51
|
Panzica GC, Balthazart J, Frye CA, Garcia-Segura LM, Herbison AE, Mensah-Nyagan AG, McCarthy MM, Melcangi RC. Milestones on Steroids and the Nervous System: 10 years of basic and translational research. J Neuroendocrinol 2012; 24:1-15. [PMID: 22188420 DOI: 10.1111/j.1365-2826.2011.02265.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During the last 10 years, the conference on 'Steroids and Nervous System' held in Torino (Italy) has been an important international point of discussion for scientists involved in this exciting and expanding research field. The present review aims to recapitulate the main topics that have been presented through the various meetings. Two broad areas have been explored: the impact of gonadal hormones on brain circuits and behaviour, as well as the mechanism of action of neuroactive steroids. Relationships among steroids, brain and behaviour, the sexual differentiation of the brain and the impact of gonadal hormones, the interactions of exogenous steroidal molecules (endocrine disrupters) with neural circuits and behaviour, and how gonadal steroids modulate the behaviour of gonadotrophin-releasing hormone neurones, have been the topics of several lectures and symposia during this series of meetings. At the same time, many contributions have been dedicated to the biosynthetic pathways, the physiopathological relevance of neurosteroids, the demonstration of the cellular localisation of different enzymes involved in neurosteroidogenesis, the mechanisms by which steroids may exert some of their effects, both the classical and nonclassical actions of different steroids, the role of neuroactive steroids on neurodegeneration, neuroprotection, and the response of the neural tissue to injury. In these 10 years, this field has significantly advanced and neuroactive steroids have emerged as new potential therapeutic tools to counteract neurodegenerative events.
Collapse
Affiliation(s)
- G C Panzica
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Scott E, Zhang QG, Wang R, Vadlamudi R, Brann D. Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 2012; 33:85-104. [PMID: 22079780 PMCID: PMC3288697 DOI: 10.1016/j.yfrne.2011.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
17β-Estradiol (estradiol or E2) is implicated as a neuroprotective factor in a variety of neurodegenerative disorders. This review focuses on the mechanisms underlying E2 neuroprotection in cerebral ischemia, as well as emerging evidence from basic science and clinical studies, which suggests that there is a "critical period" for estradiol's beneficial effect in the brain. Potential mechanisms underlying the critical period are discussed, as are the neurological consequences of long-term E2 deprivation (LTED) in animals and in humans after natural menopause or surgical menopause. We also summarize the major clinical trials concerning postmenopausal hormone therapy (HT), comparing their outcomes with respect to cardiovascular and neurological disease and discussing their relevance to the critical period hypothesis. Finally, potential caveats, controversies and future directions for the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Erin Scott
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Quan-guang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| |
Collapse
|
53
|
Lim YA, Grimm A, Giese M, Mensah-Nyagan AG, Villafranca JE, Ittner LM, Eckert A, Götz J. Inhibition of the mitochondrial enzyme ABAD restores the amyloid-β-mediated deregulation of estradiol. PLoS One 2011; 6:e28887. [PMID: 22174920 PMCID: PMC3236223 DOI: 10.1371/journal.pone.0028887] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/16/2011] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is a conformational disease that is characterized by amyloid-β (Aβ) deposition in the brain. Aβ exerts its toxicity in part by receptor-mediated interactions that cause down-stream protein misfolding and aggregation, as well as mitochondrial dysfunction. Recent reports indicate that Aβ may also interact directly with intracellular proteins such as the mitochondrial enzyme ABAD (Aβ binding alcohol dehydrogenase) in executing its toxic effects. Mitochondrial dysfunction occurs early in AD, and Aβ's toxicity is in part mediated by inhibition of ABAD as shown previously with an ABAD decoy peptide. Here, we employed AG18051, a novel small ABAD-specific compound inhibitor, to investigate the role of ABAD in Aβ toxicity. Using SH-SY5Y neuroblastoma cells, we found that AG18051 partially blocked the Aβ-ABAD interaction in a pull-down assay while it also prevented the Aβ42-induced down-regulation of ABAD activity, as measured by levels of estradiol, a known hormone and product of ABAD activity. Furthermore, AG18051 is protective against Aβ42 toxicity, as measured by LDH release and MTT absorbance. Specifically, AG18051 reduced Aβ42-induced impairment of mitochondrial respiration and oxidative stress as shown by reduced ROS (reactive oxygen species) levels. Guided by our previous finding of shared aspects of the toxicity of Aβ and human amylin (HA), with the latter forming aggregates in Type 2 diabetes mellitus (T2DM) pancreas, we determined whether AG18051 would also confer protection from HA toxicity. We found that the inhibitor conferred only partial protection from HA toxicity indicating distinct pathomechanisms of the two amyloidogenic agents. Taken together, our results present the inhibition of ABAD by compounds such as AG18051 as a promising therapeutic strategy for the prevention and treatment of AD, and suggest levels of estradiol as a suitable read-out.
Collapse
Affiliation(s)
- Yun-An Lim
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Amandine Grimm
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
| | - Maria Giese
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
| | - Ayikoe Guy Mensah-Nyagan
- Equipe Steroïdes, Neuromodulateurs et Neuropathologies, Université de Strasbourg, Strasbourg, France
| | | | - Lars M. Ittner
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Anne Eckert
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
- * E-mail: (JG); (AE)
| | - Jürgen Götz
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail: (JG); (AE)
| |
Collapse
|
54
|
Jackson RL, Greiwe JS, Schwen RJ. Ageing skin: oestrogen receptor β agonists offer an approach to change the outcome. Exp Dermatol 2011; 20:879-82. [PMID: 21913999 DOI: 10.1111/j.1600-0625.2011.01362.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oestrogen (17β estradiol) and the dietary antioxidants resveratrol, genistein and S-equol, an isoflavone produced from the gut biotransformation of soy daidzein, are effective agents to reduce ageing in skin. It is widely held that these antioxidants scavenge free radicals to prevent skin damage. However, the evidence to date suggests that the primary mechanism of action of these antioxidants is to activate oestrogen receptor β (ERβ), which in turn enhances the expression of antioxidant enzymes and inhibits the expression of snail, a transcription factor that regulates keratinocyte cell proliferation and migration. Based on their selectivity, ERβ agents provide a treatment option for ageing skin without the potential safety issues associated with oestrogen therapy.
Collapse
|
55
|
Hamilton RT, Rettberg JR, Mao Z, To J, Zhao L, Appt SE, Register TC, Kaplan JR, Brinton RD. Hippocampal responsiveness to 17β-estradiol and equol after long-term ovariectomy: implication for a therapeutic window of opportunity. Brain Res 2011; 1379:11-22. [PMID: 21241683 PMCID: PMC3081673 DOI: 10.1016/j.brainres.2011.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/08/2011] [Accepted: 01/10/2011] [Indexed: 11/28/2022]
Abstract
A 'critical window of opportunity' has been proposed for the efficacy of ovarian hormone intervention in peri- and post-menopausal women. We sought to address this hypothesis using a long-term ovariectomized non-human primate (NHP) model, the cynomolgus macaque (Macaca fascicularis). In these studies, we assessed the ability of 17β-estradiol and equol to regulate markers of hippocampal bioenergetic capacity. Results indicated that 17β-estradiol treatment significantly increased expression of mitochondrial respiratory chain proteins complex-I and -III in the hippocampus when compared to non-hormone-treated animals. Expression of the TCA cycle protein succinate dehydrogenase α was decreased in animals treated with equol compared to those treated with 17β-estradiol. There were no significant effects of either 17β-estradiol or equol treatment on glycolytic protein expression in the hippocampus, nor were there significant effects of treatment on expression levels of antioxidant enzymes. Similarly, 17β-estradiol and equol treatment had no effect on mitochondrial fission and fusion protein expression. In summary, findings indicate that while 17β-estradiol induced a significant increase in several proteins, the overall profile of bioenergetic system proteins was neutral to slightly positively responsive. The profile of responses with the ERβ-preferring molecule equol was consistent with overall nonresponsiveness. Collectively, the data indicate that long-term ovariectomy is associated with a decline in response to estrogens and estrogen-like compounds. By extension, the data are consistent with a primary tenet of the critical window hypothesis, i.e., that the brains of post-menopausal women ultimately lose their ability to respond positively to estrogenic stimulation.
Collapse
Affiliation(s)
- Ryan T. Hamilton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Jamaica R. Rettberg
- Department of Neuroscience, University of Southern California, Los Angeles, CA 90089
| | - Zisu Mao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Jimmy To
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Liqin Zhao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Susan E. Appt
- Department of Comparative Medicine, Wake Forest University, Winston-Salem, NC 27106
| | - Thomas C. Register
- Department of Comparative Medicine, Wake Forest University, Winston-Salem, NC 27106
| | - Jay R. Kaplan
- Department of Comparative Medicine, Wake Forest University, Winston-Salem, NC 27106
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
- Department of Neuroscience, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
56
|
A selective role for ARMS/Kidins220 scaffold protein in spatial memory and trophic support of entorhinal and frontal cortical neurons. Exp Neurol 2011; 229:409-20. [PMID: 21419124 DOI: 10.1016/j.expneurol.2011.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 11/21/2022]
Abstract
Progressive cortical pathology is common to several neurodegenerative and psychiatric disorders. The entorhinal cortex (EC) and frontal cortex (FC) are particularly vulnerable, and neurotrophins have been implicated because they appear to be protective. A downstream signal transducer of neurotrophins, the ankyrin repeat-rich membrane spanning scaffold protein/Kidins 220 (ARMS) is expressed in the cortex, where it could play an important role in trophic support. To test this hypothesis, we evaluated mice with a heterozygous deletion of ARMS (ARMS(+/-) mice). Remarkably, the EC and FC were the regions that demonstrated the greatest defects. Many EC and FC neurons became pyknotic in ARMS(+/-) mice, so that large areas of the EC and FC were affected by 12 months of age. Areas with pyknosis in the EC and FC of ARMS(+/-) mice were also characterized by a loss of immunoreactivity to a neuronal antigen, NeuN, which has been reported after insult or injury to cortical neurons. Electron microscopy showed that there were defects in mitochondria, myelination, and multilamellar bodies in the EC and FC of ARMS(+/-) mice. Although primarily restricted to the EC and FC, pathology appeared to be sufficient to cause functional impairments, because ARMS(+/-) mice performed worse than wild-type on the Morris water maze. Comparisons of males and females showed that female mice were the affected sex in all comparisons. Taken together, the results suggest that the expression of a prominent neurotrophin receptor substrate normally protects the EC and FC, and that ARMS may be particularly important in females.
Collapse
|
57
|
Yao J, Chen S, Cadenas E, Brinton RD. Estrogen protection against mitochondrial toxin-induced cell death in hippocampal neurons: antagonism by progesterone. Brain Res 2011; 1379:2-10. [PMID: 21134358 PMCID: PMC3200366 DOI: 10.1016/j.brainres.2010.11.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/06/2010] [Accepted: 11/29/2010] [Indexed: 02/06/2023]
Abstract
Previously we demonstrated that mitochondrial dysfunction plays a critical role in the pathogenesis of Alzheimer's disease. Further, we have shown that the neuroprotective effects of 17β-estradiol (E2) are dependent upon mitochondrial function. In the current study, we sought to identify mitochondrial sites of E2 action that mediate neuroprotection by assessing the efficacy of E2 to protect neurons against inhibitors of mitochondrial respiration which target specific complexes within the respiratory chain. Subsequently, the impact of progesterone (P4) on E2-induced prevention against mitochondrial toxins was investigated. Mitochondrial inhibitors, rotenone, 3-NPA, antimycin, KCN, and oligomycin, exhibited concentration dependent toxicity in primary hippocampal neurons. The concentration inducing 30% cell death (LD30) was selected for analyses assessing the neuroprotective efficacy of ovarian hormones (E2 and P4). Pretreatment of hippocampal neurons with E2 significantly protected against 3-NPA (7.5mM) and antimycin (125 μM) induced cell death and was moderately neuroprotective against rotenone (3 μM). E2 was ineffective against KCN and oligomycin-induced cell death. Pretreatment with P4 was without effect against these mitochondrial inhibitors. Co-administration of P4 with E2 abolished E2 induced neuroprotection against 3-NPA and antimycin. Additional metabolic analyses indicated that E2 and P4 separately increased mitochondrial respiratory capacity whereas the co-administration of E2 and P4 resulted in diminished mitochondrial respiration. These findings indicate that E2 protects against mitochondrial toxins that target complexes I, II and III whereas P4 was without effect. The data also predict that continuous combined co-administration of estrogen and progesterone common to many hormone therapy regimens is unlikely to prevent the deficits in mitochondrial function.
Collapse
Affiliation(s)
- Jia Yao
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
58
|
Rettberg JR, Hamilton RT, Mao Z, To J, Zhao L, Appt SE, Register TC, Kaplan JR, Brinton RD. The effect of dietary soy isoflavones before and after ovariectomy on hippocampal protein markers of mitochondrial bioenergetics and antioxidant activity in female monkeys. Brain Res 2011; 1379:23-33. [PMID: 21238431 DOI: 10.1016/j.brainres.2011.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 12/20/2022]
Abstract
Estrogen therapy can promote cognitive function if initiated within a 'critical window' during the menopausal transition. However, in the absence of a progestogen, estrogens increase endometrial cancer risk which has spurred research into developing estrogenic alternatives that have the beneficial effects of estrogen but which are clinically safer. Soy protein is rich in isoflavones, which are a class of potential estrogenic alternatives. We sought to determine the effects of two diets, one with casein-lactalbumin as the main protein source and the other with soy protein containing isoflavones, on protein markers of hippocampal bioenergetic capacity in adult female cynomolgus macaques (Macaca fascicularis). Further, we assessed the effects of dietary soy isoflavones before or after ovariectomy. Animals receiving soy diet premenopausally then casein/lactalbumin post-ovariectomy had higher relative hippocampal content of glycolytic enzymes glyceraldehyde 3-phosphate dehydrogenase and pyruvate dehydrogenase subunit e1α. Post-ovariectomy consumption of soy was associated with higher succinate dehydrogenase α levels and lower levels of isocitrate dehydrogenase, both proteins involved in the tricarboxylic acid cycle, significantly decreased expression of the antioxidant enzyme peroxiredoxin-V, and a non-significant trend towards decreased manganese superoxide dismutase expression. None of the diet paradigms significantly affected expression levels of oxidative phosphorylation enzyme complexes, or of mitochondrial fission and fusion proteins. Together, these data suggest that long-term soy diet produces minimal effects on hippocampal expression of proteins involved in bioenergetics, but that switching between a diet containing primarily animal protein and one containing soy isoflavones before and after menopause may result in complex effects on brain chemistry.
Collapse
Affiliation(s)
- Jamaica R Rettberg
- Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Osmanova S, Sezer E, Turan V, Zeybek B, Cosan Terek M, Kanıt L. The effects of raloxifene treatment on oxidative status in brain tissues and learning process of ovariectomized rats. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2011; 9:295-300. [PMID: 26396579 PMCID: PMC4576431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 02/22/2011] [Indexed: 11/03/2022]
Abstract
BACKGROUND The effects of estrogene on central nervous system are still controversial. OBJECTIVE We aimed to investigate the effects of raloxifene on the antioxidant enzyme [superoxide dismutase (SOD) and catalase (CAT)] activities and malondialdehyde (MDA) levels in brain homogenates of ovariectomized female rats and its effect on cognitive process of learning. MATERIALS AND METHODS Female Sprague Dawley rats (n=24) were divided into three groups. Three weeks after ovariectomy; nonovariectomized group (control group) (n=8) was given physiological saline (SP) as placebo. First ovariectomized group (n=8) received raloxifene 1mg/kg dissolved in a 1% solution of carboxymethylcellulose (CMC) subcutaneusly (sc) and second group of ovariectomized rats were given 1 % CMC 1mg/kg (sc) every day for 14 days. Learning behaviors of rats were evaluated in active avoidence cage with using sound and electrical stimulation. The levels of oxidative stress (MDA) and antioxidant enzymes (SOD, CAT) in different regions of the brain homogenates were compared between three groups of decapitated rats. RESULTS Raloxifene had a significant attenuating effect on the levels of MDA in brain tissues suggesting raloxifene's effect against lipid peroxidation at the end of training days. With the comparison of brain regions, cortex showed the highest average activity of SOD and CAT and cerebellum had the lowest average levels for both. Its effects on learning and cognitive process with active avoidence task were considered insignificant. CONCLUSION Raloxifene treatment may have preventive effects for the brain against oxidative stress and lipid peroxidation in rats.
Collapse
Affiliation(s)
- Süreyya Osmanova
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| | - Ebru Sezer
- Department of Biochemistry, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| | - Volkan Turan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| | - Burak Zeybek
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| | - Mustafa Cosan Terek
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| | - Lutfiye Kanıt
- Department of Physiology, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| |
Collapse
|
60
|
Henderson VW. Gonadal hormones and cognitive aging: a midlife perspective. WOMEN'S HEALTH (LONDON, ENGLAND) 2011; 7:81-93. [PMID: 21175393 PMCID: PMC3675221 DOI: 10.2217/whe.10.87] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gonadal steroids affect a variety of brain processes. Cognitive consequences of hormonal changes associated with menopause are of scientific interest and of relevance to public health. Natural menopause is a normal physiological process that can only be directly studied through observational research. Similarly, surgical menopause in humans is rarely directly amenable to experimental research. Causality with respect to cognitive outcomes is, therefore, difficult to infer. Cross-sectional and longitudinal findings from the Melbourne Women's Midlife Health Project, the Study of Women's Health Across the Nation and other midlife cohorts suggest that cognitive consequences of the natural menopausal transition are probably small, at least during midlife and at least for episodic memory, which is a key cognitive domain. The data for episodic memory are the most robust. Midlife episodic memory performance is similar both shortly before and after natural menopause, and serum estradiol concentration in midlife is not associated with episodic memory performance. Effects of natural menopause on other cognitive domains, cognitive consequences of surgical menopause and late-life cognitive consequences of midlife hormonal exposures are less well understood and merit continued study.
Collapse
Affiliation(s)
- Victor W Henderson
- Stanford University School of Medicine, mc 5405, Stanford, CA 94305-5405, USA.
| |
Collapse
|
61
|
Oophorectomy, menopause, estrogen treatment, and cognitive aging: clinical evidence for a window of opportunity. Brain Res 2010; 1379:188-98. [PMID: 20965156 DOI: 10.1016/j.brainres.2010.10.031] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/29/2010] [Accepted: 10/11/2010] [Indexed: 01/13/2023]
Abstract
The neuroprotective effects of estrogen have been demonstrated consistently in cellular and animal studies but the evidence in women remains conflicted. We explored the window of opportunity hypothesis in relation to cognitive aging and dementia. In particular, we reviewed existing literature, reanalyzed some of our data, and combined results graphically. Current evidence suggests that estrogen may have beneficial, neutral, or detrimental effects on the brain depending on age at the time of treatment, type of menopause (natural versus medically or surgically induced), or stage of menopause. The comparison of women who underwent bilateral oophorectomy with referent women provided evidence for a sizeable neuroprotective effect of estrogen before age 50 years. Several case-control studies and cohort studies also showed neuroprotective effects in women who received estrogen treatment (ET) in the early postmenopausal stage (most commonly at ages 50-60 years). The majority of women in those observational studies had undergone natural menopause and were treated for the relief of menopausal symptoms. However, recent clinical trials by the Women's Health Initiative showed that women who initiated ET alone or in combination with a progestin in the late postmenopausal stage (ages 65-79 years) experienced an increased risk of dementia and cognitive decline regardless of the type of menopause. The current conflicting data can be explained by the window of opportunity hypothesis suggesting that the neuroprotective effects of estrogen depend on age at the time of administration, type of menopause, and stage of menopause. Therefore, women who underwent bilateral oophorectomy before the onset of menopause or women who experienced premature or early natural menopause should be considered for hormonal treatment until approximately age 51 years.
Collapse
|
62
|
Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim Biophys Acta Gen Subj 2010; 1800:1121-6. [PMID: 20538040 DOI: 10.1016/j.bbagen.2010.06.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/30/2010] [Accepted: 06/02/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND We have previously demonstrated that mitochondrial bioenergetic deficits precede Alzheimer's pathology in the female triple transgenic Alzheimer's (3xTgAD) mouse model. Herein, we sought to determine the impact of reproductive senescence on mitochondrial function in the normal non-transgenic (nonTg) and 3xTgAD female mouse model of AD. METHODS Both nonTg and 3xTgAD female mice at 3, 6, 9, and 12 months of age were sacrificed and mitochondrial bioenergetic profile as well as oxidative stress markers were analyzed. RESULTS In both nonTg and 3xTgAD mice, reproductive senescence paralleled a significant decline in PDH, and Complex IV cytochrome c oxidase activity and mitochondrial respiration. During the reproductive senescence transition, both nonTg and 3xTgAD mice exhibited greater individual variability in bioenergetic parameters suggestive of divergent bioenergetic phenotypes. Following transition through reproductive senescence, enzymes required for long-chain fatty acid (HADHA) and ketone body (SCOT) metabolism were significantly increased and variability in cytochrome c oxidase (Complex IV) collapsed to cluster at a approximately 40% decline in both the nonTg and 3xTgAD brain which was indicative of alternative fuel generation with concomitant decline in ATP generation. CONCLUSIONS These data indicate that reproductive senescence in the normal nonTg female brain parallels the shift to ketogenic/fatty acid substrate phenotype with concomitant decline in mitochondrial function and exacerbation of bioenergetic deficits in the 3xTgAD brain. GENERAL SIGNIFICANCE These findings provide a plausible mechanism for increased life-time risk of AD in postmenopausal women and suggest an optimal window of opportunity to prevent or delay decline in bioenergetics during reproductive senescence.
Collapse
|