51
|
Rossitto M, Ujjan S, Poulat F, Boizet-Bonhoure B. Multiple roles of the prostaglandin D2 signaling pathway in reproduction. Reproduction 2015; 149:R49-58. [DOI: 10.1530/rep-14-0381] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostaglandins signaling molecules are involved in numerous physiological processes. They are produced by several enzyme-limited reactions upon fatty acids, which are catalyzed by two cyclooxygenases and prostaglandin synthases. In particular, the prostaglandins E2(PGE2), D2(PGD2), and F2(PGF2α) have been shown to be involved in female reproductive mechanisms. Furthermore, widespread expression of lipocalin- and hematopoietic-PGD2synthases in the male reproductive tract supports the purported roles of PGD2in the development of both embryonic and adult testes, sperm maturation, and spermatogenesis. In this review, we summarize the putative roles of PGD2signaling and the roles of both PGD2synthases in testicular formation and function. We review the data reporting the involvement of PGD2signaling in the differentiation of Sertoli and germ cells of the embryonic testis. Furthermore, we discuss the roles of lipocalin-PGD2synthase in steroidogenesis and spermatogenesis, in terms of lipid molecule transport and PGD2production. Finally, we discuss the hypothesis that PGD2signaling may be affected in certain reproductive diseases, such as infertility, cryptorchidism, and testicular cancer.
Collapse
|
52
|
Witzel SH, Huang SHS, Braam B, Filler G. Estimation of GFR using β-trace protein in children. Clin J Am Soc Nephrol 2014; 10:401-9. [PMID: 25542909 DOI: 10.2215/cjn.04860514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVES Sex may affect the performance of small molecular weight proteins as markers of GFR because of differences in fat mass between the two sexes. The hypothesis was that the diagnostic performance of β-trace protein, a novel marker of GFR, would be significantly better in boys than in girls. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS GFR, height, weight, serum creatinine, and β-trace protein were measured in 755 children and adolescents (331 girls) undergoing (99)technetium diethylenetriamine penta-acetic acid renal scans from July of 1999 to July of 2006. Boys and girls were separated into formula generation cohorts (284 boys and 220 girls) and formula validation cohorts (140 boys and 111 girls). GFR-estimating formulas on the basis of β-trace protein, creatinine, and height were derived using stepwise linear regression analysis of log-transformed data. The slope of the regression lines of the sex-specific eGFRs were compared. Bland-Altman analysis was used for testing agreement between (99)technetium diethylenetriamine penta-acetic acid GFR and calculated GFR both with this equation in boys and girls as well as previously established Benlamri, White, and Schwartz formulas. RESULTS In the stepwise regression analysis, β-trace protein (R(2)=0.73 for boys and R(2)=0.65 for girls) was more important than creatinine (which increased R(2) to 0.81 for boys and R(2) to 0.75 for girls) and height (which increased R(2) to 0.88 for boys and R(2) to 0.80 for girls) in the data generation groups. GFR can be calculated using the following formulas:[Formula: see text]and[Formula: see text]Bland-Altman analysis showed better performance in boys than in girls. The new formulas performed significantly better than the previous Benlamri, White, and Schwartz formulas with respect to bias, precision, and accuracy. CONCLUSIONS Improved and sex-specific formulas for the estimation of GFR in children on the basis of β-trace protein, serum creatinine, and height are now available.
Collapse
Affiliation(s)
- Samantha H Witzel
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital, London Health Sciences Centre and
| | - Shih-Han S Huang
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital, London Health Sciences Centre and Department of Medicine, Division of Nephrology and
| | - Branko Braam
- Department of Medicine, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
| | - Guido Filler
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital, London Health Sciences Centre and Department of Medicine, Division of Nephrology and Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| |
Collapse
|
53
|
Gonzalez-Rodriguez PJ, Li Y, Martinez F, Zhang L. Dexamethasone protects neonatal hypoxic-ischemic brain injury via L-PGDS-dependent PGD2-DP1-pERK signaling pathway. PLoS One 2014; 9:e114470. [PMID: 25474649 PMCID: PMC4256424 DOI: 10.1371/journal.pone.0114470] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucocorticoids pretreatment confers protection against neonatal hypoxic-ischemic (HI) brain injury. However, the molecular mechanism remains poorly elucidated. We tested the hypothesis that glucocorticoids protect against HI brain injury in neonatal rat by stimulation of lipocalin-type prostaglandin D synthase (L-PGDS)-induced prostaglandin D2 (PGD2)-DP1-pERK mediated signaling pathway. METHODS Dexamethasone and inhibitors were administered via intracerebroventricular (i.c.v) injections into 10-day-old rat brains. Levels of L-PGD2, D prostanoid (DP1) receptor, pERK1/2 and PGD2 were determined by Western immunoblotting and ELISA, respectively. Brain injury was evaluated 48 hours after conduction of HI in 10-day-old rat pups. RESULTS Dexamethasone pretreatment significantly upregulated L-PGDS expression and the biosynthesis of PGD2. Dexamethasone also selectively increased isoform pERK-44 level in the neonatal rat brains. Inhibitors of L-PGDS (SeCl4), DP1 (MK-0524) and MAPK (PD98059) abrogated dexamethasone-induced increases in pERK-44 level, respectively. Of importance, these inhibitors also blocked dexamethasone-mediated neuroprotective effects against HI brain injury in neonatal rat brains. CONCLUSION Interaction of glucocorticoids-GR signaling and L-PGDS-PGD2-DP1-pERK mediated pathway underlies the neuroprotective effects of dexamethasone pretreatment in neonatal HI brain injury.
Collapse
Affiliation(s)
- Pablo J. Gonzalez-Rodriguez
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, 92350, United States of America
| | - Yong Li
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, 92350, United States of America
| | - Fabian Martinez
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, 92350, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, 92350, United States of America
| |
Collapse
|
54
|
Prostaglandin D2 synthase/GPR44: a signaling axis in PNS myelination. Nat Neurosci 2014; 17:1682-92. [PMID: 25362470 DOI: 10.1038/nn.3857] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022]
Abstract
Neuregulin 1 type III is processed following regulated intramembrane proteolysis, which allows communication from the plasma membrane to the nucleus. We found that the intracellular domain of neuregulin 1 type III upregulated the prostaglandin D2 synthase (L-pgds, also known as Ptgds) gene, which, together with the G protein-coupled receptor Gpr44, forms a previously unknown pathway in PNS myelination. Neuronal L-PGDS is secreted and produces the PGD2 prostanoid, a ligand of Gpr44. We found that mice lacking L-PGDS were hypomyelinated. Consistent with this, specific inhibition of L-PGDS activity impaired in vitro myelination and caused myelin damage. Furthermore, in vivo ablation and in vitro knockdown of glial Gpr44 impaired myelination. Finally, we identified Nfatc4, a key transcription factor for myelination, as one of the downstream effectors of PGD2 activity in Schwann cells. Thus, L-PGDS and Gpr44 are previously unknown components of an axo-glial interaction that controls PNS myelination and possibly myelin maintenance.
Collapse
|
55
|
Tsutsumi S, Ogino I, Miyajima M, Nakamura M, Yasumoto Y, Arai H, Ito M. Cranial arachnoid protrusions and contiguous diploic veins in CSF drainage. AJNR Am J Neuroradiol 2014; 35:1735-9. [PMID: 24948506 DOI: 10.3174/ajnr.a4007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE Studies have suggested that arachnoid villi or granulations found in the walls of the cranial dural sinuses, olfactory mucosa, and cranial nerve sheaths function as outlets for intracranial CSF. However, their role as CSF outlets has not yet been verified. Here we show that arachnoid protrusions and contiguous diploic veins provide an alternative drainage route for intracranial CSF. MATERIALS AND METHODS Four hundred patients with intact skull, dura mater, and dural sinuses underwent MR imaging to explore arachnoids protruding into the skull and diploic veins. Patients with symptoms of increased intracranial pressure or intracranial hypotension were excluded. For 15 patients undergoing craniotomy, both peripheral and diploic venous blood was collected. Albumin and the CSF-specific biomarkers were measured by enzyme-linked immunosorbent assay. RESULTS With MR imaging, arachnoid protrusions into the skull and contiguous diploic veins were consistently identified throughout the cranium with their characteristic appearance depending on the cranial region. In addition, elevated amounts of prostaglandin D synthase and cystatin C were confirmed in diploic veins compared with peripheral venous blood. CONCLUSIONS Diploic veins are distributed ubiquitously throughout the cranium. A portion of the intracranial CSF may be drained through arachnoid protrusions and contiguous diploic veins.
Collapse
Affiliation(s)
- S Tsutsumi
- From the Department of Neurological Surgery (S.T., Y.Y., M.I.), Juntendo University Urayasu Hospital, Chiba, Japan
| | - I Ogino
- Department of Neurological Surgery (I.O., M.M., H.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - M Miyajima
- Department of Neurological Surgery (I.O., M.M., H.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - M Nakamura
- Division of Radiological Technology (M.N.), Medical Satellite Yaesu Clinic, Tokyo, Japan
| | - Y Yasumoto
- From the Department of Neurological Surgery (S.T., Y.Y., M.I.), Juntendo University Urayasu Hospital, Chiba, Japan
| | - H Arai
- Department of Neurological Surgery (I.O., M.M., H.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - M Ito
- From the Department of Neurological Surgery (S.T., Y.Y., M.I.), Juntendo University Urayasu Hospital, Chiba, Japan
| |
Collapse
|
56
|
Guillem-Llobat P, Dovizio M, Alberti S, Bruno A, Patrignani P. Platelets, Cyclooxygenases, and Colon Cancer. Semin Oncol 2014; 41:385-96. [DOI: 10.1053/j.seminoncol.2014.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
57
|
Gandhi UH, Kaushal N, Hegde S, Finch ER, Kudva AK, Kennett MJ, Jordan CT, Paulson RF, Prabhu KS. Selenium suppresses leukemia through the action of endogenous eicosanoids. Cancer Res 2014; 74:3890-901. [PMID: 24872387 DOI: 10.1158/0008-5472.can-13-3694] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eradicating cancer stem-like cells (CSC) may be essential to fully eradicate cancer. Metabolic changes in CSC could hold a key to their targeting. Here, we report that the dietary micronutrient selenium can trigger apoptosis of CSC derived from chronic or acute myelogenous leukemias when administered at supraphysiologic but nontoxic doses. In leukemia CSC, selenium treatment activated ATM-p53-dependent apoptosis accompanied by increased intracellular levels of reactive oxygen species. Importantly, the same treatment did not trigger apoptosis in hematopoietic stem cells. Serial transplantation studies with BCR-ABL-expressing CSC revealed that the selenium status in mice was a key determinant of CSC survival. Selenium action relied upon the endogenous production of the cyclooxygenase-derived prostaglandins Δ(12)-PGJ2 and 15d-PGJ2. Accordingly, nonsteroidal anti-inflammatory drugs and NADPH oxidase inhibitors abrogated the ability of selenium to trigger apoptosis in leukemia CSC. Our results reveal how selenium-dependent modulation of arachidonic acid metabolism can be directed to trigger apoptosis of primary human and murine CSC in leukemia.
Collapse
Affiliation(s)
- Ujjawal H Gandhi
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and
| | - Naveen Kaushal
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and
| | - Shailaja Hegde
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and
| | - Emily R Finch
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and
| | - Avinash K Kudva
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and
| | - Mary J Kennett
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and
| | - Craig T Jordan
- Division of Hematology, Hematologic Malignancies, and Stem Cell Transplantation, University of Colorado, Anshutz Medical Campus, Aurora, Colorado
| | - Robert F Paulson
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and
| | - K Sandeep Prabhu
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and
| |
Collapse
|
58
|
Filler G, Kusserow C, Lopes L, Kobrzyński M. Beta-trace protein as a marker of GFR--history, indications, and future research. Clin Biochem 2014; 47:1188-94. [PMID: 24833359 DOI: 10.1016/j.clinbiochem.2014.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Recent findings suggest that beta-trace protein (BTP), a small molecular weight protein, is at least equal if not superior to serum creatinine as a marker of glomerular filtration rate (GFR), particularly since it is independent from height, gender, age, and muscle mass. The authors sought to summarize knowledge on BTP and its use as a marker of GFR using the most recent literature available. DESIGN AND METHODS The authors compiled key articles and all relevant recent literature on this topic. Physical and chemical features of the molecule are described, as well as factors that may affect its expression. The use of BTP in estimating GFR as a whole and in specific patient groups, including pregnant women, neonates and infants, children and adolescents, and patients who have undergone renal transplantation is discussed. The use of BTP as a marker for cardiovascular risk factors is also briefly addressed. RESULTS Although its performance in the general population is marginally inferior to cystatin C, studies have suggested that it may be superior in accurately estimating GFR in select patient groups such as pregnant women and neonates. CONCLUSIONS This novel marker shows promise, but further research is required to clarify findings from available data.
Collapse
Affiliation(s)
- Guido Filler
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N5A 5A5, Canada; Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N5A 5A5, Canada.
| | - Carola Kusserow
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| | - Laudelino Lopes
- Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| | - Marta Kobrzyński
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| |
Collapse
|
59
|
Zhang J, Corbett JR, Plymire DA, Greenberg BM, Patrie SM. Proteoform analysis of lipocalin-type prostaglandinD-synthase from human cerebrospinal fluid by isoelectric focusing and superficially porous liquid chromatography with Fourier transform mass spectrometry. Proteomics 2014; 14:1223-31. [DOI: 10.1002/pmic.201300368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/31/2013] [Accepted: 02/11/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Junmei Zhang
- Department of Pathology; University of Texas Southwestern Medical Center; TX USA
| | - John R. Corbett
- Department of Bioengineering; University of Texas at Dallas; TX USA
| | - Daniel A. Plymire
- Department of Pathology; University of Texas Southwestern Medical Center; TX USA
| | | | - Steven M. Patrie
- Department of Pathology; University of Texas Southwestern Medical Center; TX USA
| |
Collapse
|
60
|
Jha MK, Suk K. Glia-based biomarkers and their functional role in the CNS. Expert Rev Proteomics 2014; 10:43-63. [DOI: 10.1586/epr.12.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Abstract
In the mammalian kidney, prostaglandins (PGs) are important mediators of physiologic processes, including modulation of vascular tone and salt and water. PGs arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of AA in the kidney. COX are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by PG and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. PGs and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. COX metabolites have been shown to exert important physiologic functions in maintenance of renal blood flow, mediation of renin release and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also seen in a variety of inflammatory renal injuries, and COX metabolites may serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | | |
Collapse
|
62
|
Agas D, Marchetti L, Capitani M, Sabbieti MG. The dual face of parathyroid hormone and prostaglandins in the osteoimmune system. Am J Physiol Endocrinol Metab 2013; 305:E1185-94. [PMID: 24045870 DOI: 10.1152/ajpendo.00290.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microenvironment of bone marrow, an extraordinarily heterogeneous and dynamic system, is populated by bone and immune cells, and its functional dimension has been at the forefront of recent studies in the field of osteoimmunology. The interaction of both marrow niches supports self-renewal, differentiation, and homing of the hematopoietic stem cells and provides the essential regulatory molecules for osteoblast and osteoclast homeostasis. Impaired signaling within the niches results in a pathological tableau and enhances disease, including osteoporosis and arthritis, or the rejection of hematopoietic stem cell transplants. Discovering the anabolic players that control these mechanisms has become warranted. In this review, we focus on parathyroid hormone (PTH) and prostaglandins (PGs), potent molecular mediators, both of which carry out a multitude of functions, particularly in bone lining cells and T cells. These two regulators proved to be promising therapeutic agents when strictly clinical protocols on dose treatments were applied.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Biotechnology, University of Camerino, Italy
| | | | | | | |
Collapse
|
63
|
Sreenivasulu G, Pavani A, Sudhakumari CC, Dutta-Gupta A, Senthilkumaran B. Modulation of lipocalin-type prostaglandin D2 synthase expression in catfish seminal vesicles by thyroid disrupting agents and hormones. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:199-206. [PMID: 23973827 DOI: 10.1016/j.cbpc.2013.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 02/05/2023]
Abstract
Thyroid hormones play crucial role in several biological processes including reproduction. Disruption of normal thyroid status by environmental contaminants can cause severe impairment in reproductive functions. In our previous study, we reported down-regulation of a protein in seminal vesicular fluid of air-breathing catfish, Clarias gariepinus during experimentally induced hyperthyroidism. N-terminal amino acid sequence analysis followed by search in sequence database denoted it to be lipocalin-type prostaglandin D2 synthase (ptgds-b). In the present study, we cloned full-length cDNA of ptgds-b based on the N-terminal amino acid sequence. Surprisingly, Northern blot as well as RT-PCR analysis demonstrated the presence of ptgds-b transcript predominantly in seminal vesicles and developing testis. Further, ptgds-b mRNA significantly decreased in seminal vesicles following L-thyroxine overdose while there was an increased expression of ptgds-b after depletion of thyroid hormone by thiourea and withdrawal of the treatments reverted this effect. Treatment of catfish with human chorionic gonadotropin and estradiol significantly reduced ptgds-b expression. Taken together, we report ptgds-b as a thyroid hormone regulated protein in the seminal vesicles in addition to gonadotropin and estradiol. Further studies might explain the exclusive presence of ptgds-b in seminal vesicles and developing testis yet present data evaluated it as a putative biomarker for thyroid hormone disruption.
Collapse
Affiliation(s)
- Gunti Sreenivasulu
- Department of Animal Sciences, School of Life Sciences - Centre for Advanced Studies, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | | | | | | | | |
Collapse
|
64
|
The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:683405. [PMID: 24024207 PMCID: PMC3762073 DOI: 10.1155/2013/683405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/08/2013] [Accepted: 07/21/2013] [Indexed: 12/20/2022]
Abstract
Prostanoids, including prostaglandins (PGs), thromboxanes (TXs), and prostacyclins, are synthesized from arachidonic acid (AA) by the action of Cyclooxygenase (COX) enzymes. They are bioactive inflammatory lipid mediators that play a key role in immunity and immunopathology. Prostanoids exert their effects on immune and inflammatory cells by binding to membrane receptors that are widely expressed throughout the immune system and act at multiple levels in innate and adaptive immunity. The immunoregulatory role of prostanoids results from their ability to regulate cell-cell interaction, antigen presentation, cytokine production, cytokine receptor expression, differentiation, survival, apoptosis, cell-surface molecule levels, and cell migration in both autocrine and paracrine manners. By acting on immune cells of both systems, prostanoids and their receptors have great impact on immune regulation and play a pivotal role in connecting innate and adaptive immunity. This paper focuses on the immunobiology of prostanoid receptor signaling because of their potential clinical relevance for various disorders including inflammation, autoimmunity, and tumorigenesis. We mainly discuss the effects of major COX metabolites, PGD2, PGE2, their signaling during dendritic cell (DC)-natural killer (NK) reciprocal crosstalk, DC-T cell interaction, and subsequent consequences on determining crucial aspects of innate and adaptive immunity in normal and pathological settings.
Collapse
|
65
|
Nakagawa T, Takeuchi A, Kakiuchi R, Lee T, Yagi M, Awano H, Iijima K, Takeshima Y, Urade Y, Matsuo M. A prostaglandin D2 metabolite is elevated in the urine of Duchenne muscular dystrophy patients and increases further from 8years old. Clin Chim Acta 2013; 423:10-4. [DOI: 10.1016/j.cca.2013.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
|
66
|
Maesaka JK, Sodam B, Palaia T, Ragolia L, Batuman V, Miyawaki N, Shastry S, Youmans S, El-Sabban M. Prostaglandin D2 synthase: Apoptotic factor in alzheimer plasma, inducer of reactive oxygen species, inflammatory cytokines and dialysis dementia. J Nephropathol 2013; 2:166-80. [PMID: 24475446 DOI: 10.12860/jnp.2013.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/01/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Apoptosis, reactive oxygen species (ROS) and inflammatory cytokines have all been implicated in the development of Alzheimer's disease (AD). OBJECTIVES The present study identifies the apoptotic factor that was responsible for the fourfold increase in apoptotic rates that we previously noted when pig proximal tubule, LLC-PK1, cells were exposed to AD plasma as compared to plasma from normal controls and multi-infarct dementia. PATIENTS AND METHODS The apoptotic factor was isolated from AD urine and identified as lipocalin-type prostaglandin D2 synthase (L-PGDS). L-PGDS was found to be the major apoptotic factor in AD plasma as determined by inhibition of apoptosis approximating control levels by the cyclo-oxygenase (COX) 2 inhibitor, NS398, and the antibody to L-PGDS. Blood levels of L-PGDS, however, were not elevated in AD. We now demonstrate a receptor-mediated uptake of L-PGDS in PC12 neuronal cells that was time, dose and temperature-dependent and was saturable by competition with cold L-PGDS and albumin. Further proof of this endocytosis was provided by an electron microscopic study of gold labeled L-PGDS and immunofluorescence with Alexa-labeled L-PGDS. RESULTS The recombinant L-PGDS and wild type (WT) L-PGDS increased ROS but only the WTL-PGDS increased IL6 and TNFα, suggesting that differences in glycosylation of L-PGDS in AD was responsible for this discrepancy. CONCLUSIONS These data collectively suggest that L-PGDS might play an important role in the development of dementia in patients on dialysis and of AD.
Collapse
Affiliation(s)
- John K Maesaka
- Department of Medicine, Winthrop-University Hospital, Mineola, N.Y., SUNY Medical School at Stony Brook, N.Y. USA
| | - Bali Sodam
- Department of Medicine, Winthrop-University Hospital, Mineola, N.Y., SUNY Medical School at Stony Brook, N.Y. USA
| | - Thomas Palaia
- Department of Medicine, Winthrop-University Hospital, Mineola, N.Y., SUNY Medical School at Stony Brook, N.Y. USA
| | - Louis Ragolia
- Department of Medicine, Winthrop-University Hospital, Mineola, N.Y., SUNY Medical School at Stony Brook, N.Y. USA
| | - Vecihi Batuman
- Department of Medicine, Tulane University School of Medicine. USA
| | - Nobuyuki Miyawaki
- Department of Medicine, Winthrop-University Hospital, Mineola, N.Y., SUNY Medical School at Stony Brook, N.Y. USA
| | - Shubha Shastry
- Department of Medicine, Winthrop-University Hospital, Mineola, N.Y., SUNY Medical School at Stony Brook, N.Y. USA
| | - Steven Youmans
- Department of Biomedical Sciences, New York Institute of Technology, Westbury, N.Y. USA
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
67
|
Orenes-Piñero E, Manzano-Fernández S, López-Cuenca Á, Marín F, Valdés M, Januzzi JL. β-Trace Protein: From GFR Marker to Cardiovascular Risk Predictor. Clin J Am Soc Nephrol 2013; 8:873-81. [DOI: 10.2215/cjn.08870812] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
68
|
Agas D, Marchetti L, Hurley MM, Sabbieti MG. Prostaglandin F2α: a bone remodeling mediator. J Cell Physiol 2012; 228:25-9. [PMID: 22585670 DOI: 10.1002/jcp.24117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prostaglandin F2α (PGF2α) plays multiple roles on bone metabolism by regulating a wide range of signaling pathways. PGF2α, via activation of PKC, stimulates Na-dependent inorganic phosphate (Pi) transport system in osteoblasts; up-regulates interleukin (IL)-6 synthesis; increases vascular endothelial growth factor (VEGF). In addition, PGF2α acts as a strong mitogenic and survival agent on osteoblasts, and these effects are, at least in part, mediated by the binding of fibroblast growth factor-2 (FGF-2) to the specific receptor FGFR1. The understanding of PGF2α intracellular network, albeit complex to clarify, provides molecular bases useful to identify the players of osteoblast proliferation, apoptosis, and the associated angiogenic processes. Indeed, the molecular mechanism that underline PGF2α-regulated bone metabolism may be a promising platform for the development of novel targeted therapies in the treatment of bone disorders and disease.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Biotechnology, University of Camerino, Camerino (MC), Italy
| | | | | | | |
Collapse
|
69
|
Prostaglandins as PPARγ Modulators in Adipogenesis. PPAR Res 2012; 2012:527607. [PMID: 23319937 PMCID: PMC3540890 DOI: 10.1155/2012/527607] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/20/2012] [Indexed: 02/01/2023] Open
Abstract
Adipocytes and fat cells play critical roles in the regulation of energy homeostasis. Adipogenesis (adipocyte differentiation) is regulated via a complex process including coordinated changes in hormone sensitivity and gene expression. PPARγ is a ligand-dependent transcription factor and important in adipogenesis, as it enhances the expression of numerous adipogenic and lipogenic genes in adipocytes. Prostaglandins (PGs), which are lipid mediators, are associated with the regulation of PPARγ function in adipocytes. Prostacyclin promotes the differentiation of adipocyte-precursor cells to adipose cells via activation of the expression of C/EBPβ and δ. These proteins are important transcription factors in the activation of the early phase of adipogenesis, and they activate the expression of PPARγ, which event precedes the maturation of adipocytes. PGE2 and PGF2α strongly suppress the early phase of adipocyte differentiation by enhancing their own production via receptor-mediated elevation of the expression of cycloxygenase-2, and they also suppress the function of PPARγ. In contrast, PGD2 and its non-enzymatic metabolite, Δ12-PGJ2, activate the middle-late phase of adipocyte differentiation through both DP2 receptors and PPARγ. This paper focuses on potential roles of PGs as PPARγ modulators in adipogenesis and regulators of obesity.
Collapse
|
70
|
Whitin JC, Jang T, Merchant M, Yu TTS, Lau K, Recht B, Cohen HJ, Recht L. Alterations in cerebrospinal fluid proteins in a presymptomatic primary glioma model. PLoS One 2012. [PMID: 23185417 PMCID: PMC3501526 DOI: 10.1371/journal.pone.0049724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Understanding the early relationship between brain tumor cells and their environment could lead to more sensitive biomarkers and new therapeutic strategies. We have been using a rodent model of neurocarcinogenesis in which all animals develop brain tumors by six months of age to establish two early landmarks in glioma development: the appearance of a nestin+ cell at thirty days of age and the appearance of cellular hyperplasia between 60 and 120 days of age. We now report an assessment of the CSF proteome to determine the changes in protein composition that occur during this period. Materials and Methods Nestin+ cell clusters and microtumors were assessed in 63 ethylnitrosourea-exposed rats on 30, 60, and 90 days of age. CSF was obtained from the cisterna magna from 101 exposed and control rats at 30, 60, and 90 days and then analyzed using mass spectrometry. Differentially expressed peaks were isolated and identified. Results Nestin+ cells were noted in all ethylnitrosourea-exposed rats assessed pathologically. Small microtumors were noted in 0%, 18%, and 67% of 30-, 60-, and 90-day old rats, respectively (p<0.05, Chi square). False Discovery Rate analysis of peak intensities showed that the number of true discoveries with p<0.05 increased markedly with increasing age. Isolation and identification of highly differentially detected proteins at 90 days of age revealed increases in albumin and a fragment of α1 macroglobulin and alterations in glutathionylated transthyretin. Conclusions The presence of increased albumin, fragments of cerebrospinal fluid proteins, and glutathione breakdown in temporal association with the development of cellular hyperplasia, suggests that, similar to many other systemic cancers, inflammation and oxidative stress is playing an important early role in the host’s response to brain tumor development and may be involved in affecting the early growth of brain tumor.
Collapse
Affiliation(s)
- John C. Whitin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Taichang Jang
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Milton Merchant
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tom T-S. Yu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kenneth Lau
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- The Canary Center, Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Benjamin Recht
- Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Harvey J. Cohen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (LR); (HC)
| | - Lawrence Recht
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (LR); (HC)
| |
Collapse
|
71
|
Philibert P, Boizet-Bonhoure B, Bashamboo A, Paris F, Aritake K, Urade Y, Leger J, Sultan C, Poulat F. Unilateral cryptorchidism in mice mutant for Ptgds. Hum Mutat 2012; 34:278-82. [PMID: 23076868 DOI: 10.1002/humu.22231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 09/17/2012] [Indexed: 11/09/2022]
Abstract
The pathophysiology of cryptorchidism, abnormal testicular descent, remains poorly understood. In this study, we show that both heterozygous and homozygous mice deficient for lipocalin-type prostaglandin D(2) (PGD(2) ) synthase (Ptgds) presented unilateral cryptorchidism affecting the second phase of testicular descent in 16% and 24% of cases, respectively. The adult cryptorchid testes show an increase in spermatogonia apoptosis along with a global decrease in the tubule size parameters, whereas the gubernaculum of newborn mutants present some histological abnormalities. Disruption of the inguinoscrotal phase did not present impairment of the androgen pathway but rather a decrease in Rxfp2 mRNA expression in the gubernaculum. These observations led us to investigate the role of the PGD(2) signaling pathway in human testicular migration through PTGDS sequencing of DNA from 29 children with cryptorchidism. However, none of the investigated cases presented mutations in the PTGDS gene. Nevertheless, our results identify the PTGDS enzyme as a novel component in the cryptorchidism puzzle.
Collapse
Affiliation(s)
- Pascal Philibert
- Département d'Hormonologie, Hôpital Lapeyronie, CHU de Montpellier et Université Montpellier 1, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Patton SM, Coe CL, Lubach GR, Connor JR. Quantitative proteomic analyses of cerebrospinal fluid using iTRAQ in a primate model of iron deficiency anemia. Dev Neurosci 2012; 34:354-65. [PMID: 23018452 DOI: 10.1159/000341919] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/16/2012] [Indexed: 12/17/2022] Open
Abstract
Iron deficiency affects nearly 2 billion people worldwide, with pregnant women and young children being most severely impacted. Sustained anemia during the first year of life can cause cognitive, attention and motor deficits, which may persist despite iron supplementation. We conducted iTRAQ analyses on cerebrospinal fluid (CSF) from infant monkeys (Macaca mulatta) to identify differential protein expression associated with early iron deficiency. CSF was collected from 5 iron-sufficient and 8 iron-deficient anemic monkeys at weaning age (6-7 months) and again at 12-14 months. Despite consumption of iron-fortified food after weaning, which restored hematological indices into the normal range, expression of 5 proteins in the CSF remained altered. Most of the proteins identified are involved in neurite outgrowth, migration or synapse formation. The results reveal novel ways in which iron deficiency undermines brain growth and results in aberrant neuronal migration and connections. Taken together with gene expression data from rodent models of iron deficiency, we conclude that significant alterations in neuroconnectivity occur in the iron-deficient brain, which may persist even after resolution of the hematological anemia. The compromised brain infrastructure could account for observations of behavioral deficits in children during and after the period of anemia.
Collapse
|
73
|
Hematopoietic prostaglandin D synthase inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2012; 51:97-133. [PMID: 22520473 DOI: 10.1016/b978-0-12-396493-9.00004-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
74
|
PGD synthase and PGD2 in immune resposne. Mediators Inflamm 2012; 2012:503128. [PMID: 22791937 PMCID: PMC3389719 DOI: 10.1155/2012/503128] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 11/17/2022] Open
Abstract
PGD2 is formed from arachidonic acid by successive enzyme reactions: oxygenation of arachidonic acid to PGH2, a common precursor of various prostanoids, catalyzed by cyclooxygenase, and isomerization of PGH2 to PGD2 by PGD synthases (PGDSs). PGD2 can be either pro- or anti-inflammatory depending on disease process and etiology. The anti-inflammatory and immunomodulatory attributes of PGDS/PGD2 provide opportunities for development of novel therapeutic approaches for resistant infections and refractory inflammatory diseases. This paper highlights the role of PGD synthases and PGD2 in immune inflammatory response.
Collapse
|
75
|
Somparn P, Hirankarn N, Leelahavanichkul A, Khovidhunkit W, Thongboonkerd V, Avihingsanon Y. Urinary proteomics revealed prostaglandin H2D-isomerase, not Zn-α2-glycoprotein, as a biomarker for active lupus nephritis. J Proteomics 2012; 75:3240-7. [DOI: 10.1016/j.jprot.2012.03.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/17/2012] [Accepted: 03/21/2012] [Indexed: 12/29/2022]
|
76
|
Epigenetic deregulation of the COX pathway in cancer. Prog Lipid Res 2012; 51:301-13. [PMID: 22580191 DOI: 10.1016/j.plipres.2012.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 01/12/2023]
Abstract
Inflammation is a major cause of cancer and may condition its progression. The deregulation of the cyclooxygenase (COX) pathway is implicated in several pathophysiological processes, including inflammation and cancer. Although, its targeting with nonsteroidal antiinflammatory drugs (NSAIDs) and COX-2 selective inhibitors has been investigated for years with promising results at both preventive and therapeutic levels, undesirable side effects and the limited understanding of the regulation and functionalities of the COX pathway compromise a more extensive application of these drugs. Epigenetics is bringing additional levels of complexity to the understanding of basic biological and pathological processes. The deregulation of signaling and biosynthetic pathways by epigenetic mechanisms may account for new molecular targets in cancer therapeutics. Genes of the COX pathway are seldom mutated in neoplastic cells, but a large proportion of them show aberrant expression in different types of cancer. A growing body of evidence indicates that epigenetic alterations play a critical role in the deregulation of the genes of the COX pathway. This review summarizes the current knowledge on the contribution of epigenetic processes to the deregulation of the COX pathway in cancer, getting insights into how these alterations may be relevant for the clinical management of patients.
Collapse
|
77
|
Suk K. Unexpected role of lipocalin-type prostaglandin D synthase in brain: regulation of glial cell migration and morphology. Cell Adh Migr 2012; 6:160-3. [PMID: 22568990 DOI: 10.4161/cam.20251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) is one of the most abundant proteins in the cerebrospinal fluid. Nevertheless, its role in the central nervous system is far from clear. Here, we present evidence that L-PGDS induces glial cell migration and morphological changes in vitro and in vivo. We also identified myristoylated alanine-rich C-kinase substrate (MARCKS), heat shock proteins and actin as L-PGDS-binding proteins, demonstrating that MARCKS/Akt/Rho/Jnk pathways are involved in the L-PGDS actions in glia. We further show that the cell migration-promoting activity of L-PGDS is independent of PGD 2 production. The results suggest a novel non-enzymatic function of L-PGDS protein in brain inflammation, and may have an impact on glial cell biology and brain pathology related with reactive gliosis. L-PGDS is a potential drug target that can be exploited for therapeutic intervention of glia-driven neuroinflammation and related diseases.
Collapse
Affiliation(s)
- Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Korea.
| |
Collapse
|
78
|
Song WL, Stubbe J, Ricciotti E, Alamuddin N, Ibrahim S, Crichton I, Prempeh M, Lawson JA, Wilensky RL, Rasmussen LM, Puré E, FitzGerald GA. Niacin and biosynthesis of PGD₂by platelet COX-1 in mice and humans. J Clin Invest 2012; 122:1459-68. [PMID: 22406532 DOI: 10.1172/jci59262] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 01/25/2012] [Indexed: 11/17/2022] Open
Abstract
The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1-dependent formation of PGD₂ and PGE₂ followed by COX-2-dependent production of PGE₂. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD₂ receptor DP1. NSAID-mediated suppression of COX-2-derived PGI₂ has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD₂. Here, we show that PGD₂ biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1-derived PGD₂ biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD₂ was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD₂, like PGI₂, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy.
Collapse
Affiliation(s)
- Wen-Liang Song
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Urade Y, Hayaishi O. Prostaglandin D2 and sleep/wake regulation. Sleep Med Rev 2012; 15:411-8. [PMID: 22024172 DOI: 10.1016/j.smrv.2011.08.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 11/19/2022]
Abstract
Prostaglandin (PG) D2 is the most potent endogenous sleep-promoting substance. PGD2 is produced by lipocalin-type PGD synthase localized in the leptomeninges, choroid plexus, and oligodendrocytes in the brain, and is secreted into the cerebrospinal fluid as a sleep hormone. PGD2 stimulates DP1 receptors localized in the leptomeninges under the basal forebrain and the hypothalamus. As a consequence, adenosine is released as a paracrine sleep-promoting molecule to activate adenosine A2A receptor-expressing sleep-promoting neurons and to inhibit adenosine A1 receptor-possessing arousal neurons. PGD2 activates a center of non-rapid eye movement (NREM) sleep regulation in the ventrolateral preoptic area, probably mediated by adenosine signaling, which activation inhibits the histaminergic arousal center in the tuberomammillary nucleus via descending GABAergic and galaninergic projections. The administration of a lipocalin-type PGD synthase inhibitor (SeCl4), DP1 antagonist (ONO-4127Na) or adenosine A2A receptor antagonist (caffeine) suppresses both NREM and rapid eye movement (REM) sleep, indicating that the PGD2-adenosine system is crucial for the maintenance of physiological sleep.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4, Furuedai, Suita, Osaka 565 0874, Japan.
| | | |
Collapse
|
80
|
Lee S, Jang E, Kim JH, Kim JH, Lee WH, Suk K. Lipocalin-type prostaglandin D2 synthase protein regulates glial cell migration and morphology through myristoylated alanine-rich C-kinase substrate: prostaglandin D2-independent effects. J Biol Chem 2012; 287:9414-28. [PMID: 22275363 DOI: 10.1074/jbc.m111.330662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin D synthase (PGDS) is responsible for the conversion of PGH(2) to PGD(2). Two distinct types of PGDS have been identified: hematopoietic-type PGDS (H-PGDS) and lipocalin-type PGDS (L-PGDS). L-PGDS acts as both a PGD(2)-synthesizing enzyme and as an extracellular transporter of various lipophilic small molecules. Although L-PGDS is one of the most abundant proteins in the cerebrospinal fluid, little is known about the function of L-PGDS in the central nervous system (CNS). To better understand the role of L-PGDS in the CNS, effects of L-PGDS on the migration and morphology of glial cells were investigated. The L-PGDS protein accelerated the migration of cultured glial cells. Expression of the L-pgds gene was detected in glial cells and neurons. L-PGDS protein also induced morphological changes in glia similar to the characteristic phenotypic changes in reactive gliosis. L-PGDS-induced cell migration was associated with augmented formation of actin filaments and focal adhesion, which was accompanied by activation of AKT, RhoA, and JNK pathways. L-PGDS protein injected into the mouse brain promoted migration and accumulation of astrocytes in vivo. Furthermore, the cell migration-promoting effect of L-PGDS on glial cells was independent of the PGD(2) products. The L-PGDS protein interacted with myristoylated alanine-rich protein kinase C substrate (MARCKS) to promote cell migration. These results demonstrate the critical role of L-PGDS as a secreted lipocalin in the regulation of glial cell migration and morphology. The results also indicate that L-PGDS may participate in reactive gliosis in an autocrine or paracrine manner, and may have pathological implications in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Shinrye Lee
- Department of Pharmacology, Brain Science & Engineering Institute, CMRI, Kyungpook National University School of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
81
|
Wei CB, Chen J. A novel lipocalin homologue from the venom gland of Deinagkistrodon acutus similar to mammalian lipocalins. J Venom Anim Toxins Incl Trop Dis 2012. [DOI: 10.1590/s1678-91992012000100003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- CB Wei
- Western Anhui University; Laboratory of Anhui Province
| | | |
Collapse
|
82
|
Yazaki M, Kashiwagi K, Aritake K, Urade Y, Fujimori K. Rapid degradation of cyclooxygenase-1 and hematopoietic prostaglandin D synthase through ubiquitin-proteasome system in response to intracellular calcium level. Mol Biol Cell 2011; 23:12-21. [PMID: 22049022 PMCID: PMC3248891 DOI: 10.1091/mbc.e11-07-0623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cyclooxygenase (COX)-1 and hematopoietic prostaglandin (PG) D synthase (H-PGDS) proteins, which are both involved in the arachidonate cascade, were stable in human megakaryocytic MEG-01 cells. In contrast, once the intracellular calcium level was increased by treatment with a calcium ionophore, both protein levels rapidly decreased with a half-life of less than 30 and 120 min for COX-1 and H-PGDS, respectively. In the presence of a proteasome inhibitor, COX-1 and H-PGDS proteins accumulated within 10 and 30 min, respectively, and concurrently appeared as the high-molecular-mass ubiquitinated proteins within 30 and 60 min, respectively, after an increase in the intracellular calcium level. The ubiquitination of these proteins was also observed when ADP, instead of a calcium ionophore, was used as an inducer to elevate the intracellular calcium level. When the entry of calcium ion into the cells was inhibited by ethylene glycol tetraacetic acid (EGTA), the ubiquitination of COX-1 and H-PGDS was clearly suppressed; and the addition of CaCl(2) to the medium cleared the EGTA-mediated suppression of the ubiquitination. These results indicate that COX-1 and H-PGDS were rapidly ubiquitinated and degraded through the ubiquitin-proteasome system in response to the elevation of the intracellular calcium level.
Collapse
Affiliation(s)
- Misato Yazaki
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | | | | | | | | |
Collapse
|
83
|
Δ12-prostaglandin J3, an omega-3 fatty acid-derived metabolite, selectively ablates leukemia stem cells in mice. Blood 2011; 118:6909-19. [PMID: 21967980 DOI: 10.1182/blood-2010-11-317750] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Targeting cancer stem cells is of paramount importance in successfully preventing cancer relapse. Recently, in silico screening of public gene-expression datasets identified cyclooxygenase-derived cyclopentenone prostaglandins (CyPGs) as likely agents to target malignant stem cells. We show here that Δ(12)-PGJ(3), a novel and naturally produced CyPG from the dietary fish-oil ω-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA; 20:5) alleviates the development of leukemia in 2 well-studied murine models of leukemia. IP administration of Δ(12)-PGJ(3) to mice infected with Friend erythroleukemia virus or those expressing the chronic myelogenous leukemia oncoprotein BCR-ABL in the hematopoietic stem cell pool completely restored normal hematologic parameters, splenic histology, and enhanced survival. More importantly, Δ(12)-PGJ(3) selectively targeted leukemia stem cells (LSCs) for apoptosis in the spleen and BM. This treatment completely eradicated LSCs in vivo, as demonstrated by the inability of donor cells from treated mice to cause leukemia in secondary transplantations. Given the potency of ω-3 polyunsaturated fatty acid-derived CyPGs and the well-known refractoriness of LSCs to currently used clinical agents, Δ(12)-PGJ(3) may represent a new chemotherapeutic for leukemia that targets LSCs.
Collapse
|
84
|
Surh YJ, Na HK, Park JM, Lee HN, Kim W, Yoon IS, Kim DD. 15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂, an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochem Pharmacol 2011; 82:1335-51. [PMID: 21843512 DOI: 10.1016/j.bcp.2011.07.100] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 01/22/2023]
Abstract
15-deoxy-Δ(12,14)-prostagandin J(2) (15d-PGJ2) is produced in the inflamed cells and tissues as a consequence of upregulation of cyclooxygenase-2 (COX-2). 15d-PGJ2 is known to be the endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ) with multiple physiological properties. Though one of the terminal products of the COX-2-catalyzed reactions, this cyclopentenone prostaglandin exerts potent anti-inflammatory actions, in part, by antagonizing the activities of pro-inflammatory transcription factors, such as NF-κB, STAT3, and AP-1, while stimulating the anti-inflammatory transcription factor Nrf2. These effects are not necessarily dependent on its activation of PPARγ, but often involves direct interaction with the above signaling molecules and their regulators. The locally produced 15d-PGJ2 is also involved in the resolution of inflammatory responses. Thus, 15d-PGJ2, especially formed during the late phase of inflammation, might inhibit cytokine secretion and other events by antigen-presenting cells like dendritic cells or macrophages. 15d-PGJ2 can also affect the priming and effector functions of T lymphocytes and induce their apoptotic cell death. These represent a negative feedback explaining how once-initiated immunologic and inflammatory responses are switched off and terminated. In this context, 15d-PGJ2 and its synthetic derivatives have therapeutic potential for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Young-Joon Surh
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul 151-742, South Korea.
| | | | | | | | | | | | | |
Collapse
|
85
|
Affiliation(s)
- Takako Hirata
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
86
|
Kondabolu S, Adsumelli R, Schabel J, Glass P, Pentyala S. Evaluation of prostaglandin D2 as a CSF leak marker: implications in safe epidural anesthesia. Local Reg Anesth 2011; 4:21-4. [PMID: 22915888 PMCID: PMC3417968 DOI: 10.2147/lra.s18053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background It is accepted that there is a severe risk of dural puncture in epidural anesthesia. Of major concern to anesthesiologists is unintentional spinal block. Reliable identification of cerebrospinal fluid (CSF) from the aspirate is crucial for safe epidural anesthesia. The aim of this study was to determine whether prostaglandin D2 could be clinically used as a marker for the detection of CSF traces. Methods After obtaining Institutional Review Board approval and patient consent, CSF was obtained from patients undergoing spinal anesthesia, and blood, urine, and saliva were obtained from normal subjects and analyzed for prostaglandin D2 (PGD). CSF (n=5) samples were diluted with local anesthetic (bupivacaine), normal saline and blood in the ratios of 1:5 and 1:10. PGD levels in the CSF samples were analyzed with a PGD-Methoxime (MOX) EIA Kit (Cayman Chemicals, MI). This assay is based on the conversion of PGD to a stable derivative, which is analyzed with antiserum specific for PGD-MOX. Results Different concentrations of pure PGD-MOX conjugate were analyzed by EIA and a standard curve was derived. PGD levels in CSF and CSF with diluents were determined and the values were extrapolated onto the standard curve. Our results show a well-defined correlation for the presence of PGD both in straight CSF samples and in diluted CSF (dilution factor of 1:5 and 1:10). Conclusion Prostaglandin D2 was reliably identified in CSF by enzyme-linked immunosorbent assay when diluted with local anesthetic, saline, and serum, and can be used as a marker to identify the presence of CSF in epidural aspirates.
Collapse
Affiliation(s)
- Sirish Kondabolu
- Department of Anesthesiology, School of Medicine, Stony Brook Medical Center, Stony Brook, New York, USA
| | | | | | | | | |
Collapse
|
87
|
Zhang Y, Zhang G, Clarke PA, Huang JTJ, Takahashi E, Muirhead D, Steenwyk RC, Lin Z. Simultaneous and high-throughput quantitation of urinary tetranor PGDM and tetranor PGEM by online SPE-LC-MS/MS as inflammatory biomarkers. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:705-711. [PMID: 21706677 DOI: 10.1002/jms.1941] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Quantitation of urinary tetranor PGDM or tetranor PGEM (tPGDM and tPGEM) in the past was performed separately using off-line SPE LC-MS/MS methods. The manual SPE procedure is generally time-consuming and cost-ineffective. In addition, simultaneous quantitation of tPGDM and tPGEM is favorable yet very challenging because of the similar chemical structures and identical MRM transitions. This work describes the development and validation of a high-throughput online SPE-LC-MS/MS method, allowing simultaneous and high-throughput measurement of tPGDM and tPGEM in human urine. The reportable range of the assay was 0.2-40 ng/ml for tPGDM and 0.5-100 ng/ml for tPGEM. Intra- and inter-assay precision and accuracy determined using quality control samples were all within acceptable ranges (% CV and % Bias < 15%). Tetranor PGDM was stable under all tested conditions while tPGEM was stable at 4 °C and after three F/T cycles but not stable at room temperature for 24 h (recovery below 80%). The assay was applied to measure urinary tPGDM and tPGEM among healthy volunteers, smokers and COPD patients. Significantly higher urinary levels of both tPGDM and tPGEM were observed in COPD patients than those of non-smoking healthy volunteers. These results demonstrated that the high-throughput online SPE-LC-MS/MS assay provides sensitive, reproducible and accurate measurement of urinary tPGDM and tPGEM as biomarkers for assessing inflammatory diseases such as COPD.
Collapse
|
88
|
Ueno T, Fujimori K. Novel suppression mechanism operating in early phase of adipogenesis by positive feedback loop for enhancement of cyclooxygenase-2 expression through prostaglandin F2α receptor mediated activation of MEK/ERK-CREB cascade. FEBS J 2011; 278:2901-12. [DOI: 10.1111/j.1742-4658.2011.08213.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
89
|
Xin X, Fan B, Flammer J, Miller NR, Jaggi GP, Killer HE, Meyer P, Neutzner A. Meningothelial cells react to elevated pressure and oxidative stress. PLoS One 2011; 6:e20142. [PMID: 21611150 PMCID: PMC3096659 DOI: 10.1371/journal.pone.0020142] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/21/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Meningothelial cells (MECs) are the cellular components of the meninges enveloping the brain. Although MECs are not fully understood, several functions of these cells have been described. The presence of desmosomes and tight junctions between MECs hints towards a barrier function protecting the brain. In addition, MECs perform endocytosis and, by the secretion of cytokines, are involved in immunological processes in the brain. However, little is known about the influence of pathological conditions on MEC function; e.g., during diseases associated with elevated intracranial pressure, hypoxia or increased oxidative stress. METHODS We studied the effect of elevated pressure, hypoxia, and oxidative stress on immortalized human as well as primary porcine MECs. We used MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) bioreduction assays to assess the proliferation of MECs in response to treatment and compared to untreated control cells. To assess endocytotic activity, the uptake of fluorescently labeled latex beads was analyzed by fluorescence microscopy. RESULTS We found that exposure of MECs to elevated pressure caused significant cellular proliferation and a dramatic decrease in endocytotic activity. In addition, mild oxidative stress severely inhibited endocytosis. CONCLUSION Elevated pressure and oxidative stress impact MEC physiology and might therefore influence the microenvironment of the subarachnoid space and thus the cerebrospinal fluid within this compartment with potential negative impact on neuronal function.
Collapse
Affiliation(s)
- Xiaorong Xin
- Department of Biomedicine, Ocular Pharmacology and Physiology and Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Bin Fan
- Department of Biomedicine, Ocular Pharmacology and Physiology and Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Josef Flammer
- Department of Biomedicine, Ocular Pharmacology and Physiology and Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Neil R. Miller
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Gregor P. Jaggi
- Department of Ophthalmology, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Peter Meyer
- Department of Biomedicine, Ocular Pharmacology and Physiology and Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Albert Neutzner
- Department of Biomedicine, Ocular Pharmacology and Physiology and Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
90
|
Inhibition of hematopoietic prostaglandin D synthase improves allergic nasal blockage in guinea pigs. Prostaglandins Other Lipid Mediat 2011; 95:27-34. [PMID: 21601002 DOI: 10.1016/j.prostaglandins.2011.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/06/2011] [Accepted: 05/03/2011] [Indexed: 11/24/2022]
Abstract
Although it has been suggested that prostaglandin (PG) D(2) is involved in the pathogenesis of allergic rhinitis, whether the inhibition of hematopoietic PGD(2) synthase (H-PGDS) shows beneficial effects on allergic rhinitis has been unclear. We evaluated the effects of a selective H-PGDS inhibitor, TFC-007, on nasal symptoms on Japanese cedar pollen-induced allergic rhinitis of guinea pigs. Sensitized animals were challenged with the pollen once a week. TFC-007 (30mg/kg, p.o.) given once before a challenge almost completely suppressed PGD(2) production in the nasal tissue early and late after the challenge. Although pre-treatment did not affect the incidences of sneezing and early phase nasal blockage, late phase nasal blockage was partially but significantly attenuated; however, nasal eosinophilia was not suppressed. In contrast, when TFC-007 was given once 1.5h after the challenge, the late phase response was not affected. Collectively, PGD(2) produced by H-PGDS early after an antigen challenge can participate in the induction of late phase nasal blockage, although the mechanism may be independent of eosinophil infilatration. The strategy for H-PGDS inhibition may be beneficial for allergic rhinitis therapy.
Collapse
|
91
|
|
92
|
Boltaña S, Reyes-Lopez F, Morera D, Goetz F, MacKenzie SA. Divergent responses to peptidoglycans derived from different E. coli serotypes influence inflammatory outcome in trout, Oncorhynchus mykiss, macrophages. BMC Genomics 2011; 12:34. [PMID: 21235753 PMCID: PMC3087353 DOI: 10.1186/1471-2164-12-34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 01/14/2011] [Indexed: 12/24/2022] Open
Abstract
Background Pathogen-associated molecular patterns (PAMPs) are structural components of pathogens such as lipopolysaccharide (LPS) and peptidoglycan (PGN) from bacterial cell walls. PAMP-recognition by the host results in an induction of defence-related genes and often the generation of an inflammatory response. We evaluated both the transcriptomic and inflammatory response in trout (O. mykiss) macrophages in primary cell culture stimulated with DAP-PGN (DAP; meso-diaminopimelic acid, PGN; peptidoglycan) from two strains of Escherichia coli (PGN-K12 and PGN-O111:B4) over time. Results Transcript profiling was assessed using function-targeted cDNA microarray hybridisation (n = 36) and results show differential responses to both PGNs that are both time and treatment dependent. Wild type E. coli (K12) generated an increase in transcript number/diversity over time whereas PGN-O111:B4 stimulation resulted in a more specific and intense response. In line with this, Gene Ontology analysis (GO) highlights a specific transcriptomic remodelling for PGN-O111:B4 whereas results obtained for PGN-K12 show a high similarity to a generalised inflammatory priming response where multiple functional classes are related to ribosome biogenesis or cellular metabolism. Prostaglandin release was induced by both PGNs and macrophages were significantly more sensitive to PGN-O111:B4 as suggested from microarray data. Conclusion Responses at the level of the transcriptome and the inflammatory outcome (prostaglandin synthesis) highlight the different sensitivity of the macrophage to slight differences (serotype) in peptidoglycan structure. Such divergent responses are likely to involve differential receptor sensitivity to ligands or indeed different receptor types. Such changes in biological response will likely reflect upon pathogenicity of certain serotypes and the development of disease.
Collapse
Affiliation(s)
- Sebastian Boltaña
- Institute of Biotechnology and Biomedicine, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
93
|
Nynca J, Dietrich MA, Bilińska B, Kotula-Balak M, Kiełbasa T, Karol H, Ciereszko A. Isolation of lipocalin-type protein from rainbow trout seminal plasma and its localisation in the reproductive system. Reprod Fertil Dev 2011; 23:381-9. [DOI: 10.1071/rd10118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/01/2010] [Indexed: 11/23/2022] Open
Abstract
The lipocalin protein family is a large and diverse group of small extracellular proteins characterised by their ability to bind hydrophobic molecules. In the present study, we describe the isolation procedure for rainbow trout seminal plasma protein, characterised by a moderate migration rate during polyacrylamide gel electrophoresis, providing information regarding its basic features and immunohistochemical localisation. This protein was identified as a lipocalin-type protein (LTP). The molecular mass of LTP was found to be 18 848 Da and it was found to lack any carbohydrate components. Only a few Salmoniformes contain LTP in their seminal plasma. The abundance of LTP in the Sertoli and Leydig cells of the testes of the rainbow trout, as well as in secretory cells of the efferent duct, suggests that this protein is specific for rainbow trout milt, where it acts as a lipophilic carrier protein. Moreover, the specific localisation of LTP in the flagella of the spermatozoa suggests a role for LTP in sperm motility. Further experiments are necessary to identify the endogenous ligands for LTP in rainbow trout seminal plasma and to characterise the binding properties of this protein.
Collapse
|
94
|
Zhou Y, Shaw N, Li Y, Zhao Y, Zhang R, Liu ZJ. Structure-function analysis of human l-prostaglandin D synthase bound with fatty acid molecules. FASEB J 2010; 24:4668-77. [PMID: 20667974 DOI: 10.1096/fj.10-164863] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yangyan Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Neil Shaw
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and
| | - Yang Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and
| | - Yu Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and
| | - Rongguang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and
| |
Collapse
|
95
|
Zhou Y, Shaw N, Li Y, Zhao Y, Zhang R, Liu ZJ. Structure‐function analysis of human l‐prostaglandin D synthase bound with fatty acid molecules. FASEB J 2010. [DOI: 10.1096/fj.10.164863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yangyan Zhou
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of Sciences Beijing China
- Graduate University of Chinese Academy of Sciences Beijing China
| | - Neil Shaw
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of Sciences Beijing China
| | - Yang Li
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of Sciences Beijing China
| | - Yu Zhao
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of Sciences Beijing China
| | - Rongguang Zhang
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of Sciences Beijing China
| | - Zhi-Jie Liu
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of Sciences Beijing China
| |
Collapse
|
96
|
Mathurin K, Gallant MA, Germain P, Allard-Chamard H, Brisson J, Iorio-Morin C, de Brum Fernandes A, Caron MG, Laporte SA, Parent JL. An interaction between L-prostaglandin D synthase and arrestin increases PGD2 production. J Biol Chem 2010; 286:2696-706. [PMID: 21112970 DOI: 10.1074/jbc.m110.178277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
L-type prostaglandin synthase (L-PGDS) produces PGD(2), a lipid mediator involved in neuromodulation and inflammation. Here, we show that L-PGDS and arrestin-3 (Arr3) interact directly and can be co-immunoprecipitated endogenously from MG-63 osteoblasts. Perinuclear L-PGDS/Arr3 co-localization is observed in PGD(2)-producing MG-63 cells and is induced by the addition of the L-PGDS substrate or co-expression of COX-2 in HEK293 cells. Inhibition of L-PGDS activity in MG-63 cells triggers redistribution of Arr3 and L-PGDS to the cytoplasm. Perinuclear localization of L-PGDS is detected in wild-type mouse embryonic fibroblasts (MEFs) but is more diffused in MEFs-arr-2(-/-)-arr-3(-/-). Arrestin-3 promotes PGD(2) production by L-PGDS in vitro. IL-1β-induced PGD(2) production is significantly lower in MEFs-arr-2(-/-)-arr-3(-/-) than in wild-type MEFs but can be rescued by expressing Arr2 or Arr3. A peptide corresponding to amino acids 86-100 of arrestin-3 derived from its L-PGDS binding domain stimulates L-PGDS-mediated PGD(2) production in vitro and in MG-63 cells. We report the first characterization of an interactor/modulator of a PGD(2) synthase and the identification of a new function for arrestin, which may open new opportunities for improving therapies for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Karine Mathurin
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Induction of Prostaglandin D2 through the p38 MAPK Pathway Is Responsible for the Antipruritic Activity of Sertaconazole Nitrate. J Invest Dermatol 2010; 130:2448-56. [DOI: 10.1038/jid.2010.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
98
|
Diminished lipocalin-type prostaglandin D2 synthase expression in human lung tumors. Lung Cancer 2010; 70:103-9. [DOI: 10.1016/j.lungcan.2010.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/06/2010] [Accepted: 01/17/2010] [Indexed: 01/08/2023]
|
99
|
Theoretical studies on model reaction pathways of prostaglandin H2 isomerization to prostaglandin D2/E2. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0814-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
100
|
Yoshihiro Urade, Osamu Hayaishi. Crucial role of prostaglandin D2 and adenosine in sleep regulation: experimental evidence from pharmacological approaches to gene-knockout mice. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostaglandin (PG) D2 is the most potent endogenous sleep-promoting substance reported thus far. Its mechanism of action has been extensively studied at the molecular level. PGD2 is produced by lipocalin-type PGD synthase, which is predominantly localized in the leptomeninges, choroid plexus and oligodendrocytes in the brain; it is secreted into the cerebrospinal fluid and stimulates DP1 receptors localized in the arachnoid membrane of the ventral surface from the basal forebrain to the hypothalamus, increasing the extracellular concentration of adenosine as a paracrine sleep-promoting molecule. Adenosine diffuses into the brain parenchyma, suppresses cholinergic arousal neurons in the basal forebrain via adenosine A1 receptors, activates sleep-active neurons in the ventrolateral preoptic area via adenosine A2A receptors and concomitantly suppresses the histaminergic arousal center in the tuberomammillary nucleus through GABAergic and galaninergic inhibitory projections. Administration of an inhibitor of lipocalin-type PGD synthase (SeCl4), an antagonist of DP1 receptors (ONO-4127Na) or an antagonist of adenosine A2A receptors (caffeine) results in sleep inhibition in rats and mice. These results indicate that the PGD2–adenosine system is crucial for the maintenance of physiological sleep.
Collapse
|