effectively delivered to cancer cells as evidenced by upregulation of intracellular miR-34a and downregulation of Bcl-2 as one of the downstream targets of miR-34a. Intracellular BENSpm generated from the degraded nanoparticles induced the expression of rate-limiting enzymes in polyamine catabolism (SMOX, SSAT) and depleted cellular natural polyamines. Simultaneous regulation of polyamine metabolism and miR-34a expression by DSS-BEN/miR-34a not only enhanced cancer cell killing in cultured human colon cancer cells, but also improved antitumor activity in vivo. The reported findings validate the self-immolative nanoparticles as delivery vectors of therapeutic miRNA capable of simultaneously targeting dysregulated polyamine metabolism in cancer, thereby providing an elegant and efficient approach to combination nanomedicines.
Collapse
Affiliation(s)
- Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tracy Murray-Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yazhe Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Laurence J Marton
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States
| | - Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
67
|
Chopra A, Krishnan S, Simmel FC. Electrotransfection of Polyamine Folded DNA Origami Structures. NANO LETTERS 2016; 16:6683-6690. [PMID: 27608719 DOI: 10.1021/acs.nanolett.6b03586] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA origami structures are artificial molecular nanostructures in which DNA double helices are forced into a closely packed configuration by a multitude of DNA strand crossovers. We show that three different types of origami structures (a flat sheet, a hollow tube, and a compact origami block) can be formed in magnesium-free buffer solutions containing low (<1 mM) concentrations of the condensing agent spermidine. Much like in DNA condensation, the amount of spermidine required for origami folding is proportional to the DNA concentration. At excessive amounts, the structures aggregate and precipitate. In contrast to origami structures formed in conventional buffers, the resulting structures are stable in the presence of high electric field pulses, such as those commonly used for electrotransfection experiments. We demonstrate that spermidine-stabilized structures are stable in cell lysate and can be delivered into mammalian cells via electroporation.
Collapse
Affiliation(s)
- Aradhana Chopra
- Physik-Department E14, Technische Universität München , 85748 Garching, Germany
| | - Swati Krishnan
- Physik-Department E14, Technische Universität München , 85748 Garching, Germany
| | - Friedrich C Simmel
- Physik-Department E14, Technische Universität München , 85748 Garching, Germany
| |
Collapse
|
68
|
Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK. α-synuclein aggregation and its modulation. Int J Biol Macromol 2016; 100:37-54. [PMID: 27737778 DOI: 10.1016/j.ijbiomac.2016.10.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder marked by the presence of cytoplasmic inclusions, Lewy bodies (LBs) and Lewy neurites (LNs) as well as the degeneration of dopamine producing neurons in the substantia nigra region of the brain. The LBs and LNs in PD are mainly composed of aggregated form of a presynaptic protein, α-synuclein (α-Syn). However, the mechanisms of α-Syn aggregation and actual aggregated species responsible for the degeneration of dopaminergic neurons have not yet been resolved. Despite the fact that α-Syn aggregation in LBs and LNs is crucial and mutations of α-Syn are associated with early onset PD, it is really a challenging task to establish a correlation between α-Syn aggregation rate and PD pathogenesis. Regardless of strong genetic contribution, PD is mostly sporadic and familial forms of the disease represent only a minor part (<10%) of all cases. The complexity in PD further increases due to the involvement of several cellular factors in the pathogenesis of the disease as well as the environmental factors associated with the risk of developing PD. Therefore, effect of these factors on α-Syn aggregation pathway and how these factors modulate the properties of wild type (WT) as well as mutated α-Syn should be collectively taken into account. The present review specifically provides an overview of recent research on α-Syn aggregation pathways and its modulation by several cellular factors potentially relevant to PD pathogenesis. We also briefly discuss about effect of environmental risk factors on α-Syn aggregation.
Collapse
Affiliation(s)
- Dhiman Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Shruti Sahay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Pradeep K Singh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
69
|
Volodin AA, Bocharova TN, Smirnova EA. Polycationic ligands of different chemical classes stimulate DNA strand displacement between short oligonucleotides in a protein-free system. Biopolymers 2016; 105:633-41. [DOI: 10.1002/bip.22859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/26/2016] [Accepted: 04/19/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Alexander A. Volodin
- Institute of Molecular Genetics of the Russian Academy of Sciences; Kurchatov Sq, 2 Moscow 123182 Russia
| | - Tatiana N. Bocharova
- Institute of Molecular Genetics of the Russian Academy of Sciences; Kurchatov Sq, 2 Moscow 123182 Russia
| | - Elena A. Smirnova
- Institute of Molecular Genetics of the Russian Academy of Sciences; Kurchatov Sq, 2 Moscow 123182 Russia
| |
Collapse
|
70
|
Morita K, Nishibori N, Kishibuchi R, Itoh M, Horie Y, Nemoto H. Fermented Brown Rice Extract Stimulates BDNF Gene Transcription in C6 Glioma Cells: Possible Connection with HO-1 Expression. J Diet Suppl 2016; 14:214-228. [PMID: 27560964 DOI: 10.1080/19390211.2016.1207743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fermented brown rice with Aspergillus oryzae, designated as FBRA, is known to be commercially available dietary fiber-rich food, which is appreciated as prebiotics to improve intestinal microflora, and also shown to contain various biologically active substances including polyphenolic compounds. On the other hand, polyphenolic compounds have been suggested to stimulate the expression of brain-derived neurotrophic factor (BDNF) gene in connection with the expression of heme oxidase-1 (HO-1) gene in glial cells, thus resulting in the augmentation of BDNF production in the brain, thereby being anticipated to have a putative effect on the brain function. Then, the effect of FBRA extract on HO-1 and BDNF messenger ribonucleic acid (mRNA) levels in C6 glioma cells was examined, and the extract was shown to stimulate both HO-1 and BDNF gene transcription in the glioma cells. Further studies showed that the stimulatory effect of FBRA extract on BDNF gene transcription was almost completely suppressed by silencing HO-1 gene expression with an HO-1 antisense oligodeoxynucleotide and also inhibiting HO-1 activity with an inhibitor zinc protoporphyrin, thus suggesting that FBRA might have a potential ability to induce BDNF gene expression through HO-1 activity in glial cells.
Collapse
Affiliation(s)
- Kyoji Morita
- a Life Science Research Group , Shikoku University School of Health Sciences , Ohjin , Tokushima , Japan
| | - Naoyoshi Nishibori
- a Life Science Research Group , Shikoku University School of Health Sciences , Ohjin , Tokushima , Japan.,b Department of Food Science and Nutrition , Shikoku Junior College , Ohjin , Tokushima , Japan
| | - Reina Kishibuchi
- a Life Science Research Group , Shikoku University School of Health Sciences , Ohjin , Tokushima , Japan
| | - Mari Itoh
- c Research and Development Division, Kohken Co. Ltd. , Tohbetsu, Ishikari-gun , Hokkaido , Japan
| | - Yukiko Horie
- c Research and Development Division, Kohken Co. Ltd. , Tohbetsu, Ishikari-gun , Hokkaido , Japan
| | - Hideyuki Nemoto
- c Research and Development Division, Kohken Co. Ltd. , Tohbetsu, Ishikari-gun , Hokkaido , Japan
| |
Collapse
|
71
|
Yoshida T, Sakamoto A, Terui Y, Takao K, Sugita Y, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K. Effect of Spermidine Analogues on Cell Growth of Escherichia coli Polyamine Requiring Mutant MA261. PLoS One 2016; 11:e0159494. [PMID: 27434546 PMCID: PMC4951125 DOI: 10.1371/journal.pone.0159494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/04/2016] [Indexed: 12/03/2022] Open
Abstract
The effects of spermidine analogues [norspermidine (NSPD, 33), spermidine (SPD, 34), homospermidine (HSPD, 44) and aminopropylcadaverine (APCAD, 35)] on cell growth were studied using Escherichia coli polyamine-requiring mutant MA261. Cell growth was compared at 32°C, 37°C, and 42°C. All four analogues were taken up mainly by the PotABCD spermidine-preferential uptake system. The degree of stimulation of cell growth at 32°C and 37°C was NSPD ≥ SPD ≥ HSPD > APCAD, and SPD ≥ HSPD ≥ NSPD > APCAD, respectively. However, at 42°C, it was HSPD » SPD > NSPD > APCAD. One reason for this is HSPD was taken up effectively compared with other triamines. In addition, since natural polyamines (triamines and teteraamines) interact mainly with RNA, and the structure of RNA is more flexible at higher temperatures, HSPD probably stabilized RNA more tightly at 42°C. We have thus far found that 20 kinds of protein syntheses are stimulated by polyamines at the translational level. Among them, synthesis of OppA, RpoE and StpA was more strongly stimulated by HSPD at 42°C than at 37°C. Stabilization of the initiation region of oppA and rpoE mRNA was tighter by HSPD at 42°C than 37°C determined by circular dichroism (CD). The degree of polyamine stimulation of OppA, RpoE and StpA synthesis by NSPD, SPD and APCAD was smaller than that by HSPD at 42°C. Thus, the degree of stimulation of cell growth by spermidine analogues at the different temperatures is dependent on the stimulation of protein synthesis by some components of the polyamine modulon.
Collapse
Affiliation(s)
- Taketo Yoshida
- Faculty of Pharmacy, Chiba Institute of Science, 15–8 Shiomi-cho, Choshi, Chiba, 288–0025, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, 15–8 Shiomi-cho, Choshi, Chiba, 288–0025, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15–8 Shiomi-cho, Choshi, Chiba, 288–0025, Japan
| | - Koichi Takao
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Technology, Josai University, 1–1 Keyaki-dai, Sakado, Saitama, 350–0295, Japan
| | - Yoshiaki Sugita
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Technology, Josai University, 1–1 Keyaki-dai, Sakado, Saitama, 350–0295, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184–8584, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184–8584, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15, Inohana, Chuo-ku, Chiba, Chiba 260–0856, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260–8675, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15–8 Shiomi-cho, Choshi, Chiba, 288–0025, Japan
- * E-mail:
| |
Collapse
|
72
|
Skatchkov SN, Antonov SM, Eaton MJ. Glia and glial polyamines. Role in brain function in health and disease. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
73
|
Ghisalberti CA, Borzì RM, Cetrullo S, Flamigni F, Cairo G. Soft TCPTP Agonism-Novel Target to Rescue Airway Epithelial Integrity by Exogenous Spermidine. Front Pharmacol 2016; 7:147. [PMID: 27375482 PMCID: PMC4892113 DOI: 10.3389/fphar.2016.00147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
A reparative approach of disrupted epithelium in obstructive airway diseases, namely asthma and chronic obstructive pulmonary disease (COPD), may afford protection and long-lasting results compared to conventional therapies, e.g., corticosteroids or immunosuppressant drugs. Here, we propose the polyamine spermidine as a novel therapeutic agent in airways diseases, based on a recently identified mode of action: T-cell protein tyrosine phosphatase (TCPTP) agonism. It may include and surpass single-inhibitors of stress and secondary growth factor pathway signaling, i.e., the new medicinal chemistry in lung diseases. Enhanced polyamine biosynthesis has been charged with aggravating prognosis by competing for L-arginine at detriment of nitric oxide (NO) synthesis with bronchoconstrictive effects. Although excess spermine, a higher polyamine, is harmful to airways physiology, spermidine can pivot the cell homeostasis during stress conditions by the activation of TCPTP. In fact, the dephosphorylating activity of TCPTP inhibits the signaling cascade that leads to the expression of genes involved in detachment and epithelial-to-mesenchymal transition (EMT), and increases the expression of adhesion and tight junction proteins, thereby enhancing the barrier functionality in inflammation-prone tissues. Moreover, a further beneficial effect of spermidine may derive from its ability to promote autophagy, possibly in a TCPTP-dependent way. Since doses of spermidine in the micromolar range are sufficient to activate TCPTP, low amounts of spermidine administered in sustained release modality may provide an optimal pharmacologic profile for the treatment of obstructive airway diseases.
Collapse
Affiliation(s)
- Carlo A Ghisalberti
- Department of Biomedical Sciences for Health, University of MilanMilan, Italy; TixupharmaMilan, Italy
| | - Rosa M Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan Milan, Italy
| |
Collapse
|
74
|
Hamon L, Savarin P, Pastré D. Polyamine signal through gap junctions: A key regulator of proliferation and gap-junction organization in mammalian tissues? Bioessays 2016; 38:498-507. [DOI: 10.1002/bies.201500195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| | - Philippe Savarin
- Centre National de Recherche Scientifique (CNRS), Equipe Spectroscopie des Biomolécules et des Milieux Biologiques (SBMB); Université Paris 13, Sorbonne Paris Cité, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Unité Mixte de Recherche (UMR) 7244; Bobigny France
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| |
Collapse
|
75
|
Hasne MP, Soysa R, Ullman B. The Trypanosoma cruzi Diamine Transporter Is Essential for Robust Infection of Mammalian Cells. PLoS One 2016; 11:e0152715. [PMID: 27050410 PMCID: PMC4822861 DOI: 10.1371/journal.pone.0152715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/17/2016] [Indexed: 12/01/2022] Open
Abstract
Trypanosoma cruzi is incapable of synthesizing putrescine or cadaverine de novo, and, therefore, salvage of polyamines from the host milieu is an obligatory nutritional function for the parasite. A high-affinity diamine transporter (TcPOT1) from T. cruzi has been identified previously that recognizes both putrescine and cadaverine as ligands. In order to assess the functional role of TcPOT1 in intact parasites, a Δtcpot1 null mutant was constructed by targeted gene replacement and characterized. The Δtcpot1 mutant lacked high-affinity putrescine-cadaverine transport capability but retained the capacity to transport diamines via a non-saturable, low-affinity mechanism. Transport of spermidine and arginine was not impacted by the Δtcpot1 lesion. The Δtcpot1 cell line exhibited a significant but not total defect in its ability to subsist in Vero cells, although initial infection rates were not affected by the lesion. These findings reveal that TcPOT1 is the sole high-affinity diamine permease in T. cruzi, that genetic obliteration of TcPOT1 impairs the ability of the parasite to maintain a robust infection in mammalian cells, and that a secondary low-affinity uptake mechanism for this key parasite nutrient is operative but insufficient for optimal infection.
Collapse
Affiliation(s)
- Marie-Pierre Hasne
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Radika Soysa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
76
|
Kesel AJ, Day CW, Montero CM, Schinazi RF. A new oxygen modification cyclooctaoxygen binds to nucleic acids as sodium crown complex. Biochim Biophys Acta Gen Subj 2016; 1860:785-94. [PMID: 26825775 PMCID: PMC4780752 DOI: 10.1016/j.bbagen.2016.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/19/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oxygen exists in two gaseous and six solid allotropic modifications. An additional allotropic modification of oxygen, the cyclooctaoxygen, was predicted to exist in 1990. METHODS Cyclooctaoxygen sodium was synthesized in vitro from atmospheric oxygen, or catalase effect-generated oxygen, under catalysis of cytosine nucleosides and either ninhydrin or eukaryotic low-molecular weight RNA. Thin-layer chromatographic mobility shift assays were applied on specific nucleic acids and the cyclooctaoxygen sodium complex. RESULTS We report the first synthesis and characterization of cyclooctaoxygen as its sodium crown complex, isolated in the form of three cytosine nucleoside hydrochloride complexes. The cationic cyclooctaoxygen sodium complex is shown to bind to nucleic acids (RNA and DNA), to associate with single-stranded DNA and spermine phosphate, and to be essentially non-toxic to cultured mammalian cells at 0.1-1.0mM concentration. CONCLUSIONS We postulate that cyclooctaoxygen is formed in most eukaryotic cells in vivo from dihydrogen peroxide in a catalase reaction catalyzed by cytidine and RNA. A molecular biological model is deduced for a first epigenetic shell of eukaryotic in vivo DNA. This model incorporates an epigenetic explanation for the interactions of the essential micronutrient selenium (as selenite) with eukaryotic in vivo DNA. GENERAL SIGNIFICANCE Since the sperminium phosphate/cyclooctaoxygen sodium complex is calculated to cover the active regions (2.6%) of bovine lymphocyte interphase genome, and 12.4% of murine enterocyte mitotic chromatin, we propose that the sperminium phosphate/cyclooctaoxygen sodium complex coverage of nucleic acids is essential to eukaryotic gene regulation and promoted proto-eukaryotic evolution.
Collapse
Affiliation(s)
- Andreas J Kesel
- Chammünsterstr. 47, D-81827 München, Bayern/Bavaria, Germany.
| | - Craig W Day
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Catherine M Montero
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
77
|
Abstract
Polyamines (PAs), such as spermine and spermidine, modulate the activity of numerous receptors and channels in the central nervous system (CNS) and are stored in glial cells; however, little attention has been paid to their role in the regulation of connexin (Cx)-based gap junction channels. We have previously shown that PAs facilitate diffusion of Lucifer Yellow through astrocytic gap junctions in acute brain slices; therefore, we hypothesized that spermine can regulate Cx43-mediated (as the most abundant Cx in astrocytes) gap junctional communication. We used electrophysiological patch-clamp recording from paired Novikoff cells endogenously expressing Cx43 and HeLaCx43-EGFP transfectants to study pH-dependent modulation of cell–cell coupling in the presence or absence of PAs. Our results showed (i) a higher increase in gap junctional communication at higher concentrations of cytoplasmic spermine, and (ii) that spermine prevented uncoupling of gap junctions at low intracellular pH. Taken together, we conclude that spermine enhances Cx43-mediated gap junctional communication and may preserve neuronal excitability during ischemia and trauma when pH in the brain acidifies. We, therefore, suggest a new role of spermine in the regulation of a Cx43-based network under (patho)physiological conditions.
Collapse
|
78
|
Nakamura M, Uemura T, Saiki R, Sakamoto A, Park H, Nishimura K, Terui Y, Toida T, Kashiwagi K, Igarashi K. Toxic acrolein production due to Ca2+ influx by the NMDA receptor during stroke. Atherosclerosis 2016; 244:131-7. [DOI: 10.1016/j.atherosclerosis.2015.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/18/2015] [Accepted: 11/10/2015] [Indexed: 11/26/2022]
|
79
|
Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U, Cremer C, Reid G. A transient ischemic environment induces reversible compaction of chromatin. Genome Biol 2015; 16:246. [PMID: 26541514 PMCID: PMC4635527 DOI: 10.1186/s13059-015-0802-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Cells detect and adapt to hypoxic and nutritional stress through immediate transcriptional, translational and metabolic responses. The environmental effects of ischemia on chromatin nanostructure were investigated using single molecule localization microscopy of DNA binding dyes and of acetylated histones, by the sensitivity of chromatin to digestion with DNAseI, and by fluorescence recovery after photobleaching (FRAP) of core and linker histones. Results Short-term oxygen and nutrient deprivation of the cardiomyocyte cell line HL-1 induces a previously undescribed chromatin architecture, consisting of large, chromatin-sparse voids interspersed between DNA-dense hollow helicoid structures 40–700 nm in dimension. The chromatin compaction is reversible, and upon restitution of normoxia and nutrients, chromatin transiently adopts a more open structure than in untreated cells. The compacted state of chromatin reduces transcription, while the open chromatin structure induced upon recovery provokes a transitory increase in transcription. Digestion of chromatin with DNAseI confirms that oxygen and nutrient deprivation induces compaction of chromatin. Chromatin compaction is associated with depletion of ATP and redistribution of the polyamine pool into the nucleus. FRAP demonstrates that core histones are not displaced from compacted chromatin; however, the mobility of linker histone H1 is considerably reduced, to an extent that far exceeds the difference in histone H1 mobility between heterochromatin and euchromatin. Conclusions These studies exemplify the dynamic capacity of chromatin architecture to physically respond to environmental conditions, directly link cellular energy status to chromatin compaction and provide insight into the effect ischemia has on the nuclear architecture of cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0802-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ina Kirmes
- Institute for Molecular Biology, 55128, Mainz, Germany
| | | | - Kirti Prakash
- Institute for Molecular Biology, 55128, Mainz, Germany.,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | | | | | | | | | - Karolina Fornalczyk
- Institute for Molecular Biology, 55128, Mainz, Germany.,Department of Molecular Biophysics, University of Łódź, Łódź, Poland
| | - Dongyu Ma
- Institute for Molecular Biology, 55128, Mainz, Germany.,Centre for Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, 68167, Mannheim, Germany
| | - Udo Birk
- Institute for Molecular Biology, 55128, Mainz, Germany
| | - Christoph Cremer
- Institute for Molecular Biology, 55128, Mainz, Germany. .,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany.
| | - George Reid
- Institute for Molecular Biology, 55128, Mainz, Germany.
| |
Collapse
|
80
|
Lozier AM, Rich ME, Grawe AP, Peck AS, Zhao P, Chang ATT, Bond JP, Sholler GS. Targeting ornithine decarboxylase reverses the LIN28/Let-7 axis and inhibits glycolytic metabolism in neuroblastoma. Oncotarget 2015; 6:196-206. [PMID: 25415050 PMCID: PMC4381588 DOI: 10.18632/oncotarget.2768] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/14/2014] [Indexed: 12/17/2022] Open
Abstract
LIN28 has emerged as an oncogenic driver in a number of cancers, including neuroblastoma (NB). Overexpression of LIN28 correlates with poor outcome in NB, therefore drugs that impact the LIN28/Let-7 pathway could be beneficial in treating NB patients. The LIN28/Let-7 pathway affects many cellular processes including the regulation of cancer stem cells and glycolytic metabolism. Polyamines, regulated by ornithine decarboxylase (ODC) modulate eIF-5A which is a direct regulator of the LIN28/Let-7 axis. We propose that therapy inhibiting ODC will restore balance to the LIN28/Let-7 axis, suppress glycolytic metabolism, and decrease MYCN protein expression in NB. Difluoromethylornithine (DFMO) is an inhibitor of ODC in clinical trials for children with NB. In vitro experiments using NB cell lines, BE(2)-C, SMS-KCNR, and CHLA90 show that DFMO treatment reduced LIN28B and MYCN protein levels and increased Let-7 miRNA and decreased neurosphere formation. Glycolytic metabolic activity decreased with DFMO treatment in vivo. Additionally, sensitivity to DFMO treatment correlated with LIN28B overexpression (BE(2)-C>SMS-KCNR>CHLA90). This is the first study to demonstrate that DFMO treatment restores balance to the LIN28/Let-7 axis and inhibits glycolytic metabolism and neurosphere formation in NB and that PET scans may be a meaningful imaging tool to evaluate the therapeutic effects of DFMO treatment.
Collapse
Affiliation(s)
- Ann M Lozier
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Maria E Rich
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Anissa Pedersen Grawe
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Anderson S Peck
- Small Animal Imaging Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Ping Zhao
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | | | - Jeffrey P Bond
- University of Vermont, Michigan State University, Grand Rapids, MI, USA
| | - Giselle Saulnier Sholler
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA. College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
81
|
Hirose T, Saiki R, Yoshizawa Y, Imamura M, Higashi K, Ishii I, Toida T, Williams K, Kashiwagi K, Igarashi K. Spermidine and Ca 2+ , but not Na + , can permeate NMDA receptors consisting of GluN1 and GluN2A or GluN2B in the presence of Mg 2+. Biochem Biophys Res Commun 2015; 463:1190-5. [DOI: 10.1016/j.bbrc.2015.06.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/01/2022]
|
82
|
Sakamoto A, Terui Y, Yoshida T, Yamamoto T, Suzuki H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K. Three members of polyamine modulon under oxidative stress conditions: two transcription factors (SoxR and EmrR) and a glutathione synthetic enzyme (GshA). PLoS One 2015; 10:e0124883. [PMID: 25898225 PMCID: PMC4405209 DOI: 10.1371/journal.pone.0124883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/18/2015] [Indexed: 02/05/2023] Open
Abstract
Members of polyamine modulon whose synthesis is enhanced at the level of translation were looked for under oxidative stress conditions caused by 0.6 μM K2TeO3. When an Escherichia coli polyamine-requiring mutant MA261 was cultured in the presence of K2TeO3, the degree of polyamine stimulation of cell growth was greater than in cells cultured in the absence of K2TeO3. Under these conditions, synthesis of SoxR, a transcriptional factor for expression of the superoxide response regulon, EmrR, a negative transcriptional factor for expression of the genes for drug excretion proteins, EmrA and EmrB, and of GshA, γ-glutamylcysteine synthetase necessary for glutathione (GSH) synthesis, were stimulated by polyamines at the level of translation. Polyamine stimulation of SoxR and EmrR synthesis was dependent on the existence of an unusually located Shine-Dalgarno (SD) sequence in soxR and emrR mRNAs. Polyamine stimulation of GshA synthesis was due to the existence of the inefficient initiation codon UUG instead of AUG. Polyamine stimulation of the synthesis of EmrR was mainly observed at the logarithmic phase of growth, while that of the synthesis of SoxR and GshA was at the stationary phase. These results strongly suggest that polyamines are involved in easing of oxidative stress through stimulation of synthesis of SoxR, EmrR and GshA together with RpoS, previously found as a member of polyamine modulon at the stationary phase.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Taketo Yoshida
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Taku Yamamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Hideyuki Suzuki
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Kyoto, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Chiba, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
- * E-mail:
| |
Collapse
|
83
|
Suabjakyong P, Saiki R, Van Griensven LJLD, Higashi K, Nishimura K, Igarashi K, Toida T. Polyphenol extract from Phellinus igniarius protects against acrolein toxicity in vitro and provides protection in a mouse stroke model. PLoS One 2015; 10:e0122733. [PMID: 25811373 PMCID: PMC4374876 DOI: 10.1371/journal.pone.0122733] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/12/2015] [Indexed: 11/22/2022] Open
Abstract
The basidiomycetous mushroom Phellinus igniarius (L.) Quel. has been used as traditional medicine in various Asian countries for many years. Although many reports exist on its anti-oxidative and anti-inflammatory activities and therapeutic effects against various diseases, our current knowledge of its effect on stroke is very limited. Stroke is a neurodegenerative disorder in which oxidative stress is a key hallmark. Following the 2005 discovery by Igarashi's group that acrolein produced from polyamines in vivo is a major cause of cell damage by oxidative stress, we now describe the effects of anti-oxidative extracts from P. igniarius on symptoms of experimentally induced stroke in mice. The toxicity of acrolein was compared with that of hydrogen peroxide in a mouse mammary carcinoma cell line (FM3A). We found that the complete inhibition of FM3A cell growth by 5 μM acrolein could be prevented by crude ethanol extract of P. igniarius at 0.5 μg/ml. Seven polyphenol compounds named 3,4-dihydroxybenzaldehyde, 4-(3,4-dihydroxyphenyl-3-buten-2one, inonoblin C, phelligridin D, inoscavin C, phelligridin C and interfungin B were identified from this ethanolic extract by LCMS and 1H NMR. Polyphenol-containing extracts of P. igniarius were then used to prevent acrolein toxicity in a mouse neuroblastoma (Neuro-2a) cell line. The results suggested that Neuro-2a cells were protected from acrolein toxicity at 2 and 5 μM by this polyphenol extract at 0.5 and 2 μg/ml, respectively. Furthermore, in mice with experimentally induced stroke, intraperitoneal treatment with P. igniarius polyphenol extract at 20 μg/kg caused a reduction of the infarction volume by 62.2% compared to untreated mice. These observations suggest that the polyphenol extract of P. igniarius could serve to prevent ischemic stroke.
Collapse
Affiliation(s)
- Papawee Suabjakyong
- Department of Clinical and Analytical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Chiba, Japan
| | - Ryotaro Saiki
- Department of Clinical and Analytical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Chiba, Japan
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba-shi, Chiba, Japan
| | | | - Kyohei Higashi
- Department of Clinical and Analytical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Chiba, Japan
| | - Kazuhiro Nishimura
- Department of Clinical and Analytical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Chiba, Japan
| | - Kazuei Igarashi
- Department of Clinical and Analytical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Chiba, Japan
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba-shi, Chiba, Japan
| | - Toshihiko Toida
- Department of Clinical and Analytical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Chiba, Japan
| |
Collapse
|
84
|
Albert JS, Bhattacharyya N, Wolfe LA, Bone WP, Maduro V, Accardi J, Adams DR, Schwartz CE, Norris J, Wood T, Gafni RI, Collins MT, Tosi LL, Markello TC, Gahl WA, Boerkoel CF. Impaired osteoblast and osteoclast function characterize the osteoporosis of Snyder - Robinson syndrome. Orphanet J Rare Dis 2015; 10:27. [PMID: 25888122 PMCID: PMC4428506 DOI: 10.1186/s13023-015-0235-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/28/2015] [Indexed: 11/25/2022] Open
Abstract
Background Snyder-Robinson Syndrome (SRS) is an X-linked intellectual disability disorder also characterized by osteoporosis, scoliosis, and dysmorphic facial features. It is caused by mutations in SMS, a ubiquitously expressed gene encoding the polyamine biosynthetic enzyme spermine synthase. We hypothesized that the tissue specificity of SRS arises from differential sensitivity to spermidine toxicity or spermine deficiency. Methods We performed detailed clinical, endocrine, histopathologic, and morphometric studies on two affected brothers with a spermine synthase loss of function mutation (NM_004595.4:c.443A > G, p.Gln148Arg). We also measured spermine and spermidine levels in cultured human bone marrow stromal cells (hBMSCs) and fibroblasts using the Biochrom 30 polyamine protocol and assessed the osteogenic potential of hBMSCs. Results In addition to the known tissue-specific features of SRS, the propositi manifested retinal pigmentary changes, recurrent episodes of hyper- and hypoglycemia, nephrocalcinosis, renal cysts, and frequent respiratory infections. Bone histopathology and morphometry identified a profound depletion of osteoblasts and osteoclasts, absence of a trabecular meshwork, a low bone volume and a thin cortex. Comparison of cultured fibroblasts from affected and unaffected individuals showed relatively small changes in polyamine content, whereas comparison of cultured osteoblasts identified marked differences in spermidine and spermine content. Osteogenic differentiation of the SRS-derived hBMSCs identified a severe deficiency of calcium phosphate mineralization. Conclusions Our findings support the hypothesis that cell specific alterations in polyamine metabolism contribute to the tissue specificity of SRS features, and that the low bone density arises from a failure of mineralization. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica S Albert
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA. .,Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - Nisan Bhattacharyya
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Lynne A Wolfe
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA. .,Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - William P Bone
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - Valerie Maduro
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - John Accardi
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - David R Adams
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA. .,Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - Charles E Schwartz
- J.C. Self Research Institute, Greenwood Genetics Centre, Greenwood, SC, 29646, USA.
| | - Joy Norris
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tim Wood
- J.C. Self Research Institute, Greenwood Genetics Centre, Greenwood, SC, 29646, USA.
| | - Rachel I Gafni
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Michael T Collins
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Laura L Tosi
- George Washington University School of Medicine, Washington, DC, USA. .,Children's National Medical Center, Washington, DC, USA.
| | - Thomas C Markello
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA. .,Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - William A Gahl
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA. .,Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - Cornelius F Boerkoel
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
85
|
Igarashi K, Kashiwagi K. Modulation of protein synthesis by polyamines. IUBMB Life 2015; 67:160-9. [PMID: 25906835 DOI: 10.1002/iub.1363] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
Abstract
Polyamines are ubiquitous small basic molecules that play important roles in cell growth and viability. Since polyamines mainly exist as a polyamine-RNA complex, we looked for proteins whose synthesis is preferentially stimulated by polyamines at the level of translation, and thus far identified 17 proteins in Escherichia coli and 6 proteins in eukaryotes. The mechanisms of polyamine stimulation of synthesis of these proteins were investigated. In addition, the role of eIF5A, containing hypusine formed from spermidine, on protein synthesis is described. These results clearly indicate that polyamines and eIF5A contribute to cell growth and viability through modulation of protein synthesis.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Department of Clinical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-Ku, Chiba, Japan; Amine Pharma Research Institute, Chuo-Ku, Chiba, Japan
| | | |
Collapse
|
86
|
Zhu Y, Li J, Kanvinde S, Lin Z, Hazeldine S, Singh R, Oupický D. Self-immolative polycations as gene delivery vectors and prodrugs targeting polyamine metabolism in cancer. Mol Pharm 2015; 12:332-41. [PMID: 25153488 PMCID: PMC4319695 DOI: 10.1021/mp500469n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/16/2014] [Accepted: 08/18/2014] [Indexed: 12/15/2022]
Abstract
Polycations are explored as carriers to deliver therapeutic nucleic acids. Polycations are conventionally pharmacological inert with the sole function of delivering therapeutic cargo. This study reports synthesis of a self-immolative polycation (DSS-BEN) based on a polyamine analogue drug N(1),N(11)-bisethylnorspermine (BENSpm). The polycation was designed to function dually as a gene delivery carrier and a prodrug targeting dysregulated polyamine metabolism in cancer. Using a combination of NMR and HPLC, we confirm that the self-immolative polycation undergoes intracellular degradation into the parent drug BENSpm. The released BENSpm depletes cellular levels of spermidine and spermine and upregulates polyamine catabolic enzymes spermine/spermidine N(1)-acetyltransferase (SSAT) and spermine oxidase (SMO). The synthesized polycations form polyplexes with DNA and facilitate efficient transfection. Taking advantage of the ability of BENSpm to sensitize cancer cells to TNFα-induced apoptosis, we show that DSS-BEN enhances the cell killing activity of TNFα gene therapy. The reported findings validate DSS-BEN as a dual-function delivery system that can deliver a therapeutic gene and improve the outcome of gene therapy as a result of the intracellular degradation of DSS-BEN to BENSpm and the subsequent beneficial effect of BENSpm on dysregulated polyamine metabolism in cancer.
Collapse
Affiliation(s)
- Yu Zhu
- Center for Drug Delivery and Nanomedicine,
Department of Pharmaceutical
Sciences, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Pharmaceutical Sciences, Wayne State
University, Detroit, Michigan 48202, United
States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine,
Department of Pharmaceutical
Sciences, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Shrey Kanvinde
- Center for Drug Delivery and Nanomedicine,
Department of Pharmaceutical
Sciences, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Zhiyi Lin
- Center for Drug Delivery and Nanomedicine,
Department of Pharmaceutical
Sciences, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Stuart Hazeldine
- Department
of Pharmaceutical Sciences, Wayne State
University, Detroit, Michigan 48202, United
States
| | - Rakesh
K. Singh
- Center for Drug Delivery and Nanomedicine,
Department of Pharmaceutical
Sciences, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine,
Department of Pharmaceutical
Sciences, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Pharmaceutical Sciences, Wayne State
University, Detroit, Michigan 48202, United
States
| |
Collapse
|
87
|
Tsutsui A, Pradipta AR, Saigitbatalova E, Kurbangalieva A, Tanaka K. Exclusive formation of imino[4 + 4]cycloaddition products with biologically relevant amines: plausible candidates for acrolein biomarkers and biofunctional modulators. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00383g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthetically demonstrate that eight-membered heterocycles are the exclusive products of the reaction of acrolein with biologically relevant amines via an imino[4 + 4]cycloaddition.
Collapse
Affiliation(s)
- Ayumi Tsutsui
- Biofunctional Synthetic Chemistry Laboratory
- RIKEN
- Wako-shi
- Japan
| | | | - Elena Saigitbatalova
- Biofunctional Chemistry Laboratory
- A. Butlerov Institute of Chemistry
- Kazan Federal University
- Kazan 420008
- Russia
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory
- A. Butlerov Institute of Chemistry
- Kazan Federal University
- Kazan 420008
- Russia
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory
- RIKEN
- Wako-shi
- Japan
- Biofunctional Chemistry Laboratory
| |
Collapse
|
88
|
Torres J, Giorgi C, Veiga N, Kremer C, Bianchi A. Interaction of myo-inositol hexakisphosphate with biogenic and synthetic polyamines. Org Biomol Chem 2015; 13:7500-12. [DOI: 10.1039/c5ob00900f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
myo-Inositol hexakisphosphate (phytate) forms very stable adducts with biogenic and synthetic polyamines in aqueous solution.
Collapse
Affiliation(s)
- Julia Torres
- Cátedra de Química Inorgánica
- Departamento Estrella Campos
- Facultad de Química
- Universidad de la República
- Montevideo
| | - Claudia Giorgi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Nicolás Veiga
- Cátedra de Química Inorgánica
- Departamento Estrella Campos
- Facultad de Química
- Universidad de la República
- Montevideo
| | - Carlos Kremer
- Cátedra de Química Inorgánica
- Departamento Estrella Campos
- Facultad de Química
- Universidad de la República
- Montevideo
| | - Antonio Bianchi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| |
Collapse
|
89
|
Abstract
This review focuses on the roles of glia and polyamines (PAs) in brain function and dysfunction, highlighting how PAs are one of the principal differences between glia and neurons. The novel role of PAs, such as putrescine, spermidine, and spermine and their precursors and derivatives, is discussed. However, PAs have not yet been a focus of much glial research. They affect many neuronal and glial receptors, channels, and transporters. They are therefore key elements in the development of many diseases and syndromes, thus forming the rationale for PA-focused and glia-focused therapy for these conditions.
Collapse
Affiliation(s)
- Serguei N Skatchkov
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA; Department of Physiology, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA.
| | - Michel A Woodbury-Fariña
- Department of Psychiatry, University of Puerto Rico School of Medicine, 307 Calle Eleonor Roosevelt, San Juan, PR 00918-2720, USA
| | - Misty Eaton
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA
| |
Collapse
|
90
|
Terui Y, Sakamoto A, Yoshida T, Kasahara T, Tomitori H, Higashi K, Igarashi K, Kashiwagi K. Polyamine stimulation of eEF1A synthesis based on the unusual position of a complementary sequence to 18S rRNA in eEF1A mRNA. Amino Acids 2014; 47:345-56. [PMID: 25425115 DOI: 10.1007/s00726-014-1867-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/02/2014] [Indexed: 01/11/2023]
Abstract
It is thought that Shine-Dalgarno-like sequences, which exhibit complementarity to the nucleotide sequences at the 3'-end of 18S rRNA, are not present in eukaryotic mRNAs. However, complementary sequences consisting of more than 5 nucleotides to the 3'-end of 18S rRNA, i.e., a CR sequence, are present at -17 to -32 upstream from the initiation codon AUG in 18 mRNAs involved in protein synthesis except eEF1A mRNA. Thus, effects of the CR sequence in mRNAs and polyamines on protein synthesis were examined using control and polyamine-reduced FM3A and NIH3T3 cells. Polyamines did not stimulate protein synthesis encoded by 18 mRNAs possessing a normal CR sequence. When the CR sequence was deleted, protein synthetic activities decreased to less than 70% of intact mRNAs. In eEF1A mRNA, the CR sequence was located at -33 to -39 upstream from the initiation codon AUG, and polyamines stimulated eEF1A synthesis about threefold. When the CR sequence was shifted to -22 to -28 upstream from the AUG, eEF1A synthesis increased in polyamine-reduced cells and the degree of polyamine stimulation decreased greatly. The results indicate that the CR sequence exists in many eukaryotic mRNAs, and the location of a CR sequence in mRNAs influences polyamine stimulation of protein synthesis.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Recent progress with techniques for monitoring RNA structure in cells such as ‘DMS-Seq’ and ‘Structure-Seq’ suggests that a new era of RNA structure-function exploration is on the horizon. This will also include systematic investigation of the factors required for the structural integrity of RNA. In this context, much evidence accumulated over 50 years suggests that polyamines play important roles as modulators of RNA structure. Here, we summarize and discuss recent literature relating to the roles of these small endogenous molecules in RNA function. We have included studies directed at understanding the binding interactions of polyamines with polynucleotides, tRNA, rRNA, mRNA and ribozymes using chemical, biochemical and spectroscopic tools. In brief, polyamines bind RNA in a sequence-selective fashion and induce changes in RNA structure in context-dependent manners. In some cases the functional consequences of these interactions have been observed in cells. Most notably, polyamine-mediated effects on RNA are frequently distinct from those of divalent cations (i.e. Mg2+) confirming their roles as independent molecular entities which help drive RNA-mediated processes.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| |
Collapse
|
92
|
Popolo A, Adesso S, Pinto A, Autore G, Marzocco S. L-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids 2014; 46:2271-86. [PMID: 25161088 DOI: 10.1007/s00726-014-1825-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 12/19/2022]
Abstract
L-Arginine is a semi essential amino acid synthesised from glutamine, glutamate and proline via the intestinal-renal axis in humans and most mammals. L-Arginine degradation occurs via multiple pathways initiated by arginase, nitric-oxide synthase, Arg: glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine and agmatine with each having enormous biological importance. Several disease are associated to an L-arginine impaired levels and/or to its metabolites: in particular various L-arginine metabolites may participate in pathogenesis of kidney and cardiovascular disease. L-Arginine and its metabolites may constitute both a marker of pathology progression both the rationale for manipulating L-arginine metabolism as a strategy to ameliorate these disease. A large number of studies have been performed in experimental models of kidney disease with sometimes conflicting results, which underlie the complexity of Arg metabolism and our incomplete knowledge of all the mechanisms involved. Moreover several lines of evidence demonstrate the role of L-arg metabolites in cardiovascular disease and that L-arg administration role in reversing endothelial dysfunction, which is the leading cause of cardiovascular diseases, such as hypertension and atherosclerosis. This review will discuss the implication of the mains L-arginine metabolites and L-arginine-derived guanidine compounds in kidney and cardiovascular disease considering the more recent literature in the field.
Collapse
Affiliation(s)
- Ada Popolo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | | | | | | | | |
Collapse
|
93
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
94
|
Park MH, Igarashi K. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol Ther (Seoul) 2014; 21:1-9. [PMID: 24009852 PMCID: PMC3762300 DOI: 10.4062/biomolther.2012.097] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 01/31/2023] Open
Abstract
Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.
Collapse
Affiliation(s)
- Myung Hee Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, 20892, USA
| | | |
Collapse
|
95
|
Morita K, Lee MS, Her S, Nishibori N. Polyamines cause elevation of steroid 5α-reductase mRNA levels by suppressing mRNA degradation in C6 glioma cells. Cell Biol Int 2014; 38:1132-7. [PMID: 24800957 DOI: 10.1002/cbin.10309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 04/14/2014] [Indexed: 11/06/2022]
Abstract
Polyamines are widely distributed in living organisms, and considered to play a potential role in various cellular processes. The effects of polyamines on gene expression as well as cell proliferation have been suggested to be closely associated with the physiological and pathological functions. However, it seems necessary to investigate their potential roles in the regulation of cellular metabolism and functions. Previously, glial cells have been suggested to be involved in the protection and preservation of neuronal functions, probably through the production of neurotrophic factors in the brain. On the other hand, neuroactive 5α-reduced steroids promote glial cell differentiation, resulting in enhancement of their ability to produce brain-derived neurotrophic factor (BDNF). Based on these findings, polyamines are assumed to stimulate the expression of the gene encoding steroid 5α-reductase (5α-R), which can induce the production of neuroactive 5α-reduced steroids in glial cells. The effects of polyamines on 5α-R mRNA levels in C6 glioma cells were examined as a model experiment. In consequence, spermine (SPM) and spermidine (SPD), but not putrescine (PUT), have been shown to elevate 5α-R mRNA levels without activating the 5α-R promoter. Furthermore, SPM increased 5α-R mRNA levels under the conditions in which the mRNA biosynthesis was inhibited. Therefore, it can be speculated that polyamines increase 5α-R mRNA levels as a consequence of suppressing the degradation of mRNA.
Collapse
Affiliation(s)
- Kyoji Morita
- Laboratory of Neuropharmacology, Department of Nursing, Shikoku University School of Health Sciences, Tokushima, 771-1192, Japan
| | | | | | | |
Collapse
|
96
|
Paz EA, LaFleur B, Gerner EW. Polyamines are oncometabolites that regulate the LIN28/let-7 pathway in colorectal cancer cells. Mol Carcinog 2014; 53 Suppl 1:E96-106. [PMID: 23737330 DOI: 10.1002/mc.22051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/19/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2023]
Abstract
Polyamine metabolism is a highly coordinated process that is essential for normal development and neoplastic growth in mammals. Although polyamine metabolism is a validated pathway for prevention of carcinogenesis, the mechanisms by which polyamines elicit their tumorigenic effects are poorly understood. In this study, we investigated the role of polyamine metabolism in colon cancer by screening a non-coding RNA (ncRNA) platform to identify polyamine responsive signaling nodes. We report that multiple non-coding RNAs are altered by polyamine depletion including induction of microRNA (miRNA) let-7i, a member of the tumor suppressive let-7 family. The let-7 family targets several RNAs for translational repression, including the growth-associated transcription factor HMGA2 and is negatively regulated by the pluripotency factor LIN28. Depletion of polyamines using difluoromethylornithine (DFMO) or genetic knockdown of the polyamine-modified eukaryotic translation initiation factor 5A isoforms 1 and 2 (eIF5A1/2) resulted in robust reduction of both HMGA2 and LIN28. Locked nucleic acid (LNA) oligonucleotides targeting the seed region of the let-7 family rescued the expression of HMGA2, but not LIN28, in both DFMO-treated and eIF5A1/2 knockdown cultures. Our findings suggest that polyamines are oncometabolites that influence specific aspects of tumorigenesis by regulating pluripotency associated factors, such as LIN28, via an eIF5A-dependent but let-7-independent mechanism while the expression of proliferation-related genes regulated by let-7, such as HMGA2, is mediated through microRNA mediated repression. Therefore, manipulating polyamine metabolism may be a novel method of targeting the LIN28/let-7 pathway in specific disease states.
Collapse
Affiliation(s)
- Edwin A Paz
- Arizona Cancer Center, The University of Arizona, Tucson, Arizona; Cancer Biology Interdisciplinary Program, The University of Arizona, Tucson, Arizona
| | | | | |
Collapse
|
97
|
Tsutsui A, Imamaki R, Kitazume S, Hanashima S, Yamaguchi Y, Kaneda M, Oishi S, Fujii N, Kurbangalieva A, Taniguchi N, Tanaka K. Polyamine modification by acrolein exclusively produces 1,5-diazacyclooctanes: a previously unrecognized mechanism for acrolein-mediated oxidative stress. Org Biomol Chem 2014; 12:5151-7. [DOI: 10.1039/c4ob00761a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Polyamines were found to react with acrolein to produce 1,5-diazacyclooctane.
Collapse
Affiliation(s)
- Ayumi Tsutsui
- Biofunctional Synthetic Chemistry Laboratory
- RIKEN
- Saitama 351-0198, Japan
| | - Rie Imamaki
- Systems Glycobiology Research Group
- RIKEN-Max Planck Joint Research Center for Systems Chemical Biology
- RIKEN Global Research Cluster
- RIKEN
- Saitama 351-0198, Japan
| | - Shinobu Kitazume
- Systems Glycobiology Research Group
- RIKEN-Max Planck Joint Research Center for Systems Chemical Biology
- RIKEN Global Research Cluster
- RIKEN
- Saitama 351-0198, Japan
| | - Shinya Hanashima
- Systems Glycobiology Research Group
- RIKEN-Max Planck Joint Research Center for Systems Chemical Biology
- RIKEN Global Research Cluster
- RIKEN
- Saitama 351-0198, Japan
| | - Yoshiki Yamaguchi
- Systems Glycobiology Research Group
- RIKEN-Max Planck Joint Research Center for Systems Chemical Biology
- RIKEN Global Research Cluster
- RIKEN
- Saitama 351-0198, Japan
| | - Masato Kaneda
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory
- A. Butlerov Institute of Chemistry
- Kazan Federal University
- Kazan 420008, Russia
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group
- RIKEN-Max Planck Joint Research Center for Systems Chemical Biology
- RIKEN Global Research Cluster
- RIKEN
- Saitama 351-0198, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory
- RIKEN
- Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory
- A. Butlerov Institute of Chemistry
| |
Collapse
|
98
|
Brzezinska J, Gdaniec Z, Popenda L, Markiewicz WT. Polyaminooligonucleotide: NMR structure of duplex DNA containing a nucleoside with spermine residue, N-[4,9,13-triazatridecan-1-yl]-2'-deoxycytidine. Biochim Biophys Acta Gen Subj 2013; 1840:1163-70. [PMID: 24361616 DOI: 10.1016/j.bbagen.2013.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND The nature of the polyamine-DNA interactions at a molecular level is not clearly understood. METHODS In order to shed light on the binding preferences of polyamine with nucleic acids, the NMR solution structure of the DNA duplex containing covalently bound spermine was determined. RESULTS The structure of 4-N-[4,9,13-triazatridecan-1-yl]-2'-deoxycytidine (dCSp) modified duplex was compared to the structure of the reference duplex. Both duplexes are regular right-handed helices with all attributes of the B-DNA form. The spermine chain which is located in a major groove and points toward the 3' end of the modified strand does not perturb the DNA structure. CONCLUSION In our study the charged polyamine alkyl chain was found to interact with the DNA surface. In the majority of converged structures we identified the presumed hydrogen bonding interactions between O6 and N7 atoms of G4 and the first internal -NH2(+)- amino group. Additional interaction was found between the second internal -NH2(+)- amino group and the oxygen atom of the phosphate of C3 residue. GENERAL SIGNIFICANCE The knowledge of the location and nature of a structure-specific binding site for spermine in DNA should be valuable in understanding gene expression and in the design of new therapeutic drugs.
Collapse
Affiliation(s)
- Jolanta Brzezinska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland.
| | - Lukasz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland
| | - Wojciech T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland.
| |
Collapse
|
99
|
Hayashi Y, Sugiyama H, Suganami A, Higashi K, Kashiwagi K, Igarashi K, Kawauchi S, Tamura Y. Prediction of the interaction between spermidine and the G-G mismatch containing acceptor stem in tRNA(Ile): molecular modeling, density functional theory, and molecular dynamics study. Biochem Biophys Res Commun 2013; 441:999-1004. [PMID: 24239547 DOI: 10.1016/j.bbrc.2013.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022]
Abstract
Polyamines, putrescine, spermidine (SPD), and spermine are closely linked to cell growth, and highly regulate the levels of transcription, translation and protein turnover. We propose that SPD stimulates the formation of Ile-tRNA(Ile) by inducing a selective structural change of the G-G mismatch containing acceptor stem in tRNA(Ile). Here, we provide insight into how SPD recognizes and stabilizes the G-G mismatch containing acceptor stem in tRNA(Ile) with molecular modeling (MM), density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. The results of the MM and DFT calculations indicate that the negatively charged region of the G-G mismatch containing acceptor stem in tRNA(Ile) is preferentially recognized by positively charged SPD. In addition, MD simulations indicate that all of the positively charged amino groups of SPD under physiological conditions (N1(NH3(+)), N5(NH2(+)), and N10(NH3(+)) could form hydrogen bonds with tRNA(Ile) and trigger the SPD-induced stabilization and structural change of the G-G mismatch containing acceptor stem in tRNA(Ile). Thus, this approach should be useful for determining the preferential binding site and appropriate binding mode of polyamines on tRNA(Ile).
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis.
Collapse
|