51
|
Kashiwayama Y, Tomohiro T, Narita K, Suzumura M, Glumoff T, Hiltunen JK, Van Veldhoven PP, Hatanaka Y, Imanaka T. Identification of a substrate-binding site in a peroxisomal beta-oxidation enzyme by photoaffinity labeling with a novel palmitoyl derivative. J Biol Chem 2010; 285:26315-25. [PMID: 20566640 DOI: 10.1074/jbc.m110.104547] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peroxisomes play an essential role in a number of important metabolic pathways including beta-oxidation of fatty acids and their derivatives. Therefore, peroxisomes possess various beta-oxidation enzymes and specialized fatty acid transport systems. However, the molecular mechanisms of these proteins, especially in terms of substrate binding, are still unknown. In this study, to identify the substrate-binding sites of these proteins, we synthesized a photoreactive palmitic acid analogue bearing a diazirine moiety as a photophore, and performed photoaffinity labeling of purified rat liver peroxisomes. As a result, an 80-kDa peroxisomal protein was specifically labeled by the photoaffinity ligand, and the labeling efficiency competitively decreased in the presence of palmitoyl-CoA. Mass spectrometric analysis identified the 80-kDa protein as peroxisomal multifunctional enzyme type 2 (MFE2), one of the peroxisomal beta-oxidation enzymes. Recombinant rat MFE2 was also labeled by the photoaffinity ligand, and mass spectrometric analysis revealed that a fragment of rat MFE2 (residues Trp(249) to Arg(251)) was labeled by the ligand. MFE2 mutants bearing these residues, MFE2(W249A) and MFE2(R251A), exhibited decreased labeling efficiency. Furthermore, MFE2(W249G), which corresponds to one of the disease-causing mutations in human MFE2, also exhibited a decreased efficiency. Based on the crystal structure of rat MFE2, these residues are located on the top of a hydrophobic cavity leading to an active site of MFE2. These data suggest that MFE2 anchors its substrate around the region from Trp(249) to Arg(251) and positions the substrate along the hydrophobic cavity in the proper direction toward the catalytic center.
Collapse
Affiliation(s)
- Yoshinori Kashiwayama
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Dölle C, Niere M, Lohndal E, Ziegler M. Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell Mol Life Sci 2010; 67:433-43. [PMID: 19902144 PMCID: PMC11115696 DOI: 10.1007/s00018-009-0190-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/19/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
Abstract
Poly-ADP-ribose polymerases (PARPs) use NAD(+) as substrate to generate polymers of ADP-ribose. We targeted the catalytic domain of human PARP1 as molecular NAD(+) detector into cellular organelles. Immunochemical detection of polymers demonstrated distinct subcellular NAD(+) pools in mitochondria, peroxisomes and, surprisingly, in the endoplasmic reticulum and the Golgi complex. Polymers did not accumulate within the mitochondrial intermembrane space or the cytosol. We demonstrate the suitability of this compartment-specific NAD(+) and poly-ADP-ribose turnover to establish intra-organellar protein localization. For overexpressed proteins, genetically endowed with PARP activity, detection of polymers indicates segregation from the cytosol and consequently intra-organellar residence. In mitochondria, polymer build-up reveals matrix localization of the PARP fusion protein. Compared to presently used fusion tags for subcellular protein localization, these are substantial improvements in resolution. We thus established a novel molecular tool applicable for studies of subcellular NAD metabolism and protein localization.
Collapse
Affiliation(s)
- Christian Dölle
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Marc Niere
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Emilia Lohndal
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| |
Collapse
|
53
|
Abstract
Gemfibrozil is long known for its ability to reduce the level of triglycerides in the blood circulation and to decrease the risk of hyperlipidemia. However, a number of recent studies reveal that apart from its lipid-lowering effects, gemfibrozil can also regulate many other signaling pathways responsible for inflammation, switching of T-helper cells, cell-to-cell contact, migration, and oxidative stress. In this review, we have made an honest attempt to analyze various biological activities of gemfibrozil and associated mechanisms that may help to consider this drug for different human disorders as primary or adjunct therapy.
Collapse
Affiliation(s)
- Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | |
Collapse
|
54
|
Apraiz I, Cajaraville MP, Cristobal S. Peroxisomal proteomics: biomonitoring in mussels after the Prestige's oil spill. MARINE POLLUTION BULLETIN 2009; 58:1815-1826. [PMID: 19732914 DOI: 10.1016/j.marpolbul.2009.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/28/2009] [Accepted: 08/03/2009] [Indexed: 05/28/2023]
Abstract
Peroxisomal proteomics was applied to assess possible biological effects after the Prestige's oil spill. Mussels were sampled in July 2004 and 2005 in four stations in the NW (closest to the spill) and NE coasts of the Iberian Peninsula. Principal components analysis (PCA) suggested differences in protein expression among stations and sampling years. Several proteins were putatively identified by mass spectrometry and immunolocalization. PC1 separated the NW stations in 2004 from the rest of the stations and sampling years mainly due to up-regulation of peroxisomal beta-oxidation proteins and PMP70. PC3 separated the NE stations, based on up-regulation of the antioxidant enzyme catalase in 2004 compared to 2005. PC4 separated the stations in the NE and the NW. This work shows that environmental proteomics, together with multivariate data analysis, could provide information to interpret the effects of oil spills at cellular level in mussels.
Collapse
Affiliation(s)
- Itxaso Apraiz
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
55
|
Singh I, Singh AK, Contreras MA. Peroxisomal dysfunction in inflammatory childhood white matter disorders: an unexpected contributor to neuropathology. J Child Neurol 2009; 24:1147-57. [PMID: 19605772 PMCID: PMC3077730 DOI: 10.1177/0883073809338327] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The peroxisome, an ubiquitous subcellular organelle, plays an important function in cellular metabolism, and its importance for human health is underscored by the identification of fatal disorders caused by genetic abnormalities. Recent findings indicate that peroxisomal dysfunction is not only restricted to inherited peroxisomal diseases but also to disease processes associated with generation of inflammatory mediators that downregulate cellular peroxisomal homeostasis. Evidence indicates that leukodystrophies (i.e. X-linked adrenoleukodystrophy, globoid cell leukodystrophy, and periventricular leukomalacia) may share common denominators in the development and progression of the inflammatory process and thus in the dysfunctions of peroxisomes. Dysfunctions of peroxisomes may therefore contribute in part to white matter disease and to the mental and physical disabilities that develop in patients affected by these diseases.
Collapse
Affiliation(s)
- Inderjit Singh
- Department of Pediatrics, Division of Developmental Neurogenetics, Charles Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
56
|
Genin EC, Gondcaille C, Trompier D, Savary S. Induction of the adrenoleukodystrophy-related gene (ABCD2) by thyromimetics. J Steroid Biochem Mol Biol 2009; 116:37-43. [PMID: 19406244 DOI: 10.1016/j.jsbmb.2009.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 11/30/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 (ALD) gene. The ABCD2 gene, its closest homolog, has been shown to compensate for ABCD1 deficiency when overexpressed. We previously demonstrated that the ABCD2 promoter contains a functional thyroid hormone response element. Thyroid hormone (T3) through its receptor TRbeta can induce hepatic Abcd2 expression in rodents and transiently normalize the VLCFA level in fibroblasts of Abcd1 null mice. In a therapeutic perspective, the use of selective agonists of TRbeta should present the advantage to be devoid of side effects, at least concerning the cardiotoxicity associated to TRalpha activation. In this study, we compared the effects of T3 with those of two thyromimetics (GC-1 and CGS 23425) specific of TRbeta. Using a gene reporter assay, we demonstrated that the rat Abcd2 promoter responds to the thyromimetics in a dose-dependent way similar to what is observed with T3. We then investigated the effects of 2-, 4- and 10-day treatments on the expression of ABCD2 and its paralogs ABCD3 and ABCD4 in human cell lines by RT-qPCR. Both thyromimetics trigger up-regulation of ABCD2-4 genes in HepG2 cells and X-ALD fibroblasts. Interestingly, in X-ALD fibroblasts, while T3 is associated with a transient induction of ABCD2 and ABCD3, the treatments with thyromimetics allow the induction to be maintained until 10 days. Further in vivo experiments in Abcd1 null mice with these thyromimetics should confirm the therapeutic potentialities of these molecules.
Collapse
|
57
|
Yernaux C, Fransen M, Brees C, Lorenzen S, Michels PAM. Trypanosoma bruceiglycosomal ABC transporters: identification and membrane targeting. Mol Membr Biol 2009; 23:157-72. [PMID: 16754359 DOI: 10.1080/09687860500460124] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trypanosomes contain unique peroxisome-like organelles designated glycosomes which sequester enzymes involved in a variety of metabolic processes including glycolysis. We identified three ABC transporters associated with the glycosomal membrane of Trypanosoma brucei. They were designated GAT1-3 for Glycosomal ABC Transporters. These polypeptides are so-called half-ABC transporters containing only one transmembrane domain and a single nucleotide-binding domain, like their homologues of mammalian and yeast peroxisomes. The glycosomal localization was shown by immunofluorescence microscopy of trypanosomes expressing fusion constructs of the transporters with Green Fluorescent Protein. By expression of fluorescent deletion constructs, the glycosome-targeting determinant of two transporters was mapped to different fragments of their respective primary structures. Interestingly, these fragments share a short sequence motif and contain adjacent to it one--but not the same--of the predicted six transmembrane segments of the transmembrane domain. We also identified the T. brucei homologue of peroxin PEX19, which is considered to act as a chaperonin and/or receptor for cytosolically synthesized proteins destined for insertion into the peroxisomal membrane. By using a bacterial two-hybrid system, it was shown that glycosomal ABC transporter fragments containing an organelle-targeting determinant can interact with both the trypanosomatid and human PEX19, despite their low overall sequence identity. Mutated forms of human PEX19 that lost interaction with human peroxisomal membrane proteins also did not bind anymore to the T. brucei glycosomal transporter. Moreover, fragments of the glycosomal transporter were targeted to the peroxisomal membrane when expressed in mammalian cells. Together these results indicate evolutionary conservation of the glycosomal/peroxisomal membrane protein import mechanism.
Collapse
Affiliation(s)
- Cédric Yernaux
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
58
|
Fourcade S, Ruiz M, Camps C, Schlüter A, Houten SM, Mooyer PAW, Pàmpols T, Dacremont G, Wanders RJA, Giròs M, Pujol A. A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. Am J Physiol Endocrinol Metab 2009; 296:E211-21. [PMID: 18854420 DOI: 10.1152/ajpendo.90736.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomes are essential organelles exerting key functions in fatty acid metabolism such as the degradation of very long-chain fatty acids (VLCFAs). VLCFAs accumulate in X-adrenoleukodystrophy (X-ALD), a disease caused by deficiency of the Abcd1 peroxisomal transporter. Its closest homologue, Abcd2, exhibits a high degree of functional redundancy on the catabolism of VLCFA, being able to prevent X-ALD-related neurodegeneration in the mouse. In the search for specific roles of Abcd2, we screened fatty acid profiles in organs and primary neurons of mutant knockout mice lacking Abcd2 in basal conditions and under dietary challenges. Our results indicate that ABCD2 plays a role in the degradation of long-chain saturated and omega9-monounsaturated fatty acids and in the synthesis of docosahexanoic acid (DHA). Also, we demonstrated a defective VLCFA beta-oxidation ex vivo in brain slices of Abcd1 and Abcd2 knockouts, using radiolabeled hexacosanoic acid and the precursor of DHA as substrates. As DHA levels are inversely correlated with the incidence of Alzheimer's and several degenerative conditions, we suggest that ABCD2 may act as modulator/modifier gene and therapeutic target in rare and common human disorders.
Collapse
Affiliation(s)
- Stéphane Fourcade
- Centre de Genètica Mèdica i Molecular, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins. Exp Cell Res 2009; 315:190-205. [DOI: 10.1016/j.yexcr.2008.10.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/01/2008] [Accepted: 10/23/2008] [Indexed: 11/22/2022]
|
60
|
van Roermund CWT, Visser WF, Ijlst L, van Cruchten A, Boek M, Kulik W, Waterham HR, Wanders RJA. The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J 2008; 22:4201-8. [PMID: 18757502 DOI: 10.1096/fj.08-110866] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peroxisomes play a major role in human cellular lipid metabolism, including the beta-oxidation of fatty acids. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy (X-ALD), which is caused by mutations in the ABCD1 gene. The protein involved, called ABCD1, or alternatively ALDP, is a member of the ATP-binding-cassette (ABC) transporter family and is located in the peroxisomal membrane. The biochemical hallmark of X-ALD is the accumulation of very long-chain fatty acids (VLCFAs), due to an impaired peroxisomal beta-oxidation. Although this suggests a role of ALDP in VLCFA import, no experimental evidence is available to substantiate this. In the yeast Saccharomyces cerevisiae, peroxisomes are the exclusive site of fatty acid beta-oxidation. Earlier work has shown that uptake of fatty acids into peroxisomes may occur via two routes, either as free fatty acids thus requiring intraperoxisomal activation into acyl-CoA esters or as long-chain acyl-CoA esters. The latter route involves the two peroxisomal half ABC transporters Pxa1p and Pxa2p that form a heterodimeric complex in the peroxisomal membrane. Using different strategies, including the analysis of intracellular acyl-CoA esters by tandem-MS, we show that the Pxa1p/Pxa2p heterodimer is involved in the transport of a spectrum of acyl-CoA esters. Interestingly, we found that the mutant phenotype of the pxa1/pxa2Delta mutant can be rescued, at least partially, by the sole expression of the human ABCD1 cDNA coding for ALDP, the protein that is defective in the human disease X-linked adrenoleukodystrophy. Our data indicate that ALDP can function as a homodimer and is involved in the transport of acyl-CoA esters across the peroxisomal membrane.
Collapse
Affiliation(s)
- Carlo W T van Roermund
- Lab Genetic Metabolic Diseases, Rm. F0-226, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Leclercq S, Skrzypski J, Courvoisier A, Gondcaille C, Bonnetain F, André A, Chardigny JM, Bellenger S, Bellenger J, Narce M, Savary S. Effect of dietary polyunsaturated fatty acids on the expression of peroxisomal ABC transporters. Biochimie 2008; 90:1602-7. [PMID: 18585430 DOI: 10.1016/j.biochi.2008.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 05/29/2008] [Indexed: 11/30/2022]
Abstract
Peroxisomal ABC transporters encoded by the ABCD genes are thought to participate in the import of specific fatty acids in the peroxisomal matrix. ABCD1 deficiency is associated with X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder which is characterized by the accumulation of saturated very-long-chain fatty acids (VLCFA). ABCD2 (the closest homolog of ABCD1) and ABCD3 have been shown to have partial functional redundancy with ABCD1; only when overexpressed, they can compensate for VLCFA accumulation. Other lipids, for instance polyunsaturated fatty acids (PUFA), should be possible candidate substrates for the ABCD2 and ABCD3 gene products, ALDRP and PMP70 respectively. Moreover, PUFA, which are known regulators of gene expression, could therefore represent potent inducers of the ABCD genes. To test this hypothesis, littermates of n-3-deficient rats were subjected to an n-3-deficient diet or equilibrated diets containing ALA (alpha-linolenic acid, 18:3n-3) as unique source of n-3 fatty acids or ALA plus DHA (docosahexaenoic acid, 22:6n-3) at two different doses. We analyzed the expression of peroxisomal ABC transporters and of the peroxisomal acyl-CoA oxidase gene 1 (Acox1) in adrenals, brain and liver. Whatever the diet, we did not observe any difference in gene expression in adrenals and brain. However, the hepatic expression level of Abcd2 and Abcd3 genes was found to be significantly higher in the n-3-deficient rats than in the rats fed the ALA diet or the DHA supplemented diets. This was accompanied by important changes in hepatic fatty acid composition. In summary, the hepatic expression of Abcd2 and Abcd3 but not of Abcd1 and Abcd4 appears to be highly sensitive towards dietary PUFA. This difference could be linked to the substrate specificity of the peroxisomal ABC transporters and a specific involvement of Abcd2 and Abcd3 in PUFA metabolism.
Collapse
|
62
|
Engelen M, Ofman R, Mooijer PAW, Poll-The BT, Wanders RJA, Kemp S. Cholesterol-deprivation increases mono-unsaturated very long-chain fatty acids in skin fibroblasts from patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1781:105-11. [PMID: 18206987 DOI: 10.1016/j.bbalip.2007.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/23/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder and is characterized by a striking and unpredictable variation in phenotypic expression. It ranges from a rapidly progressive and fatal cerebral demyelinating disease in childhood (CCALD), to the milder slowly progressive form in adulthood (AMN). X-ALD is caused by mutations in the ABCD1 gene that encodes a peroxisomal membrane located ABC half-transporter named ALDP. Mutations in ALDP result in reduced beta-oxidation of very long-chain fatty acids (VLCFA, >22 carbon atoms) in peroxisomes and elevated levels of VLCFA in plasma and tissues. Previously, it has been shown that culturing skin fibroblasts from X-ALD patients in lipoprotein-deficient medium results in reduced VLCFA levels and increased expression of the functionally redundant ALD-related protein (ALDRP). The aim of this study was to further resolve the interaction between cholesterol and VLCFA metabolism in X-ALD. Our data show that the reduction in 26:0 in X-ALD fibroblasts grown in lipoprotein-deficient culture medium (free of cholesterol) is offset by a significant increase in both the level and synthesis of 26:1. We also demonstrate that cholesterol-deprivation results in increased expression of stearoyl-CoA-desaturase (SCD) and increased desaturation of 18:0 to 18:1. Finally, there was no increase in [1-(14)C]-26:0 beta-oxidation. Taken together, we conclude that cholesterol-deprivation reduces saturated VLCFA, but increases mono-unsaturated VLCFA. These data may have implications for treatment of X-ALD patients with lovastatin.
Collapse
Affiliation(s)
- M Engelen
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
63
|
Gueugnon F, Gondcaille C, Leclercq S, Bellenger J, Bellenger S, Narce M, Pineau T, Bonnetain F, Savary S. Dehydroepiandrosterone up-regulates the Adrenoleukodystrophy-related gene (ABCD2) independently of PPARα in rodents. Biochimie 2007; 89:1312-21. [PMID: 17686565 DOI: 10.1016/j.biochi.2007.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Accepted: 06/29/2007] [Indexed: 11/22/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease caused by mutations in the ABCD1 gene, which encodes a peroxisomal ABC transporter, ALDP, supposed to participate in the transport of very long chain fatty acids (VLCFA). The adrenoleukodystrophy-related protein (ALDRP), which is encoded by the ABCD2 gene, is the closest homolog of ALDP and is considered as a potential therapeutic target since functional redundancy has been demonstrated between the two proteins. Pharmacological induction of Abcd2 by fibrates through the activation of PPARalpha has been demonstrated in rodent liver. DHEA, the most abundant steroid in human, is described as a PPARalpha activator and also as a prohormone able to mediate induction of several genes. Here, we explored the in vitro and in vivo effects of DHEA on the expression of peroxisomal ABC transporters. We show that Abcd2 and Abcd3 but not Abcd4 are induced in primary culture of rat hepatocytes by DHEA-S. We also demonstrate that Abcd2 and Abcd3 but not Abcd4 are inducible by an 11-day treatment with DHEA in the liver of male rodents but not in brain, testes and adrenals. Finally and contrary to Abcd3, we show that the mechanism of induction of Abcd2 is independent of PPARalpha.
Collapse
Affiliation(s)
- F Gueugnon
- INSERM, U866, Universite de Bourgogne, 6, Bd Gabriel, Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kashiwayama Y, Asahina K, Morita M, Imanaka T. Hydrophobic Regions Adjacent to Transmembrane Domains 1 and 5 Are Important for the Targeting of the 70-kDa Peroxisomal Membrane Protein. J Biol Chem 2007; 282:33831-33844. [PMID: 17761678 DOI: 10.1074/jbc.m703369200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 70-kDa peroxisomal membrane protein (PMP70) is a major component of peroxisomal membranes. Human PMP70 consists of 659 amino acid residues and has six putative transmembrane domains (TMDs). PMP70 is synthesized on cytoplasmic ribosomes and targeted posttranslationally to peroxisomes by an unidentified peroxisomal membrane protein targeting signal (mPTS). In this study, to examine the mPTS within PMP70 precisely, we expressed various COOH-terminally or NH(2)-terminally deleted constructs of PMP70 fused with green fluorescent protein (GFP) in Chinese hamster ovary cells and determined their intracellular localization by immunofluorescence. In the COOH-terminally truncated PMP70, PMP70(AA.1-144)-GFP, including TMD1 and TMD2 of PMP70, was still localized to peroxisomes. However, by further removal of TMD2, PMP70(AA.1-124)-GFP lost the targeting ability, and PMP70(TMD2)-GFP did not target to peroxisomes by itself. The substitution of TMD2 in PMP70(AA.1-144)-GFP for TMD4 or TMD6 did not affect the peroxisomal localization, suggesting that PMP70(AA.1-124) contains the mPTS and an additional TMD is required for the insertion into the peroxisomal membrane. In the NH(2)-terminal 124-amino acid region, PMP70 possesses hydrophobic segments in the region adjacent to TMD1. By the disruption of these hydrophobic motifs by the mutation of L21Q/L22Q/L23Q or I70N/L71Q, PMP70(AA.1-144)-GFP lost targeting efficiency. The NH(2)-terminally truncated PMP70, GFP-PMP70(AA.263-375), including TMD5 and TMD6, exhibited the peroxisomal localization. PMP70(AA.263-375) also possesses hydrophobic residues (Ile(307)/Leu(308)) in the region adjacent to TMD5, which were important for targeting. These results suggest that PMP70 possesses two distinct targeting signals, and hydrophobic regions adjacent to the first TMD of each region are important for targeting.
Collapse
Affiliation(s)
- Yoshinori Kashiwayama
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kota Asahina
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
65
|
Rosen MB, Thibodeaux JR, Wood CR, Zehr RD, Schmid JE, Lau C. Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses. Toxicology 2007; 239:15-33. [PMID: 17681415 DOI: 10.1016/j.tox.2007.06.095] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/06/2007] [Accepted: 06/15/2007] [Indexed: 11/26/2022]
Abstract
Perfluorooctanoic acid (PFOA) is a stable perfluoroalkyl acid used to synthesize fluoropolymers during the manufacture of a wide variety of products. Concerns have been raised over the potential health effects of PFOA because it is persistent in the environment and can be detected in blood and other tissues of many animal species, including humans. PFOA has also been shown to induce growth deficits and mortality in murine neonates. To better understand the mechanism of PFOA induced developmental toxicity, lung and liver gene expression profiling was conducted in PFOA-exposed full-term mouse fetuses. Thirty timed-pregnant CD-1 mice were orally dosed from gestation days 1-17 with either 0, 1, 3, 5, or 10mg/(kgday) PFOA in water. At term, fetal lung and liver were collected, total RNA prepared, and samples pooled from three fetuses per litter. Five biological replicates consisting of individual litter samples were then evaluated for each treatment group using Affymetrix mouse 430_2 microarrays. The expression of genes related to fatty acid catabolism was altered in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with transactivation of PPARalpha, although, with regard to bile acid biosynthesis and glucose metabolism, non-PPARalpha related effects were suggested as well. Additional studies will be needed to more thoroughly address the role of PPARalpha, and other nuclear receptors, in PFOA mediated developmental toxicity.
Collapse
Affiliation(s)
- Mitchell B Rosen
- Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Hillebrand M, Verrier SE, Ohlenbusch A, Schäfer A, Söling HD, Wouters FS, Gärtner J. Live cell FRET microscopy: homo- and heterodimerization of two human peroxisomal ABC transporters, the adrenoleukodystrophy protein (ALDP, ABCD1) and PMP70 (ABCD3). J Biol Chem 2007; 282:26997-27005. [PMID: 17609205 DOI: 10.1074/jbc.m702122200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half-ATP-binding cassette (ABC) transporters in the mammalian peroxisome membrane. Mutations in the gene encoding ALDP result in a devastating neurodegenerative disorder, X-linked adrenoleukodystrophy (X-ALD) that is associated with elevated levels of very long chain fatty acids because of impaired peroxisomal beta-oxidation. The interactions of peroxisomal ABC transporters, their role in the peroxisomal membrane, and their functions in disease pathogenesis are poorly understood. Studies on ABC transporters revealed that half-transporters have to dimerize to gain functionality. So far, conflicting observations are described for ALDP. By the use of in vitro methods (yeast two-hybrid and immunoprecipitation assays) on the one hand, it was shown that ALDP can form homodimers as well as heterodimers with PMP70 and ALDR, while on the other hand, it was demonstrated that ALDP and PMP70 exclusively homodimerize. To circumvent the problems of artificial interactions due to biochemical sample preparation in vitro, we investigated protein-protein interaction of ALDP in its physiological environment by FRET microscopy in intact living cells. The statistical relevance of FRET data was determined in two different ways using probability distribution shift analysis and Kolmogorov-Smirnov statistics. We demonstrate in vivo that ALDP and PMP70 form homodimers as well as ALDP/PMP70 heterodimers where ALDP homodimers predominate. Using C-terminal deletion constructs of ALDP, we demonstrate that the last 87 C-terminal amino acids harbor the most important protein domain mediating these interactions, and that the N-terminal transmembrane region of ALDP has an additional stabilization effect on ALDP homodimers. Loss of ALDP homo- or heterodimerization is highly relevant for understanding the disease mechanisms of X-ALD.
Collapse
Affiliation(s)
- Merle Hillebrand
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Sophie E Verrier
- Department of Neurobiology, Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andreas Ohlenbusch
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Annika Schäfer
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Hans-Dieter Söling
- Department of Neurobiology, Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fred S Wouters
- Cell Biophysics Group, European Neuroscience Institute, Waldweg 33, 37073 Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Pediatric Neurology, Georg August University, Faculty of Medicine, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| |
Collapse
|
67
|
Hrycyna CA, Gottesman MM. Multidrug ABC transporters from bacteria to man: an emerging hypothesis for the universality of molecular mechanism and function. Drug Resist Updat 2007; 1:81-3. [PMID: 16904390 DOI: 10.1016/s1368-7646(98)80019-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1998] [Revised: 02/24/1998] [Accepted: 02/28/1998] [Indexed: 11/15/2022]
Affiliation(s)
- C A Hrycyna
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
68
|
Kemp S, Wanders RJ. X-linked adrenoleukodystrophy: Very long-chain fatty acid metabolism, ABC half-transporters and the complicated route to treatment. Mol Genet Metab 2007; 90:268-76. [PMID: 17092750 DOI: 10.1016/j.ymgme.2006.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/02/2006] [Accepted: 10/02/2006] [Indexed: 11/26/2022]
|
69
|
Rottensteiner H, Theodoulou FL. The ins and outs of peroxisomes: Co-ordination of membrane transport and peroxisomal metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1527-40. [PMID: 17010456 DOI: 10.1016/j.bbamcr.2006.08.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/15/2006] [Accepted: 08/18/2006] [Indexed: 11/28/2022]
Abstract
Peroxisomes perform a range of metabolic functions which require the movement of substrates, co-substrates, cofactors and metabolites across the peroxisomal membrane. In this review, we discuss the evidence for and against specific transport systems involved in peroxisomal metabolism and how these operate to co-ordinate biochemical reactions within the peroxisome with those in other compartments of the cell.
Collapse
Affiliation(s)
- Hanspeter Rottensteiner
- Medical Faculty of the Ruhr-University of Bochum, Department of Physiological Chemistry, Section of Systems Biochemistry, 44780 Bochum, Germany.
| | | |
Collapse
|
70
|
Wanders RJA, Visser WF, van Roermund CWT, Kemp S, Waterham HR. The peroxisomal ABC transporter family. Pflugers Arch 2006; 453:719-34. [PMID: 17039367 DOI: 10.1007/s00424-006-0142-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
This review describes the current state of knowledge about the ABCD family of peroxisomal half adenosine-triphosphate-binding cassette (ABC) transporters. ABCDs are predicted to be present in a variety of eukaryotic organisms, although at present, only ABCDs in the yeast Saccharomyces cerevisiae, the plant Arabidopsis thaliana, and different mammalian species have been identified and characterized to any significant extent. The functional role of none of these ABCDs has been established definitively and awaits successful reconstitution of ABCDs, either as homo- or heterodimers into liposomes, followed by transport studies. Data obtained in S. cerevisiae suggest that the two ABCDs, which have been identified in this organism, form a heterodimer, which actually transports acyl coenzyme A esters across the peroxisomal membrane. In mammals, four ABCDs have been identified, of which one [adrenoleukodystrophy protein (ALDP)] has been implicated in the transport of the coenzyme A esters of very-long-chain fatty acids. Mutations in the gene (ABCD1) encoding ALDP are the cause of a severe X-linked disease, called X-linked adrenoleukodystrophy. The availability of mutant mice in which Abcd1, Abcd2, or Abcd3 have been disrupted will help to resolve the true role of the peroxisomal half-ABC transporters.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Laboratory Genetic Metabolic Diseases, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
71
|
Morita M, Kurisu M, Kashiwayama Y, Yokota S, Imanaka T. ATP-binding and -hydrolysis activities of ALDP (ABCD1) and ALDRP (ABCD2), human peroxisomal ABC proteins, overexpressed in Sf21 cells. Biol Pharm Bull 2006; 29:1836-42. [PMID: 16946495 DOI: 10.1248/bpb.29.1836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The peroxisomal ATP-binding cassette (ABC) proteins, adrenoleukodystrophy protein (ALDP, ABCD1) and ALD-related protein (ALDRP, ABCD2), were expressed in Spodoptera frugiperda 21 (Sf21) insect cells using a baculovirus-mediated expression system. Immunoelectron microscopy and subcellular fractionation revealed that the overexpressed ALDP was distributed in various subcellular organelles including mitochondria, nucleus and peroxisomes. The ALDP was not extractable with Na(2)CO(3) treatment, suggesting that it integrated into membranes. ATPase activity was detected in the membrane fraction expressing ALDP. The nucleotide-binding capacities of the expressed ALDP were estimated by the binding to ATP- or ADP-agarose. ALDP exhibited an affinity to both ADP and ATP. In contrast, ALDRP exhibited an affinity to ADP but scarcely to ATP. The ALDP in the Sf21 membrane fraction was extracted with n-dodecyl-beta-maltoside and successively purified with a chelate column. The nucleotide-binding and ATPase activities of the purified ALDP were, however, not detected. It may be that certain membranous components are required for the activity. We demonstrate for the first time that the peroxisomal ABC proteins can be expressed in Sf21 membranes maintaining their nucleotide-binding abilities and ATPase activities, and the expressed proteins will be of use for further characterization.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Sugitani, Toyoma, Japan.
| | | | | | | | | |
Collapse
|
72
|
Chiu HC, Liang JS, Wang JS, Lu JF. Mutational analyses of Taiwanese kindred with X-linked adrenoleukodystrophy. Pediatr Neurol 2006; 35:250-6. [PMID: 16996397 DOI: 10.1016/j.pediatrneurol.2006.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/17/2006] [Accepted: 04/03/2006] [Indexed: 11/19/2022]
Abstract
X-linked adrenoleukodystrophy is a neurodegenerative disorder with highly variable clinical presentation, including the childhood cerebral form, adult form adrenomyeloneuropathy, and Addison disease. The biochemical hallmark of the disorder is the accumulation of saturated very long chain fatty acids in all tissues and body fluids. This accumulation results from mutations in the ABCD1 gene localized to Xq28. Using polymerase chain reaction and direct sequencing of deoxyribonucleic acid, we identified five novel mutations, including a microdeletion (1624 del ATC), a splicing site mutation (intervening sequence 1 [IVS1] -2a>c), and three missense mutations (1172 T>C, 1520 G>A, and 1754 T>C), from Taiwanese kindred with X-linked adrenoleukodystrophy. A polymorphism involving a single nucleotide deletion in the intervening sequence 5 (IVS5 -6 del c) of the ABCD1 gene, previously misattributed as a mutation in the Chinese population, was also identified. The dinucleotide deletion (1415 del AG) mutation common in Japan and Western countries was not found as frequently in the Chinese and Taiwanese populations. Instead, a higher mutation frequency was observed in exon 6 of the ABCD1 gene among Japanese, Chinese, and Taiwanese kindred with X-linked adrenoleukodystrophy, representing a potential mutational hotspot for future mutational screening among these Asian populations.
Collapse
Affiliation(s)
- Hou-Chang Chiu
- School of Medicine, Fu Jen Catholic University, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
73
|
Berger J, Gärtner J. X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1721-32. [PMID: 16949688 DOI: 10.1016/j.bbamcr.2006.07.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 07/24/2006] [Indexed: 11/17/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a clinically heterogeneous disorder ranging from the severe childhood cerebral form to asymptomatic persons. The overall incidence is 1:16,800 including hemizygotes as well as heterozygotes. The principal molecular defect is due to inborn mutations in the ABCD1 gene encoding the adrenoleukodystrophy protein (ALDP), a transporter in the peroxisome membrane. ALDP is involved in the transport of substrates from the cytoplasm into the peroxisomal lumen. ALDP defects lead to characteristic accumulation of saturated very long-chain fatty acids, the diagnostic disease marker. The pathogenesis is unclear. Different molecular mechanisms seem to induce inflammatory demyelination, neurodegeneration and adrenocortical insufficiency involving the primary ABCD1 defect, environmental factors and modifier genes. Important information has been derived from the X-ALD mouse models; species differences however complicate the interpretation of results. So far, bone marrow transplantation is the only effective long-term treatment for childhood cerebral X-ALD, however, only when performed at an early-stage of disease. Urgently needed novel therapeutic strategies are under consideration ranging from dietary approaches to gene therapy.
Collapse
Affiliation(s)
- Johannes Berger
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria.
| | | |
Collapse
|
74
|
Ren XQ, Furukawa T, Yamamoto M, Aoki S, Kobayashi M, Nakagawa M, Akiyama SI. A functional role of intracellular loops of human multidrug resistance protein 1. J Biochem 2006; 140:313-8. [PMID: 16861249 DOI: 10.1093/jb/mvj155] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) is a human ATP-binding cassette (ABC) transporter in the plasma membrane. It confers multidrug resistance to tumor cells by actively effluxing intracellular drugs. To examine the functional significance of intracellular loops (ICLs) in MRP1, we determined the effect of mutation of the amino acid sequence EXXXG, which is conserved in ICL5 and ICL7 of human MRP1, 2 and 3, sulfonylurea receptor (SUR) 1 and 2, and mouse MRP1 and 2. E and G in the ICLs of human MRP1 were mutated to L and P, respectively, and the N-terminal (including ICL5) and C-terminal (including ICL7) wild type or mutant halves of MRP1 were co-expressed in insect cells. The mutation of either ICL5 or ICL7 considerably decreased ATP-dependent LTC4 uptake into vesicles of insect cells expressing mutated MRP1. GSH-dependent photolabeling of MRP1 with an 125I-labeled photoaffinity analog of azido agosterol A (azido AG-A) was abolished by the mutations in ICL5 and ICL7. Mutations in ICL5 of MRP1 almost completely inhibited the labeling of NBD2, but not NBD1, by 8-azido-alpha-[32P]ATP. In contrast, mutations in ICL7 of MRP1 abolished the labeling of both NBDs. Mutation of either ICL5 or ICL7 of MRP1 almost completely inhibited vanadate trapping with 8-azido-alpha-[32P]ATP by both NBD1 and NBD2 domains. These findings indicate that the intramolecular signaling between NBD and ICLs in MRP1 is vital for MRP1 function.
Collapse
Affiliation(s)
- Xiao-Qin Ren
- Department of Molecular Oncology and Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima 890-8520
| | | | | | | | | | | | | |
Collapse
|
75
|
Visser WF, van Roermund CWT, Ijlst L, Hellingwerf KJ, Waterham HR, Wanders RJA. First identification of a 2-ketoglutarate/isocitrate transport system in mammalian peroxisomes and its characterization. Biochem Biophys Res Commun 2006; 348:1224-31. [PMID: 16919238 DOI: 10.1016/j.bbrc.2006.07.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 11/19/2022]
Abstract
Peroxisomes contain specific transporter proteins required for the translocation of various metabolites across its membrane. The presence of several members of the ATP-binding cassette (ABC) transporter family is well established, and the characterization of transporters for adenine nucleotides and (pyro)phosphate in the peroxisomal membrane has been described recently. Previously published data strongly suggest the presence of additional transporters that facilitate the translocation of reducing equivalents and acetyl-units across the peroxisomal membrane. In this paper, we demonstrate the presence of transporter activity for 2-ketoglutarate and isocitrate in the peroxisomal membrane, by functional reconstitution of bovine kidney peroxisomal membrane protein in proteoliposomes. This transporter activity is assumed to be required to sustain the activity of intraperoxisomal isocitrate-dehydrogenase, which is involved in the regeneration of NADPH in the peroxisomal matrix.
Collapse
Affiliation(s)
- Wouter F Visser
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
76
|
Kwanyuen P, Witherspoon SM, Creech DR, Colton HM, Falls JG, Cariello NF. Flow cytometric assessment of peroxisome proliferation from frozen liver of fibrate-treated monkeys. Int J Toxicol 2006; 25:41-7. [PMID: 16510356 DOI: 10.1080/10915810500488395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiple methods currently exist for the assessment of peroxisome proliferation, including gene expression, enzyme activity, immunolabeling coupled with image analysis, and electron microscopy. This study describes a novel flow cytometric method to efficiently quantify peroxisome proliferation in cells from frozen livers. Frozen livers from cynomolgus monkeys treated with ciprofibrate at doses of 0, 3, 30, 150, and 400 mg/kg/day for 15 days were mechanically disaggregated using an automated dispersion method. The resulting cell suspensions were labeled using an allophycocyanin (APC)-conjugated antibody directed against peroxisomal membrane protein 70 (PMP70). Statistically significant increases in mean fluorescence intensity were observed from animals dosed at 30, 150, and 400 mg/kg/day compared to control. Parallel comparisons using electron microscopy and immunofluorescence microscopy suggest that flow cytometry may be an alternative to electron microscopy in determinations of peroxisome proliferation. Flow cytometric analysis of freshly isolated hepatocytes and frozen liver from rats treated with fenofibrate at 200 mg/kg/day for 10 days showed the flow cytometric method could detect peroxisome proliferation in both species. The research described here demonstrates the feasibility of applying flow cytometry for the detection of peroxisome proliferation.
Collapse
Affiliation(s)
- Puntipa Kwanyuen
- GlaxoSmithKline, Inc., Safety Assessment, Investigative Toxicology and Pathology, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Theodoulou FL, Holdsworth M, Baker A. Peroxisomal ABC transporters. FEBS Lett 2006; 580:1139-55. [PMID: 16413537 DOI: 10.1016/j.febslet.2005.12.095] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/22/2022]
Abstract
Peroxisomes perform a range of different functions, dependent upon organism, tissue type, developmental stage or environmental conditions, many of which are connected with lipid metabolism. This review summarises recent research on ATP binding cassette (ABC) transporters of the peroxisomal membrane (ABC subfamily D) and their roles in plants, fungi and animals. Analysis of mutants has revealed that peroxisomal ABC transporters play key roles in specific metabolic and developmental functions in different organisms. A common function is import of substrates for beta-oxidation but much remains to be determined concerning transport substrates and mechanisms which appear to differ significantly between phyla.
Collapse
Affiliation(s)
- Frederica L Theodoulou
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | | | | |
Collapse
|
78
|
Gueugnon F, Volodina N, Taouil JE, Lopez TE, Gondcaille C, Grand ASL, Mooijer PAW, Kemp S, Wanders RJA, Savary S. A novel cell model to study the function of the adrenoleukodystrophy-related protein. Biochem Biophys Res Commun 2006; 341:150-7. [PMID: 16412981 DOI: 10.1016/j.bbrc.2005.12.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 12/23/2005] [Indexed: 11/30/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder due to mutations in the ABCD1 (ALD) gene. ALDRP, the closest homolog of ALDP, has been shown to have partial functional redundancy with ALDP and, when overexpressed, can compensate for the loss-of-function of ALDP. In order to characterize the function of ALDRP and to understand the phenomenon of gene redundancy, we have developed a novel system that allows the controlled expression of the ALDRP-EGFP fusion protein (normal or non-functional mutated ALDRP) using the Tet-On system in H4IIEC3 rat hepatoma cells. The generated stable cell lines express negligible levels of endogenous ALDRP and doxycycline dosage-dependent levels of normal or mutated ALDRP. Importantly, the ALDRP-EGFP protein is targeted correctly to peroxisome and is functional. The obtained cell lines will be an indispensable tool in our further studies aimed at the resolution of the function of ALDRP to characterize its potential substrates in a natural context.
Collapse
Affiliation(s)
- Fabien Gueugnon
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté des Sciences Gabriel, Dijon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Kashiwayama Y, Asahina K, Shibata H, Morita M, Muntau AC, Roscher AA, Wanders RJA, Shimozawa N, Sakaguchi M, Kato H, Imanaka T. Role of Pex19p in the targeting of PMP70 to peroxisome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:116-28. [PMID: 16344115 DOI: 10.1016/j.bbamcr.2005.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 10/12/2005] [Accepted: 10/13/2005] [Indexed: 11/19/2022]
Abstract
Pex19p is a protein required for the peroxisomal membrane synthesis. The 70-kDa peroxisomal membrane protein (PMP70) is synthesized on free cytosolic ribosomes and then inserted posttranslationally into peroxisomal membranes. Pex19p has been shown to play an important role in this process. Using an in vitro translation system, we investigated the role of Pex19p as a chaperone and identified the regions of PMP70 required for the interaction with Pex19p. When PMP70 was translated in the presence of purified Pex19p, a large part of PMP70 existed as soluble form and was co-immunoprecipitated with Pex19p. However, in the absence of Pex19p, PMP70 formed aggregates during translation. To identify the regions that interact with Pex19p, various truncated PMP70 were translated in the presence of Pex19p and subjected to co-immunoprecipitation. The interaction was markedly reduced by the deletion of the NH(2)-terminal 61 amino acids or the region around TMD6. Further, we expressed these deletion constructs of PMP70 in fusion with the green fluorescent protein in CHO cells. Fusion proteins lacking these Pex19p binding sites did not display any peroxisomal localization. These results suggest that Pex19p binds to PMP70 co-translationally and keeps PMP70 as a proper conformation for the localization to peroxisome.
Collapse
Affiliation(s)
- Yoshinori Kashiwayama
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Visser W, van Roermund C, Ijlst L, Hellingwerf K, Wanders R, Waterham H. Demonstration and characterization of phosphate transport in mammalian peroxisomes. Biochem J 2005; 389:717-22. [PMID: 15727560 PMCID: PMC1180721 DOI: 10.1042/bj20041846] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is now well established that the peroxisomal membrane is not freely permeable to small molecules in vivo, which implies the existence of metabolite transporters in the peroxisomal membrane. A few putative peroxisomal metabolite transporters have indeed been identified, but the function of these proteins has remained largely unresolved so far. The only peroxisomal transporter characterized to a significant extent is the adenine nucleotide transporter, which is presumably required to sustain the activity of the intraperoxisomal very-long-chain-acyl-CoA synthetase. In addition to AMP, this acyl-CoA synthetase also produces pyrophosphate, which must be exported from the peroxisome. In the present study, we demonstrate that the peroxisomal membrane contains a transporter activity that facilitates the passage of phosphate and possibly pyrophosphate across the peroxisomal membrane. By reconstitution of peroxisomal membrane proteins in proteoliposomes, some kinetic parameters of the transporter could be established in vitro. The transporter can be distinguished from the mitochondrial phosphate transporter by its different sensitivity to inhibitors.
Collapse
Affiliation(s)
- Wouter F. Visser
- *Laboratory of Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlo W. van Roermund
- *Laboratory of Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lodewijk Ijlst
- *Laboratory of Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J. Hellingwerf
- †Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J. A. Wanders
- *Laboratory of Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- To whom correspondence should be addressed (email )
| | - Hans R. Waterham
- *Laboratory of Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
81
|
Loughran PA, Stolz DB, Vodovotz Y, Watkins SC, Simmons RL, Billiar TR. Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. Proc Natl Acad Sci U S A 2005; 102:13837-42. [PMID: 16172396 PMCID: PMC1216830 DOI: 10.1073/pnas.0503926102] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatocytes are capable of repeated inducible NO synthase (iNOS) expression, which occurs under inflammatory and stress conditions. This iNOS expression regulates a number of cellular functions as well as cell viability. To better understand the posttranslational mechanisms that regulate the fate of iNOS in these cells, we characterized the iNOS distributed within peroxisomes. The selective permeabilization of membranes (plasma vs. peroxisomal) confirmed that there are cytosolic and peroxisomal pools of iNOS in cytokine-stimulated hepatocytes and that the iNOS protein associates with peroxisome. Detergent solubilization of the membrane fraction released iNOS to the soluble fraction. iNOS localized to membrane fraction is predominantly monomeric, but dimerization is partially reconstituted rapidly upon incubation with tetrahydrobiopterin. The reconstituted iNOS exhibits a lower specific activity than iNOS isolated from the soluble pool. Depletion of intracellular tetrahydrobiopterin with an inhibitor of de novo pterin synthesis resulted in a predominance of monomeric iNOS without a greater relative distribution of iNOS to the peroxisomal pool. Thus, iNOS exists in a least two pools in hepatocytes: a soluble pool composed of both active dimer and monomer and a peroxisomal pool of monomeric iNOS. iNOS might localize to peroxisomes in long-lived cells such as hepatocytes as a protective mechanism to remove incompetent enzyme.
Collapse
Affiliation(s)
- P A Loughran
- Departments of Surgery and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Gondcaille C, Depreter M, Fourcade S, Lecca MR, Leclercq S, Martin PGP, Pineau T, Cadepond F, ElEtr M, Bertrand N, Beley A, Duclos S, De Craemer D, Roels F, Savary S, Bugaut M. Phenylbutyrate up-regulates the adrenoleukodystrophy-related gene as a nonclassical peroxisome proliferator. ACTA ACUST UNITED AC 2005; 169:93-104. [PMID: 15809314 PMCID: PMC2171887 DOI: 10.1083/jcb.200501036] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a demyelinating disease due to mutations in the ABCD1 (ALD) gene, encoding a peroxisomal ATP-binding cassette transporter (ALDP). Overexpression of adrenoleukodystrophy-related protein, an ALDP homologue encoded by the ABCD2 (adrenoleukodystrophy-related) gene, can compensate for ALDP deficiency. 4-Phenylbutyrate (PBA) has been shown to induce both ABCD2 expression and peroxisome proliferation in human fibroblasts. We show that peroxisome proliferation with unusual shapes and clusters occurred in liver of PBA-treated rodents in a PPARα-independent way. PBA activated Abcd2 in cultured glial cells, making PBA a candidate drug for therapy of X-ALD. The Abcd2 induction observed was partially PPARα independent in hepatocytes and totally independent in fibroblasts. We demonstrate that a GC box and a CCAAT box of the Abcd2 promoter are the key elements of the PBA-dependent Abcd2 induction, histone deacetylase (HDAC)1 being recruited by the GC box. Thus, PBA is a nonclassical peroxisome proliferator inducing pleiotropic effects, including effects at the peroxisomal level mainly through HDAC inhibition.
Collapse
Affiliation(s)
- Catherine Gondcaille
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté des Sciences Gabriel, 21000 Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Guimarães CP, Domingues P, Aubourg P, Fouquet F, Pujol A, Jimenez-Sanchez G, Sá-Miranda C, Azevedo JE. Mouse liver PMP70 and ALDP: homomeric interactions prevail in vivo. Biochim Biophys Acta Mol Basis Dis 2004; 1689:235-43. [PMID: 15276650 DOI: 10.1016/j.bbadis.2004.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/29/2004] [Accepted: 04/02/2004] [Indexed: 11/28/2022]
Abstract
ALDP, ALDPR, PMP70 and PMP70R are half ATP-binding cassette (ABC) transporters of the mammalian peroxisomal membrane. By analogy with other members of this family, it is assumed that peroxisomal ABC transporters must dimerize to become functional units. However, not much is known regarding the type of dimers (i.e., homodimers and/or heterodimers) that are formed in vivo under normal expression conditions. In this work, we have characterized the quaternary structure of mouse liver PMP70 and ALDP. The PMP70 protein complex was purified to apparent homogeneity using a two-step purification protocol. The ALDP-containing protein complex was characterized by preparative immunoprecipitation experiments. In both cases, no evidence for the existence of heteromeric interactions or for the presence of accessory proteins in these ABC transporter protein complexes could be obtained. Our data indicate that the majority (if not all) of mouse liver PMP70 and ALDP are homomeric proteins.
Collapse
Affiliation(s)
- Carla P Guimarães
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Cornwell PD, De Souza AT, Ulrich RG. Profiling of hepatic gene expression in rats treated with fibric acid analogs. Mutat Res 2004; 549:131-45. [PMID: 15120967 DOI: 10.1016/j.mrfmmm.2003.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 12/09/2003] [Accepted: 12/10/2003] [Indexed: 04/29/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors whose ligands include fatty acids, eicosanoids and the fibrate class of drugs. In humans, fibrates are used to treat dyslipidemias. In rodents, fibrates cause peroxisome proliferation, a change that might explain the observed hepatomegaly. In this study, rats were treated with multiple dose levels of six fibric acid analogs (including fenofibrate) for up to two weeks. Pathological analysis identified hepatocellular hypertrophy as the only sign of hepatotoxicity, and only one compound at the highest dose caused any significant increase in serum ALT or AST activity. RNA profiling revealed that the expression of 1288 genes was related to dose or length of treatment and correlated with hepatocellular hypertrophy. This gene list included expression changes that were consistent with increased mitochondrial and peroxisomal beta-oxidation, increased fatty acid transport, increased hepatic uptake of LDL-cholesterol, decreased hepatic uptake of glucose, decreased gluconeogenesis and decreased glycolysis. These changes are likely linked to many of the clinical benefits of fibrate drugs, including decreased serum triglycerides, decreased serum LDL-cholesterol and increased serum HDL-cholesterol. In light of the fact that all six compounds stimulated similar or identical changes in the expression of this set of 1288 genes, these results indicate that hepatomegaly is due to PPARalpha activation, although signaling through other receptors (e.g. PPARgamma, RXR) or through non-receptor pathways cannot be excluded.
Collapse
Affiliation(s)
- Paul D Cornwell
- Rosetta Inpharmatics-Merck Research Laboratories, 401 Terry Ave N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
85
|
Yang J, Han X, Gross RW. Identification of hepatic peroxisomal phospholipase A(2) and characterization of arachidonic acid-containing choline glycerophospholipids in hepatic peroxisomes. FEBS Lett 2003; 546:247-50. [PMID: 12832049 DOI: 10.1016/s0014-5793(03)00581-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recently, a sequence encoding a novel mammalian calcium-independent phospholipase A(2) (iPLA(2)gamma) was identified in the human genome and subsequently cloned and expressed in Sf9 insect cells. Unexpectedly, expression studies in recombinant systems demonstrated the usage of multiple translation initiation codons resulting in different polypeptides. Herein, we demonstrate that hepatic iPLA(2)gamma is localized to rat liver peroxisomes, possesses a molecular mass of 63 kDa and that peroxisomal membranes are highly enriched in arachidonic acid-containing phospholipids. Collectively, these results provide the first demonstration of iPLA(2)gamma in mammalian tissue and suggest the possibility that iPLA(2)gamma can contribute to lipid second messenger generation by hydrolysis of peroxisomal arachidonic acid-containing phospholipids.
Collapse
Affiliation(s)
- Jingyue Yang
- Department of Chemistry, Washington University, Campus Box 1134, One Brookings Drive, St Louis, MO 63130, USA
| | | | | |
Collapse
|
86
|
Abstract
Peroxisomes are single membrane-bound cell organelles performing numerous metabolic functions. The present article aims to give an overview of our current knowledge about inherited peroxisomal disorders in which these organelles are lacking or one or more of their functions are impaired. They are multiorgan disorders and the nervous system is implicated in most. After a summary of the historical names and categories, each having distinct symptoms and prognosis, microscopic pathology is reviewed in detail. Data from the literature are added to experience in the authors' laboratory with 167 liver biopsy and autopsy samples from peroxisomal patients, and with a smaller number of chorion samples for prenatal diagnosis, adrenal-, kidney-, and brain samples. Various light and electron microscopic methods are used including enzyme- and immunocytochemistry, polarizing microscopy, and morphometry. Together with other laboratory investigations and clinical data, this approach continues to contribute to the diagnosis and further characterization of peroxisomal disorders, and the discovery of novel variants. When liver specimens are examined, three main groups including 9 novel variants (33 patients) are distinguished: (1) absence or (2) presence of peroxisomes, and (3) mosaic distribution of cells with and without peroxisomes (10 patients). Renal microcysts, polarizing trilamellar inclusions, and insoluble lipid in macrophages in liver, adrenal cortex, brain, and in interstitial cells of kidney are also valuable for classification. On a genetic basis, complementation of fibroblasts has classified peroxisome biogenesis disorders into 12 complementation groups. Peroxisome biogenesis genes (PEX), knock-out-mice, and induction of redundant genes are briefly reviewed, including some recent results with 4-phenylbutyrate. Finally, regulation of peroxisome expression during development and in cell cultures, and by physiological factors is discussed.
Collapse
Affiliation(s)
- Marianne Depreter
- Ghent University, Department of Human Anatomy, Embryology, Histology and Medical Physics, Belgium
| | | | | |
Collapse
|
87
|
Fourcade S, Savary S, Gondcaille C, Berger J, Netik A, Cadepond F, El Etr M, Molzer B, Bugaut M. Thyroid hormone induction of the adrenoleukodystrophy-related gene (ABCD2). Mol Pharmacol 2003; 63:1296-303. [PMID: 12761339 DOI: 10.1124/mol.63.6.1296] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a demyelinating disorder associated with impaired very-long-chain fatty-acid (VLCFA) beta-oxidation caused by mutations in the ABCD1 (ALD) gene that encodes a peroxisomal membrane ABC transporter. ABCD2 (ALDR) displays partial functional redundancy because when overexpressed, it is able to correct the X-ALD biochemical phenotype. The ABCD2 promoter contains a putative thyroid hormone-response element conserved in rodents and humans. In this report, we demonstrate that the element is capable of binding retinoid X receptor and 3,5,3'-tri-iodothyronine (T3) receptor (TRbeta) as a heterodimer and mediating T3 responsiveness of ABCD2 in its promoter context. After a T3 treatment, an induction of the ABCD2 gene was observed in the liver of normal rats but not that of TRbeta-/- mice. ABCD2 was not induced in the brain of the T3-treated rats. However, we report for the first time that induction of the ABCD2 redundant gene is feasible in myelin-producing cells (differentiated CG4 oligodendrocytes). The induction was specific for this cell type because it did not occur in astrocytes. Furthermore, we observed T3 induction of ABCD2 in human and mouse ABCD1-deficient fibroblasts, which was correlated with normalization of the VLCFA beta-oxidation. Finally, ABCD3 (PMP70), a close homolog of ABCD2, was also induced by T3 in the liver of control rats, but not that of TRbeta-/- mice, and in CG4 oligodendrocytes.
Collapse
Affiliation(s)
- Stéphane Fourcade
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté des Sciences Gabriel, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Gouveia AM, Guimaraes CP, Oliveira ME, Reguenga C, Sa-Miranda C, Azevedo JE. Characterization of the peroxisomal cycling receptor, Pex5p, using a cell-free in vitro import system. J Biol Chem 2003; 278:226-32. [PMID: 12411433 DOI: 10.1074/jbc.m209498200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to current models of peroxisomal biogenesis, Pex5p cycles between the cytosol and the peroxisome transporting newly synthesized proteins to the organelle matrix. However, little is known regarding the mechanism of this pathway. Here, we show that Pex5p enters and exits the peroxisomal compartment in a process that requires ATP. Insertion of Pex5p into the peroxisomal membrane is blocked by anti-Pex14p IgGs. At the peroxisomal level, two Pex14p-associated populations of Pex5p could be resolved, stage 2 and stage 3 Pex5p, both exposing the majority of their masses into the organelle lumen. Stage 3 Pex5p can be easily detected only under ATP-limiting conditions; in the presence of ATP it leaves the peroxisomal compartment rapidly. Our data suggest that translocation of PTS1-containing proteins across the peroxisomal membrane occurs concomitantly with formation of the Pex5p-Pex14p membrane complex and that this is probably the site from which Pex5p leaves the peroxisomal compartment.
Collapse
Affiliation(s)
- Alexandra M Gouveia
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
89
|
Tanaka AR, Tanabe K, Morita M, Kurisu M, Kasiwayama Y, Matsuo M, Kioka N, Amachi T, Imanaka T, Ueda K. ATP binding/hydrolysis by and phosphorylation of peroxisomal ATP-binding cassette proteins PMP70 (ABCD3) and adrenoleukodystrophy protein (ABCD1). J Biol Chem 2002; 277:40142-7. [PMID: 12176987 DOI: 10.1074/jbc.m205079200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 70-kDa peroxisomal membrane protein (PMP70) and adrenoleukodystrophy protein (ALDP), half-size ATP-binding cassette transporters, are involved in metabolic transport of long and very long chain fatty acids into peroxisomes. We examined the interaction of peroxisomal ATP-binding cassette transporters with ATP using rat liver peroxisomes. PMP70 was photoaffinity-labeled at similar efficiencies with 8-azido-[alpha-32P]ATP and 8-azido-[gamma-32P]ATP when peroxisomes were incubated with these nucleotides at 37 degrees C in the absence Mg2+ and exposed to UV light without removing unbound nucleotides. The photoaffinity-labeled PMP70 and ALDP were co-immunoprecipitated together with other peroxisomal proteins, which also showed tight ATP binding properties. Addition of Mg2+ reduced the photoaffinity labeling of PMP70 with 8-azido-[gamma-32P]ATP by 70%, whereas it reduced photoaffinity labeling with 8-azido-[alpha-32P]ATP by only 20%. However, two-thirds of nucleotide (probably ADP) was dissociated during removal of unbound nucleotides. These results suggest that ATP binds to PMP70 tightly in the absence of Mg2+, the bound ATP is hydrolyzed to ADP in the presence of Mg2+, and the produced ADP is dissociated from PMP70, which allows ATP hydrolysis turnover. Properties of photoaffinity labeling of ALDP were essentially similar to those of PMP70. Vanadate-induced nucleotide trapping in PMP70 and ALDP was not observed. PMP70 and ALDP were also phosphorylated at a tyrosine residue(s). ATP binding/hydrolysis by and phosphorylation of PMP70 and ALDP are involved in the regulation of fatty acid transport into peroxisomes.
Collapse
Affiliation(s)
- Arowu R Tanaka
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Huang Y, Ito R, Imanaka T, Usuda N, Ito M. Different accumulations of 3-ketoacyl-CoA thiolase precursor in peroxisomes of Chinese hamster ovary cells harboring a dysfunction in the PEX2 protein. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:273-84. [PMID: 12031794 DOI: 10.1016/s0167-4889(02)00180-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The peroxisomal localization of 3-ketoacyl-CoA thiolase (hereafter referred to as thiolase) was characterized in five Chinese hamster ovary (CHO) mutant cell lines each harboring a dysfunction in the PEX2 protein. PT54 (Pex2pN100) cells carry a nonsense mutation that results in the PEX2 protein truncated at amino acid position 100. SK24 (Pex2pC258Y) cells carry a missense mutation resulting in the amino acid substitution of a cysteine residue by a tyrosine residue at amino acid position 258 of the PEX2 protein. The WSK24 (Pex2pC258Y/+wild) cell line is a stable transformant of SK24 (Pex2pC258Y) cells transfected with wild-type rat PEX2 cDNA. The SPT54 (Pex2pN100/+Pex2pC258Y) and WPT54 (Pex2pN100/+wild) cell lines are stable transformants of PT54 (Pex2pN100) cells transfected with the mutant PEX2 cDNA from SK24 (Pex2pC258Y) cells and wild-type rat PEX2 cDNA, respectively. In these cell lines, except PT54 (Pex2pN100), thiolase appeared to be localized in peroxisomes, as it is in the wild-type cells. When the molecular size of the enzyme was examined on SDS-polyacrylamide gel electrophoresis, the peroxisome-localized enzyme exhibited a larger precursor form in these mutant cells. The characterizations with salt wash, sodium carbonate extraction and proteinase K digestion indicated that the precursor forms of the enzyme were accumulated at different states in peroxisomes of these mutant cells. The dispositions on the peroxisomal membrane were further sustained by differential permeabilization using digitonin, followed by immunocytochemical fluorescence. These results suggest that PEX2 protein functions differently on two processes of the maturation and the disposition in the import pathway of thiolase.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Biology, Saga Medical School, Nabeshima, Japan
| | | | | | | | | |
Collapse
|
91
|
Eystathioy T, Chan EKL, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 2002; 13:1338-51. [PMID: 11950943 PMCID: PMC102273 DOI: 10.1091/mbc.01-11-0544] [Citation(s) in RCA: 286] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A novel human cellular structure has been identified that contains a unique autoimmune antigen and multiple messenger RNAs. This complex was discovered using an autoimmune serum from a patient with motor and sensory neuropathy and contains a protein of 182 kDa. The gene and cDNA encoding the protein indicated an open reading frame with glycine-tryptophan (GW) repeats and a single RNA recognition motif. Both the patient's serum and a rabbit serum raised against the recombinant GW protein costained discrete cytoplasmic speckles designated as GW bodies (GWBs) that do not overlap with the Golgi complex, endosomes, lysosomes, or peroxisomes. The mRNAs associated with GW182 represent a clustered set of transcripts that are presumed to reside within the GW complexes. We propose that the GW ribonucleoprotein complex is involved in the posttranscriptional regulation of gene expression by sequestering a specific subset of gene transcripts involved in cell growth and homeostasis.
Collapse
|
92
|
Emadi-Konjin HP, Zhang H, Anandan V, Sun D, Schuetz J, Furuya KN. Isolation of a genomic clone containing the promoter region of the human ATP binding cassette (ABC) transporter, ABCB6. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:117-30. [PMID: 11955620 DOI: 10.1016/s0167-4781(01)00340-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported on the isolation of a new rat ATP binding cassette (ABC) transporter, ABCB6. We now report the isolation of the full-length cDNA and genomic clones containing the human ABCB6 gene. ABCB6 is 100% identical to the cloned MTABC3 human ABC transporter and contains the typical ABC signature, Walker A and B motifs. We found that HuABCB6 is expressed at low levels in normal human liver. We found that ABCB6 was overexpressed in human hepatocellular carcinomas compared to paired surrounding non-malignant tissue. We found that there was no difference in ABCB6 gene copy between human liver cancer and its paired non-malignant tissue. Because HuABCB6 was overexpressed in human cancers compared to peri-tumoral tissue in the absence of gene amplification, transcriptional regulation may play an important role in its expression. Therefore, we isolated a 14 kb genomic DNA clone containing the HuABCB6 promoter and 5'-flanking region. The 5'-flanking region contains a CpG island, lacks an appropriately positioned TATA element and contains a number of putative transcription factor binding sites. Two transcription start sites were identified by S1 nuclease mapping at -274 and -296 bp from the start codon. Transient transfection of the HuABCB6 promoter constructs (HuABCB6/1.68, 1.39, 1.13, 0.90, 0.52) containing the luciferase reporter gene resulted in a 1100-2300-fold increase in luciferase activity compared to the empty vector control whereas HuABCB6/1.68 subcloned in the reverse orientation resulted in no activity. We observed a significant decrease in luciferase activity with the promoter constructs, HuABCB6/0.25, 0.15 and 0.06, which indicates that an orientation-dependent functional promoter is contained within our previously predicted promoter region of -315 bp to -565 bp as deletion of this 250 bp sequence resulted in a loss of promoter activity.
Collapse
Affiliation(s)
- H Pasha Emadi-Konjin
- Division of Gastroenterology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
93
|
Kashiwayama Y, Morita M, Kamijo K, Imanaka T. Nucleotide-induced conformational changes of PMP70, an ATP binding cassette transporter on rat liver peroxisomal membranes. Biochem Biophys Res Commun 2002; 291:1245-51. [PMID: 11883951 DOI: 10.1006/bbrc.2002.6588] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotide-induced conformational changes of the 70-kDa peroxisomal membrane protein (PMP70) were investigated by means of limited-trypsin digestion. Rat liver peroxisomes preincubated with various nucleotides were subsequently digested by trypsin. The digestion products were subjected to immunoblot analysis with an anti-PMP70 antibody that recognizes the carboxyl-terminal 15 amino acids of the protein. PMP70 was initially cleaved in the boundary region between the transmembrane and nucleotide-binding domains and a carboxyl-terminal 30-kDa fragment resulted. The fragment in turn was progressively digested at the helical domain between the Walker A and B motifs. The fragment, however, could be stabilized with MgATP or MgADP. In contrast to MgATP, MgATP-gammaS protected whole PMP70 as well as the fragment. The 30-kDa fragment processed by trypsin was recovered in the post-peroxisomal fraction as a complex with a molecular mass of about 60 kDa irrespective of the presence of MgATP. These results suggest that PMP70 exists as a dimer on the peroxisomal membranes and the binding and hydrolysis of ATP induce conformational changes in PMP70 close to the boundary between the transmembrane and nucleotide binding domains and the helical domain between the Walker A and B motifs.
Collapse
Affiliation(s)
- Yoshinori Kashiwayama
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
94
|
Koenig C, Araya C, Skorin C, Valencia C, Toro A, Leighton F, Santos MJ. Cytochemical and biochemical demonstration of an ATPase in membranes of human peroxisomes. J Histochem Cytochem 2002; 50:405-14. [PMID: 11850442 DOI: 10.1177/002215540205000311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We demonstrated a neutral Mg-ATPase activity in human peroxisomal membranes. To establish the precise experimental conditions for detection of this ATPase, both cytochemical and biochemical characterizations were first carried out in liver peroxisomes from control and cipofibrate-treated rats. The results demonstrated an Mg-ATPase reaction in both normal and proliferated peroxisomes. The nucleotidase activity, with marked preference for ATP, was sensitive to the inhibitors N-ethylmaleimide and 7-chloro-4-nitro-benzo-2-oxadiazole (NBDCl). An ultrastructural cytochemical analysis was developed to evaluate the peroxisomal localization, which localized the reaction product to the peroxisomal membrane. These characteristics can help to differentiate the peroxisomal ATPase from the activity found in mitochondria and endoplasmic reticulum. The conditions established for detecting the rat peroxisomal ATPase were then applied to human peroxisomes isolated from liver and skin fibroblasts in culture. A similar Mg-ATPase activity was readily shown, both cytochemically and biochemically, in the membranes of human peroxisomes. These results, together with previous evidence, strongly support the presence of a specific ATPase in the human peroxisomal membrane. This ATPase may play a crucial role in peroxisome biogenesis.
Collapse
Affiliation(s)
- Cecilia Koenig
- Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
95
|
Hayashi M, Nito K, Takei-Hoshi R, Yagi M, Kondo M, Suenaga A, Yamaya T, Nishimura M. Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid beta-oxidation. PLANT & CELL PHYSIOLOGY 2002; 43:1-11. [PMID: 11828016 DOI: 10.1093/pcp/pcf023] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Glyoxysomes, a group of specialized peroxisomes, are organelles that degrade fatty acids by the combination of fatty acid beta-oxidation and glyoxylate cycle. However, the mechanism underlying the transport of the fatty acids across the peroxisomal membrane is still obscure in higher plant cells. We identified and analyzed the PED3 gene and its gene product, Ped3p. The phenotype of the Arabidopsis ped3 mutant indicated that the mutation in the PED3 gene inhibits the activity of fatty acid beta-oxidation. Ped3p is a 149-kDa protein that exists in peroxisomal membranes. The amino acid sequence of Ped3p had a typical characteristic for "full-size" ATP-binding cassette (ABC) transporter consisting of two transmembrane regions and two ATP-binding regions. This protein was divided into two parts, that had 32% identical amino acid sequences. Each part showed a significant sequence similarity with peroxisomal "half" ABC transporters so far identified in mammals and yeast. Ped3p may contribute to the transport of fatty acids and their derivatives across the peroxisomal membrane.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Neumann S, Topper A, Mandel H, Shapira I, Golan O, Gazit E, Loewenthal R. Identification of new mutations in Israeli patients with X-linked adrenoleukodystrophy. GENETIC TESTING 2001; 5:65-8. [PMID: 11336405 DOI: 10.1089/109065701750168806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder characterized by impaired peroxisomal betaoxidation of very-long-chain fatty acids (VLCFAs). This is probably due to reduced activation of the VLCFAs and results in demyelination of the nervous system and adrenocortical insufficiency. The ALD gene is localized on Xq28, has 10 exons and encodes a protein of 745 amino acids with significant homology to the membrane peroxisomal protein PMP70. Characterizing the disease causing mutations is of importance in prenatal diagnosis because 12-20% of women who are obligatory carriers show false-negative results when tested for VLCFA in plasma. We have analyzed DNA from blood samples of 7 Jewish (5 Sephardi and 2 Ashkenazi) and 3 Arab Israeli families suffering from ALD. Five missense-type mutations were identified: R104H, Y174C, L229P, R401Q, and G512C. A single mutation, R464X, was nonsense, and two, Y171 frameshift and E471 frameshift, were frameshift. Interestingly, a single mutation was identified in three families of Moroccan Jewish descent, probably due to a founder effect.
Collapse
Affiliation(s)
- S Neumann
- Tissue Typing Laboratory, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
97
|
Fourcade S, Savary S, Albet S, Gauthé D, Gondcaille C, Pineau T, Bellenger J, Bentejac M, Holzinger A, Berger J, Bugaut M. Fibrate induction of the adrenoleukodystrophy-related gene (ABCD2): promoter analysis and role of the peroxisome proliferator-activated receptor PPARalpha. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3490-500. [PMID: 11422379 DOI: 10.1046/j.1432-1327.2001.02249.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease due to a defect in the ABCD1 (ALD) gene. ABCD1, and the two close homologues ABCD2 (ALDR) and ABCD3 (PMP70), are genes encoding ATP-binding cassette half-transporters of the peroxisomal membrane. As overexpression of the ABCD2 or ABCD3 gene can reverse the biochemical phenotype of X-ALD (reduced beta-oxidation of very-long-chain fatty acids), pharmacological induction of these partially redundant genes may represent a therapeutic approach to X-ALD. We previously reported that the ABCD2 and ABCD3 genes could be strongly induced by fibrates, which are hypolipidaemic drugs and peroxisome-proliferators in rodents. We provide evidence that the induction is dependent on peroxisome proliferator-activated receptor (PPARalpha) as both genes were not induced in fenofibrate-treated PPARalpha -/- knock-out mice. To further characterize the PPARalpha pathway, we cloned and analysed the promoter of the ABCD2 gene, the closest homologue of the ABCD1 gene. The proximal region (2 kb) of the rat promoter displayed a high conservation with the human and mouse cognate sequences suggesting an important role of the region in regulation of the ABCD2 gene. Classically, fibrate-induction involves interaction of PPARalpha with a response element (PPRE) characterized by a direct repeat of the AGGTCA-like motif. Putative PPRE motifs of the rat ABCD2 promoter were studied in the isolated form or in their promoter context by gel-shift assay and transfection of COS-7 cells. We failed to characterize a functional PPRE, suggesting a different mechanism for the PPARalpha-dependent regulation of the ABCD2 gene.
Collapse
Affiliation(s)
- S Fourcade
- Laboratoire de Biologie Moléculaire et Cellulaire, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Wang X, Unruh MJ, Goodman JM. Discrete targeting signals direct Pmp47 to oleate-induced peroxisomes in Saccharomyces cerevisiae. J Biol Chem 2001; 276:10897-905. [PMID: 11278772 DOI: 10.1074/jbc.m010883200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pmp47 is a peroxisomal membrane protein consisting of six transmembrane domains (TMDs). We previously showed that the second matrix loop containing a basic cluster of amino acids is important for peroxisomal targeting, and similar basic targeting motifs have been found in other peroxisomal membrane proteins. However, this basic cluster by itself targets to peroxisomes very poorly. We have developed a sensitive quantitative localization assay based on the targeting of Pmp47-GFP fusion proteins to identify the important elements of the basic cluster and to search for other targeting information on Pmp47. Our data suggest that side-chain structure and position as well as charge are important for targeting by the basic cluster. Analysis of other regions of Pmp47 indicates that all TMDs except TMD2 can be eliminated or substituted without significant loss of targeting. TMD2 plus an adjacent cytoplasmic-oriented sequence is crucial for targeting. Cytoplasmic-oriented sequences from two other peroxisomal membrane proteins, ScPex15p and ScPmp22, could partially substitute for the analogous sequence in Pmp47. Targeting with high fidelity to oleate-induced peroxisomes required the following elements: the cytoplasmic-oriented sequence and TMD2, a short matrix loop containing a basic cluster, and a membrane-anchoring TMD.
Collapse
Affiliation(s)
- X Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | |
Collapse
|
99
|
Albet S, Bentejac M, Savary S, Gondcaille C, Netik A, Berger J, Szpirer C, Troffer-Charlier N, Bugaut M. Rat adrenoleukodystrophy-related (ALDR) gene: full-length cDNA sequence and new insight in expression. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1517:257-69. [PMID: 11342107 DOI: 10.1016/s0167-4781(00)00291-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is an inherited demyelinating disorder due to mutations in the ALD gene, which encodes a peroxisomal ABC half-transporter (ALDP). It has been suggested that ALDP assembles with ALDRP (adrenoleukodystrophy-related protein), a close homologous half-transporter, to form a functional heterodimer. For the first time full-length ALDRP cDNA (5.5 kb) was cloned, and 5' and 3' RACE analysis revealed that alternative usage of polyadenylation sites generates the two transcripts of 3.0 and 5.5 kb observed in the rat in Northern blot analysis. Southern blotting and chromosomal mapping demonstrated one ALDR locus in the rat genome. Characterisation of the 3' flanking region suggested that an ID sequence might be responsible for high expression of the 5.5 kb ALDRP transcript in rat brain. ALDR gene expression was found to be high in the liver of rats before weaning and very low in adult rats; the reverse developmental regulation was observed in the brain. Fenofibrate, which is a potent inducer of the ALDR gene in the liver of adult rats, could not induce the ALDR gene in suckling rats. The exact significance of this result with regard to development of an efficient pharmacological gene therapy for X-ALD is discussed.
Collapse
Affiliation(s)
- S Albet
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté des Sciences Gabriel, Université de Bourgogne, 6 Bd Gabriel, 21000 Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Wilcke M, Alexson SE. Differential induction of peroxisomal populations in subcellular fractions of rat liver. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1544:358-69. [PMID: 11341945 DOI: 10.1016/s0167-4838(00)00250-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In rat liver, peroxisome proliferators induce profound changes in the number and protein composition of peroxisomes, which upon subcellular fractionation is reflected in heterogeneity in sedimentation properties of peroxisome populations. In this study we have investigated the time course of induction of the peroxisomal proteins catalase, acyl-CoA oxidase (ACO) and the 70 kDa peroxisomal membrane protein (PMP70) in different subcellular fractions. Rats were fed a di(2-ethylhexyl)phthalate (DEHP) containing diet for 8 days and livers were removed at different time-points, fractionated by differential centrifugation into nuclear, heavy and light mitochondrial, microsomal and soluble fractions, and organelle marker enzymes were measured. Catalase was enriched mainly in the light mitochondrial and soluble fractions, while ACO was enriched in the nuclear fraction (about 30%) and in the soluble fraction. PMP70 was found in all fractions except the soluble fraction. DEHP treatment induced ACO, catalase and PMP70 activity and immunoreactive protein, but the time course and extent of induction was markedly different in the various subcellular fractions. All three proteins were induced more rapidly in the nuclear fraction than in the light mitochondrial or microsomal fractions, with catalase and PMP70 being maximally induced in the nuclear fraction already at 2 days of treatment. Refeeding a normal diet quickly normalized most parameters. These results suggest that induction of a heavy peroxisomal compartment is an early event and that induction of 'small peroxisomes', containing PMP70 and ACO, is a late event. These data are compatible with a model where peroxisomes initially proliferate by growth of a heavy, possibly reticular-like, structure rather than formation of peroxisomes by division of pre-existing organelles into small peroxisomes that subsequently grow. The various peroxisome populations that can be separated by subcellular fractionation may represent peroxisomes at different stages of biogenesis.
Collapse
Affiliation(s)
- M Wilcke
- The Wenner-Gren Institute, Stockholm University, Sweden.
| | | |
Collapse
|