51
|
Hong SE, Jin HO, Kim HA, Seong MK, Kim EK, Ye SK, Choe TB, Lee JK, Kim JI, Park IC, Noh WC. Targeting HIF-1α is a prerequisite for cell sensitivity to dichloroacetate (DCA) and metformin. Biochem Biophys Res Commun 2015; 469:164-70. [PMID: 26616058 DOI: 10.1016/j.bbrc.2015.11.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 11/19/2015] [Indexed: 12/30/2022]
Abstract
Recently, targeting deregulated energy metabolism is an emerging strategy for cancer therapy. In the present study, combination of DCA and metformin markedly induced cell death, compared with each drug alone. Furthermore, the expression levels of glycolytic enzymes including HK2, LDHA and ENO1 were downregulated by two drugs. Interestingly, HIF-1α activation markedly suppressed DCA/metformin-induced cell death and recovered the expressions of glycolytic enzymes that were decreased by two drugs. Based on these findings, we propose that targeting HIF-1α is necessary for cancer metabolism targeted therapy.
Collapse
Affiliation(s)
- Sung-Eun Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Min-Ki Seong
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Eun-Kyu Kim
- Department of Surgery, Breast Cancer Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, 103 Daehangno, Jongno-gu, Seoul 03080, Republic of Korea
| | - Tae-Boo Choe
- Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Kyung Lee
- KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Jong-Il Kim
- Department of Food Science & Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - In-Chul Park
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea.
| | - Woo Chul Noh
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea.
| |
Collapse
|
52
|
Zhang R, Saito R, Shibahara I, Sugiyama S, Kanamori M, Sonoda Y, Tominaga T. Temozolomide reverses doxorubicin resistance by inhibiting P-glycoprotein in malignant glioma cells. J Neurooncol 2015; 126:235-42. [DOI: 10.1007/s11060-015-1968-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/23/2015] [Indexed: 11/28/2022]
|
53
|
Brincks EL, Kucaba TA, James BR, Murphy KA, Schwertfeger KL, Sangwan V, Banerjee S, Saluja AK, Griffith TS. Triptolide enhances the tumoricidal activity of TRAIL against renal cell carcinoma. FEBS J 2015; 282:4747-4765. [PMID: 26426449 DOI: 10.1111/febs.13532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 08/19/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
Renal cell carcinoma (RCC) is resistant to traditional cancer therapies, and metastatic RCC (mRCC) is incurable. The shortcomings in current therapeutic options for patients with mRCC provide the rationale for the development of novel treatment protocols. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has proven to be a potent inducer of tumor cell death in vitro and in vivo, and a number of TRAIL death receptor agonists (recombinant TRAIL or TRAIL death receptor-specific mAb) have been developed and tested clinically. Unfortunately the clinical efficacy of TRAIL has been underwhelming and is likely due to a number of possible mechanisms that render tumors resistant to TRAIL, prompting the search for drugs that increase tumor cell susceptibility to TRAIL. The objective of this study was to determine the effectiveness of combining the diterpene triepoxide triptolide, or its water-soluble prodrug, Minnelide, with TRAIL receptor agonists against RCC in vitro or in vivo, respectively. TRAIL-induced apoptotic death of human RCC cells was increased in the presence of triptolide. The triptolide-induced sensitization was accompanied by increased TRAIL-R2 (DR5) and decreased heat shock protein 70 expression. In vivo treatment of mice bearing orthotopic RCC (Renca) tumors showed the combination of Minnelide and agonistic anti-DR5 mAb significantly decreased tumor burden and increased animal survival compared to either therapy alone. Our data suggest triptolide/Minnelide sensitizes RCC cells to TRAIL-induced apoptosis through altered TRAIL death receptor and heat shock protein expression.
Collapse
Affiliation(s)
- Erik L Brincks
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Britnie R James
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | | | - Kathryn L Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Veena Sangwan
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Sulagna Banerjee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Ashok K Saluja
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455.,Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
54
|
Koedrith P, Kim HL, Seo YR. Integrative toxicogenomics-based approach to risk assessment of heavy metal mixtures/complexes: strategies and challenges. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0026-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
55
|
Rodea-Palomares I, González-Pleiter M, Martín-Betancor K, Rosal R, Fernández-Piñas F. Additivity and Interactions in Ecotoxicity of Pollutant Mixtures: Some Patterns, Conclusions, and Open Questions. TOXICS 2015; 3:342-369. [PMID: 29051468 PMCID: PMC5606646 DOI: 10.3390/toxics3040342] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/09/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022]
Abstract
Understanding the effects of exposure to chemical mixtures is a common goal of pharmacology and ecotoxicology. In risk assessment-oriented ecotoxicology, defining the scope of application of additivity models has received utmost attention in the last 20 years, since they potentially allow one to predict the effect of any chemical mixture relying on individual chemical information only. The gold standard for additivity in ecotoxicology has demonstrated to be Loewe additivity which originated the so-called Concentration Addition (CA) additivity model. In pharmacology, the search for interactions or deviations from additivity (synergism and antagonism) has similarly captured the attention of researchers over the last 20 years and has resulted in the definition and application of the Combination Index (CI) Theorem. CI is based on Loewe additivity, but focused on the identification and quantification of synergism and antagonism. Despite additive models demonstrating a surprisingly good predictive power in chemical mixture risk assessment, concerns still exist due to the occurrence of unpredictable synergism or antagonism in certain experimental situations. In the present work, we summarize the parallel history of development of CA, IA, and CI models. We also summarize the applicability of these concepts in ecotoxicology and how their information may be integrated, as well as the possibility of prediction of synergism. Inside the box, the main question remaining is whether it is worthy to consider departures from additivity in mixture risk assessment and how to predict interactions among certain mixture components. Outside the box, the main question is whether the results observed under the experimental constraints imposed by fractional approaches are a de fide reflection of what it would be expected from chemical mixtures in real world circumstances.
Collapse
Affiliation(s)
- Ismael Rodea-Palomares
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid E-28049, Spain.
| | - Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid E-28049, Spain.
| | - Keila Martín-Betancor
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid E-28049, Spain.
| | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid E-28871, Spain.
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid E-28049, Spain.
| |
Collapse
|
56
|
Ramsdale R, Jorissen RN, Li FZ, Al-Obaidi S, Ward T, Sheppard KE, Bukczynska PE, Young RJ, Boyle SE, Shackleton M, Bollag G, Long GV, Tulchinsky E, Rizos H, Pearson RB, McArthur GA, Dhillon AS, Ferrao PT. The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Sci Signal 2015; 8:ra82. [PMID: 26286024 DOI: 10.1126/scisignal.aab1111] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most patients with BRAF-mutant metastatic melanoma display remarkable but incomplete and short-lived responses to inhibitors of the BRAF kinase or the mitogen-activated protein kinase kinase (MEK), collectively BRAF/MEK inhibitors. We found that inherent resistance to these agents in BRAF(V600)-mutant melanoma cell lines was associated with high abundance of c-JUN and characteristics of a mesenchymal-like phenotype. Early drug adaptation in drug-sensitive cell lines grown in culture or as xenografts, and in patient samples during therapy, was consistently characterized by down-regulation of SPROUTY4 (a negative feedback regulator of receptor tyrosine kinases and the BRAF-MEK signaling pathway), increased expression of JUN and reduced expression of LEF1. This coincided with a switch in phenotype that resembled an epithelial-mesenchymal transition (EMT). In cultured cells, these BRAF inhibitor-induced changes were reversed upon removal of the drug. Knockdown of SPROUTY4 was sufficient to increase the abundance of c-JUN in the absence of drug treatment. Overexpressing c-JUN in drug-naïve melanoma cells induced similar EMT-like phenotypic changes to BRAF inhibitor treatment, whereas knocking down JUN abrogated the BRAF inhibitor-induced early adaptive changes associated with resistance and enhanced cell death. Combining the BRAF inhibitor with an inhibitor of c-JUN amino-terminal kinase (JNK) reduced c-JUN phosphorylation, decreased cell migration, and increased cell death in melanoma cells. Gene expression data from a panel of melanoma cell lines and a patient cohort showed that JUN expression correlated with a mesenchymal gene signature, implicating c-JUN as a key mediator of the mesenchymal-like phenotype associated with drug resistance.
Collapse
Affiliation(s)
- Rachel Ramsdale
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Robert N Jorissen
- Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Frederic Z Li
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Sheren Al-Obaidi
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Teresa Ward
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Karen E Sheppard
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Patricia E Bukczynska
- Molecular Therapeutics and Biomarkers Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Richard J Young
- Molecular Therapeutics and Biomarkers Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Samantha E Boyle
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Mark Shackleton
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Gideon Bollag
- Plexxikon Inc., 91 Bolivar Drive, Berkeley, CA 94710, USA
| | - Georgina V Long
- Melanoma Institute Australia, Sydney, New South Wales 2060, Australia. University of Sydney, Sydney, New South Wales 2006, Australia
| | - Eugene Tulchinsky
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Helen Rizos
- Melanoma Institute Australia, Sydney, New South Wales 2060, Australia. Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Grant A McArthur
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Amardeep S Dhillon
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Petranel T Ferrao
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
57
|
Leung EY, Askarian-Amiri M, Finlay GJ, Rewcastle GW, Baguley BC. Potentiation of Growth Inhibitory Responses of the mTOR Inhibitor Everolimus by Dual mTORC1/2 Inhibitors in Cultured Breast Cancer Cell Lines. PLoS One 2015; 10:e0131400. [PMID: 26148118 PMCID: PMC4492962 DOI: 10.1371/journal.pone.0131400] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
The mammalian target of rapamycin (mTOR), a vital component of signaling pathways involving PI3K/AKT, is an attractive therapeutic target in breast cancer. Everolimus, an allosteric mTOR inhibitor that inhibits the mTOR functional complex mTORC1, is approved for treatment of estrogen receptor positive (ER+) breast cancer. Other mTOR inhibitors show interesting differences in target specificities: BEZ235 and GSK2126458 are ATP competitive mTOR inhibitors targeting both PI3K and mTORC1/2; AZD8055, AZD2014 and KU-0063794 are ATP competitive mTOR inhibitors targeting both mTORC1 and mTORC2; and GDC-0941 is a pan-PI3K inhibitor. We have addressed the question of whether mTOR inhibitors may be more effective in combination than singly in inhibiting the proliferation of breast cancer cells. We selected a panel of 30 human breast cancer cell lines that included ER and PR positive, HER2 over-expressing, and “triple negative” variants, and determined whether signaling pathway utilization was related to drug-induced inhibition of proliferation. A significant correlation (p = 0.005) was found between everolimus IC50 values and p70S6K phosphorylation, but not with AKT or ERK phosphorylation, consistent with the mTOR pathway being a principal target. We then carried out combination studies with four everolimus resistant triple-negative breast cancer cell lines, and found an unexpectedly high degree of synergy between everolimus and the other inhibitors tested. The level of potentiation of everolimus inhibitory activity (measured by IC50 values) was found to be cell line-specific for all the kinase inhibitors tested. The results suggest that judicious combination of mTOR inhibitors with different modes of action could have beneficial effects in the treatment of breast cancer.
Collapse
Affiliation(s)
- Euphemia Y. Leung
- Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Grafton, Auckland, New Zealand
- * E-mail: (EL); (BB)
| | - Marjan Askarian-Amiri
- Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Grafton, Auckland, New Zealand
| | - Graeme J. Finlay
- Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Grafton, Auckland, New Zealand
| | - Gordon W. Rewcastle
- Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland, New Zealand
| | - Bruce C. Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland, New Zealand
- * E-mail: (EL); (BB)
| |
Collapse
|
58
|
Amengual JE, Johannet P, Lombardo M, Zullo K, Hoehn D, Bhagat G, Scotto L, Jirau-Serrano X, Radeski D, Heinen J, Jiang H, Cremers S, Zhang Y, Jones S, O'Connor OA. Dual Targeting of Protein Degradation Pathways with the Selective HDAC6 Inhibitor ACY-1215 and Bortezomib Is Synergistic in Lymphoma. Clin Cancer Res 2015; 21:4663-75. [PMID: 26116270 DOI: 10.1158/1078-0432.ccr-14-3068] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/12/2015] [Indexed: 01/25/2023]
Abstract
PURPOSE Pan-class histone deacetylase (HDAC) inhibitors are effective treatments for select lymphomas. Isoform-selective HDAC inhibitors are emerging as potentially more targeted agents. HDAC6 is a class IIb deacetylase that facilitates misfolded protein transport to the aggresome for degradation. We investigated the mechanism and therapeutic impact of the selective HDAC6 inhibitor ACY-1215 alone and in combination with bortezomib in preclinical models of lymphoma. EXPERIMENTAL DESIGN Concentration-effect relationships were defined for ACY-1215 across 16 lymphoma cell lines and for synergy with bortezomib. Mechanism was interrogated by immunoblot and flow cytometry. An in vivo xenograft model of DLBCL was used to confirm in vitro findings. A collection of primary lymphoma samples were surveyed for markers of the unfolded protein response (UPR). RESULTS Concentration-effect relationships defined maximal cytotoxicity at 48 hours with IC50 values ranging from 0.9 to 4.7 μmol/L. Strong synergy was observed in combination with bortezomib. Treatment with ACY-1215 led to inhibition of the aggresome evidenced by acetylated α-tubulin and accumulated polyubiquitinated proteins and upregulation of the UPR. All pharmacodynamic effects were enhanced with the addition of bortezomib. Findings were validated in vivo where mice treated with the combination demonstrated significant tumor growth delay and prolonged overall survival. Evaluation of a collection of primary lymphoma samples for markers of the UPR revealed increased HDAC6, GRP78, and XBP-1 expression as compared with reactive lymphoid tissue. CONCLUSIONS These data are the first results to demonstrate that dual targeting of protein degradation pathways represents an innovative and rational approach for the treatment of lymphoma.
Collapse
Affiliation(s)
- Jennifer E Amengual
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, New York.
| | - Paul Johannet
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Maximilian Lombardo
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Kelly Zullo
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Daniela Hoehn
- Division of Hematopathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Govind Bhagat
- Division of Hematopathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Luigi Scotto
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Xavier Jirau-Serrano
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Dejan Radeski
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Jennifer Heinen
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Hongfeng Jiang
- Division of Clinical Pathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Serge Cremers
- Division of Clinical Pathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Yuan Zhang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Simon Jones
- Acetylon Pharmaceuticals, Inc., Boston, Massachusetts
| | - Owen A O'Connor
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
59
|
Bhatia S, Bharti A. Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:3504-12. [PMID: 26028732 PMCID: PMC4444913 DOI: 10.1007/s13197-014-1414-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/07/2013] [Accepted: 05/19/2014] [Indexed: 11/27/2022]
Abstract
The pleothera of micro organisms obtained from contaminated food cultured in a starch broth was effectively tested against antibacterial agents, i.e. nisin, lysozyme and chelating agent EDTA. A variety of combination treatments of these antimicrobial agents and their incorporation in Starch based active packaging film according to their permissibility standards was done. 4 variables of Nisin concentration (ranging from 0 to 750 IU/ml), 3 variables of lysozyme concentration (ranging from 0 to 500 IU/ml) and 3 variables of EDTA concentration from (0 to 20 μM) were chosen. Bacterial inhibition by combination of different levels of different factors without antimicrobial films was evaluated using a liquid incubation method. The samples were assayed for turbidity at interval of 2, 4 and 24 h to check effectiveness of combined effects of antimicrobial agents which proved a transitory bactericidal effect for short incubation times. Zone of Inhibition was observed in the antimicrobial films prepared by agar diffusion method. Statistical analysis of experimental data for their antimicrobial spectrum was carried out by multi regression analysis and ANOVA using Design-Expert software to plot the final equation in terms of coded factors as antimicrobial agents. The experimental data indicated that the model was highly significant. Results were also evaluated graphically using response surface showing interactions between two factors, keeping other factor fixed at values at the center of domain. Synergy was also determined among antibacterial agents using the fractional inhibitory concentration (FIC) index which was observed to be 0.56 supporting the hypothesis that nisin and EDTA function as partial synergistically. The presented work aimed to screen in quick fashion the combinatorial effect of three antimicrobial agents and evaluating their efficacy in anti microbial film development.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Department of Biotechnology, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144402 Punjab India
| | - Anoop Bharti
- Department of Biotechnology, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144402 Punjab India
| |
Collapse
|
60
|
JAK2V617F drives Mcl-1 expression and sensitizes hematologic cell lines to dual inhibition of JAK2 and Bcl-xL. PLoS One 2015; 10:e0114363. [PMID: 25781882 PMCID: PMC4362760 DOI: 10.1371/journal.pone.0114363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/10/2014] [Indexed: 01/14/2023] Open
Abstract
Constitutive activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) axis is fundamental to the molecular pathogenesis of a host of hematological disorders, including acute leukemias and myeloproliferative neoplasms (MPN). We demonstrate here that the major JAK2 mutation observed in these diseases (JAK2V617F) enforces Mcl-1 transcription via STAT3 signaling. Targeting this lesion with JAK inhibitor I (JAKi-I) attenuates STAT3 binding to the Mcl-1 promoter and suppresses Mcl-1 transcript and protein expression. The neutralization of Mcl-1 in JAK2V617F-harboring myelodyssplastic syndrome cell lines sensitizes them to apoptosis induced by the BH3-mimetic and Bcl-xL/Bcl-2 inhibitor, ABT-263. Moreover, simultaneously targeting JAK and Bcl-xL/-2 is synergistic in the presence of the JAK2V617F mutation. These findings suggest that JAK/Bcl-xL/-2 inhibitor combination therapy may have applicability in a range of hematological disorders characterized by activating JAK2 mutations.
Collapse
|
61
|
Jain S, Jirau-Serrano X, Zullo KM, Scotto L, Palermo CF, Sastra SA, Olive KP, Cremers S, Thomas T, Wei Y, Zhang Y, Bhagat G, Amengual JE, Deng C, Karan C, Realubit R, Bates SE, O'Connor OA. Preclinical Pharmacologic Evaluation of Pralatrexate and Romidepsin Confirms Potent Synergy of the Combination in a Murine Model of Human T-cell Lymphoma. Clin Cancer Res 2015; 21:2096-106. [DOI: 10.1158/1078-0432.ccr-14-2249] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/09/2015] [Indexed: 11/16/2022]
|
62
|
Antihelminthic benzimidazoles potentiate navitoclax (ABT-263) activity by inducing Noxa-dependent apoptosis in non-small cell lung cancer (NSCLC) cell lines. Cancer Cell Int 2015; 15:5. [PMID: 25685063 PMCID: PMC4326508 DOI: 10.1186/s12935-014-0151-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/19/2014] [Indexed: 11/21/2022] Open
Abstract
Background Evasion of apoptosis is a hallmark of cancer cells. One mechanism to deregulate the apoptotic pathway is by upregulation of the anti-apoptotic Bcl-2 family members. Navitoclax (ABT-263) is a Bcl-2/Bcl-xL inhibitor that restores the ability of cancer cells to undergo apoptosis. Methods In this study we performed a high-throughput screen with 640 FDA-approved drugs to identify potential therapeutic combinations with navitoclax in a non-small cell lung cancer (NSCLC) cell line. Results Other than a panel of cancer compounds such as doxorubicin, camptothecin, and docetaxel, four antihelminthic compounds (benzimidazoles) potentiated navitoclax activity. Treatment with benzimidazoles led to induction of the pro-apoptotic protein Noxa at the mRNA and protein level. Noxa binds and antagonizes antiapoptotic protein Mcl-1. siRNA-mediated knock-down of Noxa completely rescued benzimidazole-potentiated navitoclax activity. In addition, inhibiting caspase 3 and 9 partially rescued benzimidazole-potentiated navitoclax activity. Conclusions We have identified compounds and mechanisms which potentiate navitoclax activity in lung cancer cell lines. Further validation of the benzimidazole-potentiated navitoclax effect in vivo is required to evaluate the potential for translating this observation into clinical benefit. Electronic supplementary material The online version of this article (doi:10.1186/s12935-014-0151-3) contains supplementary material, which is available to authorized users.
Collapse
|
63
|
Bharti SK, Krishnan S, Kumar A, Gupta AK, Ghosh AK, Kumar A. Mechanism-based antidiabetic activity of Fructo- and isomalto-oligosaccharides: Validation by in vivo, in silico and in vitro interaction potential. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
64
|
Albarakati N, Abdel-Fatah TMA, Doherty R, Russell R, Agarwal D, Moseley P, Perry C, Arora A, Alsubhi N, Seedhouse C, Rakha EA, Green A, Ball G, Chan S, Caldas C, Ellis IO, Madhusudan S. Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol Oncol 2015; 9:204-17. [PMID: 25205036 PMCID: PMC5528668 DOI: 10.1016/j.molonc.2014.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 11/17/2022] Open
Abstract
BRCA1, a key factor in homologous recombination (HR) repair may also regulate base excision repair (BER). Targeting BRCA1-BER deficient cells by blockade of ATM and DNA-PKcs could be a promising strategy in breast cancer. We investigated BRCA1, XRCC1 and pol β protein expression in two cohorts (n = 1602 sporadic and n = 50 germ-line BRCA1 mutated) and mRNA expression in two cohorts (n = 1952 and n = 249). Artificial neural network analysis for BRCA1-DNA repair interacting genes was conducted in 249 tumours. Pre-clinically, BRCA1 proficient and deficient cells were DNA repair expression profiled and evaluated for synthetic lethality using ATM and DNA-PKcs inhibitors either alone or in combination with cisplatin. In human tumours, BRCA1 negativity was strongly associated with low XRCC1, and low pol β at mRNA and protein levels (p < 0.0001). In patients with BRCA1 negative tumours, low XRCC1 or low pol β expression was significantly associated with poor survival in univariate and multivariate analysis compared to high XRCC1 or high pol β expressing BRCA1 negative tumours (ps < 0.05). Pre-clinically, BRCA1 negative cancer cells exhibit low mRNA and low protein expression of XRCC1 and pol β. BRCA1-BER deficient cells were sensitive to ATM and DNA-PKcs inhibitor treatment either alone or in combination with cisplatin and synthetic lethality was evidenced by DNA double strand breaks accumulation, cell cycle arrest and apoptosis. We conclude that XRCC1 and pol β expression status in BRCA1 negative tumours may have prognostic significance. BRCA1-BER deficient cells could be targeted by ATM or DNA-PKcs inhibitors for personalized therapy.
Collapse
Affiliation(s)
- Nada Albarakati
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | | | - Rachel Doherty
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Roslin Russell
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Christina Perry
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Nouf Alsubhi
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Claire Seedhouse
- Academic Haematology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Andrew Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Carlos Caldas
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ian O Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Srinivasan Madhusudan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
65
|
Hong SE, Shin KS, Lee YH, Seo SK, Yun SM, Choe TB, Kim HA, Kim EK, Noh WC, Kim JI, Hwang CS, Lee JK, Hwang SG, Jin HO, Park IC. Inhibition of S6K1 enhances dichloroacetate-induced cell death. J Cancer Res Clin Oncol 2014; 141:1171-9. [PMID: 25471732 DOI: 10.1007/s00432-014-1887-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/23/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE The unique metabolic profile of cancer (aerobic glycolysis) is an attractive therapeutic target for cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase, has been shown to reverse glycolytic phenotype and induce mitochondrion-dependent apoptosis. In the present study, we investigated the effects of S6 kinase 1 (S6K1) inhibition on DCA-induced cell death and the underlying mechanisms in breast cancer cells. METHODS Cell death was evaluated by annexin V and PI staining. The synergistic effects of DCA and PF4708671 were assessed by isobologram analysis. Small interfering RNA (siRNA) was used for suppressing gene expression. The mRNA and protein levels were measured by RT-PCR and Western blot analysis, respectively. RESULTS PF4708671, a selective inhibitor of S6K1, and knockdown of S6K1 with specific siRNA enhanced DCA-induced cell death. Interestingly, a combination of DCA/PF4708671 markedly reduced protein expression of a glycolytic enzyme, hexokinase 2 (HK2). Suppression of HK2 activity using specific siRNA and 2-deoxyglucose (2-DG) further enhanced cell sensitivity to DCA/PF4708671. Overexpression of Myc-tagged HK2 rescued cell death induced by DCA/PF4708671. CONCLUSIONS Based on these findings, we propose that inhibition of S6K1, in combination with the glycolytic inhibitor, DCA, provides effective cancer therapy.
Collapse
Affiliation(s)
- Sung-Eun Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Mayor-López L, Tristante E, Carballo-Santana M, Carrasco-García E, Grasso S, García-Morales P, Saceda M, Luján J, García-Solano J, Carballo F, de Torre C, Martínez-Lacaci I. Comparative Study of 17-AAG and NVP-AUY922 in Pancreatic and Colorectal Cancer Cells: Are There Common Determinants of Sensitivity? Transl Oncol 2014; 7:590-604. [PMID: 25389454 PMCID: PMC4225658 DOI: 10.1016/j.tranon.2014.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 02/02/2023] Open
Abstract
The use of heat shock protein 90 (Hsp90) inhibitors is an attractive antineoplastic therapy. We wanted to compare the effects of the benzoquinone 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) and the novel isoxazole resorcinol–based Hsp90 inhibitor NVP-AUY922 in a panel of pancreatic and colorectal carcinoma cell lines and in colorectal primary cultures derived from tumors excised to patients. PANC-1, CFPAC-1, and Caco-2 cells were intrinsically resistant to 17-AAG but sensitive to NVP-AUY922. Other cellular models were sensitive to both inhibitors. Human epidermal growth factor receptor receptors and their downstream signaling pathways were downregulated in susceptible cellular models, and concurrently, Hsp70 was induced. Intrinsic resistance to 17-AAG did not correlate with expression of ATP-binding cassette transporters involved in multidrug resistance. Some 17-AAG-resistant, NVP-AUY922–sensitive cell lines lacked NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme and activity. However, colorectal LoVo cells still responded to both drugs in spite of having undetectable levels and activity of NQO1. Pharmacological and biologic inhibition of NQO1 did not confer resistance to 17-AAG in sensitive cell lines. Therefore, even though 17-AAG sensitivity is related to NQO1 protein levels and enzymatic activity, the absence of NQO1 does not necessarily convey resistance to 17-AAG in these cellular models. Moreover, NVP-AUY922 does not require NQO1 for its action and is a more potent inhibitor than 17-AAG in these cells. More importantly, we show in this report that NVP-AUY922 potentiates the inhibitory effects of chemotherapeutic agents, such as gemcitabine or oxaliplatin, and other drugs that are currently being evaluated in clinical trials as antitumor agents.
Collapse
Affiliation(s)
- Leticia Mayor-López
- Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain
| | - Elena Tristante
- Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain
| | - Mar Carballo-Santana
- Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain
| | - Estefanía Carrasco-García
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - Silvina Grasso
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - Pilar García-Morales
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain ; Unidad de Investigación, Hospital General Universitario de Elche, 03203 Elche, Alicante, Spain
| | - Miguel Saceda
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain ; Unidad de Investigación, Hospital General Universitario de Elche, 03203 Elche, Alicante, Spain
| | - Juan Luján
- Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - José García-Solano
- Servicio de Anatomía Patológica, Hospital General Universitario Santa Lucía, 30202 Cartagena, Murcia, Spain
| | - Fernando Carballo
- Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain ; Servicio de Gastroenterología, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Carlos de Torre
- Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain
| | - Isabel Martínez-Lacaci
- Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain ; Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| |
Collapse
|
67
|
Grasso S, Tristante E, Saceda M, Carbonell P, Mayor-López L, Carballo-Santana M, Carrasco-García E, Rocamora-Reverte L, García-Morales P, Carballo F, Ferragut JA, Martínez-Lacaci I. Resistance to Selumetinib (AZD6244) in colorectal cancer cell lines is mediated by p70S6K and RPS6 activation. Neoplasia 2014; 16:845-60. [PMID: 25379021 PMCID: PMC4212257 DOI: 10.1016/j.neo.2014.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022] Open
Abstract
Selumetinib (AZD6244, ARRY-142886) is a MEK1/2 inhibitor that has gained interest as an anti-tumour agent. We have determined the degree of sensitivity/resistance to Selumetinib in a panel of colorectal cancer cell lines using cell proliferation and soft agar assays. Sensitive cell lines underwent G1 arrest, whereas Selumetinib had no effect on the cell cycle of resistant cells. Some of the resistant cell lines showed high levels of ERK1/2 phosphorylation in the absence of serum. Selumetinib inhibited phosphorylation of ERK1/2 and RSK and had no effect on AKT phosphorylation in both sensitive and resistant cells. Furthermore, mutations in KRAS, BRAF, or PIK3CA were not clearly associated with Selumetinib resistance. Surprisingly, Selumetinib was able to inhibit phosphorylation of p70 S6 kinase (p70S6K) and its downstream target ribosomal protein S6 (RPS6) in sensitive cell lines. However, p70S6K and RPS6 phosphorylation remained unaffected or even increased in resistant cells. Moreover, in some of the resistant cell lines p70S6K and RPS6 were phosphorylated in the absence of serum. Interestingly, colorectal primary cultures derived from tumours excised to patients exhibited the same behaviour than established cell lines. Pharmacological inhibition of p70S6K using the PI3K/mTOR inhibitor NVP-BEZ235, the specific mTOR inhibitor Rapamycin and the specific p70S6K inhibitor PF-4708671 potentiated Selumetinib effects in resistant cells. In addition, biological inhibition of p70S6K using siRNA rendered responsiveness to Selumetinib in resistant cell lines. Furthermore, combination of p70S6K silencing and PF-47086714 was even more effective. We can conclude that p70S6K and its downstream target RPS6 are potential biomarkers of resistance to Selumetinib in colorectal cancer.
Collapse
Affiliation(s)
- Silvina Grasso
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
| | - Elena Tristante
- Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain
| | - Miguel Saceda
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain ; Unidad de Investigación, Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain
| | - Pablo Carbonell
- Centro de Bioquímica y Genética Clínica, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Leticia Mayor-López
- Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain
| | - Mar Carballo-Santana
- Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain
| | - Estefanía Carrasco-García
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
| | - Lourdes Rocamora-Reverte
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
| | - Pilar García-Morales
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain ; Unidad de Investigación, Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain
| | - Fernando Carballo
- Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain ; Servicio de Gastroenterología, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - José A Ferragut
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
| | - Isabel Martínez-Lacaci
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain ; Unidad AECC de Investigación Traslacional en Cáncer, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain
| |
Collapse
|
68
|
Chaudhuri J, Chowdhury AA, Biswas N, Manna A, Chatterjee S, Mukherjee T, Chaudhuri U, Jaisankar P, Bandyopadhyay S. Superoxide activates mTOR-eIF4E-Bax route to induce enhanced apoptosis in leukemic cells. Apoptosis 2014; 19:135-48. [PMID: 24052408 DOI: 10.1007/s10495-013-0904-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a central kinase that regulates cell survival, proliferation and translation. Reactive oxygen species (ROS) are second messengers with potential in manipulating cellular signaling. Here we report that two ROS generating phytochemicals, hydroxychavicol and curcumin synergize in leukemic cells in inducing enhanced apoptosis by independently activating both mitogen activated protein kinase (MAPK) (JNK and P(38)) and mTOR pathways. Low level transient ROS generated after co-treatment with these phytochemicals led to activation of these two pathways. Both mTOR and MAPK pathways played important roles in co-treatment-induced apoptosis, by knocking down either mTOR or MAPKs inhibited apoptosis. Activation of mTOR, as evident from phosphorylation of its downstream effector eukaryotic translation initiation factor 4E-binding protein 1, led to release of eukaryotic translation initiation factor 4E (eIF4E) which was subsequently phosphorylated by JNK leading to translation of pro-apoptotic proteins Bax and Bad without affecting the expression of anti-apoptotic protein Bcl-xl. Our data suggest that mTOR and MAPK pathways converge at eIF4E in co-treatment-induced enhanced apoptosis and provide mechanistic insight for the role of mTOR activation in apoptosis.
Collapse
Affiliation(s)
- Jaydeep Chaudhuri
- Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Raquet N, Schrenk D. Application of the equivalency factor concept to the phototoxicity and –genotoxicity of furocoumarin mixtures. Food Chem Toxicol 2014; 68:257-66. [DOI: 10.1016/j.fct.2014.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/23/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
70
|
Wilson J, Zuniga MC, Yazzie F, Stearns DM. Synergistic cytotoxicity and DNA strand breaks in cells and plasmid DNA exposed to uranyl acetate and ultraviolet radiation. J Appl Toxicol 2014; 35:338-49. [PMID: 24832689 DOI: 10.1002/jat.3015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 11/08/2022]
Abstract
Depleted uranium (DU) has a chemical toxicity that is independent of its radioactivity. The purpose of this study was to explore the photoactivation of uranyl ion by ultraviolet (UV) radiation as a chemical mechanism of uranium genotoxicity. The ability of UVB (302 nm) and UVA (368 nm) radiation to photoactivate uranyl ion to produce single strand breaks was measured in pBR322 plasmid DNA, and the presence of adducts and apurinic/apyrimidinic sites that could be converted to single strand breaks by heat and piperidine was analyzed. Results showed that DNA lesions in plasmid DNA exposed to UVB- or UVA-activated DU were only slightly heat reactive, but were piperidine sensitive. The cytotoxicity of UVB-activated uranyl ion was measured in repair-proficient and repair-deficient Chinese hamster ovary cells and human keratinocyte HaCaT cells. The cytotoxicity of co-exposures of uranyl ion and UVB radiation was dependent on the order of exposure and was greater than co-exposures of arsenite and UVB radiation. Uranyl ion and UVB radiation were synergistically cytotoxic in cells, and cells exposed to photoactivated DU required different DNA repair pathways than cells exposed to non-photoactivated DU. This study contributes to our understanding of the DNA lesions formed by DU, as well as their repair. Results suggest that excitation of uranyl ion by UV radiation can provide a pathway for uranyl ion to be chemically genotoxic in populations with dermal exposures to uranium and UV radiation, which would make skin an overlooked target organ for uranium exposures.
Collapse
Affiliation(s)
- Janice Wilson
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | |
Collapse
|
71
|
Breen ME, Steffey ME, Lachacz EJ, Kwarcinski FE, Fox CC, Soellner MB. Substrate activity screening with kinases: discovery of small-molecule substrate-competitive c-Src inhibitors. Angew Chem Int Ed Engl 2014; 53:7010-3. [PMID: 24797781 DOI: 10.1002/anie.201311096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/06/2014] [Indexed: 01/09/2023]
Abstract
Substrate-competitive kinase inhibitors represent a promising class of kinase inhibitors, however, there is no methodology to selectively identify this type of inhibitor. Substrate activity screening was applied to tyrosine kinases. By using this methodology, the first small-molecule substrates for any protein kinase were discovered, as well as the first substrate-competitive inhibitors of c-Src with activity in both biochemical and cellular assays. Characterization of the lead inhibitor demonstrates that substrate-competitive kinase inhibitors possess unique properties, including cellular efficacy that matches biochemical potency and synergy with ATP-competitive inhibitors.
Collapse
Affiliation(s)
- Meghan E Breen
- Departments of Medicinal Chemistry and Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109 (USA)
| | | | | | | | | | | |
Collapse
|
72
|
Breen ME, Steffey ME, Lachacz EJ, Kwarcinski FE, Fox CC, Soellner MB. Substrate Activity Screening with Kinases: Discovery of Small-Molecule Substrate-Competitive c-Src Inhibitors. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
73
|
Treatment of nasopharyngeal carcinoma cells with the histone-deacetylase inhibitor abexinostat: cooperative effects with cis-platin and radiotherapy on patient-derived xenografts. PLoS One 2014; 9:e91325. [PMID: 24618637 PMCID: PMC3949989 DOI: 10.1371/journal.pone.0091325] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/09/2014] [Indexed: 01/02/2023] Open
Abstract
EBV-related nasopharyngeal carcinomas (NPCs) still raise serious therapeutic problems. The therapeutic potential of the histone-deacetylase (HDAC) inhibitor Abexinostat was investigated using 5 preclinical NPC models including 2 patient-derived xenografts (C15 and C17). The cytotoxicity of Abexinostat used either alone or in combination with cis-platin or irradiation was assessed in vitro by MTT and clonogenic assays using 2 EBV-negative (CNE1 and HONE1) and 3 EBV-positive NPC models (C15, C17 and C666-1). Subsequently, the 3 EBV-positive models were used under the form of xenografts to assess the impact of systemic treatments by Abexinostat or combinations of Abexinostat with cis-platin or irradiation. Several cell proteins known to be affected by HDAC inhibitors and the small viral non-coding RNA EBER1 were investigated in the treated tumors. Synergistic cytotoxic effects of Abexinostat combined with cis-platin or irradiation were demonstrated in vitro for each NPC model. When using xenografts, Abexinostat by itself (12.5 mg/kg, BID, 4 days a week for 3 weeks) had significant anti-tumor effects against C17. Cooperative effects with cis-platin (2 mg/kg, IP, at days 3, 10 and 17) and irradiation (1 Gy) were observed for the C15 and C17 xenografts. Simultaneously two types of biological alterations were induced in the tumor tissue, especially in the C17 model: a depletion of the DNA-repair protein RAD51 and a stronger in situ detection of the small viral RNA EBER1. Overall, these results support implementation of phase I/II clinical trials of Abexinostat for the treatment of NPC. A depletion of RAD51 is likely to contribute to the cooperation of Abexinostat with DNA damaging agents. Reduction of RAD51 combined to enhanced detection of EBER 1 might be helpful for early assessment of tumor response.
Collapse
|
74
|
Dawson DA, Pöch G, Schultz TW. Mixture toxicity of SN2-reactive soft electrophiles: 3. Evaluation of ethyl α-halogenated acetates with α-halogenated acetonitriles. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 66:248-58. [PMID: 24368709 PMCID: PMC4028013 DOI: 10.1007/s00244-013-9981-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/06/2013] [Indexed: 05/08/2023]
Abstract
Mixture toxicity for each of four ethyl α-halogenated acetates with each of three α-halogenated acetonitriles (xANs) was assessed. Inhibition of bioluminescence in Vibrio fischeri was measured after 15, 30, and 45 min of exposure. Concentration-response curves were developed for each chemical at each exposure duration and used to develop predicted concentration-response curves for the dose-addition and independence models of combined effect. Concentration-response curves for each mixture and each exposure duration were then evaluated against the predicted curves using three metrics per model: (1) EC50-based additivity quotient (AQ) or independence quotient (IQ) values; (2) mean AQ (mAQ) or mean IQ (mIQ) values, which were calculated by averaging the EC25, EC50, and EC75 AQ or IQ values; and (3) deviation values from additivity (DV-A) or independence (DV-I). Mixture toxicity for ethyl iodoacetate was dose-additive with each of the xANs at all exposure durations and was also often consistent with independence. The same was true for mixture toxicity of ethyl bromoacetate with each xAN. However, for the two more slowly reactive chemicals, ethyl chloroacetate (ECAC) and ethyl fluoroacetate (EFAC), mixture toxicity with each xAN only became consistent with dose-addition on increasing exposure duration. Consistency with independence for both ECAC and EFAC with the xANs was essentially limited to the EC50-IQ metric, thereby showing the utility of calculating the mean quotient (mAQ, mIQ) and deviation value (DV-A, DV-I) metrics. On review of these findings with those from the first two studies in the series, the results suggest that instances in which mixture toxicity was not consistent with dose-addition relate (1) to differences in the capability of the chemicals to form strong H-bonds with water; and (2) to differences in relative reactivity and time-dependent toxicity levels of the chemicals.
Collapse
Affiliation(s)
- D A Dawson
- Department of Biology/Toxicology, Ashland University, Ashland, OH, 44805, USA,
| | | | | |
Collapse
|
75
|
Kaneko N, Mitsuoka K, Amino N, Yamanaka K, Kita A, Mori M, Miyoshi S, Kuromitsu S. Combination of YM155, a Survivin Suppressant, with Bendamustine and Rituximab: A New Combination Therapy to Treat Relapsed/Refractory Diffuse Large B-cell Lymphoma. Clin Cancer Res 2014; 20:1814-22. [DOI: 10.1158/1078-0432.ccr-13-2707] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
76
|
Rosmarinic Acid and Its Methyl Ester as Antimicrobial Components of the Hydromethanolic Extract of Hyptis atrorubens Poit. (Lamiaceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:604536. [PMID: 24348709 PMCID: PMC3855952 DOI: 10.1155/2013/604536] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 11/17/2022]
Abstract
Primary biological examination of four extracts of the leaves and stems of Hyptis atrorubens Poit. (Lamiaceae), a plant species used as an antimicrobial agent in Guadeloupe, allowed us to select the hydromethanolic extract of the stems for further studies. It was tested against 46 microorganisms in vitro. It was active against 29 microorganisms. The best antibacterial activity was found against bacteria, mostly Gram-positive ones. Bioautography enabled the isolation and identification of four antibacterial compounds from this plant: rosmarinic acid, methyl rosmarinate, isoquercetin, and hyperoside. The MIC and MBC values of these compounds and their combinations were determined against eight pathogenic bacteria. The best inhibitory and bactericidal activity was found for methyl rosmarinate (0.3 mg/mL). Nevertheless, the bactericidal power of rosmarinic acid was much faster in the time kill study. Synergistic effects were found when combining the active compounds. Finally, the inhibitory effects of the compounds were evaluated on the bacterial growth phases at two different temperatures. Our study demonstrated for the first time antimicrobial activity of Hyptis atrorubens with identification of the active compounds. It supports its traditional use in French West Indies. Although its active compounds need to be further evaluated in vivo, this work emphasizes plants as potent sources of new antimicrobial agents when resistance to antibiotics increases dramatically.
Collapse
|
77
|
Rodriguez MV, Sortino MA, Ivancovich JJ, Pellegrino JM, Favier LS, Raimondi MP, Gattuso MA, Zacchino SA. Detection of synergistic combinations of Baccharis extracts with terbinafine against Trichophyton rubrum with high throughput screening synergy assay (HTSS) followed by 3D graphs. Behavior of some of their components. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1230-1239. [PMID: 23906773 DOI: 10.1016/j.phymed.2013.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/09/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Forty four extracts from nine Baccharis spp. from the Caulopterae section were tested in combination with terbinafine against Trichophyton rubrum with the HTSS assay at six different ratios with the aim of detecting those mixtures that produced a ≥50% statistically significant enhancement of growth inhibition. Since an enhanced effect of a combination respective of its components, does not necessarily indicate synergism, three-dimensional (3D) dose-response surfaces were constructed for each selected pair of extract/antifungal drug with the aid of CombiTool software. Ten extracts showed synergistic or additive combinations which constitutes a 22% hit rate of the extracts submitted to evaluation. Four flavonoids and three ent-clerodanes were detected in the active Baccharis extracts with HPLC/UV/ESI-MS methodology, all of which were tested in combination with terbinafine. Results showed that ent-clerodanes but not flavonoids showed synergistic or additive effects. Among them, bacchotricuneatin A followed by bacrispine showed synergistic effects while hawtriwaic acid showed additive effects.
Collapse
Affiliation(s)
- María Victoria Rodriguez
- Pharmacognosy Area, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, 2000 Rosario, Argentina; Vegetal Biology Area, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Jayaprakasam B, Yang N, Wen MC, Wang R, Goldfarb J, Sampson H, Li XM. Constituents of the anti-asthma herbal formula ASHMI(TM) synergistically inhibit IL-4 and IL-5 secretion by murine Th2 memory cells, and eotaxin by human lung fibroblasts in vitro. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2013; 11:195-205. [PMID: 23743163 DOI: 10.3736/jintegrmed2013029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Anti-asthma herbal medicine intervention (ASHMI(TM)), a combination of three traditional Chinese medicinal herbs developed in our laboratory, has demonstrated efficacy in both mouse models of allergic asthma, and a double-blind placebo-controlled clinical trial in patients with asthma. This study was designed to determine if the anti-inflammatory effects of individual herbal constituents of ASHMI(TM) exhibited synergy. METHODS Effects of ASHMI and its components aqueous extracts of Lingzhi (Ganoderma lucidum), Kushen (Sophora flavescens) and Gancao (Glycyrrhiza uralensis), on Th2 cytokine secretion by murine memory Th2 cells (D10.G4.1) and eotaxin-1 secretion by human lung fibroblast (HLF-1) cells were determined by measuring levels in culture supernatants by enzyme-linked immunosorbent assay. Potential synergistic effects were determined by computing interaction indices from concentration-effect curve parameters. RESULTS Individual Lingzhi, Kushen and Gancao extracts and ASHMI (the combination of individual extracts) inhibited production of interleukin (IL)-4 and IL-5 by murine memory Th2 cells and eotaxin-1 production by HLF-1 cells. The mean 25%-inhibitory-concentration (IC25) values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 30.9, 79.4, 123, and 64.6, respectively; for IL-5 production were 30.2, 263, 123.2 and 100, respectively; for eotaxin-1 were 13.2, 16.2, 30.2, and 25.1, respectively. The IC50 values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 158.5, 239.9, 446.7, and 281.8, respectively; for eotaxin-1 were 38.1, 33.1, 100, and 158.5, respectively. The interaction indices of ASHMI constituents at IC25 were 0.35 for IL-4, 0.21 for IL-5 and 0.59 for eotaxin-1. The interaction indices at IC50 values were 0.50 for IL-4 and 0.62 for eotaxin-1 inhibition. Inhibition of IL-5 did not reach IC50 values. All interaction indices were below 1 which indicated synergy. CONCLUSION By comparing the interaction index values, we find that constituents in ASHMI(TM) synergistically inhibited eotaxin-1 production as well as Th2 cytokine production.
Collapse
|
79
|
Carnevale J, Ross L, Puissant A, Banerji V, Stone RM, DeAngelo DJ, Ross KN, Stegmaier K. SYK regulates mTOR signaling in AML. Leukemia 2013; 27:2118-28. [PMID: 23535559 PMCID: PMC4028963 DOI: 10.1038/leu.2013.89] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
Spleen Tyrosine Kinase (SYK) was recently identified as a new target in acute myeloid leukemia (AML); however, its mechanistic role in this disease is poorly understood. Based on the known interaction between SYK and mTOR signaling in lymphoma, we hypothesized that SYK may regulate mTOR signaling in AML. Both small-molecule inhibition of SYK and SYK-directed shRNA suppressed mTOR and its downstream signaling effectors, as well as its upstream activator, AKT. Moreover, the inhibition of multiple nodes of the PI3K signaling pathway enhanced the effects of SYK suppression on AML cell viability and differentiation. Evaluation of the collateral MAPK pathway revealed a heterogeneous response to SYK inhibition in AML with down-regulation of MEK and ERK phosphorylation in some AML cell lines but a paradoxical increase in MEK/ERK phosphorylation in RAS-mutated AML. These studies reveal SYK as a regulator of mTOR and MAPK signaling in AML and demonstrate that inhibition of PI3K pathway activity enhances the effects of SYK inhibition on AML cell viability and differentiation.
Collapse
Affiliation(s)
- J Carnevale
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Multicomponent therapeutics of berberine alkaloids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:545898. [PMID: 23634170 PMCID: PMC3619540 DOI: 10.1155/2013/545898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/16/2013] [Accepted: 02/24/2013] [Indexed: 11/17/2022]
Abstract
Although berberine alkaloids (BAs) are reported to be with broad-spectrum antibacterial and antiviral activities, the interactions among BAs have not been elucidated. In the present study, methicillin-resistant Staphylococcus aureus (MRSA) was chosen as a model organism, and modified broth microdilution was applied for the determination of the fluorescence absorption values to calculate the anti-MRSA activity of BAs. We have initiated four steps to seek the optimal combination of BAs that are (1) determining the anti-MRSA activity of single BA, (2) investigating the two-component combination to clarify the interactions among BAs by checkerboard assay, (3) investigating the multicomponent combination to determine the optimal ratio by quadratic rotation-orthogonal combination design, and (4) in vivo and in vitro validation of the optimal combination. The results showed that the interactions among BAs are related to their concentrations. The synergetic combinations included “berberine and epiberberine,” “jatrorrhizine and palmatine” and “jatrorrhizine and coptisine”; the antagonistic combinations included “coptisine and epiberberine”. The optimal combination was berberine : coptisine : jatrorrhizine : palmatine : epiberberine = 0.702 : 0.863 : 1 : 0.491 : 0.526, and the potency of the optimal combination on cyclophosphamide-immunocompromised mouse model was better than the natural combinations of herbs containing BAs.
Collapse
|
81
|
Sultana R, Abdel-Fatah T, Perry C, Moseley P, Albarakti N, Mohan V, Seedhouse C, Chan S, Madhusudan S. Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS One 2013; 8:e57098. [PMID: 23451157 PMCID: PMC3581581 DOI: 10.1371/journal.pone.0057098] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/17/2013] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is a key sensor of single-stranded DNA associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step of the nucleotide excision repair response. METHODS In the current study, we investigated synthetic lethality in XRCC1 deficient and XRCC1 proficient Chinese Hamster ovary (CHO) and human ovarian cancer cells using ATR inhibitors (NU6027). In addition, we also investigated the ability of ATR inhibitors to potentiate cisplatin cytotoxicity in XRCC1 deficient and XRCC1 proficient CHO and human cancer cells. Clonogenic assays, alkaline COMET assays, γH2AX immunocytochemistry, FACS for cell cycle as well as FITC-annexin V flow cytometric analysis were performed. RESULTS ATR inhibition is synthetically lethal in XRCC1 deficient cells as evidenced by increased cytotoxicity, accumulation of double strand DNA breaks, G2/M cell cycle arrest and increased apoptosis. Compared to cisplatin alone, combination of cisplatin and ATR inhibitor results in enhanced cytotoxicity in XRCC1 deficient cells compared to XRCC1 proficient cells. CONCLUSIONS Our data provides evidence that ATR inhibition is suitable for synthetic lethality application and cisplatin chemopotentiation in XRCC1 deficient ovarian cancer cells.
Collapse
Affiliation(s)
- Rebeka Sultana
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Tarek Abdel-Fatah
- Department of Clinical Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Christina Perry
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Paul Moseley
- Department of Clinical Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Nada Albarakti
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Vivek Mohan
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Claire Seedhouse
- Academic Haematology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Stephen Chan
- Department of Clinical Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
82
|
Vérillaud B, Gressette M, Morel Y, Paturel C, Herman P, Lo KW, Tsao SW, Wassef M, Jimenez-Pailhes AS, Busson P. Toll-like receptor 3 in Epstein-Barr virus-associated nasopharyngeal carcinomas: consistent expression and cytotoxic effects of its synthetic ligand poly(A:U) combined to a Smac-mimetic. Infect Agent Cancer 2012. [PMID: 23198710 PMCID: PMC3599303 DOI: 10.1186/1750-9378-7-36] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Nasopharyngeal carcinomas (NPC) are consistently associated with the Epstein-Barr virus (EBV). Though NPCs are more radiosensitive and chemosensitive than other tumors of the upper aero-digestive tract, many therapeutic challenges remain. In a previous report, we have presented data supporting a possible therapeutic strategy based on artificial TLR3 stimulation combined to the inhibition of the IAP protein family (Inhibitor of Apoptosis Proteins). The present study was designed to progress towards practical applications of this strategy pursuing 2 main objectives: 1) to formally demonstrate expression of the TLR3 protein by malignant NPC cells; 2) to investigate the effect of poly(A:U) as a novel TLR3-agonist more specific than poly(I:C) which was used in our previous study. Methods TLR3 expression was investigated in a series of NPC cell lines and clinical specimens by Western blot analysis and immunohistochemistry, respectively. The effects on NPC cells growth of the TLR3 ligand poly(A:U) used either alone or in combination with RMT5265, an IAP inhibitor based on Smac-mimicry, were assessed using MTT assays and clonogenic assays. Results TLR3 was detected at a high level in all NPC cell lines and clinical specimens. Low concentrations of poly(A:U) were applied to several types of NPC cells including cells from the C17 xenograft which for the first time have been adapted to permanent propagation in vitro. As a single agent, poly(A:U) had no significant effects on cell growth and cell survival. In contrast, dramatic effects were obtained when it was combined with the IAP inhibitor RMT5265. These effects were obtained using concentrations as low as 0.5 μg/ml (poly(A:U)) and 50 nM (RMT5265). Conclusion These data confirm that TLR3 expression is a factor of vulnerability for NPC cells. They suggest that in some specific pathological and pharmacological contexts, it might be worth to use Smac-mimetics at very low doses, allowing a better management of secondary effects. In light of our observations, combined use of both types of compounds should be considered for treatment of nasopharyngeal carcinomas.
Collapse
Affiliation(s)
- Benjamin Vérillaud
- CNRS-UMR 8126, Institut de Cancérologie Gustave Roussy, University Paris-Sud 11, 39 rue Camille Desmoulins, 94805, Villejuif cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Wunderlich A, Roth S, Ramaswamy A, Greene BH, Brendel C, Hinterseher U, Bartsch DK, Hoffmann S. Combined inhibition of cellular pathways as a future therapeutic option in fatal anaplastic thyroid cancer. Endocrine 2012; 42:637-46. [PMID: 22477151 DOI: 10.1007/s12020-012-9665-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/22/2012] [Indexed: 12/25/2022]
Abstract
Conventional treatment by surgery, radioiodine, and thyroxin-suppressive therapy often fails to cure anaplastic thyroid cancer (ATC). Therefore several attempts have been made to evaluate new therapy options by use of "small molecule inhibitors". ATC was shown to respond to monotherapeutic proteasome and Aurora kinase inhibition in vitro as well as in xenotransplanted tumor cells. Aim of this study was to evaluate the effect of combined treatment targeting the ubiquitin-proteasome system by bortezomib and Aurora kinases by use of MLN8054. Three ATC cell lines (Hth74, C643, and Kat4.1) were used. The antiproliferative effect of combined treatment with bortezomib and MLN8054 was assessed by MTT-assay and cell cycle analysis (FACS). Proapoptotic effects were evaluated by measurement of Caspase-3 activity, and effects on VEGF secretion were analyzed by ELISA. Compared to mono-application combined treatment with bortezomib and MLN8054 resulted in a further decrease of cell density, whereas antagonizing effects were found regarding cell cycle progression. Caspase-3 activity was increased up to 2.7- and 14-fold by mono-application of MLN8054 and bortezomib, respectively. When the two drugs were used in combination, a further enhancement of Caspase-3 activity was achieved, depending on the cell line. VEGF secretion was decreased following bortezomib treatment and remained unchanged by MLN8054. Only in C643 cells, the bortezomib-induced down-regulation was enhanced when MLN8054 was applied simultaneously. In conclusion, our data demonstrate that targeting the proteasome and Aurora kinases simultaneously results in additional antitumoral effects in vitro, especially regarding cell growth and induction of apoptosis. The efficacy of this therapeutic approach remains to be revised by in vivo and clinical application.
Collapse
Affiliation(s)
- Annette Wunderlich
- Department of Surgery, Philipps-University of Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
84
|
A systems biology approach to uncovering pharmacological synergy in herbal medicines with applications to cardiovascular disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:519031. [PMID: 23243453 PMCID: PMC3518963 DOI: 10.1155/2012/519031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022]
Abstract
Background. Clinical trials reveal that multiherb prescriptions of herbal medicine often exhibit pharmacological and therapeutic superiority in comparison to isolated single constituents. However, the synergistic mechanisms underlying this remain elusive. To address this question, a novel systems biology model integrating oral bioavailability and drug-likeness screening, target identification, and network pharmacology method has been constructed and applied to four clinically widely used herbs Radix Astragali Mongolici, Radix Puerariae Lobatae, Radix Ophiopogonis Japonici, and Radix Salviae Miltiorrhiza which exert synergistic effects of combined treatment of cardiovascular disease (CVD). Results. The results show that the structural properties of molecules in four herbs have substantial differences, and each herb can interact with significant target proteins related to CVD. Moreover, the bioactive ingredients from different herbs potentially act on the same molecular target (multiple-drug-one-target) and/or the functionally diverse targets but with potentially clinically relevant associations (multiple-drug-multiple-target-one-disease). From a molecular/systematic level, this explains why the herbs within a concoction could mutually enhance pharmacological synergy on a disease. Conclusions. The present work provides a new strategy not only for the understanding of pharmacological synergy in herbal medicine, but also for the rational discovery of potent drug/herb combinations that are individually subtherapeutic.
Collapse
|
85
|
Abstract
This paper presents a new formulation for the analysis of growth kinetics on multiple nutrients. The baseline for the theory is the concept that a noninteractive growth process occurs among perfectly substitutable nutrients if the locus of points of the substrate concentrations producing equal growth rate is linear. A deviation function is then defined with respect to this base case, and several models for this function are suggested. The underlying theory is taken by analogy with mixture thermodynamics. The proposed formulation is tested against data in the literature on growth under substitutable and complementary substrate mixtures. (c) 1994 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- C N Haas
- Department of Civil and Architectural Engineering, Environmental Studies Institute, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
86
|
Altenburger R, Scholz S, Schmitt-Jansen M, Busch W, Escher BI. Mixture toxicity revisited from a toxicogenomic perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2508-22. [PMID: 22283441 DOI: 10.1021/es2038036] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The advent of new genomic techniques has raised expectations that central questions of mixture toxicology such as for mechanisms of low dose interactions can now be answered. This review provides an overview on experimental studies from the past decade that address diagnostic and/or mechanistic questions regarding the combined effects of chemical mixtures using toxicogenomic techniques. From 2002 to 2011, 41 studies were published with a focus on mixture toxicity assessment. Primarily multiplexed quantification of gene transcripts was performed, though metabolomic and proteomic analysis of joint exposures have also been undertaken. It is now standard to explicitly state criteria for selecting concentrations and provide insight into data transformation and statistical treatment with respect to minimizing sources of undue variability. Bioinformatic analysis of toxicogenomic data, by contrast, is still a field with diverse and rapidly evolving tools. The reported combined effect assessments are discussed in the light of established toxicological dose-response and mixture toxicity models. Receptor-based assays seem to be the most advanced toward establishing quantitative relationships between exposure and biological responses. Often transcriptomic responses are discussed based on the presence or absence of signals, where the interpretation may remain ambiguous due to methodological problems. The majority of mixture studies design their studies to compare the recorded mixture outcome against responses for individual components only. This stands in stark contrast to our existing understanding of joint biological activity at the levels of chemical target interactions and apical combined effects. By joining established mixture effect models with toxicokinetic and -dynamic thinking, we suggest a conceptual framework that may help to overcome the current limitation of providing mainly anecdotal evidence on mixture effects. To achieve this we suggest (i) to design studies to establish quantitative relationships between dose and time dependency of responses and (ii) to adopt mixture toxicity models. Moreover, (iii) utilization of novel bioinformatic tools and (iv) stress response concepts could be productive to translate multiple responses into hypotheses on the relationships between general stress and specific toxicity reactions of organisms.
Collapse
Affiliation(s)
- Rolf Altenburger
- Department Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Permoser Street 15, 04318 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
87
|
Li S, Zhang B, Zhang N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC SYSTEMS BIOLOGY 2011; 5 Suppl 1:S10. [PMID: 21689469 PMCID: PMC3121110 DOI: 10.1186/1752-0509-5-s1-s10] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Multicomponent therapeutics offer bright prospects for the control of complex diseases in a synergistic manner. However, finding ways to screen the synergistic combinations from numerous pharmacological agents is still an ongoing challenge. RESULTS In this work, we proposed for the first time a "network target"-based paradigm instead of the traditional "single target"-based paradigm for virtual screening and established an algorithm termed NIMS (Network target-based Identification of Multicomponent Synergy) to prioritize synergistic agent combinations in a high throughput way. NIMS treats a disease-specific biological network as a therapeutic target and assumes that the relationship among agents can be transferred to network interactions among the molecular level entities (targets or responsive gene products) of agents. Then, two parameters in NIMS, Topology Score and Agent Score, are created to evaluate the synergistic relationship between each given agent combinations. Taking the empirical multicomponent system traditional Chinese medicine (TCM) as an illustrative case, we applied NIMS to prioritize synergistic agent pairs from 63 agents on a pathological process instanced by angiogenesis. The NIMS outputs can not only recover five known synergistic agent pairs, but also obtain experimental verification for synergistic candidates combined with, for example, a herbal ingredient Sinomenine, which outperforms the meet/min method. The robustness of NIMS was also showed regarding the background networks, agent genes and topological parameters, respectively. Finally, we characterized the potential mechanisms of multicomponent synergy from a network target perspective. CONCLUSIONS NIMS is a first-step computational approach towards identification of synergistic drug combinations at the molecular level. The network target-based approaches may adjust current virtual screen mode and provide a systematic paradigm for facilitating the development of multicomponent therapeutics as well as the modernization of TCM.
Collapse
Affiliation(s)
- Shao Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST / Department of Automation, Tsinghua University, Beijing 100084, China
| | - Bo Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST / Department of Automation, Tsinghua University, Beijing 100084, China
| | - Ningbo Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST / Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
88
|
Yasmeen A, Beauchamp MC, Piura E, Segal E, Pollak M, Gotlieb WH. Induction of apoptosis by metformin in epithelial ovarian cancer: Involvement of the Bcl-2 family proteins. Gynecol Oncol 2011; 121:492-8. [DOI: 10.1016/j.ygyno.2011.02.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/11/2011] [Accepted: 02/13/2011] [Indexed: 12/18/2022]
|
89
|
Kang YJ, Kim IY, Kim EH, Yoon MJ, Kim SU, Kwon TK, Choi KS. Paxilline enhances TRAIL-mediated apoptosis of glioma cells via modulation of c-FLIP, survivin and DR5. Exp Mol Med 2011; 43:24-34. [PMID: 21150246 DOI: 10.3858/emm.2011.43.1.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) induces apoptosis selectively in cancer cells while sparing normal cells. However, many cancer cells are resistant to TRAIL-induced cell death. Here, we report that paxilline, an indole alkaloid from Penicillium paxilli, can sensitize various glioma cells to TRAIL-mediated apoptosis. While treatment with TRAIL alone caused partial processing of caspase-3 to its p20 intermediate in TRAIL-resistant glioma cell lines, co-treatment with TRAIL and subtoxic doses of paxilline caused complete processing of caspase-3 into its active subunits. Paxilline treatment markedly upregulated DR5, a receptor of TRAIL, through a CHOP/GADD153-mediated process. In addition, paxilline treatment markedly downregulated the protein levels of the short form of the cellular FLICE-inhibitory protein (c-FLIPs) and the caspase inhibitor, survivin, through proteasome-mediated degradation. Taken together, these results show that paxilline effectively sensitizes glioma cells to TRAIL-mediated apoptosis by modulating multiple components of the death receptor-mediated apoptotic pathway. Interestingly, paxilline/TRAIL co-treatment did not induce apoptosis in normal astrocytes, nor did it affect the protein levels of CHOP, DR5 or survivin in these cells. Thus, combined treatment regimens involving paxilline and TRAIL may offer an attractive strategy for safely treating resistant gliomas.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Molecular Science and Technology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
90
|
Lee JJ, Kong M. Combined Treatment of Pancreatic Cancer with Mithramycin A and Tolfenamic Acid Promotes Sp1 Degradation and Synergistic Antitumor Activity—Response. Cancer Res 2011. [DOI: 10.1158/0008-5472.can-11-0380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J. Jack Lee
- Authors' Affiliations: 1Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas and 2Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky
| | - Maiying Kong
- Authors' Affiliations: 1Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas and 2Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky
| |
Collapse
|
91
|
Affiliation(s)
- J. Jack Lee
- Authors' Affiliations: 1Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas; and 2Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky
| | - Maiying Kong
- Authors' Affiliations: 1Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas; and 2Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky
| |
Collapse
|
92
|
Kim IY, Kang YJ, Yoon MJ, Kim EH, Kim SU, Kwon TK, Kim IA, Choi KS. Amiodarone sensitizes human glioma cells but not astrocytes to TRAIL-induced apoptosis via CHOP-mediated DR5 upregulation. Neuro Oncol 2011; 13:267-79. [PMID: 21292685 DOI: 10.1093/neuonc/noq195] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Amiodarone is a widely used anti-arrhythmic drug that inhibits diverse ion channels, including the Na(+)/Ca(2+) exchanger (NCX), L-type Ca(2+) channels, and Na(+) channels. Here, we report that subtoxic doses of amiodarone and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induced apoptosis of various glioma cells. Treatment of U251MG glioma cells with amiodarone increased intracellular Ca(2+) levels and enhanced the expression of the endoplasmic reticulum (ER) stress-inducible transcription factor C/EBP homologous protein (CHOP). This upregulation of CHOP was followed by marked upregulation of the TRAIL receptor, DR5. Suppression of DR5 expression by small interfering (si) RNAs almost completely blocked amiodarone/TRAIL-induced apoptosis in U251MG glioma cells, demonstrating that DR5 is critical to this cell death. siRNA-mediated CHOP suppression reduced amiodarone-induced DR5 upregulation and attenuated the cell death induced by amiodarone plus TRAIL. In addition, omitting Ca(2+) from the external medium using ethylene glycol tetraacetic acid markedly inhibited this cell death, reducing the protein levels of CHOP and DR5. These results suggest that amiodarone-induced influx of Ca(2+) plays an important role in sensitizing U251MG cells to TRAIL-mediated apoptosis through CHOP-mediated DR5 upregulation. Furthermore, subtoxic doses of bepridil and cibenzoline, two other anti-arrhythmic drugs with NCX-inhibitor activity, also sensitized glioma cells to TRAIL-mediated apoptosis, via the upregulation of both CHOP and DR5. Notably, amiodarone/TRAIL cotreatment did not induce cell death in astrocytes, nor did it affect the expression of CHOP or DR5 in these cells. These results collectively suggest that a combined regimen of amiodarone plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating resistant gliomas.
Collapse
Affiliation(s)
- In Young Kim
- Department of Molecular Science & Technology Institute for Medical Sciences, Ajou University School of Medicine, Suwon 443-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Ross AE, Emadi A, Marchionni L, Hurley PJ, Simons BW, Schaeffer EM, Vuica-Ross M. Dimeric naphthoquinones, a novel class of compounds with prostate cancer cytotoxicity. BJU Int 2010; 108:447-54. [PMID: 21176082 DOI: 10.1111/j.1464-410x.2010.09907.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES • To evaluate the cytotoxicity of dimeric naphthoquinones (BiQs) in prostate cancer cells. • To assess the interaction of dimeric naphthoquinones with common therapies including radiation and docetaxel. MATERIALS AND METHODS • The cytotoxicity of 12 different dimeric naphthoquinones was assessed in androgen-independent (PC-3, DU-145) and androgen-responsive (LNCaP, 22RV1) prostate cancer cell lines and in prostate epithelial cells (PrECs). • BiQ2 and BiQ11 were selected for determination of dose response, effects on colony formation and initial exploration into mechanism of action. • Synergistic effects with radiation and docetaxel were explored using colony-forming and MTT assays. RESULTS • At concentrations of 15µM, BiQ2, BiQ3, BiQ11, BiQ12, and BiQ15 demonstrated cytotoxicity in all prostate cancer cell lines. • Treatment with BiQs limited the ability of prostate cancer cells to form colonies in clonogenic assays. • Exposure of prostate cancer to BiQs increased cellular reactive oxygen species (ROS), decreased ATP production, and promoted apoptosis. • BiQ cytotoxicity was independent of NADP(H):quinone oxidoreductase 1 (NQO1) activity in PrECs, PC-3 and 22RV1, but not DU-145 cells. • Exposure of prostate cancer cells to radiation before treatment with BiQs increased their activity allowing for inhibitory effects well below the IC(50) s of these compounds in PrECs. • Co-administration of BiQs with docetaxel had minimal additive effects. CONCLUSIONS • Dimeric naphthoquinones represent a new class of compounds with prostate cancer cytotoxicity and synergistic effects with radiation. The cytotoxic effect of these agents is probably contributed to by the accumulation of ROS and mitochondrial dysfunction. • Further studies are warranted to better characterize this class of potential chemo-therapeutics.
Collapse
Affiliation(s)
- Ashley E Ross
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Detecting Departure From Additivity Along a Fixed-Ratio Mixture Ray With a Piecewise Model for Dose and Interaction Thresholds. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2010; 15:510-522. [PMID: 21359103 DOI: 10.1007/s13253-010-0030-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
For mixtures of many chemicals, a ray design based on a relevant, fixed mixing ratio is useful for detecting departure from additivity. Methods for detecting departure involve modeling the response as a function of total dose along the ray. For mixtures with many components, the interaction may be dose dependent. Therefore, we have developed the use of a three-segment model containing both a dose threshold and an interaction threshold. Prior to the dose threshold, the response is that of background; between the dose threshold and the interaction threshold, an additive relationship exists; the model allows for departure from additivity beyond the interaction threshold. With such a model, we can conduct a hypothesis test of additivity, as well as a test for a region of additivity. The methods are illustrated with cytotoxicity data that arise when Chinese hamster ovary cells are exposed to a mixture of nine haloacetic acids.
Collapse
|
95
|
Lieber J, Kirchner B, Eicher C, Warmann SW, Seitz G, Fuchs J, Armeanu-Ebinger S. Inhibition of Bcl-2 and Bcl-X enhances chemotherapy sensitivity in hepatoblastoma cells. Pediatr Blood Cancer 2010; 55:1089-95. [PMID: 20680965 DOI: 10.1002/pbc.22740] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND An increased expression of anti-apoptotic proteins is regularly found in malignant cells, contributing to their clonal expansion by conferring an improved survival ability. In Hepatoblastoma (HB) apoptosis regulation contributes to resistance and therapy failure, therefore we modulated apoptosis sensitivity of HB cells for an improved cytotoxic activity of commonly used drugs. PROCEDURE Apoptosis-related proteins were quantified in HB cells (HuH6 and HepT1) using protein assays. Interaction of ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xL, and Bcl-W with cytotoxic drugs was monitored in a proliferation assay. Apoptosis induction was measured by caspase-3 activity. RESULTS We found high levels of the anti-apoptotic protein Bcl-2 and Bcl-X as well as low levels of pro-apoptotic protein Bax and Bad in both HB cell lines. ABT-737 induced apoptosis in HuH6 and HepT1 cells at concentrations higher than 1 µM. ABT-737 also enhanced the cytotoxic effect of cisplatin (CDDP), doxorubicin (DOXO), etoposide and paclitaxel when used as combination therapy. HuH6 expressed slightly higher pro-apoptotic and lower anti-apoptotic protein levels than HepT1, which may explain the stronger enhancement of cytostatic drug effects in HuH6 cells when treated in combination with ABT-737. CONCLUSION The observed anti-apoptotic phenotype in HB cell lines may contribute to resistance to cytotoxic drugs used in the standard treatment protocol of HB. These pre-clinical results suggest that apoptosis sensitizers with BH-3 mimicry, such as ABT-737, should be further evaluated in preclinical models of HB.
Collapse
Affiliation(s)
- Justus Lieber
- Department of Pediatric Surgery, University Children's Hospital, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
96
|
Macy ME, DeRyckere D, Gore L. Vandetanib mediates anti-leukemia activity by multiple mechanisms and interacts synergistically with DNA damaging agents. Invest New Drugs 2010; 30:468-79. [PMID: 21046425 DOI: 10.1007/s10637-010-9572-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/20/2010] [Indexed: 12/16/2022]
Abstract
Vandetanib is an orally active small molecule tyrosine kinase inhibitor (TKI) with activity against several pathways implicated in malignancy including the vascular endothelial growth factor receptor pathway, the epidermal growth factor receptor pathway, the platelet derived growth factor receptor β pathway, and REarranged during Transfection pathway. To determine if vandetanib-mediated inhibition of receptor tyrosine kinases is a potential therapeutic strategy for pediatric acute leukemia, these studies aimed to characterize the activity of vandetanib against acute leukemia in vitro. Treatment of leukemia cell lines with vandetanib resulted in a dose-dependent decrease in proliferation and survival. Vandetanib's anti-leukemic activity appeared mediated by multiple mechanisms including accumulation in G1 phase at lower concentrations and apoptosis at higher concentrations. Alterations in cell surface markers also occurred with vandetanib treatment, suggesting induction of differentiation. In combination with DNA damaging agents (etoposide and doxorubicin) vandetanib demonstrated synergistic induction of cell death. However in combination with the anti-metabolite methotrexate, vandetanib had an antagonistic effect on cell death. Although several targets of vandetanib are expressed on acute leukemia cell lines, expression of vandetanib targets did not predict vandetanib sensitivity and alone are therefore not likely candidate biomarkers in patients with acute leukemia. Interactions between vandetanib and standard chemotherapy agents in vitro may help guide choice of combination regimens for further evaluation in the clinical setting for patients with relapsed/refractory acute leukemia. Taken together, these preclinical data support clinical evaluation of vandetanib, in combination with cytotoxic chemotherapy, for pediatric leukemia.
Collapse
Affiliation(s)
- Margaret E Macy
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado Denver, 13123 East 16th Avenue B-115, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
97
|
Maurel J, Martins AS, Poveda A, López-Guerrero JA, Cubedo R, Casado A, Martínez-Trufero J, Ramón Ayuso J, Lopez-Pousa A, Garcia-Albeniz X, Garcia del Muro X, de Alava E. Imatinib plus low-dose doxorubicin in patients with advanced gastrointestinal stromal tumors refractory to high-dose imatinib: a phase I-II study by the Spanish Group for Research on Sarcomas. Cancer 2010; 116:3692-701. [PMID: 20564079 DOI: 10.1002/cncr.25111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND In KIT-expressing Ewing sarcoma cell lines, the addition of doxorubicin to imatinib increases apoptosis, compared with imatinib or doxorubicin alone. On the basis of these in vitro data, the authors conducted a phase 1-2 trial of doxorubicin with imatinib in patients with gastrointestinal sarcoma tumors refractory to high-dose imatinib therapy. METHODS Patients with metastatic gastrointestinal sarcoma tumor resistant to imatinib at 400 mg by mouth (p.o.) twice a day were eligible for this multicenter study, and received imatinib (400 mg p.o. every day [q.d.]) concomitantly with doxorubicin 15-20 mg/m2/weekly for 4 cycles (monthly cycles), followed by imatinib (400 mg p.o. q.d.) maintenance in nonprogressive patients. Spiral computed tomography and positron emission tomography with F18-fluorodeoxyglucose were done basally and after 2 months of therapy to evaluate response. An in vitro study assessed the effect of combining imatinib and doxorubicin. RESULTS Twenty-six patients with progressive gastrointestinal sarcoma tumor were entered in the study. Treatment was well tolerated. Three (14%) of 22 evaluable patients had partial responses per Response Evaluation Criteria in Solid Tumors, and 8 (36%) had clinical benefit (partial response or stable disease for >or=6 months). Median progression-free survival (PFS) was 100 days (95% confidence interval [CI], 62-138), and median survival was 390 days (95% CI, 264-516). Interestingly, PFS was 211 days (95% CI, 52-370) in patients with wild type (WT) KIT and 82 days (95% CI, 53-111) in non-WT patients (10 mutant, 6 not assessed). A synergistic effect on cell line proliferation and apoptosis was found with imatinib and doxorubicin combination. CONCLUSIONS Low-dose chemobiotherapy combination showed promising activity in heavily pretreated gastrointestinal sarcoma tumor patients, especially in those with WT-KIT genotype.
Collapse
Affiliation(s)
- Joan Maurel
- Department of Medical Oncology, Barcelona Hospital Clinic, August Pi i Sunyer Biomedical Investigations Institute, CIBEREHD, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Nair P, Melarkode R, Rajkumar D, Montero E. CD6 synergistic co-stimulation promoting proinflammatory response is modulated without interfering with the activated leucocyte cell adhesion molecule interaction. Clin Exp Immunol 2010; 162:116-30. [PMID: 20726988 DOI: 10.1111/j.1365-2249.2010.04235.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The CD6 membrane-proximal scavenger receptor cysteine-rich domain (SRCR3) includes the activated leucocyte cell adhesion molecule (ALCAM) binding site. CD6-ALCAM mediates a low-affinity interaction and their long-term engagement contributes to the immunological synapse. Their ligation may play a dual function, facilitating stable adhesion between the antigen-presenting cells and T cells during the early activation phase and later in the proliferative phase of the immune response. This study explored the strength of the CD6 co-stimulatory effect and whether CD6 co-stimulation with its natural ligand ALCAM also contributes to the lymphocyte effector differentiation. It was found that CD6-ALCAM interaction in vitro induced a synergistic co-stimulation of normal human peripheral blood mononuclear cells, defined by Bliss analysis. CD6 co-stimulation enhanced the CD3 proliferative efficacy by 23-34%. Moreover, a fivefold increment in the CD25 molecules number with a distinct gene transcription profile associated with cell activation, differentiation, survival and adhesion molecules was observed over CD3 single activation. Additionally, CD6 co-stimulation in excess interleukin (IL)-2 promotes a preferentially proinflammatory response. Besides, a CD6 membrane-distal domain (SRCR1)-specific non-depleting monoclonal antibody (mAb) inhibited the induced proliferation in the presence of ALCAM, reducing interferon-γ, IL-6 and tumour necrosis factor-α production. These results suggest that CD6 co-stimulation enhances the intrinsic activity of the CD3 activation pathway and contributes to the T helper type 1 subset commitment, enhancing the IL-2 sensitivity of recent activated human lymphocytes. It supports the role of CD6 as a susceptibility gene for pathological autoimmunity leading to tissue inflammation, and its relevance for targeted therapy.
Collapse
Affiliation(s)
- P Nair
- Research and Development, Biocon Ltd, Bangalore, India
| | | | | | | |
Collapse
|
99
|
Bcl-XL represents a druggable molecular vulnerability during aurora B inhibitor-mediated polyploidization. Proc Natl Acad Sci U S A 2010; 107:12634-9. [PMID: 20616035 DOI: 10.1073/pnas.0913615107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aurora kinase B inhibitors induce apoptosis secondary to polyploidization and have entered clinical trials as an emerging class of neocytotoxic chemotherapeutics. We demonstrate here that polyploidization neutralizes Mcl-1 function, rendering cancer cells exquisitely dependent on Bcl-XL/-2. This "addiction" can be exploited therapeutically by combining aurora kinase inhibitors and the orally bioavailable BH3 mimetic, ABT-263, which inhibits Bcl-XL, Bcl-2, and Bcl-w. The combination of ABT-263 with aurora B inhibitors produces a synergistic loss of viability in a range of cell lines of divergent tumor origin and exhibits more sustained tumor growth inhibition in vivo compared with aurora B inhibitor monotherapy. These data demonstrate that Bcl-XL/-2 is necessary to support viability during polyploidization in a variety of tumor models and represents a druggable molecular vulnerability with potential therapeutic utility.
Collapse
|
100
|
Lee SI. Drug interaction: focusing on response surface models. Korean J Anesthesiol 2010; 58:421-34. [PMID: 20532049 PMCID: PMC2881515 DOI: 10.4097/kjae.2010.58.5.421] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 04/29/2010] [Accepted: 04/29/2010] [Indexed: 11/10/2022] Open
Abstract
Anesthesiologists have been aware of the importance of optimal drug combination long ago and performed many investigations about the combined use of anesthetic agents. There are 3 classes of drug interaction: additive, synergistic, and antagonistic. These definitions of drug interaction suggest that a zero interaction model should exist to be used as a reference in classifying the interaction of drug combinations. The Loewe additivity has been used as a universal reference model for classifying drug interaction. Most anesthetic drugs follow the sigmoid E(max) model (Hill equation); this model will be used for modeling response surface. Among lots of models for drug interaction in the anesthetic area, the Greco model, Machado model, Plummer model, Carter model, Minto model, Fidler model, and Kong model are adequate to be applied to the data of anesthetic drug interaction. A model with a single interaction parameter does not accept an inconsistency in the classes of drug interactions. To solve this problem, some researchers proposed parametric models which have a polynomial interaction function to capture synergy, additivity, and antagonism scattered all over the surface of drug combinations. Inference about truth must be based on an optimal approximating model. Akaike information criterion (AIC) is the most popular approach to choosing the best model among the aforementioned models. Whatever the good qualities of a chosen model, it is uncertain whether the chosen model is the best model. A more robust inference can be extracted from averaging several models that are considered relevant.
Collapse
Affiliation(s)
- Soo-Il Lee
- Department of Anesthesiology and Pain Medicine, Dong-A University Medical College, Busan, Korea
| |
Collapse
|