51
|
Brandenberger C, Ochs M, Mühlfeld C. Assessing particle and fiber toxicology in the respiratory system: the stereology toolbox. Part Fibre Toxicol 2015; 12:35. [PMID: 26521139 PMCID: PMC4628359 DOI: 10.1186/s12989-015-0110-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022] Open
Abstract
The inhalation of airborne particles can lead to pathological changes in the respiratory tract. For this reason, toxicology studies on effects of inhalable particles and fibers often include an assessment of histopathological alterations in the upper respiratory tract, the trachea and/or the lungs. Conventional pathological evaluations are usually performed by scoring histological lesions in order to obtain "quantitative" information and an estimation of the severity of the lesion. This approach not only comprises a potential subjective bias, depending on the examiner's judgment, but also conveys the risk that mild alterations escape the investigator's eye. The most accurate way of obtaining unbiased quantitative information about three-dimensional (3D) features of tissues, cells, or organelles from two-dimensional physical or optical sections is by means of stereology, the gold standard of image-based morphometry. Nevertheless, it can be challenging to express histopathological changes by morphometric parameters such as volume, surface, length or number only. In this review we therefore provide an overview on different histopathological lesions in the respiratory tract associated with particle and fiber toxicology and on how to apply stereological methods in order to correctly quantify and interpret histological lesions in the respiratory tract. The article further aims at pointing out common pitfalls in quantitative histopathology and at providing some suggestions on how respiratory toxicology can be improved by stereology. Thus, we hope that this article will stimulate scientists in particle and fiber toxicology research to implement stereological techniques in their studies, thereby promoting an unbiased 3D assessment of pathological lesions associated with particle exposure.
Collapse
Affiliation(s)
- Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
52
|
Prueitt RL, Cohen JM, Goodman JE. Evaluation of atherosclerosis as a potential mode of action for cardiovascular effects of particulate matter. Regul Toxicol Pharmacol 2015; 73:S1-15. [PMID: 26474868 DOI: 10.1016/j.yrtph.2015.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/30/2015] [Indexed: 01/10/2023]
Abstract
Epidemiology studies have consistently reported associations between PM2.5 exposure and cardiovascular (CV) morbidity and mortality, but the epidemiology evidence for associations between PM2.5 and subclinical measures of atherosclerosis is unclear. We critically reviewed the experimental studies of PM2.5 and effects associated with acceleration and exacerbation of atherosclerosis and evaluated whether they support a biologically plausible, human-relevant mode of action (MoA) for the associations between PM2.5 exposure and adverse CV outcomes reported in epidemiology studies. We focused on outcomes related to atherosclerotic plaque development, thrombosis, and coagulation, and we examined whether these outcomes were correlated with measures of oxidative stress and systemic or pulmonary inflammation, to evaluate whether these processes are likely to be key early events for atherogenic effects of PM. While the current experimental evidence indicates that the acceleration and exacerbation of atherosclerosis is a biologically plausible MoA in experimental animal models, we found that the human relevance of the key events in the proposed MoA is unclear and not well supported by the existing data. Further studies are needed to fill several important data gaps before the human relevance of this MoA can be established.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Joel M Cohen
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Julie E Goodman
- Gradient, 20 University Road, Suite 5, Cambridge, MA, 02138, USA.
| |
Collapse
|
53
|
Platel A, Carpentier R, Becart E, Mordacq G, Betbeder D, Nesslany F. Influence of the surface charge of PLGA nanoparticles on their in vitro genotoxicity, cytotoxicity, ROS production and endocytosis. J Appl Toxicol 2015; 36:434-44. [PMID: 26487569 DOI: 10.1002/jat.3247] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
Abstract
With the ongoing commercialization of nanotechnology products, human exposure to nanoparticles (NPs) is set to increase dramatically and an evaluation of their potential adverse effects is essential. Surface charge, among other physico-chemicals parameters, is a key criterion that should be considered when using a definition for nanomaterials in a regulatory context. It has recently been recognized as an important factor in determining the toxicity of NPs; however, a complete understanding of the mechanisms involved is still lacking. In this context, the aim of the present study was to investigate the influence of the surface charge modification of NPs on in vitro toxicity assays. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles bearing different surface charges, positive(+), neutral(n) or negative(-), were synthesized. In vitro genotoxicity assays (micronucleus and comet assays) coupled with an assessment of cytotoxicity, were performed in different cell lines (L5178Y mouse lymphoma cells, TK6 human B-lymphoblastoid cells and 16HBE14o- human bronchial epithelial cells). Reactive oxygen species (ROS) production and endocytosis studies were also performed. Our results showed that PLGA(+) NPs were cytotoxic. They are endocytosed by the clathrin pathway and induced ROS in the three cell lines. They led to chromosomal aberrations without primary DNA damage in 16HBE14o- cells, suggesting that aneuploidy may be considered as an important biomarker when assessing the genotoxic potential of NPs. Moreover, 16HBE14o- cells seem to be more suitable for the in vitro screening of inhaled NPs than the regulatory L5178Y and TK6 cells.
Collapse
Affiliation(s)
- Anne Platel
- Université de Lille 2, 59000, Lille, France.,Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, 1 rue du Professeur Calmette, BP 245, 59019, Lille, France.,EA4483, Université Lille 2, Faculté de Médecine Pôle Recherche, 1 Place de Verdun, 59045, Lille, France
| | - Rodolphe Carpentier
- CHRU de Lille, Inserm U995-LIRIC, 59000, Lille, France.,Université d'Artois, 62300, Lens, France
| | - Elodie Becart
- Université de Lille 2, 59000, Lille, France.,Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, 1 rue du Professeur Calmette, BP 245, 59019, Lille, France
| | - Gwendoline Mordacq
- Université de Lille 2, 59000, Lille, France.,Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, 1 rue du Professeur Calmette, BP 245, 59019, Lille, France
| | - Didier Betbeder
- Université de Lille 2, 59000, Lille, France.,CHRU de Lille, Inserm U995-LIRIC, 59000, Lille, France.,Université d'Artois, 62300, Lens, France
| | - Fabrice Nesslany
- Université de Lille 2, 59000, Lille, France.,Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, 1 rue du Professeur Calmette, BP 245, 59019, Lille, France.,EA4483, Université Lille 2, Faculté de Médecine Pôle Recherche, 1 Place de Verdun, 59045, Lille, France
| |
Collapse
|
54
|
High-throughput, quantitative assessment of the effects of low-dose silica nanoparticles on lung cells: grasping complex toxicity with a great depth of field. BMC Genomics 2015; 16:315. [PMID: 25895662 PMCID: PMC4404697 DOI: 10.1186/s12864-015-1521-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/10/2015] [Indexed: 01/23/2023] Open
Abstract
Background The toxicity of manufactured fumed silica nanoparticles (NPs) remains poorly investigated compared to that of crystalline silica NPs, which have been associated with lung diseases after inhalation. Amorphous silica NPs are a raw material for manufactured nanocomposites, such as cosmetics, foods, and drugs, raising concerns about their potential toxicity. Results The size of the NPs was determined by dynamic light scattering and their shape was visualized by atomic force microscopy (10 ± 4 nm). The pertinent toxicological concentration and dynamic ranges were determined using viability tests and cellular impedance. We combined transcriptomics and proteomics to assess the cellular and molecular effects of fumed silica in A549 human alveolar epithelial cells. The “no observed transcriptomic adverse effect level” (NOTEL) was set to 1.0 μg/cm2, and the “lowest observed adverse transcriptional effect level” (LOTEL) was set at 1.5 μg/cm2. We carried out genome-wide expression profiles with microarrays and identified, by shotgun proteomics, the exoproteome changes in lung cells after exposure to NP doses (0.1, 1.0, 1.5, 3.0, and 6.0 μg/cm2) at two time points (24 h and 72 h). The data revealed a hierarchical, dose-dependent cellular response to silica NPs. At 1.5 μg/cm2, the Rho signaling cascade, actin cytoskeleton remodeling, and clathrin-mediated endocytosis were induced. At 3.0 μg/cm2, many inflammatory mediators were upregulated and the coagulation system pathway was triggered. Lastly, at 6.0 μg/cm2, oxidative stress was initiated. The proteins identified in the extracellular compartment were consistent with these findings. Conclusions The alliance of two high-throughput technologies allowed the quantitative assessment of the cellular effects and molecular consequences of exposure of lung cells to low doses of NPs. These results were obtained using a pathway-driven analysis instead of isolated genes. As in photography, toxicogenomics allows, at the same time, the visualization of a wide spectrum of biological responses and a “zoom in” to the details with a great depth of field. This study illustrates how such an approach based on human cell culture models is a valuable predictive screening tool to evaluate the toxicity of many potentially harmful emerging substances, alone or in mixtures, in the framework of future regulatory reinforcements. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1521-5) contains supplementary material, which is available to authorized users.
Collapse
|
55
|
Nemmar A, Al Hemeiri A, Al Hammadi N, Yuvaraju P, Beegam S, Yasin J, Elwasila M, Ali BH, Adeghate E. Early pulmonary events of nose-only water pipe (shisha) smoking exposure in mice. Physiol Rep 2015; 3:e12258. [PMID: 25780090 PMCID: PMC4393146 DOI: 10.14814/phy2.12258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/24/2022] Open
Abstract
Water pipe smoking (WPS) is increasing in popularity and prevalence worldwide. Convincing data suggest that the toxicants in WPS are similar to that of cigarette smoke. However, the underlying pathophysiologic mechanisms related to the early pulmonary events of WPS exposure are not understood. Here, we evaluated the early pulmonary events of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. BALB/c mice were exposed to WPS 30 min/day for 5 days. Control mice were exposed using the same protocol to atmospheric air only. We measured airway resistance using forced oscillation technique, and pulmonary inflammation was evaluated histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid and lung tissue. Lung oxidative stress was evaluated biochemically by measuring the level of reactive oxygen species (ROS), lipid peroxidation (LPO), reduced glutathione (GSH), catalase, and superoxide dismutase (SOD). Mice exposed to WPS showed a significant increase in the number of neutrophils (P < 0.05) and lymphocytes (P < 0.001). Moreover, total protein (P < 0.05), lactate dehydrogenase (P < 0.005), and endothelin (P < 0.05) levels were augmented in bronchoalveolar lavage fluid. Tumor necrosis factor α (P < 0.005) and interleukin 6 (P < 0.05) concentrations were significantly increased in lung following the exposure to WPS. Both ROS (P < 0.05) and LPO (P < 0.005) in lung tissue were significantly increased, whereas the level and activity of antioxidants including GSH (P < 0.0001), catalase (P < 0.005), and SOD (P < 0.0001) were significantly decreased after WPS exposure, indicating the occurrence of oxidative stress. In contrast, airway resistance was not increased in WPS exposure. We conclude that subacute, nose-only exposure to WPS causes lung inflammation and oxidative stress without affecting pulmonary function suggesting that inflammation and oxidative stress are early markers of WPS exposure that precede airway dysfunction. Our data provide information on the initial steps involved in the respiratory effects of WPS, which constitute the underlying causal chain of reactions leading to the long-term effects of WPS.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmed Al Hemeiri
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naser Al Hammadi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Elwasila
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
56
|
A co-culture system with an organotypic lung slice and an immortal alveolar macrophage cell line to quantify silica-induced inflammation. PLoS One 2015; 10:e0117056. [PMID: 25635824 PMCID: PMC4312074 DOI: 10.1371/journal.pone.0117056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/18/2014] [Indexed: 11/20/2022] Open
Abstract
There is growing evidence that amorphous silica nanoparticles cause toxic effects on lung cells in vivo as well as in vitro and induce inflammatory processes. The phagocytosis of silica by alveolar macrophages potentiates these effects. To understand the underlying molecular mechanisms of silica toxicity, we applied a co-culture system including the immortal alveolar epithelial mouse cell line E10 and the macrophage cell line AMJ2-C11. In parallel we exposed precision-cut lung slices (lacking any blood cells as well as residual alveolar macrophages) of wild type and P2rx7−/− mice with or without AMJ2-C11 cells to silica nanoparticles. Exposure of E10 cells as well as slices of wild type mice resulted in an increase of typical alveolar epithelial type 1 cell proteins like T1α, caveolin-1 and -2 and PKC-β1, whereas the co-culture with AMJ2-C11 showed mostly a slightly lesser increase of these proteins. In P2rx7−/− mice most of these proteins were slightly decreased. ELISA analysis of the supernatant of wild type and P2rx7−/− mice precision-cut lung slices showed decreased amounts of IL-6 and TNF-α when incubated with nano-silica. Our findings indicate that alveolar macrophages influence the early inflammation of the lung and also that cell damaging reagents e.g. silica have a smaller impact on P2rx7−/− mice than on wild type mice. The co-culture system with an organotypic lung slice is a useful tool to study the role of alveolar macrophages during lung injury at the organoid level.
Collapse
|
57
|
Han SG, Howatt D, Daugherty A, Gairola G. Pulmonary and atherogenic effects of multi-walled carbon nanotubes (MWCNT) in apolipoprotein-E-deficient mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:244-253. [PMID: 25674827 DOI: 10.1080/15287394.2014.958421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rapid growth in nanotechnology has raised concerns regarding adverse health effects due to human exposure to manufactured nanoparticles. Carbon nanotubes (CNT) are among the most extensively used nanoparticles. This study examined pulmonary and atherosclerotic effects of multiwalled CNT (MWCNT) in a mouse model of atherosclerosis. Female apolipoprotein E-deficient (apoE-/-) mice were exposed to 40 μg MWCNT, once each week for 16 consecutive weeks by pharyngeal aspiration. On d 1 after the last administration, tissues were extracted from half the group, while the remaining animals were sacrificed at d 7. Bronchoalveolar lavage (BAL) was performed to obtain BAL fluid. In addition, plasma, lung, and aortas were extracted to assess pulmonary inflammation and atherosclerotic lesion formation. Polymorphonuclear leukocytes and total BAL cell number increased significantly in MWCNT-exposed mice on d 1 and 7 postexposure. Cell-free BAL fluid obtained from MWCNT-exposed mice at d 1 and 7 postexposure contained significantly elevated levels of total protein, lactate dehydrogenase (LDH), surfactant protein-D, and mucin. Although MWCNT exposure increased pulmonary injury and inflammation, the aortic intimal surface covered by atherosclerotic lesions was not significantly different between control apoE-/- mice and apoE-/- MNCNT-treated animals. Total plasma cholesterol concentrations also were not markedly affected by MWCNT exposure. These results demonstrate that pulmonary exposure to MWCNT affects local airway inflammation but did not appear to augment progression of atherosclerosis in female apoE-/- mice.
Collapse
Affiliation(s)
- Sung Gu Han
- a Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources , Konkuk University , Seoul , Korea
| | | | | | | |
Collapse
|
58
|
Loos C, Syrovets T, Musyanovych A, Mailänder V, Landfester K, Nienhaus GU, Simmet T. Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2403-12. [PMID: 25671136 PMCID: PMC4311717 DOI: 10.3762/bjnano.5.250] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 11/17/2014] [Indexed: 05/19/2023]
Abstract
Nanoparticles of various shapes, sizes, and materials carrying different surface modifications have numerous technological and biomedical applications. Yet, the mechanisms by which nanoparticles interact with biological structures as well as their biological impact and hazards remain poorly investigated. Due to their large surface to volume ratio, nanoparticles usually exhibit properties that differ from those of bulk materials. Particularly, the surface chemistry of the nanoparticles is crucial for their durability and solubility in biological media as well as for their biocompatibility and biodistribution. Polystyrene does not degrade in the cellular environment and exhibits no short-term cytotoxicity. Because polystyrene nanoparticles can be easily synthesized in a wide range of sizes with distinct surface functionalizations, they are perfectly suited as model particles to study the effects of the particle surface characteristics on various biological parameters. Therefore, we have exploited polystyrene nanoparticles as a convenient platform to study bio-nano interactions. This review summarizes studies on positively and negatively charged polystyrene nanoparticles and compares them with clinically used superparamagnetic iron oxide nanoparticles.
Collapse
Affiliation(s)
- Cornelia Loos
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Helmholtzstr. 20, D-89081 Ulm, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Helmholtzstr. 20, D-89081 Ulm, Germany
| | - Anna Musyanovych
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Volker Mailänder
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Katharina Landfester
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Str. 1, D-76131 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Str. Urbana, Illinois 61801, United States
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Helmholtzstr. 20, D-89081 Ulm, Germany
| |
Collapse
|
59
|
Vela-Ramirez JE, Goodman JT, Boggiatto PM, Roychoudhury R, Pohl NLB, Hostetter JM, Wannemuehler MJ, Narasimhan B. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. AAPS JOURNAL 2014; 17:256-67. [PMID: 25421457 DOI: 10.1208/s12248-014-9699-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 01/08/2023]
Abstract
Carbohydrate functionalization of nanoparticles allows for targeting of C-type lectin receptors. This family of pattern recognition receptors expressed on innate immune cells, such as macrophages and dendritic cells, can be used to modulate immune responses. In this work, the in vivo safety profile of carbohydrate-functionalized polyanhydride nanoparticles was analyzed following parenteral and intranasal administration in mice. Polyanhydride nanoparticles based on 1,6-bis-(p-carboxyphenoxy)hexane and 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaoctane were used. Nanoparticle functionalization with di-mannose (specifically carboxymethyl-α-D-mannopyranosyl-(1,2)-D-mannopyranoside), galactose (specifically carboxymethyl-β-galactoside), or glycolic acid induced no adverse effects after administration based on histopathological evaluation of liver, kidneys, and lungs. Regardless of the polymer formulation, there was no evidence of hepatic or renal damage or dysfunction observed in serum or urine samples. The histological profile of cellular infiltration and the cellular distribution and kinetics in the lungs of mice administered with nanoparticle treatments followed similar behavior as that observed in the lungs of animals administered with saline. Cytokine and chemokine profiles in bronchoalveolar lavage fluid indicated surface chemistry dependence on modest secretion of IL-6, IP-10, and MCP-1; however, there was no evidence of any deleterious histopathological changes. Based on these analyses, carbohydrate-functionalized nanoparticles are safe for in vivo applications. These results provide foundational information towards the evaluation of the capabilities of these surface-modified nanoparticles as vaccine delivery formulations.
Collapse
Affiliation(s)
- Julia E Vela-Ramirez
- Department of Chemical and Biological Engineering, Iowa State University, 2035 Sweeney Hall, Ames, Iowa, 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Luyts K, Smulders S, Napierska D, Van Kerckhoven S, Poels K, Scheers H, Hemmeryckx B, Nemery B, Hoylaerts MF, Hoet PHM. Pulmonary and hemostatic toxicity of multi-walled carbon nanotubes and zinc oxide nanoparticles after pulmonary exposure in Bmal1 knockout mice. Part Fibre Toxicol 2014; 11:61. [PMID: 25394423 PMCID: PMC4234845 DOI: 10.1186/s12989-014-0061-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/29/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pulmonary exposure to nanoparticles (NPs) may affect, in addition to pulmonary toxicity, the cardiovascular system such as procoagulant effects, vascular dysfunction and progression of atherosclerosis. However, only few studies have investigated hemostatic effects after pulmonary exposure. METHODS We used Bmal1 (brain and muscle ARNT-like protein-1) knockout (Bmal1(-/-)) mice which have a disturbed circadian rhythm and procoagulant phenotype, to study the pulmonary and hemostatic toxicity of multi-walled carbon nanotubes (MWCNTs) and zinc oxide (ZnO) NPs after subacute pulmonary exposure. Bmal1(-/-) and wild-type (Bmal1(+/+)) mice were exposed via oropharyngeal aspiration, once a week, during 5 consecutive weeks, to a cumulative dose of 32 or 128 μg MWCNTs or 32 or 64 μg ZnO NPs. RESULTS MWCNTs caused a pronounced inflammatory response in the lung with increased cell counts in the broncho-alveolar lavage and increased secretion of interleukin-1β and cytokine-induced neutrophil chemo-attractant (KC), oxidative stress (increased ratio of oxidized versus reduced glutathione and decreased total glutathione) as well as anemic and procoagulant effects as evidenced by a decreased prothrombin time with increased fibrinogen concentrations and coagulation factor (F)VII. In contrast, the ZnO NPs seemed to suppress the inflammatory (decreased neutrophils in Bmal1(-/-) mice) and oxidative response (increased total glutathione in Bmal1(-/-) mice), but were also procoagulant with a significant increase of FVIII. The procoagulant effects, as well as the significant correlations between the pulmonary endpoints (inflammation and oxidative stress) and hemostasis parameters were more pronounced in Bmal1(-/-) mice than in Bmal1(+/+) mice. CONCLUSIONS The Bmal1(-/-) mouse is a sensitive animal model to study the procoagulant effects of engineered NPs. The MWCNTs and ZnO NPs showed different pulmonary toxicity but both NPs induced procoagulant effects, suggesting different mechanisms of affecting hemostasis. However, the correlation analysis suggests a causal association between the observed pulmonary and procoagulant effects.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Air Pollutants/chemistry
- Air Pollutants/toxicity
- Anemia, Hemolytic/chemically induced
- Anemia, Hemolytic/immunology
- Anemia, Hemolytic/metabolism
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/toxicity
- Coagulants/administration & dosage
- Coagulants/chemistry
- Coagulants/toxicity
- Dose-Response Relationship, Drug
- Hemolysis/drug effects
- Inflammation Mediators/agonists
- Inflammation Mediators/metabolism
- Inhalation Exposure/adverse effects
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Metal Nanoparticles/administration & dosage
- Metal Nanoparticles/chemistry
- Metal Nanoparticles/toxicity
- Mice, Inbred C57BL
- Mice, Knockout
- Nanotubes, Carbon/chemistry
- Nanotubes, Carbon/toxicity
- Oxidative Stress/drug effects
- Pneumonia/chemically induced
- Pneumonia/immunology
- Pneumonia/metabolism
- Respiratory Mucosa/drug effects
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Thrombophilia/chemically induced
- Thrombophilia/immunology
- Thrombophilia/metabolism
- Toxicity Tests, Subacute
- Zinc Oxide/administration & dosage
- Zinc Oxide/chemistry
- Zinc Oxide/toxicity
Collapse
Affiliation(s)
- Katrien Luyts
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| | - Stijn Smulders
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| | - Dorota Napierska
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| | - Soetkin Van Kerckhoven
- Department of Cardiovascular sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.
| | - Katrien Poels
- Department of Public Health and Primary Care, Laboratory for Occupational and Environmental Hygiene, KU Leuven, Leuven, Belgium.
| | - Hans Scheers
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| | - Bianca Hemmeryckx
- Department of Cardiovascular sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.
| | - Ben Nemery
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| | - Marc F Hoylaerts
- Department of Cardiovascular sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.
| | - Peter H M Hoet
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
61
|
Abdalla AME, Xiao L, Ouyang C, Yang G. Engineered nanoparticles: thrombotic events in cancer. NANOSCALE 2014; 6:14141-14152. [PMID: 25347245 DOI: 10.1039/c4nr04825c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Engineered nanoparticles are being increasingly produced for specific applications in medicine. Broad selections of nano-sized constructs have been developed for applications in diagnosis, imaging, and drug delivery. Nanoparticles as contrast agents enable conjugation with molecular markers which are essential for designing effective diagnostic and therapeutic strategies. Such investigations can also lead to a better understanding of disease mechanisms such as cancer-associated thrombosis which remains unpredictable with serious bleeding complications and high risk of death. Here we review the recent and current applications of engineered nanoparticles in diagnosis and therapeutic strategies, noting their toxicity in relation to specific markers as a target.
Collapse
Affiliation(s)
- Ahmed M E Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
62
|
Seydoux E, Rothen-Rutishauser B, Nita IM, Balog S, Gazdhar A, Stumbles PA, Petri-Fink A, Blank F, von Garnier C. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation. Int J Nanomedicine 2014; 9:3885-902. [PMID: 25152619 PMCID: PMC4140235 DOI: 10.2147/ijn.s64353] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Introduction Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. Methods Bone marrow–derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4+ T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. Results The frequency of PS particle–positive CD11c+/CD11b+ BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4+ T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. Conclusion These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4+ T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.
Collapse
Affiliation(s)
- Emilie Seydoux
- Department of Respiratory Medicine, Inselspital, Bern University Hospital, Department of Clinical Research, University of Bern, Switzerland ; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Barbara Rothen-Rutishauser
- Department of Respiratory Medicine, Inselspital, Bern University Hospital, Department of Clinical Research, University of Bern, Switzerland ; Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Izabela M Nita
- Department of Respiratory Medicine, Inselspital, Bern University Hospital, Department of Clinical Research, University of Bern, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Amiq Gazdhar
- Department of Respiratory Medicine, Inselspital, Bern University Hospital, Department of Clinical Research, University of Bern, Switzerland
| | - Philip A Stumbles
- School of Veterinary and Life Sciences, Molecular and Biomedical Sciences, Murdoch University, Perth, WA, Australia ; Telethon Kids Institute, Perth, WA, Australia
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland ; Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Fabian Blank
- Department of Respiratory Medicine, Inselspital, Bern University Hospital, Department of Clinical Research, University of Bern, Switzerland
| | - Christophe von Garnier
- Department of Respiratory Medicine, Inselspital, Bern University Hospital, Department of Clinical Research, University of Bern, Switzerland
| |
Collapse
|
63
|
Sanfins E, Augustsson C, Dahlbäck B, Linse S, Cedervall T. Size-dependent effects of nanoparticles on enzymes in the blood coagulation cascade. NANO LETTERS 2014; 14:4736-4744. [PMID: 25025946 DOI: 10.1021/nl501863u] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanoparticles (NPs) are increasingly used in diagnostic and drug delivery. After entering the bloodstream, a protein corona will form around NPs. The size and curvature of NPs is one of the major characteristics affecting the composition of bound protein in the corona. Key initiators of the intrinsic pathway of blood coagulation, the contact activation complex, (Kallikrein, Factor XII, and high molecular weight Kininogen) have previously been identified on NPs surfaces. We show that the functional impact of carboxyl-modified polystyrene NPs on these initiators of the intrinsic pathway is size dependent. NPs with high curvature affect the enzymatic activity differently from NPs with low curvature. The size dependency is evident in full blood plasma as well as in solutions of single coagulation factors. NPs induce significant alteration of the enzymatic activity in a size-dependent manner, and enzyme kinetics studies show a critical role for NPs surface area and curvature.
Collapse
Affiliation(s)
- Elodie Sanfins
- Biochemistry and Structural Biology, Chemical Centre, Lund University , Lund, Sweden
| | | | | | | | | |
Collapse
|
64
|
Kyriazis M. The impracticality of biomedical rejuvenation therapies: translational and pharmacological barriers. Rejuvenation Res 2014; 17:390-6. [PMID: 25072550 PMCID: PMC4142774 DOI: 10.1089/rej.2014.1588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The notion that it is possible to eradicate age-related degeneration and live a life with a negligible rate of senescence solely by using a physical "repair-oriented" approach is flawed on a number of fronts. Here, I will argue that there are so many unknown variables embedded in this line of thinking that make the final result impossible to predict. Two relatively easy-to-research areas are the search for successful cross-link breakers and an effective lysosomal degradation therapy. A more complex and speculative strategy is whole-body interdiction of lengthening of telomeres (WILT). Highlighting these as examples, I argue that it is unlikely that such rejuvenation biotechnologies will be used meaningfully by the general public. The discussion assumes that although such therapies may in theory one day be developed in the laboratory, and even possibly be formulated as physical clinical therapies, these will be unusable in practical terms when applied upon humans at large. Due to inherent characteristics of our biological, evolutionary, and psychological heritage, it is implausible that curing aging will occur by using physical interventions alone.
Collapse
Affiliation(s)
- Marios Kyriazis
- ELPIs Foundation for Indefinite Lifespans , London, United Kingdom
| |
Collapse
|
65
|
Nemmar A, Albarwani S, Beegam S, Yuvaraju P, Yasin J, Attoub S, Ali BH. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation. Int J Nanomedicine 2014; 9:2779-89. [PMID: 24936130 PMCID: PMC4047982 DOI: 10.2147/ijn.s52818] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Amorphous silica nanoparticles (SiNPs) are being used in biomedical, pharmaceutical, and many other industrial applications entailing human exposure. However, their potential vascular and systemic pathophysiologic effects are not fully understood. Here, we investigated the acute (24 hours) systemic toxicity of intraperitoneally administered 50 nm and 500 nm SiNPs in mice (0.5 mg/kg). Both sizes of SiNPs induced a platelet proaggregatory effect in pial venules and increased plasma concentration of plasminogen activator inhibitor-1. Elevated plasma levels of von Willebrand factor and fibrinogen and a decrease in the number of circulating platelets were only seen following the administration of 50 nm SiNPs. The direct addition of SiNPs to untreated mouse blood significantly induced in vitro platelet aggregation in a dose-dependent fashion, and these effects were more pronounced with 50 nm SiNPs. Both sizes of SiNPs increased lactate dehydrogenase activity and interleukin 1β concentration. However, tumor necrosis factor α concentration was only increased after the administration of 50 nm SiNPs. Nevertheless, plasma markers of oxidative stress, including 8-isoprostane, thiobarbituric acid reactive substances, catalase, and glutathione S-transferase, were not affected by SiNPs. The in vitro exposure of human umbilical vein endothelial cells to SiNPs showed a reduced cellular viability, and more potency was seen with 50 nm SiNPs. Both sizes of SiNPs caused a decrease in endothelium-dependent relaxation of isolated small mesenteric arteries. We conclude that amorphous SiNPs cause systemic inflammation and coagulation events, and alter vascular reactivity. Overall, the effects observed with 50 nm SiNPs were more pronounced than those with 500 nm SiNPs. These findings provide new insight into the deleterious effect of amorphous SiNPs on vascular homeostasis.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sulayma Albarwani
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman
| |
Collapse
|
66
|
Roy R, Kumar S, Tripathi A, Das M, Dwivedi PD. Interactive threats of nanoparticles to the biological system. Immunol Lett 2014; 158:79-87. [DOI: 10.1016/j.imlet.2013.11.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
|
67
|
Zimmer CC, Liu YX, Morgan JT, Yang G, Wang KH, Kennedy IM, Barakat AI, Liu GY. New approach to investigate the cytotoxicity of nanomaterials using single cell mechanics. J Phys Chem B 2014; 118:1246-55. [PMID: 24417356 PMCID: PMC3980960 DOI: 10.1021/jp410764f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Current in vitro methods to assess nanomaterial cytotoxicity involve various assays to monitor specific cellular dysfunction, such as metabolic imbalance or inflammation. Although high throughput, fast, and animal-free, these in vitro methods suffer from unreliability and lack of relevance to in vivo situations. New approaches, especially with the potential to reliably relate to in vivo studies directly, are in critical need. This work introduces a new approach, single cell mechanics, derived from atomic force microscopy-based single cell compression. The single cell based approach is intrinsically advantageous in terms of being able to directly correlate to in vivo investigations. Its reliability and potential to measure cytotoxicity is evaluated using known systems: zinc oxide (ZnO) and silicon dioxide (SiO2) nanoparticles (NP) on human aortic endothelial cells (HAECs). This investigation clearly indicates the reliability of single cell compression. For example, ZnO NPs cause significant changes in force vs relative deformation profiles, whereas SiO2 NPs do not. New insights into NPs-cell interactions pertaining to cytotoxicity are also revealed from this single cell mechanics approach, in addition to a qualitative cytotoxicity conclusion. The advantages and disadvantages of this approach are also compared with conventional cytotoxicity assays.
Collapse
Affiliation(s)
- Christopher C Zimmer
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
68
|
|
69
|
Mohamud R, Xiang SD, Selomulya C, Rolland JM, O’Hehir RE, Hardy CL, Plebanski M. The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metab Rev 2013; 46:176-90. [DOI: 10.3109/03602532.2013.859688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
70
|
Kim J, Lee K. Characterization of decay and emission rates of ultrafine particles in indoor ice rink. INDOOR AIR 2013; 23:318-324. [PMID: 23176435 DOI: 10.1111/ina.12018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
The purposes of this study were to determine indoor ultrafine particle (UFP, diameter <100 nm) levels in ice rinks and to characterize UFP decay and emission rates. All 15 public ice rinks in Seoul were investigated for UFP and carbon monoxide (CO) concentrations. Three ice rinks did not show peaks in UFP concentrations, and one ice rink used two resurfacers simultaneously. High peaks of UFP and CO concentrations were observed when the resurfacer was operated. The average air change rate in the 11 ice rinks was 0.21 ± 0.13/h. The average decay rates of UFP number concentrations measured by the P-Trak and DiSCmini were 0.54 ± 0.21/h and 0.85 ± 0.34/h, respectively. The average decay rate of UFP surface area concentration was 0.33 ± 0.15/h. The average emission rates of UFP number concentrations measured by P-Trak and DiSCmini were 1.2 × 10(14) ± 6.5 × 10(13) particles/min and 3.3 × 10(14) ± 2.4 × 10(14) particles/min, respectively. The average emission rate of UFP surface area concentration was 3.1 × 10(11) ± 2.0 × 10(11) μm(2)/min. UFP emission rate was associated with resurfacer age. DiSCmini measured higher decay and emission rates than P-Trak due to their different measuring mechanisms and size ranges.
Collapse
Affiliation(s)
- J Kim
- Department of Environmental Health and Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | | |
Collapse
|
71
|
Farrell P, Nelson K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 177:1-3. [PMID: 23434827 DOI: 10.1016/j.envpol.2013.01.046] [Citation(s) in RCA: 776] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/14/2012] [Accepted: 01/22/2013] [Indexed: 05/18/2023]
Abstract
This study investigated the trophic transfer of microplastic from mussels to crabs. Mussels (Mytilus edulis) were exposed to 0.5 μm fluorescent polystyrene microspheres, then fed to crabs (Carcinus maenas). Tissue samples were then taken at intervals up to 21 days. The number of microspheres in the haemolymph of the crabs was highest at 24 h (15 033 ml(-1) ± SE 3146), and was almost gone after 21 days (267 ml(-1) ± SE 120). The maximum amount of microspheres in the haemolymph was 0.04% of the amount to which the mussels were exposed. Microspheres were also found in the stomach, hepatopancreas, ovary and gills of the crabs, in decreasing numbers over the trial period. This study is the first to show 'natural' trophic transfer of microplastic, and its translocation to haemolymph and tissues of a crab. This has implications for the health of marine organisms, the wider food web and humans.
Collapse
Affiliation(s)
- Paul Farrell
- Institute of Marine Sciences, University of Portsmouth, Ferry Road, Portsmouth PO4 9LY, UK.
| | | |
Collapse
|
72
|
Impact of experimental type 1 diabetes mellitus on systemic and coagulation vulnerability in mice acutely exposed to diesel exhaust particles. Part Fibre Toxicol 2013; 10:14. [PMID: 23587270 PMCID: PMC3641025 DOI: 10.1186/1743-8977-10-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/12/2013] [Indexed: 01/10/2023] Open
Abstract
Background Epidemiological evidence indicates that diabetic patients have increased susceptibility to adverse cardiovascular outcomes related to acute increases in exposures to particulate air pollution. However, mechanisms underlying these effects remain unclear. Methods To evaluate the possible mechanisms underlying these actions, we assessed the systemic effects of diesel exhaust particles (DEP) in control mice, and mice with streptozotocin–induced type 1 diabetes. Four weeks following induction of diabetes, the animals were intratracheally instilled (i.t.) with DEP (0.4 mg/kg) or saline, and several cardiovascular endpoints were measured 24 h thereafter. Results DEP caused leukocytosis and a significant increase in plasma C-reactive protein and 8-isoprostane concentrations in diabetic mice compared to diabetic mice exposed to saline or non-diabetic mice exposed to DEP. The arterial PO2 as well as the number of platelets and the thrombotic occlusion time in pial arterioles assessed in vivo were significantly decreased following the i.t. instillation of DEP in diabetic mice compared to diabetic mice exposed to saline or non-diabetic mice exposed to DEP. Both alanine aminotransferase and aspartate transaminase activities, as well as the plasma concentrations of plasminogen activator inhibitor and von Willebrand factor were significantly increased in DEP-exposed diabetic mice compared to diabetic mice exposed to saline or DEP-exposed non-diabetic mice. The in vitro addition of DEP (0.25-1 μg/ml) to untreated mouse blood significantly and dose-dependently induced in vitro platelet aggregation, and these effects were exacerbated in blood of diabetic mice. Conclusion This study has shown that systemic and coagulation events are aggravated by type 1 diabetes in mice, acutely exposed to DEP and has described the possible mechanisms for these actions that may also be relevant to the exacerbation of cardiovascular morbidity accompanying particulate air pollution in diabetic patients.
Collapse
|
73
|
Hubbs AF, Sargent LM, Porter DW, Sager TM, Chen BT, Frazer DG, Castranova V, Sriram K, Nurkiewicz TR, Reynolds SH, Battelli LA, Schwegler-Berry D, McKinney W, Fluharty KL, Mercer RR. Nanotechnology: toxicologic pathology. Toxicol Pathol 2013; 41:395-409. [PMID: 23389777 DOI: 10.1177/0192623312467403] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Prach M, Stone V, Proudfoot L. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status. Toxicol Appl Pharmacol 2013; 266:19-26. [DOI: 10.1016/j.taap.2012.10.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/19/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023]
|
75
|
Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev 2012; 64:1363-84. [PMID: 22917779 DOI: 10.1016/j.addr.2012.08.005] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/25/2012] [Accepted: 08/09/2012] [Indexed: 12/16/2022]
Abstract
The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials.
Collapse
|
76
|
Noël A, Maghni K, Cloutier Y, Dion C, Wilkinson KJ, Hallé S, Tardif R, Truchon G. Effects of inhaled nano-TiO2 aerosols showing two distinct agglomeration states on rat lungs. Toxicol Lett 2012; 214:109-19. [PMID: 22944471 DOI: 10.1016/j.toxlet.2012.08.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Nano-aerosols composed of large agglomerates (LA) (>100nm) are more likely to promote pulmonary clearance via macrophages phagocytosis. Small agglomerates (SA) (<100nm) seem to escape this first defense mechanism and are more likely to interact directly with biological material. These different mechanisms can influence pulmonary toxicity. This hypothesis was evaluated by comparing the relative pulmonary toxicity induced by aerosolized nano-TiO(2) showing two different agglomeration states: SA (<100nm) and LA (>100nm) at mass concentrations of 2 or 7mg/m(3). Groups of Fisher 344 male rats were nose-only exposed for 6h. The median number aerodynamic diameters were 30 and 185nm at 2mg/m(3), and 31 and 194nm at 7mg/m(3). We found in rat's bronchoalveolar lavage fluids (BALF) a significant 2.1-fold increase in the number of neutrophils (p<0.05) in the group exposed to the 7mg/m(3) LA nano-aerosol suggesting a mild inflammatory response. Rats exposed to the 7mg/m(3) SA nano-aerosol showed a 1.8-fold increase in LDH activity and 8-isoprostane concentration in BALF, providing evidence for cytotoxic and oxidative stress effects. Our results indicate that biological responses to nanoparticles (NP) might depend on the dimension and concentration of NP agglomerates.
Collapse
Affiliation(s)
- A Noël
- Département de santé environnementale et de santé au travail, Institut de recherche en santé publique, Université de Montréal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Shannahan JH, Kodavanti UP, Brown JM. Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 2012; 24:320-39. [PMID: 22486349 DOI: 10.3109/08958378.2012.668229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human inhalation exposures to manufactured nanoparticles (NP) and airborne ultrafine particles (UFP) continues to increase in both occupational and environmental settings. UFP exposures have been associated with increased cardiovascular mortality and morbidity, while ongoing research supports adverse systemic and cardiovascular health effects after NP exposures. Adverse cardiovascular health effects include alterations in heart rate variability, hypertension, thrombosis, arrhythmias, increased myocardial infarction, and atherosclerosis. Exactly how UFP and NP cause these negative cardiovascular effects is poorly understood, however a variety of mediators and mechanisms have been proposed. UFP and NP, as well as their soluble components, are known to systemically translocate from the lung. Translocated particles could mediate cardiovascular toxicity through direct interactions with the vasculature, blood, and heart. Recent study suggests that sensory nerve stimulation within the lung may also contribute to UFP- and NP-induced acute cardiovascular alterations. Activation of sensory nerves, such as C-fibers, within the lung may result in altered cardiac rhythm and function. Lastly, release of pulmonary-derived mediators into systemic circulation has been proposed to facilitate cardiovascular effects. In general, these proposed pulmonary-derived mediators include proinflammatory cytokines, oxidatively modified macromolecules, vasoactive proteins, and prothrombotic factors. These pulmonary-derived mediators have been postulated to contribute to the subsequent prothrombotic, atherogenic, and inflammatory effects after exposure. This review will evaluate the potential contribution of individual mediators and mechanisms in facilitating cardiopulmonary toxicity following inhalation of UFP and NP. Lastly, we will appraise the literature and propose a hypothesis regarding the possible role of mast cells in contributing to these systemic effects.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | |
Collapse
|
78
|
Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 2012; 19:126-42. [PMID: 21951337 DOI: 10.1111/j.1549-8719.2011.00137.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenobiotic particles can be considered in two genres: air pollution particulate matter and engineered nanoparticles. Particle exposures can occur in the greater environment, the workplace, and our homes. The majority of research in this field has, justifiably, focused on pulmonary reactions and outcomes. More recent investigations indicate that cardiovascular effects are capable of correlating with established mortality and morbidity epidemiological data following particle exposures. While the preliminary and general cardiovascular toxicology has been defined, the mechanisms behind these effects, specifically within the microcirculation, are largely unexplored. Therefore, the purpose of this review is several fold: first, a historical background on toxicological aspects of particle research is presented. Second, essential definitions, terminology, and techniques that may be unfamiliar to the microvascular scientist will be discussed. Third, the most current concepts and hypotheses driving cardiovascular research in this field will be reviewed. Lastly, potential future directions for the microvascular scientist will be suggested. Collectively speaking, microvascular research in the particle exposure field represents far more than a "niche." The immediate demand for basic, translational, and clinical studies is high and diverse. Microvascular scientists at all career stages are strongly encouraged to expand their research interests to include investigations associated with particle exposures.
Collapse
|
79
|
Napierska D, Thomassen LCJ, Vanaudenaerde B, Luyts K, Lison D, Martens JA, Nemery B, Hoet PHM. Cytokine production by co-cultures exposed to monodisperse amorphous silica nanoparticles: the role of size and surface area. Toxicol Lett 2012; 211:98-104. [PMID: 22445670 DOI: 10.1016/j.toxlet.2012.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/29/2012] [Accepted: 03/04/2012] [Indexed: 11/16/2022]
Abstract
The aim of this study was to test the influence of nanoparticle size and surface area (SA) on cytokine secretion by co-cultures of pulmonary epithelial cells (A549), macrophages (differentiated THP-1 cells) and endothelium cells (EA.hy926) in a two-compartment system. We used monodisperse amorphous silica nanoparticles (2, 16, 60 and 104 nm) at concentrations of 5 μg/cm² cell culture SA or 10 cm² particle SA/cm². A549 and THP-1 cells were exposed to nanoparticles for 24h, in the presence of EA.hy926 cells cultured in an insert introduced above the bi-culture after 12h. Supernatants from both compartments were recovered and TNF-α, IL-6, IL-8 and MIP-1α were measured. Significant secretion of all cytokines was observed for the 2 nm particles at both concentrations and in both compartments. Larger particles of 60 nm induced significant cytokine secretion at the dose of 10 cm² particle SA/cm². The use of multiple cellular types showed that cytokine secretion in single cell cultures is amplified or mitigated in co-cultures. The release of pro-inflammatory mediators by endothelial cells not directly exposed to nanoparticles indicates a possible endothelium activation after inhalation of silica particles. This work shows the role of size and SA in cellular response to amorphous nanosilica.
Collapse
Affiliation(s)
- Dorota Napierska
- Laboratory of Pneumology, Research Unit for Lung Toxicology, K.U. Leuven, Herestraat 49, Leuven 3000, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Boylen CE, Sly PD, Zosky GR, Larcombe AN. Physiological and inflammatory responses in an anthropomorphically relevant model of acute diesel exhaust particle exposure are sex and dose-dependent. Inhal Toxicol 2012; 23:906-17. [PMID: 22122304 DOI: 10.3109/08958378.2011.625454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Diesel exhaust particles (DEP) are an important contributor to suspended particulate matter (PM) in urban areas. While epidemiological evidence exists for a sex-influenced dose-response relationship between acute PM exposure and respiratory health, similar data are lacking for DEP. Further, experimental evidence showing deleterious effects on respiratory health due to acute DEP exposure is sparse. OBJECTIVE To establish and characterize a mouse model of acute DEP exposure, comparing male and female mice and assessing the kinetics of the elemental carbon content of alveolar macrophages (AMs) to relate our model to human exposure. MATERIALS AND METHODS Adult BALB/c mice were intranasally inoculated with 0 (control), 10, 30 or 100 µg DEP in saline. Bronchoalveolar lavage cellular inflammation and cytokine levels were assessed 3, 6, 12, 24, 48 and 168 hours post exposure. Elemental carbon uptake by AMs was additionally assessed at 336 and 672 hours post DEP exposure. Thoracic gas volume and lung mechanics were measured 6 and 24 hours post exposure. RESULTS DEP resulted in dose-dependent cellular inflammation and cytokine production in both sexes. Males and females responded differently with females having more severe and prolonged neutrophilia, monocyte chemoattractant protein-1 and developing greater abnormalities in lung function. The sexual dimorphism in response was not related to the capacity of AMs to phagocytise DEP. CONCLUSIONS Our mouse model of acute diesel exhaust particle exposure shows a dose dependency and sexual dimorphism in response. Quantification of elemental carbon in AMs allows for comparison of the results of our study with human studies.
Collapse
Affiliation(s)
- Catherine E Boylen
- Division of Clinical Sciences, Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, West Perth, WA, Australia
| | | | | | | |
Collapse
|
81
|
Mo Y, Wan R, Feng L, Chien S, Tollerud DJ, Zhang Q. Combination effects of cigarette smoke extract and ambient ultrafine particles on endothelial cells. Toxicol In Vitro 2012; 26:295-303. [PMID: 22178768 PMCID: PMC3273600 DOI: 10.1016/j.tiv.2011.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/29/2011] [Accepted: 12/01/2011] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that ambient ultrafine particles with diameters less than 100nm (UFPs) can pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant dysfunction of lung endothelial cells. However, no studies have addressed the potential combined effects of UFPs and cigarette smoke on vascular endothelial cells. We hypothesized that co-exposure to UFPs and cigarette smoke extract (CSE) may cause combined effects on activation of endothelial cells and dysfunction of endothelium by oxidative stress through activation of NADPH oxidase. We determined the effects of UFPs with or without CSE on mouse pulmonary microvascular endothelial cells (MPMVEC) obtained from C57BL/6J (wild-type) and gp91(phox) knock-out mice (gp91(phox) is one of the key components of NADPH oxidase, one of ROS generators). Our results showed that exposure of MPMVEC from wild-type mice to UFPs or CSE, at a non-toxic dose, induced reactive oxygen species (ROS) generation, increased phosphorylation of p38 and Erk1/2, and up-regulated early growth response -1 (Egr-1) and IL-6 genes. These effects were significantly enhanced when cells were co-exposed to both UFPs and CSE. However, exposure of MPMVEC from gp91(phox) knock-out mice did not induce the above effects. Furthermore, UFPs- and/or CSE-induced Egr-1 mRNA upregulation was attenuated significantly when cells were pre-treated with p38 specific inhibitor, SB 203580, or MEK1/2 inhibitor, PD98059, and Egr-1 siRNA treatment abolished UFPs- and/or CSE-induced overexpression of IL-6. Our results suggest that UFPs and/or CSE caused activation of NADPH oxidase, resulting in ROS generation that led to activation of MAPKs through induced phosphorylation of p38 and ERK1/2 MAPKs and upregulation of Egr-1. Those effects may further result in endothelial dysfunction through production of cytokines such as IL-6. Our results suggest that co-exposure to UFPs and CSE causes enhanced injury to endothelial cells.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Rong Wan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Lingfang Feng
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
- Department of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, P. R. of China
| | - Sufan Chien
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - David J. Tollerud
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
82
|
Hosokawa M. Environmental and safety issues with nanoparticles. NANOPARTICLE TECHNOLOGY HANDBOOK 2012. [PMCID: PMC7158170 DOI: 10.1016/b978-0-444-56336-1.50007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
83
|
Lunov O, Syrovets T, Loos C, Nienhaus GU, Mailänder V, Landfester K, Rouis M, Simmet T. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS NANO 2011; 5:9648-57. [PMID: 22111911 DOI: 10.1021/nn203596e] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Specifically designed and functionalized nanoparticles hold great promise for biomedical applications. Yet, the applicability of nanoparticles is critically predetermined by their surface functionalization. Here we demonstrate that amino-functionalized polystyrene nanoparticles (PS-NH(2)) of ∼100 nm in diameter, but not carboxyl- or nonfunctionalized particles, trigger NLRP3 inflammasome activation and subsequent release of proinflammatory interleukin 1β (IL-1β) by human macrophages. PS-NH(2) induced time-dependent proton accumulation in lysosomes associated with lysosomal destabilization, release of cathepsin B, and damage of the mitochondrial membrane. Accumulation of mitochondrial reactive oxygen species was accompanied by oxidation of thioredoxin, a protein playing a central role in maintaining the cellular redox balance. Upon oxidation, thioredoxin dissociated from the thioredoxin-interacting protein (TXNIP). Liberated TXNIP, in turn, interacted with the NLRP3 protein, resulting in a conformational change of the pyrin domain of the NLRP3 protein, as was predicted by molecular modeling. Consequently, this prompted assembly of the NLRP3 inflammasome complex with recruitment and activation of caspase-1, inducing IL-1β release by cleavage of pro-IL-1β. The central role of the NLRP3 inflammasome for cytokine production was confirmed by in vitro knockdown of NLRP3 and of the adaptor protein ASC, confirming that other inflammasomes were not activated by PS-NH(2). The PS-NH(2)-mediated proinflammatory macrophage activation could be antagonized by the radical scavenger N-acetyl-L-cysteine, which prevented mitochondrial damage, caspase-1 activation, and the subsequent release of IL-1β. Our study reveals the molecular mechanism of NLRP3 inflammasome activation by amino-functionalized nanoparticles and suggests a strategy as to how such adverse effects could be antagonized.
Collapse
Affiliation(s)
- Oleg Lunov
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Beck-Broichsitter M, Merkel OM, Kissel T. Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J Control Release 2011; 161:214-24. [PMID: 22192571 DOI: 10.1016/j.jconrel.2011.12.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 12/14/2022]
Abstract
Pulmonary drug and gene delivery to the lung represents a non-invasive avenue for local and systemic therapies. However, the respiratory tract provides substantial barriers that need to be overcome for successful pulmonary application. In this regard, micro- and nano-sized particles offer novel concepts for the development of optimized therapeutic tools in pulmonary research. Polymeric nano-carriers are generally preferred as controlled pulmonary delivery systems due to prolonged retention in the lung. Specific manipulation of nano-carrier characteristics enables the design of "intelligent" carriers specific for modulation of the duration and intensity of pharmacological effects. New formulations should be tested for pulmonary absorption and distribution using more advanced ex vivo and in vivo models. The delivery of nano-carriers to the air-space enables a detailed characterization of the interaction between the carrier vehicle and the natural pulmonary environment. In summary, polymeric nanoparticles seem to be especially promising as controlled delivery systems and represent a solid basis for future advancement for pulmonary delivery applications.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Department of Pharmaceutics and Biopharmacy, Philipps-Universität, Ketzerbach 63, D-35037 Marburg, Germany
| | | | | |
Collapse
|
85
|
Park YH, Jeong SH, Yi SM, Choi BH, Kim YR, Kim IK, Kim MK, Son SW. Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity, and sensitization. Toxicol In Vitro 2011; 25:1863-9. [DOI: 10.1016/j.tiv.2011.05.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 02/17/2011] [Accepted: 05/19/2011] [Indexed: 01/04/2023]
|
86
|
Direct and indirect effects of particulate matter on the cardiovascular system. Toxicol Lett 2011; 208:293-9. [PMID: 22119171 DOI: 10.1016/j.toxlet.2011.11.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 01/17/2023]
Abstract
Human exposure to particulate matter (PM) elicits a variety of responses on the cardiovascular system through both direct and indirect pathways. Indirect effects of PM on the cardiovascular system are mediated through the autonomic nervous system, which controls heart rate variability, and inflammatory responses, which augment acute cardiovascular events and atherosclerosis. Recent research demonstrates that PM also affects the cardiovascular system directly by entry into the systemic circulation. This process causes myocardial dysfunction through mechanisms of reactive oxygen species production, calcium ion interference, and vascular dysfunction. In this review, we will present key evidence in both the direct and indirect pathways, suggest clinical applications of the current literature, and recommend directions for future research.
Collapse
|
87
|
Bhattacharjee S, Ershov D, Gucht JVD, Alink GM, Rietjens IMCM, Zuilhof H, Marcelis ATM. Surface charge-specific cytotoxicity and cellular uptake of tri-block copolymer nanoparticles. Nanotoxicology 2011; 7:71-84. [DOI: 10.3109/17435390.2011.633714] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
88
|
Kim JE, Shin JY, Cho MH. Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 2011; 86:685-700. [PMID: 22076106 DOI: 10.1007/s00204-011-0773-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/24/2011] [Indexed: 01/18/2023]
Abstract
Magnetic nanoparticles (MNPs) represent a subclass within the overall category of nanomaterials and are widely used in many applications, particularly in the biomedical sciences such as targeted delivery of drugs or genes, in magnetic resonance imaging, and in hyperthermia (treating tumors with heat). Although the potential benefits of MNPs are considerable, there is a distinct need to identify any potential toxicity associated with these MNPs. The potential of MNPs in drug delivery stems from the intrinsic properties of the magnetic core combined with their drug loading capability and the biomedical properties of MNPs generated by different surface coatings. These surface modifications alter the particokinetics and toxicity of MNPs by changing protein-MNP or cell-MNP interactions. This review contains current advances in MNPs for drug delivery and their possible organ toxicities associated with disturbance in body iron homeostasis. The importance of protein-MNP interactions and various safety considerations relating to MNP exposure are also addressed.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
89
|
Emmerechts J, Hoylaerts MF. The effect of air pollution on haemostasis. Hamostaseologie 2011; 32:5-13. [PMID: 22009166 DOI: 10.5482/ha-1179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 11/05/2022] Open
Abstract
Ambient environmental air pollutants include gaseous and particulate components. In polluted air, especially particulate matter seems responsible for cardiovascular complications: It consists of a heterogeneous mixture of solid and liquid particles with different diameters ranging from large thoracic to ultrafine particles, with a diameter <100 nm. Ultrafines can penetrate deeply into the lung to deposit in the alveoli. Cardiovascular manifestations result both from short-term and long-term exposure and have been linked to interference with the autonomic nervous system, direct translocation into the systemic circulation, pulmonary inflammation and oxidative stress. Thrombotic complications associated with air pollution comprise arterial and probably venous thrombogenicity. This review describes the existing epidemiological and experimental evidence to explain the rapid induction of myocardial infarction within 1-2 hours after exposure to polluted air and advances several explanations as to why more chronic exposure will lead to enhanced venous thrombogenicity. Mechanisms such as platelet activation, endothelial dysfunction, coagulation factor changes and microvesicle production are discussed.
Collapse
Affiliation(s)
- J Emmerechts
- Marc Hoylaerts, Center for Molecular and Vascular Biology, Leuven, Belgium
| | | |
Collapse
|
90
|
Liu Y, Li W, Lao F, Liu Y, Wang L, Bai R, Zhao Y, Chen C. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 2011; 32:8291-303. [PMID: 21810539 DOI: 10.1016/j.biomaterials.2011.07.037] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/12/2011] [Indexed: 12/23/2022]
Abstract
The fate of nanomaterials with different sizes and charges in mitotic cells is of great importance but seldom explored. Herein we investigate the intracellular fate of negatively charged carboxylated polystyrene (COOH-PS) and positively charged amino-modified polystyrene (NH(2)-PS) nanoparticles of three different diameters (50, 100 and 500 nm) on cancer HeLa cells and normal NIH 3T3 cells during the cell cycles. The results showed that all the fluorescent PS nanoparticles differing in size and/or charge did not interact with chromosome reorganization and cytoskeleton assembly during the mitotic process in live cells. They neither disturbed chromosome reorganization nor affected the cytoskeleton reassembly in both normal and cancer cells. However, NH(2)-PS at the size of 50 nm caused G1 phase delay and a decrease of cyclin (D, E) expression, respectively. Moreover, NH(2)-PS displayed higher cellular toxicity and NH(2)-PS of 50 nm disturbed the integrity of cell membranes. Both cationic and anionic PS nanoparticles had a more pronounced effect on normal NIH 3T3 cells than cancer HeLa cell. Our research provides insight into the dynamic fate, intracellular behavior, and the effects of nanoparticles on spindle and chromosomes during cell division, which will enable the optimization of design and selection of much safer nanoparticles for lower risk to human health and widely medical applications.
Collapse
Affiliation(s)
- Yuexian Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Nemmar A, Zia S, Subramaniyan D, Fahim MA, Ali BH. Exacerbation of thrombotic events by diesel exhaust particle in mouse model of hypertension. Toxicology 2011; 285:39-45. [DOI: 10.1016/j.tox.2011.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/27/2011] [Accepted: 03/31/2011] [Indexed: 01/19/2023]
|
92
|
Aung HH, Lame MW, Gohil K, He G, Denison MS, Rutledge JC, Wilson DW. Comparative gene responses to collected ambient particles in vitro: endothelial responses. Physiol Genomics 2011; 43:917-29. [PMID: 21652769 DOI: 10.1152/physiolgenomics.00051.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epidemiologic studies associate exposure to ambient particulate matter (APM) with increased cardiovascular mortality. Since both pulmonary inflammation and systemic circulation of ultrafine particles are hypothesized as initiating cardiovascular effects, we examined responses of potential target cells in vitro. Human aortic endothelial cells (HAEC) were exposed to 10 μg/ml fine and ultrafine APM collected in an urban setting in summer 2006 or winter 2007 in the San Joaquin Valley, California. RNA isolated after 3 h was analyzed with high-density oligonucleotide arrays. Summer APM treatment affected genes involved in xenobiotic and oxidoreductase activity, transcription factors, and inflammatory responses in HAEC, while winter APM had a robust xenobiotic but lesser inflammatory response. Real-time polymerase chain reaction analysis confirmed that particulate matter (PM)-treated HAEC increased mRNA levels of xenobiotic response enzymes CYP1A1, ALDH1A3, and TIPARP and cellular stress response transcription factor ATF3. Inflammatory response genes included E-selectin, PTGS2, CXCL-2 (MIP-2α), and CCL-2 (MCP-1). Multiplex protein assays showed secretion of IL-6 and MCP-1 by HAEC. Since induction of CYP1A1 is mediated through the ligand-activated aryl hydrocarbon receptor (AhR), we demonstrated APM induced AhR nuclear translocation by immunofluorescence and Western blotting and activation of the AhR response element using a luciferase reporter construct. Inhibitor studies suggest differential influences of polycyclic aromatic hydrocarbon signaling, ROS-mediated responses and endotoxin alter stress and proinflammatory endothelial cell responses. Our findings demonstrate gene responses correlated with current concepts that systemic inflammation drives cardiovascular effects of particulate air pollution. We also demonstrate a unique pattern of gene responses related to xenobiotic metabolism in PM-exposed HAEC.
Collapse
Affiliation(s)
- Hnin H Aung
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, California, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Laloy J, Robert S, Marbehant C, Mullier F, Mejia J, Piret JP, Lucas S, Chatelain B, Dogné JM, Toussaint O, Masereel B, Rolin S. Validation of the calibrated thrombin generation test (cTGT) as the reference assay to evaluate the procoagulant activity of nanomaterials. Nanotoxicology 2011; 6:213-32. [DOI: 10.3109/17435390.2011.569096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
94
|
Abstract
Nanotechnology deals with the construction of new materials, devices, and different technological systems with a wide range of potential applications at the atomic and molecular level. Nanomaterials have attracted great attention for numerous applications in chemical, biological, and industrial world because of their fascinating physicochemical properties. Nanomaterials and nanodevices are being produced intentionally, unintentionally, and manufactured or engineered by different methods and released into the environment without any safety test. Nantoxicity has become the subject of concern in nanoscience and nanotechnology because of the increasing toxic effects of nanomaterials on the living organisms. Nanomaterials can move freely as compared to the large-sized particles; therefore, they can be more toxic than bulky materials. This review article delineates the toxic effects of different types of nanomaterials on the living organisms through different sources, like water, air, contact with skin, and the methods of determinations of these toxic effects.
Collapse
|
95
|
Yacobi NR, Fazllolahi F, Kim YH, Sipos A, Borok Z, Kim KJ, Crandall ED. Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles. AIR QUALITY, ATMOSPHERE, & HEALTH 2011; 4:65-78. [PMID: 25568662 PMCID: PMC4283834 DOI: 10.1007/s11869-010-0098-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Studies on the health effects of air-pollution particles suggest that injury may result from inhalation of airborne ultrafine particles (<100 nm in diameter). Engineered nanomaterials (<100 nm in at least one dimension) may also be harmful if inhaled. Nanomaterials deposited on the respiratory epithelial tract are thought to cross the air-blood barrier, especially via the expansive alveolar region, into the systemic circulation to reach end organs (e.g., myocardium, liver, pancreas, kidney, and spleen). Since ambient ultrafine particles are difficult to track, studies of defined engineered nanomaterials have been used to obtain valuable information on how nanomaterials interact with and traffic across the air-blood barrier of mammalian lungs. Since specific mechanistic information on how nanomaterials interact with the lung is difficult to obtain using in vivo or ex vivo lungs due to their complex anatomy, in vitro alveolar epithelial models have been of considerable value in determining nanomaterial-lung interactions. In this review, we provide information on mechanisms underlying lung alveolar epithelial injury caused by various nanomaterials and on nanomaterial trafficking across alveolar epithelium that may lead to end-organ injury.
Collapse
Affiliation(s)
- Nazanin R. Yacobi
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Farnoosh Fazllolahi
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Yong Ho Kim
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arnold Sipos
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Physiology and Biophysics, University of Southern California, Los Angeles, CA 90033, USA. Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA. Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Edward D. Crandall
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, IRD 620, 2020 Zonal Avenue, Los Angeles, CA 90033, USA. Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
96
|
Zhao J, Castranova V. Toxicology of nanomaterials used in nanomedicine. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:593-632. [PMID: 22008094 DOI: 10.1080/10937404.2011.615113] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
With the development of nanotechnology, nanomaterials are being widely used in many industries as well as in medicine and pharmacology. Despite the many proposed advantages of nanomaterials, increasing concerns have been expressed on their potential adverse human health effects. In recent years, application of nanotechnology in medicine has been defined as nanomedicine. Techniques in nanomedicine make it possible to deliver therapeutic agents into targeted specific cells, cellular compartments, tissues, and organs by using nanoparticulate carriers. Because nanoparticles possess different physicochemical properties than their fine-sized analogues due to their extremely small size and large surface area, they need to be evaluated separately for toxicity and adverse health effects. In addition, in the field of nanomedicine, intravenous and subcutaneous injections of nanoparticulate carriers deliver exogenous nanoparticles directly into the human body without passing through the normal absorption process. These nanoparticulate carriers themselves may be responsible for toxicity and interaction with biological macromolecules within the human body. Second, insoluble nanoparticulate carriers may accumulate in human tissues or organs. Therefore, it is necessary to address the potential health and safety implications of nanomaterials used in nanomedicine. Toxicological studies for biosafety evaluation of these nanomaterials will be important for the continuous development of nanomedical science. This review summarizes the current knowledge on toxicology of nanomaterials, particularly on those used in nanomedicine.
Collapse
Affiliation(s)
- Jinshun Zhao
- Public Health Department of Medical School, Ningbo University, Ningbo, Zhejiang, P. R. China
| | | |
Collapse
|
97
|
Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol 2010; 7:39. [PMID: 21126379 PMCID: PMC3014868 DOI: 10.1186/1743-8977-7-39] [Citation(s) in RCA: 477] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 12/03/2010] [Indexed: 11/10/2022] Open
Abstract
Silica nanoparticles (SNPs) are produced on an industrial scale and are an addition to a growing number of commercial products. SNPs also have great potential for a variety of diagnostic and therapeutic applications in medicine. Contrary to the well-studied crystalline micron-sized silica, relatively little information exists on the toxicity of its amorphous and nano-size forms. Because nanoparticles possess novel properties, kinetics and unusual bioactivity, their potential biological effects may differ greatly from those of micron-size bulk materials. In this review, we summarize the physico-chemical properties of the different nano-sized silica materials that can affect their interaction with biological systems, with a specific emphasis on inhalation exposure. We discuss recent in vitro and in vivo investigations into the toxicity of nanosilica, both crystalline and amorphous. Most of the in vitro studies of SNPs report results of cellular uptake, size- and dose-dependent cytotoxicity, increased reactive oxygen species levels and pro-inflammatory stimulation. Evidence from a limited number of in vivo studies demonstrates largely reversible lung inflammation, granuloma formation and focal emphysema, with no progressive lung fibrosis. Clearly, more research with standardized materials is needed to enable comparison of experimental data for the different forms of nanosilicas and to establish which physico-chemical properties are responsible for the observed toxicity of SNPs.
Collapse
Affiliation(s)
- Dorota Napierska
- Unit of Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
98
|
McGuinnes C, Duffin R, Brown S, L. Mills N, Megson IL, MacNee W, Johnston S, Lu SL, Tran L, Li R, Wang X, Newby DE, Donaldson K. Surface Derivatization State of Polystyrene Latex Nanoparticles Determines both Their Potency and Their Mechanism of Causing Human Platelet Aggregation In Vitro. Toxicol Sci 2010; 119:359-68. [DOI: 10.1093/toxsci/kfq349] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
99
|
Song L, Zhu D, Liu L, Dong X, Zhang H, Leng X. Evaluation of the coagulation properties of arginine-chitosan/DNA nanoparticles. J Biomed Mater Res B Appl Biomater 2010; 95:374-9. [DOI: 10.1002/jbm.b.31726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
100
|
Beyerle A, Irmler M, Beckers J, Kissel T, Stoeger T. Toxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applications. Mol Pharm 2010; 7:727-37. [PMID: 20429563 DOI: 10.1021/mp900278x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyethylene imine (PEI) based polycations, successfully used for gene therapy or RNA interference in vitro as well as in vivo, have been shown to cause well-known adverse side effects, especially high cytotoxicity. Therefore, various modifications have been developed to improve safety and efficiency of these nonviral vector systems, but profound knowledge about the underlying mechanisms responsible for the high cytotoxicity of PEI is still missing. In this in vitro study, we focused on stress and toxicity pathways triggered by PEI-based vector systems to be used for pulmonary application and two well-known lung toxic particles: fine crystalline silica (CS) and nanosized ZnO (NZO). The cytotoxicity profiles of all stressors were investigated in alveolar epithelial-like type II cells (LA4) to define concentrations with matching toxicity levels (cell viability >60% and LDH release <10%) for subsequent qRT-PCR-based gene array analysis. Within the first 6 h pathway analysis revealed for CS an extrinsic apoptotic signaling (TNF pathway) in contrast to the intrinsic apoptotic pathway (mitochondrial signaling) which was induced by PEI 25 kDa after 24 h treatment. The following causative chain of events seems conceivable: reactive oxygen species derived from particle surface toxicity triggers TNF signaling in the case of CS, whereby endosomal swelling and rupture upon endocytotic PEI 25 kDa uptake causes intracellular stress and mitochondrial alterations, finally leading to apoptotic cell death at higher doses. PEG modification most notably reduced the cytotoxicity of PEI 25 kDa but increased proinflammatory signaling on mRNA and even protein level. Hence in view of the lung as a sensitive target organ this inflammatory stimulation might cause unwanted side effects related to respiratory and cardiovascular disorders. Thus further optimization of the PEI-based vector systems is still needed for pulmonary application.
Collapse
Affiliation(s)
- Andrea Beyerle
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum Munchen, and Institute of Experimental Genetics, Helmholtz Zentrum Munchen, Germany
| | | | | | | | | |
Collapse
|