51
|
Sartori BM, Moreira Júnior RE, Paiva IM, Moraes IB, Murgas LDS, Brunialti-Godard AL. Acute ethanol exposure leads to long-term effects on memory, behavior, and transcriptional regulation in the zebrafish brain. Behav Brain Res 2023; 444:114352. [PMID: 36842314 DOI: 10.1016/j.bbr.2023.114352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Alcohol consumption is associated with alterations in memory and learning processes in humans and animals. In this context, research models such as the zebrafish (Danio rerio) arise as key organisms in behavioral and molecular studies that attempt to clarify alterations in the Central Nervous System (CNS), like those related to alcohol use. Accordingly, we used the zebrafish as a model to evaluate the effects of ethanol on the learning and memory process, as well as its relationship with behavior and transcriptional regulation of lrfn2, lrrk2, grin1a, and bdnf genes in the brain. To this end, for the memory and learning evaluation, we conducted the Novel Object Recognition test (NOR); for behavior, the Novel Tank test; and for gene transcription, qPCR, after 2 h, 24 h, and 8 days of ethanol exposure. As a result, we noticed in the NOR that after 8 days of ethanol exposure, the control group spent more time exploring the novel object than when compared to 2 h post-exposure, indicating that naturally zebrafish remember familiar objects. In animals in the Treatment group, however, no object recognition behavior was observed, suggesting that alcohol affected the learning and memory processes of the animals and stimulated an anxiolytic effect in them. Regarding transcriptional regulation, 24 h after alcohol exposure, we found hyper-regulation of bdnf and, after 8 days, a hypo-regulation of lrfn2 and lrrk2. To conclude, we demonstrated that ethanol exposure may have influenced learning ability and memory formation in zebrafish, as well as behavior and regulation of gene transcription. These data are relevant for further understanding the application of zebrafish in research associated with ethanol consumption and behavior.
Collapse
Affiliation(s)
- Barbara Miranda Sartori
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Renato Elias Moreira Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Isadora Marques Paiva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Centro de Pesquisas em Doenças Inflamatórias (CRID), Faculdade de Medicina de Ribeirão Preto, Departamento de Farmacologia, Universidade de São Paulo (FMRP), Ribeirão Preto, Brazil
| | - Izabela Barbosa Moraes
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia (UFOB), Barreiras, Brazil
| | - Luis David Solis Murgas
- Biotério Central, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
52
|
Naija A, Yalcin HC. Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicol Rep 2023; 10:498-508. [PMID: 37396852 PMCID: PMC10313869 DOI: 10.1016/j.toxrep.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Chemicals are at the top of public health concerns and metals have received much attention in terms of toxicological studies. Cadmium (Cd) and mercury (Hg) are among the most toxic heavy metals and are widely distributed in the environment. They are considered important factors involved in several organ disturbances. Heart and brain tissues are not among the first exposure sites to Cd and Hg but they are directly affected and may manifest intoxication reactions leading to death. Many cases of human intoxication with Cd and Hg showed that these metals have potential cardiotoxic and neurotoxic effects. Human exposure to heavy metals is through fish consumption which is considered as an excellent source of human nutrients. In the current review, we will summarize the most known cases of human intoxication with Cd and Hg, highlight their toxic effects on fish, and investigate the common signal pathways of both Cd and Hg to affect heart and brain tissues. Also, we will present the most common biomarkers used in the assessment of cardiotoxicity and neurotoxicity using Zebrafish model.
Collapse
|
53
|
de Moura LA, Pyterson MP, Pimentel AFN, Araújo F, de Souza LVXB, Mendes CHM, Costa BPD, de Siqueira-Silva DH, Lima-Maximino M, Maximino C. Roles of the 5-HT2C receptor on zebrafish sociality. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110769. [PMID: 37068544 DOI: 10.1016/j.pnpbp.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Serotonin (5-HT) receptors have been implicated in social behavior in vertebrates. Zebrafish (Danio rerio) have been increasingly being used behavioral neuroscience to study the neurobiological correlates of behavior, including sociality. Nonetheless, the role of 5-HT2C receptors in different social functions were not yet studied in this species. Zebrafish were treated with the agonist MK-212 (2 mg/kg) or the antagonist RS-102221 (2 mg/kg) and tested in the social interaction and social novelty tests, conditional approach test, or mirror-induced aggressive displays. MK-212 increased preference for an unknown conspecific in the social investigation test, but also increased preference for the known conspecific in the social novelty test; RS-102221, on the other hand, decreased preference in the social investigation test but increased preference for the novel conspecific in the social novelty test. MK-212 also decreased predator inspection in the conditional approach test. While RS-102221 decreased time in the display zone in the mirror-induced aggressive display test, it increased display duration. Overall, these results demonstrate the complex role of 5-HT2C receptors in different social contexts in zebrafish, revealing a participation in social plasticity in vertebrates.
Collapse
Affiliation(s)
- Layana Aquino de Moura
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Maryana Pereira Pyterson
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Ana Flávia Nogueira Pimentel
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Fernanda Araújo
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Loanne Valéria Xavier Bruce de Souza
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Universidade Federal do Pará, Belém, PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Caio Henrique Moura Mendes
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Bruna Patrícia Dutra Costa
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Grupo de Estudos da Reprodução de Peixes Amazônicos, Faculdade de Biologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Universidade Federal do Pará, Belém, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil.
| |
Collapse
|
54
|
Jorge S, Félix L, Costas B, Valentim AM. Housing Conditions Affect Adult Zebrafish ( Danio rerio) Behavior but Not Their Physiological Status. Animals (Basel) 2023; 13:ani13061120. [PMID: 36978661 PMCID: PMC10044285 DOI: 10.3390/ani13061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Zebrafish is a valuable model for neuroscience research, but the housing conditions to which it is exposed daily may be impairing its welfare status. The use of environmental enrichment and the refinement of methodology for cortisol measurement could reduce stress, improving its welfare and its suitability as an animal model used in stress research. Thus, this study aimed to evaluate (I) the influence of different housing conditions on zebrafish physiology and behavior, and (II) skin mucus potential for cortisol measurement in adult zebrafish. For this, AB zebrafish were raised under barren or enriched (PVC pipes and gravel image) environmental conditions. After 6 months, their behavior was assessed by different behavioral paradigms (shoaling, white-black box test, and novel tank). The physiological response was also evaluated through cortisol levels (whole-body homogenates and skin mucus) and brain oxidative stress markers. The results revealed that enriched-housed fish had an increased nearest neighbors' distance and reduced activity. However, no effect on body length or stress biomarkers was observed; whole-body and skin mucus cortisol levels had the same profile between groups. In conclusion, this study highlights the skin mucus potential as a matrix for cortisol quantification, and how housing conditions could influence the data in future studies.
Collapse
Affiliation(s)
- Sara Jorge
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Laboratory Animal Science, IBMC-Instituto de Biologia Molecular Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, (CIIMAR), 4450-208 Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Instituto para a Inovação, Capacitação e Sustentabilidade da Produção Agroalimentar (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental, (CIIMAR), 4450-208 Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana M Valentim
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Laboratory Animal Science, IBMC-Instituto de Biologia Molecular Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
55
|
Nabinger DD, Altenhofen S, Buatois A, Facciol A, Peixoto JV, da Silva JMK, Chatterjee D, Rübensam G, Gerlai R, Bonan CD. Acute administration of a dopamine D2/D3 receptor agonist alters behavioral and neural parameters in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110753. [PMID: 36934998 DOI: 10.1016/j.pnpbp.2023.110753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023]
Abstract
The dopaminergic neurotransmitter system is implicated in several brain functions and behavioral processes. Alterations in it are associated with the pathogenesis of several human neurological disorders. Pharmacological agents that interact with the dopaminergic system allow the investigation of dopamine-mediated cellular and molecular responses and may elucidate the biological bases of such disorders. Zebrafish, a translationally relevant biomedical research organism, has been successfully employed in prior psychopharmacology studies. Here, we evaluated the effects of quinpirole (dopamine D2/D3 receptor agonist) in adult zebrafish on behavioral parameters, brain-derived neurotrophic factor (BDNF) and neurotransmitter levels. Zebrafish received intraperitoneal injections of 0.5, 1.0, or 2.0 mg/kg quinpirole or saline (control group) twice with an inter-injection interval of 48 h. All tests were performed 24 h after the second injection. After this acute quinpirole administration, zebrafish exhibited decreased locomotor activity, increased anxiety-like behaviors and memory impairment. However, quinpirole did not affect social and aggressive behavior. Quinpirole-treated fish exhibited stereotypic swimming, characterized by repetitive behavior followed by immobile episodes. Moreover, quinpirole treatment also decreased the number of BDNF-immunoreactive cells in the zebrafish brain. Analysis of neurotransmitter levels demonstrated a significant increase in glutamate and a decrease in serotonin, while no alterations were observed in dopamine. These findings demonstrate that dopaminergic signaling altered by quinpirole administration results in significant behavioral and neuroplastic changes in the central nervous system of zebrafish. Thus, we conclude that the use of quinpirole administration in adult zebrafish may be an appropriate tool for the analysis of mechanisms underlying neurological disorders related to the dopaminergic system.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Amanda Facciol
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Julia Vasconcellos Peixoto
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Maria Kuhl da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Gabriel Rübensam
- Centro de Pesquisa em Toxicologia e Farmacologia (INTOX), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
56
|
Examining behavioural test sensitivity and locomotor proxies of anxiety-like behaviour in zebrafish. Sci Rep 2023; 13:3768. [PMID: 36882472 PMCID: PMC9992706 DOI: 10.1038/s41598-023-29668-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
This study assessed the sensitivity of four anxiety-like behaviour paradigms in zebrafish: the novel tank dive test, shoaling test, light/dark test, and the less common shoal with novel object test. A second goal was to measure the extent to which the main effect measures are related to locomotor behaviours to determine whether swimming velocity and freezing (immobility) are indicative of anxiety-like behaviour. Using the well-established anxiolytic, chlordiazepoxide, we found the novel tank dive to be most sensitive followed by the shoaling test. The light/dark test and shoaling plus novel object test were the least sensitive. A principal component analysis and a correlational analysis also showed the locomotor variables, velocity and immobility, did not predict the anxiety-like behaviours across all behaviour tests.
Collapse
|
57
|
de Farias Araujo G, Medeiros RJ, Maciel-Magalhães M, Correia FV, Saggioro EM. Zebrafish (Danio rerio) as a model to assess the effects of cocaine as a drug of abuse and its environmental implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28459-28479. [PMID: 36689115 DOI: 10.1007/s11356-023-25402-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Cocaine (COC) use concerns are on the increase for both authorities and civil society. Despite this, it is important to investigate COC effects or those of its main metabolite, belzoylecgonine (BE), in consolidated aquatic model organisms, such as the zebrafish (Danio rerio). This (mini) review consists in an assessment regarding toxicological studies carried out employing zebrafish (embryos, larvae or adults) exposed to COC and/or BE indexed at the SCOPUS and Web of Science databases. Ten different endpoints were analyzed in both embryos and larvae, whereas only four were analyzed in adults. Of the 23 studies, only five investigated COC and/or BE effects following an environmental approach when exposing zebrafish, while most (18 studies) analyzed COC effects under a drug of abuse approach. Cocaine exposure was noted as altering the expression of several genes, such as those linked to COC transport proteins, dopamine receptors, SP substance production, the tachykinin system, and the tyrosine hydroxylase enzyme. BE exposure resulted in more oxidative and proteomic effects than COC in embryos. Cocaine abstinence resulted in hyperactivity associated with stereotypy in adult fish, in addition to reduced responses to visual stimuli to red light and neuronal development pattern alterations. Cocaine was noted as accumulating in zebrafish eyes, possibly due to melanin binding, and causing dose-response cardiac effects in both embryos and adults. Despite the different effects addressed by our survey, we emphasize the lack of COC and BE exposure assessments in zebrafish employing an environmental point of view.
Collapse
Affiliation(s)
- Gabriel de Farias Araujo
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Renata Jurema Medeiros
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brasil
| | - Magno Maciel-Magalhães
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brasil
| | - Fábio Veríssimo Correia
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
- Departamento de Ciências Naturais, Universidade Federal Do Estado Do Rio de Janeiro, Av. Pasteur, 458, Urca, 22290-250, Rio de Janeiro, Brasil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
58
|
Structural environmental enrichment and the way it is offered influence cognitive judgement bias and anxiety-like behaviours in zebrafish. Anim Cogn 2023; 26:563-577. [PMID: 36209454 DOI: 10.1007/s10071-022-01700-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/01/2022]
Abstract
Environmental enrichment in zebrafish generally reduces anxiety-related behaviours, improves learning in maze trials and increases health and biological fitness. However, certain types of enrichment or certain conditions induce the opposite effects. Therefore, it is essential to study the characteristics of environmental enrichment that modulate these effects. This study aims to investigate if structural environmental enrichment and the way it is offered influence cognitive judgement bias and anxiety-like behaviours in adult zebrafish. The fish were assigned to six housing manipulations: constant barren, constant enrichment, gradual gain of enrichment, gradual loss of enrichment, sudden gain of enrichment and sudden loss of enrichment. We then transposed the cognitive judgment bias paradigm, formerly used in studies on other animals to measure the link between emotion and cognition, to objectively assess the impact of these manipulations on the zebrafish's interpretation of ambiguous stimuli, considering previous experiences and related emotional states. We used two battery tests (light/dark and activity tests), which measured anxiety-related behaviours to check if these tests covariate with cognitive bias results. The fish with a sudden gain in enrichment showed a pessimistic bias (interpreted ambiguous stimuli as negative). In addition, the fish that experienced a sudden gain and a gradual loss in enrichment showed more anxiety-like behaviours than the fish that experienced constant conditions or a gradual gain in enrichment. The data provide some proof that structural environmental enrichment and the way it is presented can alter zebrafish's cognitive bias and anxiety-like behaviours.
Collapse
|
59
|
Adhish M, Manjubala I. Effectiveness of zebrafish models in understanding human diseases-A review of models. Heliyon 2023; 9:e14557. [PMID: 36950605 PMCID: PMC10025926 DOI: 10.1016/j.heliyon.2023.e14557] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Understanding the detailed mechanism behind every human disease, disorder, defect, and deficiency is a daunting task concerning the clinical diagnostic tools for patients. Hence, a closely resembling living or simulated model is of paramount interest for the development and testing of a probable novel drug for rectifying the conditions pertaining to the various ailments. The animal model that can be easily genetically manipulated to suit the study of the therapeutic motive is an indispensable asset and within the last few decades, the zebrafish models have proven their effectiveness by becoming such potent human disease models with their use being extended to various avenues of research to understand the underlying mechanisms of the diseases. As zebrafish are explored as model animals in understanding the molecular basis and genetics of many diseases owing to the 70% genetic homology between the human and zebrafish genes; new and fascinating facts about the diseases are being surfaced, establishing it as a very powerful tool for upcoming research. These prospective research areas can be explored in the near future using zebrafish as a model. In this review, the effectiveness of the zebrafish as an animal model against several human diseases such as osteoporosis, atrial fibrillation, Noonan syndrome, leukemia, autism spectrum disorders, etc. has been discussed.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - I. Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| |
Collapse
|
60
|
Zebrafish as a Potential Model for Neurodegenerative Diseases: A Focus on Toxic Metals Implications. Int J Mol Sci 2023; 24:ijms24043428. [PMID: 36834835 PMCID: PMC9959844 DOI: 10.3390/ijms24043428] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
In the last century, industrial activities increased and caused multiple health problems for humans and animals. At this moment, heavy metals are considered the most harmful substances for their effects on organisms and humans. The impact of these toxic metals, which have no biological role, poses a considerable threat and is associated with several health problems. Heavy metals can interfere with metabolic processes and can sometimes act as pseudo-elements. The zebrafish is an animal model progressively used to expose the toxic effects of diverse compounds and to find treatments for different devastating diseases that human beings are currently facing. This review aims to analyse and discuss the value of zebrafish as animal models used in neurological conditions, such as Alzheimer's disease (AD), and Parkinson's disease (PD), particularly in terms of the benefits of animal models and the limitations that exist.
Collapse
|
61
|
Kachot RL, Patel UD, Patel HB, Modi CM, Chauhan R, Kariya MH, Bhadaniya AR. Neurotoxicity of acrylamide in adult zebrafish following short-term and long-term exposure: evaluation of behavior alterations, oxidative stress markers, expression of antioxidant genes, and histological examination of the brain and eyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40116-40131. [PMID: 36607571 DOI: 10.1007/s11356-022-25112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
In the present work, 224 adult female zebrafish (56 fish in each group) were randomly divided into four groups (two control groups and two toxicity groups) as per duration of exposure (7 and 21 days). All fish of the two toxicity groups were exposed to 0.610 mM acrylamide (ACR) concentration for 7 and 21 days. The effects of ACR exposure on behavior, oxidative stress biomarkers, molecular expression of antioxidant genes (sod, cat, and nrf2), and histopathological examination of the brain and eye were examined. Our result shows that ACR exposure for 7 days produced an anxiety-like behavior in zebrafish. Short-term exposure of ACR resulted in alterations of oxidative stress markers (SOD and CAT activity, and the level of GSH and MDA) in the brain and eye of zebrafish. However, the antioxidant defense system of adult female zebrafish could be able to counteract the free radicals generated in long-term ACR exposure as indicated by non-significant difference in oxidative insult following short-term and long-term exposure. ACR exposure downregulated the mRNA expression of the sod, cat, and nrf2 (nuclear factor erythroid 2-related factor 2) genes in the brain and eye without significant difference between the two toxicity groups. Mild histological changes in the dorsal telencephalic area, tectum opticum, medulla, and hypothalamus area of the brain of zebrafish have been observed following short-term and long-term ACR exposure. In the eye, marked histological changes in the retinal pigmented epithelium layer (RPE), structural changes of the photoreceptor layer (PRL) with disorganized layer of rods and cones, and reduction of the relative thickness of the RPE, PRL, outer nuclear layer (ONL), and inner nuclear layer (INL) have been noted following ACR exposure for 21 days as compared to 7 days. ACR produced neurobehavioral aberrations and oxidative stress within 7 days of exposure, while various histological changes in the brain and eyes have been observed following long-term exposure (21 days) to ACR.
Collapse
Affiliation(s)
- Rajesh L Kachot
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India.
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Chirag M Modi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - RadheyShyam Chauhan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Mayank H Kariya
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Amit R Bhadaniya
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| |
Collapse
|
62
|
Gerlai R. Zebrafish (Danio rerio): A newcomer with great promise in behavioral neuroscience. Neurosci Biobehav Rev 2023; 144:104978. [PMID: 36442644 DOI: 10.1016/j.neubiorev.2022.104978] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Behavioral neuroscience is an interdisciplinary field aimed at understanding the neurobiology of behavior. Numerous investigators turn to animals to model and understand the mechanisms underlying vertebrate brain function including human brain disorders, species that share evolutionary history with us. The zebrafish is a relatively new study species for such purposes. However, as this review attempts to demonstrate, it will likely have a good future in behavioral neuroscience. It is a simple vertebrate that is small and cheap to keep and study in the laboratory. Yet, it is similar enough to our own species, thus, we are able to use it for both translational as well as basic research. In this invited review, I will discuss its advantages and some of its disadvantages, the reasons and counterarguments why it should or should not be employed in research. I will focus on its utility in behavioral neuroscience, and will also provide a brief historical account of the evolution between zebrafish research and the science represented by the International Behavioral Neuroscience Society.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, Rm CCT4004, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
63
|
Lucon-Xiccato T, Tomain M, D’Aniello S, Bertolucci C. bdnf loss affects activity, sociability, and anxiety-like behaviour in zebrafish. Behav Brain Res 2023; 436:114115. [DOI: 10.1016/j.bbr.2022.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
64
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
65
|
Frese L, Braunbeck T. Adapting classic paradigms to analyze alterations of shoal-wide behavior in early-life stages of zebrafish (Danio rerio) - A case study with fluoxetine. Neurotoxicol Teratol 2023; 95:107136. [PMID: 36423854 DOI: 10.1016/j.ntt.2022.107136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022]
Abstract
Given the strong increase in prescription of neuroactive pharmaceuticals, neurotoxicity has received growing concern in science and the public. Regulatory requirements stimulated the development of new methods to evaluate the risk of neurotoxic substances for humans and the environment, and, with respect to potential damage to aquatic ecosystems, a variety of behavior-based assays have been proposed for neurotoxicity testing, most of which, however, are restricted to changes in the behavior of individual fish. Since many fish species form shoals under natural conditions, this may cause important aspects of behavior to be overlooked and there is a need for behavior assays integrating individual behavior with behavior of the entire swarm. In order to combine more environmentally realistic sub-chronic exposure scenarios with undistorted social behavior and animal welfare considerations, two behavioral assays are proposed that might be integrated into early-life stage toxicity studies according to OECD TG 210, which are commonly run for a multitude of regulations: To this end, protocols for a novel tank test and a predator response assay were adapted to also record the behavior of free-swimming zebrafish (Danio rerio) juveniles within shoals. Comparisons of the diving response (novel tank) or the shoal's coherence and position relative to the stimulus (predator) with control groups allow conclusions about the anxiety state of the fish, which might well have an impact on survival chances in the wild. As a model substance, the antidepressant fluoxetine ((RS)-N-Methyl-3-phenyl-3-(4-trifluoromethylphenoxy)propylamine) produced adverse effects down to concentrations three orders of magnitude below the EC10 from acute fish embryo toxicity tests according to OECD TG 236. With the integration of such behavior tests into OECD TG 210, important population-relevant information on potential neurotoxicity can be collected without increasing the number of experimental animals.
Collapse
Affiliation(s)
- Lukas Frese
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| |
Collapse
|
66
|
Li Y, Wu F, Wu Q, Liu W, Li G, Yao B, Xiao R, Hu Y, Wang J. A novel open-source raspberry Pi-based behavioral testing in zebrafish. PLoS One 2022; 17:e0279550. [PMID: 36574388 PMCID: PMC9794099 DOI: 10.1371/journal.pone.0279550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
The zebrafish (Danio rerio) is widely used as a promising high-throughput model organism in neurobehavioral research. The mobility of zebrafish can be dissected into multiple behavior endpoints to assess its neurobehavioral performance. However, such facilities on the market are expensive and clumsy to be used in laboratories. Here, we designed a low-cost, automatic zebrafish behavior assay apparatus, barely without unintentional human operational errors. The data acquisition part, composed of Raspberry Pi and HQ Camera, automatically performs video recording and data storage. Then, the data processing process is also on the Raspberry Pi. Water droplets and inner wall reflection of multi-well cell culture plates (used for placing zebrafish) will affect the accuracy of object recognition. And during the rapid movement of zebrafish, the probability of zebrafish tracking loss increased significantly. Thus, ROI region and related thresholds were set, and the Kalman filter algorithm was performed to estimate the best position of zebrafish in each frame. In addition, all functions of this device are realized by the custom-written behavior analysis algorithm, which makes the optimization of the setup more efficient. Furthermore, this setup was also used to analyze the behavioral changes of zebrafish under different concentrations of alcohol exposure to verify the reliability and accuracy. The alcohol exposure induced an inverted U-shape dose-dependent behavior change in zebrafish, which was consistent with previous studies, showcasing that the data obtained from the setup proposed in this study are accurate and reliable. Finally, the setup was comprehensively assessed by evaluating the accuracy of zebrafish detection (precision, recall, F-score), and predicting alcohol concentration by XGBoost. In conclusion, this study provides a simple, and low-cost package for the determination of multiple behavioral parameters of zebrafish with high accuracy, which could be easily adapted for various other fields.
Collapse
Affiliation(s)
- Yunlin Li
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Fengye Wu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qinyan Wu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Wenya Liu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Guanghui Li
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Benxing Yao
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Ran Xiao
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yudie Hu
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- * E-mail:
| |
Collapse
|
67
|
Wiprich MT, Altenhofen S, Gusso D, Vasques RDR, Zanandrea R, Kist LW, Bogo MR, Bonan CD. Modulation of adenosine signaling reverses 3-nitropropionic acid-induced bradykinesia and memory impairment in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110602. [PMID: 35843370 DOI: 10.1016/j.pnpbp.2022.110602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder, characterized by motor dysfunction, psychiatric disturbance, and cognitive decline. In the early stage of HD, occurs a decrease in dopamine D2 receptors and adenosine A2A receptors (A2AR), while in the late stage also occurs a decrease in dopamine D1 receptors and adenosine A1 receptors (A1R). Adenosine exhibits neuromodulatory and neuroprotective effects in the brain and is involved in motor control and memory function. 3-Nitropropionic acid (3-NPA), a toxin derived from plants and fungi, may reproduce HD behavioral phenotypes and biochemical characteristics. This study investigated the effects of acute exposure to CPA (A1R agonist), CGS 21680 (A2AR agonist), caffeine (non-selective of A1R and A2AR antagonist), ZM 241385 (A2AR antagonist), DPCPX (A1R antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in an HD pharmacological model induced by 3-NPA in adult zebrafish. CPA, CGS 21680, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered via i.p. in zebrafish after 3-NPA (at dose 60 mg/kg) chronic treatment. Caffeine and ZM 241385 reversed the bradykinesia induced by 3-NPA, while CGS 21680 potentiated the bradykinesia caused by 3-NPA. Moreover, CPA, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA reversed the 3-NPA-induced memory impairment. Together, these data support the hypothesis that A2AR antagonists have an essential role in modulating locomotor function, whereas the activation of A1R and blockade of A2AR and A1R and modulation of adenosine levels may reduce the memory impairment, which could be a potential pharmacological strategy against late-stage symptoms HD.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Rafaela da Rosa Vasques
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Zanandrea
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Celular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Celular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
68
|
Mrinalini R, Tamilanban T, Naveen Kumar V, Manasa K. Zebrafish - The Neurobehavioural Model in Trend. Neuroscience 2022; 520:95-118. [PMID: 36549602 DOI: 10.1016/j.neuroscience.2022.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Zebrafish (Danio rerio) is currently in vogue as a prevalently used experimental model for studies concerning neurobehavioural disorders and associated fields. Since the 1960s, this model has succeeded in breaking most barriers faced in the hunt for an experimental model. From its appearance to its high parity with human beings genetically, this model renders itself as an advantageous experimental lab animal. Neurobehavioural disorders have always posed an arduous task in terms of their detection as well as in determining their exact etiology. They are still, in most cases, diseases of interest for inventing or discovering novel pharmacological interventions. Thus, the need for a harbinger experimental model for studying neurobehaviours is escalating. Ensuring the same model is used for studying several neuro-studies conserves the results from inter-species variations. For this, we need a model that satisfies all the pre-requisite conditions to be made the final choice of model for neurobehavioural studies. This review recapitulates the progress of zebrafish as an experimental model with its most up-to-the-minute advances in the area. Various tests, assays, and responses employed using zebrafish in screening neuroactive drugs have been tabulated effectively. The tools, techniques, protocols, and apparatuses that bolster zebrafish studies are discussed. The probable research that can be done using zebrafish has also been briefly outlined. The various breeding and maintenance methods employed, along with the information on various strains available and most commonly used, are also elaborated upon, supplementing Zebrafish's use in neuroscience.
Collapse
Affiliation(s)
- R Mrinalini
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203
| | - V Naveen Kumar
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203.
| | - K Manasa
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203
| |
Collapse
|
69
|
da Silva Lemos I, Wessler LB, Duarte MB, da Silva GL, Bernardo HT, Candiotto G, Torres CA, Petronilho F, Rico EP, Streck EL. Exposure to leucine alters glutamate levels and leads to memory and social impairment in zebrafish. Metab Brain Dis 2022; 37:2925-2935. [PMID: 36040712 DOI: 10.1007/s11011-022-01070-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
Abstract
Maple Syrup Urine Disease (MSUD) is a metabolic disorder characterized by high levels in blood and urine of branched-chain amino acids leucine, isoleucine, and valine and their alpha-ketoacids, by a partial or total blockade in the activity of branched-chain complex alpha-keto acids dehydrogenase. The main symptoms in MSUD occur in the central nervous system, including cognitive deficits, locomotor, poor feeding, seizures, psychomotor delay, and mental retardation, but the mechanisms of neurotoxicity and behavior alteration due to this disease are poorly understood, thus this study aimed at showing the effects of leucine exposure on glutamate levels and behavior in zebrafish. For this, we analyzed the behavior using the social preference test and novel object recognition test, moreover, we analyse the glutamate levels and uptake using scintillation and high-performance liquid chromatography methods. Our results demonstrated a decrease in glutamate levels and uptake, accompanied by memory and social impairment. In conclusion, these results suggest that alterations in glutamate levels can be associated with behavior impairment, however, more studies are necessary to understand the mechanisms for brain damage in MSUD.
Collapse
Affiliation(s)
- Isabela da Silva Lemos
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brasil
| | - Leticia Burato Wessler
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brasil
| | - Mariane Bernardo Duarte
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brasil
| | - Guilherme Lodetti da Silva
- Laboratório de Psiquiatria Translacional, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brasil
| | - Henrique Teza Bernardo
- Laboratório de Psiquiatria Translacional, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brasil
| | - Gabriela Candiotto
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brasil
| | - Carolina Antunes Torres
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brasil
| | - Fabricia Petronilho
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brasil
| | - Eduardo Pacheco Rico
- Laboratório de Psiquiatria Translacional, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brasil
| | - Emilio Luiz Streck
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brasil.
| |
Collapse
|
70
|
Acute Administration of Ethanol and of a D1-Receptor Antagonist Affects the Behavior and Neurochemistry of Adult Zebrafish. Biomedicines 2022; 10:biomedicines10112878. [DOI: 10.3390/biomedicines10112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alcohol abuse represents major societal problems, an unmet medical need resulting from our incomplete understanding of the mechanisms underlying alcohol’s actions in the brain. To uncover these mechanisms, animal models have been proposed. Here, we explore the effects of acute alcohol administration in zebrafish, a promising animal model in alcohol research. One mechanism via which alcohol may influence behavior is the dopaminergic neurotransmitter system. As a proof-of-concept analysis, we study how D1 dopamine-receptor antagonism may alter the effects of acute alcohol on the behavior of adult zebrafish and on whole brain levels of neurochemicals. We conduct these analyses using a quasi-inbred strain, AB, and a genetically heterogeneous population SFWT. Our results uncover significant alcohol x D1-R antagonist interaction and main effects of these factors in shoaling, but only additive effects of these factors in measures of exploratory behavior. We also find interacting and main effects of alcohol and the D1-R antagonist on dopamine and DOPAC levels, but only alcohol effects on serotonin. We also uncover several strain dependent effects. These results demonstrate that acute alcohol may act through dopaminergic mechanisms for some but not all behavioral phenotypes, a novel discovery, and also suggest that strain differences may, in the future, help us identify molecular mechanisms underlying acute alcohol effects.
Collapse
|
71
|
DePasquale C, Franklin K, Jia Z, Jhaveri K, Buderman FE. The effects of exploratory behavior on physical activity in a common animal model of human disease, zebrafish ( Danio rerio). Front Behav Neurosci 2022; 16:1020837. [PMID: 36425283 PMCID: PMC9679429 DOI: 10.3389/fnbeh.2022.1020837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 08/27/2023] Open
Abstract
Zebrafish (Danio rerio) are widely accepted as a multidisciplinary vertebrate model for neurobehavioral and clinical studies, and more recently have become established as a model for exercise physiology and behavior. Individual differences in activity level (e.g., exploration) have been characterized in zebrafish, however, how different levels of exploration correspond to differences in motivation to engage in swimming behavior has not yet been explored. We screened individual zebrafish in two tests of exploration: the open field and novel tank diving tests. The fish were then exposed to a tank in which they could choose to enter a compartment with a flow of water (as a means of testing voluntary motivation to exercise). After a 2-day habituation period, behavioral observations were conducted. We used correlative analyses to investigate the robustness of the different exploration tests. Due to the complexity of dependent behavioral variables, we used machine learning to determine the personality variables that were best at predicting swimming behavior. Our results show that contrary to our predictions, the correlation between novel tank diving test variables and open field test variables was relatively weak. Novel tank diving variables were more correlated with themselves than open field variables were to each other. Males exhibited stronger relationships between behavioral variables than did females. In terms of swimming behavior, fish that spent more time in the swimming zone spent more time actively swimming, however, swimming behavior was inconsistent across the time of the study. All relationships between swimming variables and exploration tests were relatively weak, though novel tank diving test variables had stronger correlations. Machine learning showed that three novel tank diving variables (entries top/bottom, movement rate, average top entry duration) and one open field variable (proportion of time spent frozen) were the best predictors of swimming behavior, demonstrating that the novel tank diving test is a powerful tool to investigate exploration. Increased knowledge about how individual differences in exploration may play a role in swimming behavior in zebrafish is fundamental to their utility as a model of exercise physiology and behavior.
Collapse
Affiliation(s)
- Cairsty DePasquale
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Kristina Franklin
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Zhaohan Jia
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Kavya Jhaveri
- Department of Biology, Pennsylvania State University – Altoona, Altoona, PA, United States
| | - Frances E. Buderman
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
72
|
Johnson A, Stewart A, El-Hakim I, Hamilton TJ. Effects of super-class cannabis terpenes beta-caryophyllene and alpha-pinene on zebrafish behavioural biomarkers. Sci Rep 2022; 12:17250. [PMID: 36241680 PMCID: PMC9568608 DOI: 10.1038/s41598-022-21552-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
Terpenes possess a wide range of medicinal properties and are potential therapeutics for a variety of pathological conditions. This study investigated the acute effects of two cannabis terpenes, β-caryophyllene and α-pinene, on zebrafish locomotion, anxiety-like, and boldness behaviour using the open field exploration and novel object approach tests. β-caryophyllene was administered in 0.02%, 0.2%, 2.0%, and 4% doses. α-pinene was administered in 0.01%, 0.02%, and 0.1% doses. As α-pinene is a racemic compound, we also tested its (+) and (-) enantiomers to observe any differential effects. β-caryophyllene had only a sedative effect at the highest dose tested. α-pinene had differing dose-dependent effects on anxiety-like and motor variables. Specifically, (+)-α-pinene and (-)-α-pinene had significant effects on anxiety measures, time spent in the thigmotaxis (outer) or center zone, in the open field test, as well as locomotor variables, swimming velocity and immobility. (+ /-)-α-pinene showed only a small effect on the open field test on immobility at the 0.1% dose. This study demonstrates that α-pinene can have a sedative or anxiolytic effect in zebrafish and may have different medicinal properties when isolated into its (+) or (-) enantiomers.
Collapse
Affiliation(s)
- Andréa Johnson
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Alycia Stewart
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Ismaeel El-Hakim
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
73
|
Li H, Wang J, Zhang X, Hu Y, Liu Y, Ma Z. Comparing behavioral performance and physiological responses of Sebastes schlegelii with different aggressiveness. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1333-1347. [PMID: 36103021 DOI: 10.1007/s10695-022-01123-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
In fish, aggression has significant individual differences, and different personalities exhibit distinct behavioral performances and physiological stress responses. Under intensive culture conditions, Sebastes schlegelii juveniles display severe aggression and cannibalism, causing damage to fish welfare and economic loss. Herein, we investigated the alterations in behavioral performance and physiological stress indicators of Sebastes schlegelii juveniles with different aggressiveness. The results revealed that latency to the first movement, distance to center point, mobile frequency, and immobile frequency were significantly lower in high-aggressive individuals than low-aggressive individuals. In contrast, the immobile time was significantly higher in high-aggressive individuals compared to low-aggressive individuals. PCA was performed to identify the key parameters of fish behavior. From the results of PCA, position, motion state, and physical status could be used as behavioral screening indicators for individuals with different aggressiveness. The 5-HIAA/5-HT ratio was significantly lower in high-aggressive individuals than in low-aggressive individuals. Moreover, cortisol levels were positively correlated with immobile time, and the ratio of 5-HIAA/5-HT was significantly and positively correlated with the distance to the central point. These results suggested that individuals with different aggressiveness can be effectively distinguished in a short period of time according to behavioral factors such as position, motion state, and physical status. For a single measure, the distance to center point associated with brain monoaminergic activity may be a more direct factor. The results could be a non-invasive method to measure fish aggression and fish welfare, and then build on to improve fish welfare and enhance aquaculture management.
Collapse
Affiliation(s)
- Haixia Li
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Jie Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Xu Zhang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Yu Hu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Ma
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China.
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China.
| |
Collapse
|
74
|
Lin LY, Horng JL, Cheng CA, Chang CY, Cherng BW, Liu ST, Chou MY. Sublethal ammonia induces alterations of emotions, cognition, and social behaviors in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114058. [PMID: 36108432 DOI: 10.1016/j.ecoenv.2022.114058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/27/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Ammonia pollutants were usually found in aquatic environments is due to urban sewage, industrial wastewater discharge, and agricultural runoff and concentrations as high as 180 mg/L (NH4+) have been reported in rivers. High ammonia levels are known to impair multiple tissue and cell functions and cause fish death. Although ammonia is a potent neurotoxin, how sublethal concentrations of ammonia influence the central nervous system (CNS) and the complex behaviors of fish is still unclear. In the present study, we demonstrated that acute sublethal ammonia exposure can change social behavior of adult zebrafish. The exposure to 90 mg /L of (NH4+) for 4 h induced a strong fear response and lower shoaling cohesion; exposure to 180 mg /L of (NH4+) for 4 h reduced the aggressiveness, and social recognition, while the anxiety, social preference, learning, and short-term memory were not affected. Messenger RNA expressions of glutaminase and glutamate dehydrogenase in the brain were induced, suggesting that ammonia exposure altered glutamate neurotransmitters in the CNS. Our findings in zebrafish provided delicate information of ammonia neurotoxicity in complex higher-order social behaviors, which has not been revealed previously. In conclusion, sublethal and acute ammonia exposure can change specific behaviors of fish, which might lead to reductions in individual and population fitness levels.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Chieh-An Cheng
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chun-Yung Chang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Bor-Wei Cherng
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Sian-Tai Liu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
75
|
Yoshida M. Incorporating ventilatory activity into a novel tank test for evaluating drug effects on zebrafish. Physiol Behav 2022; 257:113978. [PMID: 36183853 DOI: 10.1016/j.physbeh.2022.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
The effects of ethanol and caffeine exposure on zebrafish, Danio rerio, were investigated using a combination of measurements of behavioral and physiologic responses in a novel tank situation. Ventilation activity as a physiologic measure was measured remotely by monitoring ventilation-related bioelectric signals from freely moving zebrafish in the test tank. The directions of the behavioral responses, except for outer area preference, were substantially the same in both ethanol- and caffeine-treated fish and qualitatively indistinguishable, suggesting that relying solely on behavioral measures may lead to inappropriate interpretation of drug effects when depending on limited behavioral parameters. By incorporating ventilation activity-related physiologic measures into the quantification of drug effects in novel tank tests, more-accurate evaluations of differences in the effects of moderate doses of anxiolytic ethanol and anxiogenic caffeine were possible. Here, we propose that combining physiologic measures such as ventilation rate and its variability with behavioral measures makes it possible to characterize the effects of environmental challenges on zebrafish in a multi-dimensional and more-detailed manner.
Collapse
Affiliation(s)
- Masayuki Yoshida
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.
| |
Collapse
|
76
|
Satpathy L, Parida SP. Study on the Effects of Kandhamal Haladi in Benzo [a]Pyrene-Induced Behavioral Changes in Adult Zebrafish ( Danio rerio). Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1886124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Laxminandan Satpathy
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Siba Prasad Parida
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| |
Collapse
|
77
|
Knockout of Katnal2 Leads to Autism-like Behaviors and Developmental Delay in Zebrafish. Int J Mol Sci 2022; 23:ijms23158389. [PMID: 35955524 PMCID: PMC9368773 DOI: 10.3390/ijms23158389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
KATNAL2 mutations have been associated with autism spectrum disorder (ASD) and other related neurodevelopmental disorders (NDDs) such as intellectual disability (ID) in several cohorts. KATNAL2 has been implicated in brain development, as it is required for ciliogenesis in Xenopus and is required for dendritic arborization in mice. However, a causative relationship between the disruption of Katnal2 function and behavioral defects has not been established. Here, we generated a katnal2 null allele in zebrafish using CRISPR/Cas9-mediated genome editing and carried out morphological and behavioral characterizations. We observed that katnal2-/- embryos displayed delayed embryonic development especially during the convergence and extension (CE) movement. The hatched larvae showed reduced brain size and body length. In the behavioral tests, the katnal2-/- zebrafish exhibited reduced locomotor activity both in larvae and adults; increased nocturnal waking activity in larvae; and enhanced anxiety-like behavior, impaired social interaction, and reduced social cohesion in adults. These findings indicate an important role for katnal2 in development and behavior, providing an in vivo model to study the mechanisms underlying the ASD related to KATNAL2 mutations.
Collapse
|
78
|
Rosa LV, Costa FV, Gonçalves FL, Rosemberg DB. Acetic acid-induced nociception modulates sociability in adult zebrafish: influence on shoaling behavior in heterogeneous groups and social preference. Behav Brain Res 2022; 434:114029. [PMID: 35907568 DOI: 10.1016/j.bbr.2022.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Due to the recognition of fishes as sentient beings, the zebrafish (Danio rerio) has become an emergent animal model system to investigate the biological processes of nocifensive responses. Here, we aimed to characterize the zebrafish social behavior in a nociception-based context. For this purpose, using a three-dimensional analysis of heterogeneous shoals, we investigated the main behavioral responses in two 6-min trials: before (baseline) and after a single intraperitoneal (i.p) injection of 10μL phosphate-buffered saline (PBS) (control), acetic acid 5% (AA), morphine 2.5mg/kg (MOR) or acetic acid 5% plus morphine 2.5mg/kg (AA+MOR) in one subject from a four-fish shoal. The social preference of individuals for tanks with shoals of fish treated with PBS, 5% AA, or to an empty aquarium were also tested. We verified that AA administration disrupted the shoal homogeneity by eliciting dispersion of the treated fish with simultaneous clustering of non-manipulated fish. Morphine coadministration protected against AA-induced behavioral changes. The social preference test revealed a clear preference to conspecifics (PBS and AA) over an empty tank. However, a prominent preference for PBS- over AA-treated shoal was verified. Overall, our novel findings show that nociception can modulate zebrafish sociability, possibly due to the visual recognition of nocifensive responses. Although future studies are needed to elucidate how nociception modulates zebrafish social behavior, our results contribute to improve the welfare assessment of zebrafish shoals under distinct experimental manipulations.
Collapse
Affiliation(s)
- Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | | | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
79
|
Dougnon G, Matsui H. Modelling Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) Using Mice and Zebrafish. Int J Mol Sci 2022; 23:ijms23147550. [PMID: 35886894 PMCID: PMC9319972 DOI: 10.3390/ijms23147550] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.
Collapse
|
80
|
Adedara IA, Souza TP, Canzian J, Olabiyi AA, Borba JV, Biasuz E, Sabadin GR, Gonçalves FL, Costa FV, Schetinger MRC, Farombi EO, Rosemberg DB. Induction of aggression and anxiety-like responses by perfluorooctanoic acid is accompanied by modulation of cholinergic- and purinergic signaling-related parameters in adult zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113635. [PMID: 35605321 DOI: 10.1016/j.ecoenv.2022.113635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a contaminant of global concern owing to its prevalent occurrence in aquatic and terrestrial environments with potential hazardous impact on living organisms. Here, we investigated the influence of realistic environmental concentrations of PFOA (0, 0.25, 0.5, or 1.0 mg/L) on relevant behaviors of adult zebrafish (Danio rerio) (e.g., exploration to novelty, social preference, and aggression) and the possible role of PFOA in modulating cholinergic and purinergic signaling in the brain after exposure for 7 consecutive days. PFOA significantly increased geotaxis as well as reduced vertical exploration (a behavioral endpoint for anxiety), and increased the frequency and duration of aggressive episodes without affecting their social preference. Exposure to PFOA did not affect ADP hydrolysis, whereas ATP and AMP hydrolysis were significantly increased at the highest concentration tested. However, AChE activity was markedly decreased in all PFOA-exposed groups when compared with control. In conclusion, PFOA induces aggression and anxiety-like behavior in adult zebrafish and modulates both cholinergic and purinergic signaling biomarkers. These novel data can provide valuable insights into possible health threats related to human activities, demonstrating the utility of adult zebrafish to elucidate how PFOA affects neurobehavioral responses in aquatic organisms.
Collapse
Affiliation(s)
- Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Thiele P Souza
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Ayodeji A Olabiyi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Functional Food and Nutraceuticals Unit, Department of Medical Biochemistry, Afe Babalola University, Ado Ekiti, Nigeria
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Eduarda Biasuz
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Giovana R Sabadin
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maria R C Schetinger
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
81
|
Baldin SL, de Pieri Pickler K, de Farias ACS, Bernardo HT, Scussel R, da Costa Pereira B, Pacheco SD, Dondossola ER, Machado-de-Ávila RA, Wanderley AG, Rico EP. Gallic acid modulates purine metabolism and oxidative stress induced by ethanol exposure in zebrafish brain. Purinergic Signal 2022; 18:307-315. [PMID: 35687211 DOI: 10.1007/s11302-022-09869-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Gallic acid (GA) is a secondary metabolite found in plants. It has the ability to cross the blood-brain barrier and, through scavenging properties, has a protective effect in a brain insult model. Alcohol metabolism generates reactive oxygen species (ROS); thus, alcohol abuse has a deleterious effect on the brain. The zebrafish is a vertebrate often used for screening toxic substances and in acute ethanol exposure models. The aim of this study was to evaluate whether GA pretreatment (24 h) prevents the changes induced by acute ethanol exposure (1 h) in the purinergic signaling pathway in the zebrafish brain via degradation of extracellular nucleotides and oxidative stress. The nucleotide cascade promoted by the nucleoside triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase was assessed by quantifying nucleotide metabolism. The effect of GA alone at 5 and 10 mg L-1 did not change the nucleotide levels. Pretreatment with 10 mg L-1 GA prevented an ethanol-induced increase in ATP and ADP levels. No significant difference was found between the AMP levels of the two pretreatment groups. Pretreatment with 10 mg L-1 GA prevented ethanol-enhanced lipid peroxidation and dichlorodihydrofluorescein (DCFH) levels. The higher GA concentration was also shown to positively modulate against ethanol-induced effects on superoxide dismutase (SOD), but not on catalase (CAT). This study demonstrated that GA prevents the inhibitory effect of ethanol on NTPDase activity and oxidative stress parameters, thus consequently modulating nucleotide levels that may contribute to the possible protective effects induced by alcohol and purinergic signaling.
Collapse
Affiliation(s)
- Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Rahisa Scussel
- Experimental Physiology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Bárbara da Costa Pereira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Suzielen Damin Pacheco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Experimental Physiology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil. .,Laboratory of Translational Biomedicine Laboratory, University of Southern Santa Catarina (UNESC), Criciuma, Santa Catarina, Brazil.
| |
Collapse
|
82
|
Vossen LE, Brunberg R, Rådén P, Winberg S, Roman E. Sex-Specific Effects of Acute Ethanol Exposure on Locomotory Activity and Exploratory Behavior in Adult Zebrafish ( Danio rerio). Front Pharmacol 2022; 13:853936. [PMID: 35721152 PMCID: PMC9201571 DOI: 10.3389/fphar.2022.853936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
The zebrafish (Danio rerio) is an established model organism in pharmacology and biomedicine, including in research on alcohol use disorders and alcohol-related disease. In the past 2 decades, zebrafish has been used to study the complex effects of ethanol on the vertebrate brain and behavior in both acute, chronic and developmental exposure paradigms. Sex differences in the neurobehavioral response to ethanol are well documented for humans and rodents, yet no consensus has been reached for zebrafish. Here, we show for the first time that male zebrafish of the AB strain display more severe behavioral impairments than females for equal exposure concentrations. Adult zebrafish were immersed in 0, 1 or 2% (v/v) ethanol for 30 min, after which behavior was individually assessed in the zebrafish Multivariate Concentric Square Field™ (zMCSF) arena. Males exposed to 2% ethanol showed clear signs of sedation, including reduced activity, increased shelter seeking and reduced exploration of shallow zones. The 1% male group displayed effects in the same direction but of smaller magnitude; this group also explored the shallow areas less, but did not show a general reduction in activity nor an increase in shelter seeking. By contrast, 1 and 2% exposed females showed no alterations in explorative behavior. Females exposed to 2% ethanol did not display a general reduction in activity, rather activity gradually increased from hypoactivity to hyperactivity over the course of the test. This mixed stimulatory/depressant effect was only quantifiable when locomotory variables were analyzed over time and was not apparent from averages of the whole 30-min test, which may explain why previous studies failed to detect sex-specific effects on locomotion. Our results emphasize the importance of explicitly including sex and time as factors in pharmacological studies of zebrafish behavior. We hypothesize that the lower sensitivity of female zebrafish to ethanol may be explained by their greater body weight and associated larger distribution volume for ethanol, which may render lower brain ethanol concentrations in females.
Collapse
Affiliation(s)
- Laura E. Vossen
- Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ronja Brunberg
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Pontus Rådén
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Svante Winberg
- Behavioral Neuroendocrinology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Behavioral Neuroendocrinology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
83
|
Maffioli E, Angiulli E, Nonnis S, Grassi Scalvini F, Negri A, Tedeschi G, Arisi I, Frabetti F, D’Aniello S, Alleva E, Cioni C, Toni M. Brain Proteome and Behavioural Analysis in Wild Type, BDNF +/- and BDNF -/- Adult Zebrafish ( Danio rerio) Exposed to Two Different Temperatures. Int J Mol Sci 2022; 23:ijms23105606. [PMID: 35628418 PMCID: PMC9146406 DOI: 10.3390/ijms23105606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Experimental evidence suggests that environmental stress conditions can alter the expression of BDNF and that the expression of this neurotrophin influences behavioural responses in mammalian models. It has been recently demonstrated that exposure to 34 °C for 21 days alters the brain proteome and behaviour in zebrafish. The aim of this work was to investigate the role of BDNF in the nervous system of adult zebrafish under control and heat treatment conditions. For this purpose, zebrafish from three different genotypes (wild type, heterozygous BDNF+/- and knock out BDNF-/-) were kept for 21 days at 26 °C or 34 °C and then euthanized for brain molecular analyses or subjected to behavioural tests (Y-maze test, novel tank test, light and dark test, social preference test, mirror biting test) for assessing behavioural aspects such as boldness, anxiety, social preference, aggressive behaviour, interest for the novel environment and exploration. qRT-PCR analysis showed the reduction of gene expression of BDNF and its receptors after heat treatment in wild type zebrafish. Moreover, proteomic analysis and behavioural tests showed genotype- and temperature-dependent effects on brain proteome and behavioural responding. Overall, the absent expression of BDNF in KO alters (1) the brain proteome by reducing the expression of proteins involved in synapse functioning and neurotransmitter-mediated transduction; (2) the behaviour, which can be interpreted as bolder and less anxious and (3) the cellular and behavioural response to thermal treatment.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
| | - Elisa Angiulli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Via Alfonso Borelli 50, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, 00161 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00131 Rome, Italy
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40136 Bologna, Italy;
| | - Salvatore D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Napoli, Italy;
| | - Enrico Alleva
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Cioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Via Alfonso Borelli 50, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Mattia Toni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Via Alfonso Borelli 50, 00161 Rome, Italy; (E.A.); (C.C.)
- Correspondence:
| |
Collapse
|
84
|
Andersson M, Roques JAC, Aliti GM, Ademar K, Sundh H, Sundell K, Ericson M, Kettunen P. Low Holding Densities Increase Stress Response and Aggression in Zebrafish. BIOLOGY 2022; 11:725. [PMID: 35625453 PMCID: PMC9139139 DOI: 10.3390/biology11050725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
With laboratory zebrafish (Danio rerio) being an established and popular research model, there is a need for universal, research-based husbandry guidelines for this species, since guidelines can help promote good welfare through providing appropriate care. Despite the widespread use of zebrafish in research, it remains unclear how holding densities affect their welfare. Previous studies have mainly evaluated the effects of holding densities on a single parameter, such as growth, reproductive output, or social interactions, rather than looking at multiple welfare parameters simultaneously. Here we investigated how chronic (nine weeks) exposure to five different holding densities (1, 4, 8, 12, and 16 fish/L) affected multiple welfare indicators. We found that fish in the 1 fish/L density treatment had higher free water cortisol concentrations per fish, increased vertical distribution, and displayed aggressive behaviour more frequently than fish held at higher densities. On the other hand, density treatments had no effect on anxiety behaviour, whole-brain neurotransmitter levels, egg volume, or the proportion of fertilised eggs. Our results demonstrate that zebrafish can be held at densities between 4 and 16 fish/L without compromising their welfare. However, housing zebrafish in the density of 1 fish/L increased their stress level and aggressive behaviour.
Collapse
Affiliation(s)
- Marica Andersson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jonathan A. C. Roques
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Geoffrey Mukisa Aliti
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Karin Ademar
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Mia Ericson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| |
Collapse
|
85
|
Reichmann F, Pilic J, Trajanoski S, Norton WHJ. Transcriptomic underpinnings of high and low mirror aggression zebrafish behaviours. BMC Biol 2022; 20:97. [PMID: 35501893 PMCID: PMC9059464 DOI: 10.1186/s12915-022-01298-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aggression is an adaptive behaviour that animals use to protect offspring, defend themselves and obtain resources. Zebrafish, like many other animals, are not able to recognize themselves in the mirror and typically respond to their own reflection with aggression. However, mirror aggression is not an all-or-nothing phenomenon, with some individuals displaying high levels of aggression against their mirror image, while others show none at all. In the current work, we have investigated the genetic basis of mirror aggression by using a classic forward genetics approach - selective breeding for high and low mirror aggression zebrafish (HAZ and LAZ). Results We characterized AB wild-type zebrafish for their response to the mirror image. Both aggressive and non-aggressive fish were inbred over several generations. We found that HAZ were on average more aggressive than the corresponding LAZ across generations and that the most aggressive adult HAZ were less anxious than the least aggressive adult LAZ after prolonged selective breeding. RNAseq analysis of these fish revealed that hundreds of protein-encoding genes with important diverse biological functions such as arsenic metabolism (as3mt), cell migration (arl4ab), immune system activity (ptgr1), actin cytoskeletal remodelling (wdr1), corticogenesis (dgcr2), protein dephosphorylation (ublcp1), sialic acid metabolism (st6galnac3) and ketone body metabolism (aacs) were differentially expressed between HAZ and LAZ, suggesting a strong genetic contribution to this phenotype. DAVID pathway analysis showed that a number of diverse pathways are enriched in HAZ over LAZ including pathways related to immune function, oxidation-reduction processes and cell signalling. In addition, weighted gene co-expression network analysis (WGCNA) identified 12 modules of highly correlated genes that were significantly associated with aggression duration and/or experimental group. Conclusions The current study shows that selective breeding based of the mirror aggression phenotype induces strong, heritable changes in behaviour and gene expression within the brain of zebrafish suggesting a strong genetic basis for this behaviour. Our transcriptomic analysis of fish selectively bred for high and low levels of mirror aggression revealed specific transcriptomic signatures induced by selective breeding and mirror aggression and thus provides a large and novel resource of candidate genes for future study. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01298-z.
Collapse
Affiliation(s)
- Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| | - Johannes Pilic
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK. .,Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
86
|
Canzian J, Gonçalves FLS, Müller TE, Franscescon F, Santos LW, Adedara IA, Rosemberg DB. Zebrafish as a potential non-traditional model organism in translational bipolar disorder research: Genetic and behavioral insights. Neurosci Biobehav Rev 2022; 136:104620. [PMID: 35300991 DOI: 10.1016/j.neubiorev.2022.104620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 01/14/2023]
Abstract
Bipolar disorder (BD) is a severe and debilitating illness that affects 1-2% of the population worldwide. BD is characterized by recurrent and extreme mood swings, including mania/hypomania and depression. Animal experimental models have been used to elucidate the mechanisms underlying BD and different strategies have been proposed to assess BD-like symptoms. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the genetic tractability, molecular/physiological conservation, and well-characterized behavioral responses. In this review, we discuss how zebrafish-based models can be successfully used to understand molecular, biochemical, and behavioral alterations paralleling those found in BD. We also outline some advantages and limitations of this aquatic species to examine BD-like phenotypes in translational neurobehavioral research. Overall, we reinforce the use of zebrafish as a promising tool to investigate the neural basis associated with BD-like behaviors, which may foster the discovery of novel pharmacological therapies.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Falco L S Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
87
|
Zaluski AB, Wiprich MT, de Almeida LF, de Azevedo AP, Bonan CD, Vianna MRM. Atrazine and Diuron Effects on Survival, Embryo Development, and Behavior in Larvae and Adult Zebrafish. Front Pharmacol 2022; 13:841826. [PMID: 35444550 PMCID: PMC9014172 DOI: 10.3389/fphar.2022.841826] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Atrazine and Diuron are widely used herbicides. The use of pesticides contaminates the aquatic environment, threatening biodiversity and non-target organisms such as fish. In this study, we investigated the effects of acute exposure for 96 h hours to atrazine and diuron commercial formulations in zebrafish (Danio rerio, wild-type AB) embryos and larvae and adult stages. We observed a significant concentration-dependent survival decrease and hatching delays in animals exposed to both herbicides and in the frequency of malformations compared to the control groups. Morphological defects included cardiac edema, tail reduction, and head malformation. At 7 days post-fertilization (dpf), atrazine exposure resulted in a reduction in the head length at 2, 2.5, and 5 mg/L and increased the ocular distance at 1, 2, 2.5, and 5 mg/L atrazine when compared to controls. At the same age, diuron increased the ocular distance in animals exposed to diuron (1.0 and 1.5 mg/L) and no effects were observed on the head length. We also evaluated a behavioral repertoire in larvae at 7 dpf, and there were no significant differences in distance traveled, mean speed, time in movement, and thigmotaxis for atrazine and diuron when animals were individually placed in a new environment. The cognitive ability of the larvae was tested at 7 dpf for avoidance and optomotor responses, and neither atrazine nor diuron had significant impacts when treated groups were compared to their corresponding controls. Adults’ behavior was evaluated 7 and 8 days after the end of the acute herbicide exposure. Exploration of a new environment and associated anxiety-like parameters, social interaction, and aggressiveness were not altered. Our results highlight the need for further studies on the sublethal effects of both herbicides and the consideration of the effects of commercial formulas vs. isolated active ingredients. It also emphasizes the need to take sublethal effects into consideration when establishing the environmental limits of residues.
Collapse
Affiliation(s)
- Amanda B Zaluski
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Melissa T Wiprich
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza F de Almeida
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andressa P de Azevedo
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla D Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Monica R M Vianna
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
88
|
Perdikaris P, Dermon CR. Behavioral and neurochemical profile of MK-801 adult zebrafish model: Forebrain β 2-adrenoceptors contribute to social withdrawal and anxiety-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110494. [PMID: 34896197 DOI: 10.1016/j.pnpbp.2021.110494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 01/29/2023]
Abstract
Deficits in social communication and interaction are core clinical symptoms characterizing multiple neuropsychiatric conditions, including autism spectrum disorder (ASD) and schizophrenia. Interestingly, elevated anxiety levels are a common comorbid psychopathology characterizing individuals with aberrant social behavior. Despite recent progress, the underlying neurobiological mechanisms that link anxiety with social withdrawal remain poorly understood. The present study developed a zebrafish pharmacological model displaying social withdrawal behavior, following a 3-h exposure to 4 μΜ (+)-MK-801, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, for 7 days. Interestingly, MK-801-treated zebrafish displayed elevated anxiety levels along with higher frequency of stereotypical behaviors, rendering this zebrafish model appropriate to unravel a possible link of catecholaminergic and ASD-like phenotypes. MK-801-treated zebrafish showed increased telencephalic protein expression of metabotropic glutamate 5 receptor (mGluR5), dopamine transporter (DAT) and β2-adrenergic receptors (β2-ARs), supporting the presence of excitation/inhibition imbalance along with altered dopaminergic and noradrenergic activity. Interestingly, β2-ARs expression, was differentially regulated across the Social Decision-Making (SDM) network nodes, exhibiting increased levels in ventral telencephalic area (Vv), a key-area integrating reward and social circuits but decreased expression in dorso-medial telencephalic area (Dm) and anterior tuberal nucleus (ATN). Moreover, the co-localization of β2-ARs with elements of GABAergic and glutamatergic systems, as well as with GAP-43, a protein indicating increased brain plasticity potential, support the key-role of β2-ARs in the MK-801 zebrafish social dysfunctions. Our results highlight the importance of the catecholaminergic neurotransmission in the manifestation of ASD-like behavior, representing a site of potential interventions for amelioration of ASD-like symptoms.
Collapse
Affiliation(s)
- Panagiotis Perdikaris
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras, Rio, 26500 Patras, Greece
| | - Catherine R Dermon
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras, Rio, 26500 Patras, Greece.
| |
Collapse
|
89
|
Michelotti P, Franscescon F, Müller TE, Rosemberg DB, Pereira ME. Ketamine acutely impairs memory consolidation and repeated exposure promotes stereotyped behavior without changing anxiety- and aggression-like parameters in adult zebrafish. Physiol Behav 2022; 247:113708. [DOI: 10.1016/j.physbeh.2022.113708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/21/2023]
|
90
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
91
|
Characterization of locomotor phenotypes in zebrafish larvae requires testing under both light and dark conditions. PLoS One 2022; 17:e0266491. [PMID: 35363826 PMCID: PMC8974968 DOI: 10.1371/journal.pone.0266491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Despite growing knowledge, much remains unknown regarding how signaling within neural networks translate into specific behaviors. To pursue this quest, we need better understanding of the behavioral output under different experimental conditions. Zebrafish is a key model to study the relationship between network and behavior and illumination is a factor known to influence behavioral output. By only assessing behavior under dark or light conditions, one might miss behavioral phenotypes exclusive to the neglected illumination setting. Here, we identified locomotor behavior, using different rearing regimes and experimental illumination settings, to showcase the need to assess behavior under both light and dark conditions. Characterization of free-swimming zebrafish larvae, housed under continuous darkness or a day/night cycle, did not reveal behavioral differences; larvae were most active during light conditions. However, larvae housed under a day/night cycle moved a shorter distance, had lower maximum velocity and maximum acceleration during the startle response under light conditions. Next, we explored if we could assess behavior under both dark and light conditions by presenting these conditions in sequence, using the same batch of larvae. Our experiments yielded similar results as observed for naïve larvae: higher activity during light conditions, regardless of order of illumination (i.e. dark-light or light-dark). Finally, we conducted these sequenced illumination conditions in an experimental setting by characterizing behavioral phenotypes in larvae following neuromast ablation. Depending on the illumination during testing, the behavioral phenotype following ablation was characterized differently. In addition, the results indicate that the order in which the light and dark conditions are presented has to be considered, as habituation may occur. Our study adds to existing literature on illumination-related differences in zebrafish behavior and emphasize the need to explore behavioral phenotypes under both light and dark condition to maximize our understanding of how experimental permutations affect behavior.
Collapse
|
92
|
Agues-Barbosa T, da Silva Junior FC, Gomes-de-Lima JN, Batistuzzo de Medeiros SR, Luchiari AC. Behavioral genetics of alcohol's effects in three zebrafish (Danio rerio) populations. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110495. [PMID: 34915060 DOI: 10.1016/j.pnpbp.2021.110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Alcohol abuse is one of the most dangerous and serious problems for patients and society. Interpopulation studies are important in understanding how genetic background contributes to the effects of alcohol. In this study, we applied a chronic alcohol exposure protocol in three zebrafish populations (Danio rerio; both sexes; AB, TU, and outbred fish - OB). We analyzed the behavioral responses and mRNA expression involved in neurotransmitter metabolism - th1, tph1, ache, ada1, gaba1, gad1b, and bdnf. Locomotion patterns were similar between populations (increased speed after acute alcohol and unaltered locomotion after chronic and withdrawal treatments). All populations exhibited increased expression of genes associated with locomotion (th1, gad1b, and gaba1) after acute alcohol exposure. Anxiety-like responses increased in AB and TU fish during withdrawal and decreased in AB fish after acute alcohol exposure. Genes related to anxiety-like behavior (tph1 and ada1) were overexpressed in AB and TU fish after acute and withdrawal treatments, while OB fish exhibited unaltered responses. Bdnf levels decreased during withdrawal in AB and OB fish, while TU showed upregulated levels in both chronic and withdrawal treatments. Our results suggest that zebrafish populations respond differently to alcohol exposure, which may contribute to understanding the mechanisms underlying alcohol use and dependence. Moreover, we found that a more diverse genetic background (OB) was related to higher variability in behavioral and mRNA expression, demonstrating that inbred populations (AB and TU) may be useful tools in identifying alcohol use and abuse mechanisms.
Collapse
Affiliation(s)
- Thais Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | | | | | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
93
|
Nathan FM, Kibat C, Goel T, Stewart J, Claridge‐Chang A, Mathuru AS. Contingent stimulus delivery assay for zebrafish reveals a role for CCSER1 in alcohol preference. Addict Biol 2022; 27:e13126. [PMID: 35229935 DOI: 10.1111/adb.13126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/02/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Alcohol use disorders are complex, multifactorial phenomena with a large footprint within the global burden of diseases. Here, we report the development of an accessible, two-choice self-administration zebrafish assay (SAZA) to study the neurobiology of addiction. Using this assay, we first demonstrated that, although zebrafish avoid higher concentrations of alcohol, they are attracted to low concentrations. Pre-exposure to alcohol did not change this relative preference, but acute exposure to an alcohol deterrent approved for human use decreased alcohol self-administration. A pigment mutant used in whole-brain imaging studies displayed a similar relative alcohol preference profile; however, mutants in CCSER1, a gene associated with alcohol dependence in human genetic studies, showed a reversal in relative preference. The presence of a biphasic response (hormesis) in zebrafish validated a key aspect of vertebrate responses to alcohol. SAZA adds a new dimension for discovering novel alcohol deterrents and studying the neurogenetics of addiction using the zebrafish.
Collapse
Affiliation(s)
| | - Caroline Kibat
- Department of Physiology, YLL School of Medicine National University of Singapore Singapore Singapore
| | - Tanisha Goel
- Department of Physiology, YLL School of Medicine National University of Singapore Singapore Singapore
| | - James Stewart
- Institute of Molecular and Cell Biology Singapore Singapore
- Duke‐NUS Medical School Singapore Singapore
| | - Adam Claridge‐Chang
- Institute of Molecular and Cell Biology Singapore Singapore
- Duke‐NUS Medical School Singapore Singapore
| | - Ajay S. Mathuru
- Yale‐NUS College Singapore Singapore
- Department of Physiology, YLL School of Medicine National University of Singapore Singapore Singapore
- Institute of Molecular and Cell Biology Singapore Singapore
| |
Collapse
|
94
|
Hammer J, Röppenack P, Yousuf S, Schnabel C, Weber A, Zöller D, Koch E, Hans S, Brand M. Visual Function is Gradually Restored During Retina Regeneration in Adult Zebrafish. Front Cell Dev Biol 2022; 9:831322. [PMID: 35178408 PMCID: PMC8844564 DOI: 10.3389/fcell.2021.831322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
In comparison to mammals, zebrafish are able to regenerate many organs and tissues, including the central nervous system (CNS). Within the CNS-derived neural retina, light lesions result in a loss of photoreceptors and the subsequent activation of Müller glia, the retinal stem cells. Müller glia-derived progenitors differentiate and eventually restore the anatomical tissue architecture within 4 weeks. However, little is known about how light lesions impair vision functionally, as well as how and to what extent visual function is restored during the course of regeneration, in particular in adult animals. Here, we applied quantitative behavioral assays to assess restoration of visual function during homeostasis and regeneration in adult zebrafish. We developed a novel vision-dependent social preference test, and show that vision is massively impaired early after lesion, but is restored to pre-lesion levels within 7 days after lesion. Furthermore, we employed a quantitative optokinetic response assay with different degrees of difficulty, similar to vision tests in humans. We found that vision for easy conditions with high contrast and low level of detail, as well as color vision, was restored around 7–10 days post lesion. Vision under more demanding conditions, with low contrast and high level of detail, was regained only later from 14 days post lesion onwards. Taken together, we conclude that vision based on contrast sensitivity, spatial resolution and the perception of colors is restored after light lesion in adult zebrafish in a gradual manner.
Collapse
Affiliation(s)
- Juliane Hammer
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Paul Röppenack
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Sarah Yousuf
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Christian Schnabel
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Anke Weber
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Daniela Zöller
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stefan Hans
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Michael Brand
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| |
Collapse
|
95
|
Menezes FP, Amorim RR, Silva PF, Luchiari AC. Alcohol exposure and environmental enrichment effects on contextual fear conditioning in zebrafish. Behav Processes 2022; 197:104608. [DOI: 10.1016/j.beproc.2022.104608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 01/24/2023]
|
96
|
Li F, Lin J, Li T, Jian J, Zhang Q, Zhang Y, Liu X, Li Q. Rrn3 gene knockout affects ethanol-induced locomotion in adult heterozygous zebrafish. Psychopharmacology (Berl) 2022; 239:621-630. [PMID: 35006303 DOI: 10.1007/s00213-021-06056-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
Genome-wide analysis has identified the transcription factor, RRN3 (or TIF-1A), on human chromosome 16p13.11 as a candidate gene associated with mental disorders. Both genetic and biochemical experiments have demonstrated that RRN3 plays a major role in the transcriptional regulation of ribosomal DNA and cell growth. Previous research has suggested that loss of RRN3 from mature neurons reproduces the chronic nature of neurodegenerative processes. Here, we report the first generation and characterization of rrn3 mutant zebrafish in larval and adult stages using the CRISPR/Cas9 genome editing technique. Homozygous knockout zebrafish exhibited morphological changes, such as pericardial oedema and deformed heads, and died at the larval stage of embryonic development. Behaviourally, the locomotion and shoaling behaviour of adult rrn3+/- zebrafish was not significantly different compared with rrn3+/+ zebrafish. Notably, rrn3+/- zebrafish demonstrated abnormal locomotor activity in response to ethanol. We found decreased norepinephrine expression in the brains of rrn3+/- zebrafish when treated with ethanol. In summary, our results indicated that rrn3 was closely associated with early embryonic development in zebrafish. Furthermore, behavioural and neurochemical research revealed the importance of genetic differences in drug sensitivity. The results suggest that caution should be taken when treating RRN3 heterozygous patients.
Collapse
Affiliation(s)
- Fei Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Tingting Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jing Jian
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiuyun Liu
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
97
|
Yoshida M. Recording the ventilation activity of free-swimming zebrafish and its application to novel tank tests. Physiol Behav 2022; 244:113665. [PMID: 34871650 DOI: 10.1016/j.physbeh.2021.113665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Bioelectric signals related to ventilatory movements in fish can be detected via externally located electrodes. In this study, a technique to continuously monitor the electric ventilatory signals in free-swimming zebrafish was developed. This technique was applied to monitoring ventilation activity as a physiological measure in conjunction with various behavioral measures in a novel tank environment. It was found that in addition to ventilation rate, time domain analysis of changes in ventilation rate is useful for evaluating the emotional state of zebrafish. By integrating the physiological and behavioral measures in analyses, a 1 h novel tank test trial revealed that the habituation process involves two phases. The first phase, which lasted 10 min, involved rapid attenuation of the initial fear/anxiety response to encountering a novel environment. The second phase lasted 20 min and involved further attenuation of anxiety and an increase in exploration behavior. These data suggest that combining ventilation-related physiological measures with conventional behavioral measures enables multidimensional examination of the habituation process in a novel tank environment with more precision than is possible when relying on behavioral responses alone.
Collapse
Affiliation(s)
- Masayuki Yoshida
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.
| |
Collapse
|
98
|
Age-dependent effects of embryonic ethanol exposure on anxiety-like behaviours in young zebrafish: A genotype comparison study. Pharmacol Biochem Behav 2022; 214:173342. [DOI: 10.1016/j.pbb.2022.173342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
|
99
|
Petersen BD, Bertoncello KT, Bonan CD. Standardizing Zebrafish Behavioral Paradigms Across Life Stages: An Effort Towards Translational Pharmacology. Front Pharmacol 2022; 13:833227. [PMID: 35126165 PMCID: PMC8810815 DOI: 10.3389/fphar.2022.833227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish is a prominent vertebrate model, with many of its advantages related to its development, life cycle, and translational ability. While a great number of behavioral phenotypes and tasks to evaluate them are available, longitudinal studies across zebrafish life stages are scarce and made challenging because of the differences between protocols and endpoints assessed at each life stage. In this mini review, we highlight the relevance that longitudinal studies could have for neurobehavioral pharmacology using this model. We also present possible strategies to standardize behavior endpoints in domains related to human diseases throughout the life cycle, especially between larvae and adult fish. Furthermore, we discuss the remaining difficulties of these analyses and explore future advances needed to bridge this knowledge gap.
Collapse
Affiliation(s)
- Barbara Dutra Petersen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Carla Denise Bonan,
| |
Collapse
|
100
|
Abozaid A, Hung J, Tsang B, Motlana K, Al-Ani R, Gerlai R. Behavioral effects of acute ethanol in larval zebrafish (D. rerio) depend on genotype and volume of experimental well. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110411. [PMID: 34363865 DOI: 10.1016/j.pnpbp.2021.110411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023]
Abstract
Ethanol consumption is a worldwide problem. Sensitivity to acute effects of ethanol influences the development of chronic ethanol abuse and ethanol dependence. Environmental and genetic factors have been found to contribute to differential effects of acute ethanol. Animal models have been employed to investigate these factors. An increasingly frequently utilized animal model in ethanol research is the zebrafish. A large proportion of ethanol studies with zebrafish have been conducted with adult zebrafish. However, high throughput drug and mutation screens are particularly well adapted to larval zebrafish. These studies are often carried out using the 96-well-plate that allows monitoring large numbers of fish efficiently. Here, we investigate the effects of acute (30 min long) ethanol exposure in 8-day post-fertilization (dpf) old zebrafish. We compare four genetically distinct populations (strains) of zebrafish, measuring numerous parameters of their swim path in two well sizes, i.e., in the 96-well-plate (small volume wells) and in the 6-well-plate (large volume wells). In general, we found that the highest dose of ethanol (1% vol/vol) reduced swim speed, increased duration of immobility, increased turn angle, and increased intra-individual variance of turn angle, while the intermediate dose (0.5%) had a less strong effect, compared to control. However, we also found that these ethanol effects were strain dependent and, in general, were better detected in the larger volume well. We conclude that larval zebrafish are appropriate for quantification of acute ethanol effects and also for the analysis of environmental and genetic factors that influence these effects. We also speculate that using larger wells will likely increase sensitivity of detection and precision in screening applications.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Joshua Hung
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada; Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, United Kingdom
| | - Keza Motlana
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Reem Al-Ani
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|