51
|
Christodoulou L, Krishnaiah A, Spyridou C, Salpietro V, Hannan S, Saggar A, Mankad K, Deep A, Kinali M. Kenny Caffey syndrome with severe respiratory and gastrointestinal involvement: expanding the clinical phenotype. Quant Imaging Med Surg 2015; 5:476-9. [PMID: 26029652 DOI: 10.3978/j.issn.2223-4292.2014.11.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/29/2014] [Indexed: 11/14/2022]
Abstract
Kenny Caffey syndrome (KCS) is a rare syndrome reported almost exclusively in Middle Eastern populations. It is characterized by severe growth retardation-short stature, dysmorphic features, episodic hypocalcaemia, hypoparathyroidism, seizures, and medullary stenosis of long bones with thickened cortices. We report a 10-year-old boy with KCS with an unusually severe respiratory and gastrointestinal system involvement-features not previously described in the literature. He had severe psychomotor retardation and regressed developmentally from walking unaided to sitting with support. MRI brain showed bilateral hippocampal sclerosis, marked supra-tentorial volume loss and numerous calcifications. A 12 bp deletion of exon 2 of tubulin-specific chaperone E (TBCE) gene was identified and the diagnosis of KCS was confirmed. Hypercarbia following a sleep study warranted nocturnal continuous positive airway pressure (CPAP) when aged 6. When boy aged 8, persistent hypercarbia with increasing oxygen requirement and increased frequency and severity of lower respiratory tract infections led to progressive respiratory failure. He became fully dependent on non-invasive ventilation and by 9 years he had a tracheotomy and was established on long-term ventilation. He developed retching, vomiting and diarrhea. Chest CT showed changes consistent with chronic aspiration, but no interstitial pulmonary fibrosis. He died aged 10 from respiratory complications.
Collapse
Affiliation(s)
- Loucas Christodoulou
- 1 Department of Paediatric Neurology, Chelsea and Westminster NHS Foundation Trust, London, UK ; 2 BUPA Cromwell Hospital, London, UK ; 3 St Mary's Hospital, Imperial College NHS trust, London, UK ; 4 St George's Hospital, NHS Foundation Trust, London, UK ; 5 Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ; 6 King's College Hospital, NHS Foundation Trust, London, UK
| | - Anil Krishnaiah
- 1 Department of Paediatric Neurology, Chelsea and Westminster NHS Foundation Trust, London, UK ; 2 BUPA Cromwell Hospital, London, UK ; 3 St Mary's Hospital, Imperial College NHS trust, London, UK ; 4 St George's Hospital, NHS Foundation Trust, London, UK ; 5 Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ; 6 King's College Hospital, NHS Foundation Trust, London, UK
| | - Christina Spyridou
- 1 Department of Paediatric Neurology, Chelsea and Westminster NHS Foundation Trust, London, UK ; 2 BUPA Cromwell Hospital, London, UK ; 3 St Mary's Hospital, Imperial College NHS trust, London, UK ; 4 St George's Hospital, NHS Foundation Trust, London, UK ; 5 Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ; 6 King's College Hospital, NHS Foundation Trust, London, UK
| | - Vincenzo Salpietro
- 1 Department of Paediatric Neurology, Chelsea and Westminster NHS Foundation Trust, London, UK ; 2 BUPA Cromwell Hospital, London, UK ; 3 St Mary's Hospital, Imperial College NHS trust, London, UK ; 4 St George's Hospital, NHS Foundation Trust, London, UK ; 5 Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ; 6 King's College Hospital, NHS Foundation Trust, London, UK
| | - Siobhan Hannan
- 1 Department of Paediatric Neurology, Chelsea and Westminster NHS Foundation Trust, London, UK ; 2 BUPA Cromwell Hospital, London, UK ; 3 St Mary's Hospital, Imperial College NHS trust, London, UK ; 4 St George's Hospital, NHS Foundation Trust, London, UK ; 5 Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ; 6 King's College Hospital, NHS Foundation Trust, London, UK
| | - Anand Saggar
- 1 Department of Paediatric Neurology, Chelsea and Westminster NHS Foundation Trust, London, UK ; 2 BUPA Cromwell Hospital, London, UK ; 3 St Mary's Hospital, Imperial College NHS trust, London, UK ; 4 St George's Hospital, NHS Foundation Trust, London, UK ; 5 Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ; 6 King's College Hospital, NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- 1 Department of Paediatric Neurology, Chelsea and Westminster NHS Foundation Trust, London, UK ; 2 BUPA Cromwell Hospital, London, UK ; 3 St Mary's Hospital, Imperial College NHS trust, London, UK ; 4 St George's Hospital, NHS Foundation Trust, London, UK ; 5 Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ; 6 King's College Hospital, NHS Foundation Trust, London, UK
| | - Akash Deep
- 1 Department of Paediatric Neurology, Chelsea and Westminster NHS Foundation Trust, London, UK ; 2 BUPA Cromwell Hospital, London, UK ; 3 St Mary's Hospital, Imperial College NHS trust, London, UK ; 4 St George's Hospital, NHS Foundation Trust, London, UK ; 5 Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ; 6 King's College Hospital, NHS Foundation Trust, London, UK
| | - Maria Kinali
- 1 Department of Paediatric Neurology, Chelsea and Westminster NHS Foundation Trust, London, UK ; 2 BUPA Cromwell Hospital, London, UK ; 3 St Mary's Hospital, Imperial College NHS trust, London, UK ; 4 St George's Hospital, NHS Foundation Trust, London, UK ; 5 Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ; 6 King's College Hospital, NHS Foundation Trust, London, UK
| |
Collapse
|
52
|
Beach LQ, Wade J. Masculinisation of the zebra finch song system: roles of oestradiol and the Z-chromosome gene tubulin-specific chaperone protein A. J Neuroendocrinol 2015; 27:324-34. [PMID: 25702708 PMCID: PMC4422980 DOI: 10.1111/jne.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 11/26/2022]
Abstract
Robust sex differences in brain and behaviour exist in zebra finches. Only males sing, and forebrain song control regions are more developed in males. The factors driving these differences are not clear, although numerous experiments have shown that oestradiol (E2 ) administered to female hatchlings partially masculinises brain and behaviour. Recent studies suggest that an increased expression of Z-chromosome genes in males (ZZ; females: ZW) might also play a role. The Z-gene tubulin-specific chaperone A (TBCA) exhibits increased expression in the lateral magnocellular nucleus of the anterior nidopallium (LMAN) of juvenile males compared to females; TBCA+ cells project to the robust nucleus of the arcopallium (RA). In the present study, we investigated the role of TBCA and tested hypotheses with respect to the interactive or additive effects of E2 and TBCA. We first examined whether E2 in hatchling zebra finches modulates TBCA expression in the LMAN. It affected neither the mRNA, nor protein in either sex. We then unilaterally delivered TBCA small interfering (si)RNA to the LMAN of developing females treated with E2 or vehicle and males treated with the aromatase inhibitor, fadrozole, or its control. In both sexes, decreasing TBCA in LMAN reduced RA cell number, cell size and volume. It also decreased LMAN volume in females. Fadrozole in males increased LMAN volume and RA cell size. TBCA siRNA delivered to the LMAN also decreased the projection from this brain region to the RA, as indicated by anterograde tract tracing. The results suggest that TBCA is involved in masculinising the song system. However, because no interactions between the siRNA and hormone manipulations were detected, TBCA does not appear to modulate effects of E2 in the zebra finch song circuit.
Collapse
Affiliation(s)
- L. Q. Beach
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - J. Wade
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Departments of Psychology and Zoology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
53
|
Linking cell surface receptors to microtubules: tubulin folding cofactor D mediates Dscam functions during neuronal morphogenesis. J Neurosci 2015; 35:1979-90. [PMID: 25653356 DOI: 10.1523/jneurosci.0973-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Formation of functional neural networks requires the coordination of cell surface receptors and downstream signaling cascades, which eventually leads to dynamic remodeling of the cytoskeleton. Although a number of guidance receptors affecting actin cytoskeleton remodeling have been identified, it is relatively unknown how microtubule dynamics are regulated by guidance receptors. We used Drosophila olfactory projection neurons to study the molecular mechanisms of neuronal morphogenesis. Dendrites of each projection neuron target a single glomerulus of ∼50 glomeruli in the antennal lobe, and the axons show stereotypical pattern of terminal arborization. In the course of genetic analysis of the dachsous mutant allele (ds(UAO71)), we identified a mutation in the tubulin folding cofactor D gene (TBCD) as a background mutation. TBCD is one of five tubulin-folding cofactors required for the formation of α- and β-tubulin heterodimers. Single-cell clones of projection neurons homozygous for the TBCD mutation displayed disruption of microtubules, resulting in ectopic arborization of dendrites, and axon degeneration. Interestingly, overexpression of TBCD also resulted in microtubule disruption and ectopic dendrite arborization, suggesting that an optimum level of TBCD is crucial for in vivo neuronal morphogenesis. We further found that TBCD physically interacts with the intracellular domain of Down syndrome cell adhesion molecule (Dscam), which is important for neural development and has been implicated in Down syndrome. Genetic analyses revealed that TBCD cooperates with Dscam in vivo. Our study may offer new insights into the molecular mechanism underlying the altered neural networks in cognitive disabilities of Down syndrome.
Collapse
|
54
|
Abstract
Microtubules are cytoskeletal filaments that are dynamically assembled from α/β-tubulin heterodimers. The primary sequence and structure of the tubulin proteins and, consequently, the properties and architecture of microtubules are highly conserved in eukaryotes. Despite this conservation, tubulin is subject to heterogeneity that is generated in two ways: by the expression of different tubulin isotypes and by posttranslational modifications (PTMs). Identifying the mechanisms that generate and control tubulin heterogeneity and how this heterogeneity affects microtubule function are long-standing goals in the field. Recent work on tubulin PTMs has shed light on how these modifications could contribute to a “tubulin code” that coordinates the complex functions of microtubules in cells.
Collapse
Affiliation(s)
- Carsten Janke
- Institut Curie, 91405 Orsay, France Centre National de la Recherche Scientifique Unité Mixte de Recherche 3306, 91405 Orsay, France Institut National de la Santé et de la Recherche Médicale U1005, 91405 Orsay, France Paris Sciences et Lettres Research University, 75005 Paris, France
| |
Collapse
|
55
|
Bellouze S, Schäfer MK, Buttigieg D, Baillat G, Rabouille C, Haase G. Golgi fragmentation in pmn mice is due to a defective ARF1/TBCE cross-talk that coordinates COPI vesicle formation and tubulin polymerization. Hum Mol Genet 2014; 23:5961-75. [DOI: 10.1093/hmg/ddu320] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
56
|
Tian G, Cowan NJ. Tubulin-specific chaperones: components of a molecular machine that assembles the α/β heterodimer. Methods Cell Biol 2014; 115:155-71. [PMID: 23973072 DOI: 10.1016/b978-0-12-407757-7.00011-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tubulin heterodimer consists of one α- and one β-tubulin polypeptide. Neither protein can partition to the native state or assemble into polymerization competent heterodimers without the concerted action of a series of chaperone proteins including five tubulin-specific chaperones (TBCs) termed TBCA-TBCE. TBCA and TBCB bind to and stabilize newly synthesized quasi-native β- and α-tubulin polypeptides, respectively, following their generation via multiple rounds of ATP-dependent interaction with the cytosolic chaperonin. There is free exchange of β-tubulin between TBCA and TBCD, and of α-tubulin between TBCB and TBCE, resulting in the formation of TBCD/β and TBCE/α, respectively. The latter two complexes interact, forming a supercomplex (TBCE/α/TBCD/β). Discharge of the native α/β heterodimer occurs via interaction of the supercomplex with TBCC, which results in the triggering of TBC-bound β-tubulin (E-site) GTP hydrolysis. This reaction acts as a switch for disassembly of the supercomplex and the release of E-site GDP-bound heterodimer, which becomes polymerization competent following spontaneous exchange with GTP. The tubulin-specific chaperones thus function together as a tubulin assembly machine, marrying the α- and β-tubulin subunits into a tightly associated heterodimer. The existence of this evolutionarily conserved pathway explains why it has never proved possible to isolate α- or β-tubulin as stable independent entities in the absence of their cognate partners, and implies that each exists and is maintained in the heterodimer in a nonminimal energy state. Here, we describe methods for the purification of recombinant TBCs as biologically active proteins following their expression in a variety of host/vector systems.
Collapse
Affiliation(s)
- Guoling Tian
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York, USA
| | | |
Collapse
|
57
|
Abstract
The ARF-like (ARL) proteins, within the ARF family, are a collection of functionally diverse GTPases that share extensive (>40 %) identity with the ARFs and each other and are assumed to share basic mechanisms of regulation and a very incompletely documented degree of overlapping regulators. At least four ARLs were already present in the last eukaryotic common ancestor, along with one ARF, and these have been expanded to >20 members in mammals. We know little about the majority of these proteins so our review will focus on those about which the most is known, including ARL1, ARL2, ARL3, ARL4s, ARL6, ARL13s, and ARFRP1. From this fragmentary information we extract some generalizations and conclusions regarding the sources and extent of specificity and functions of the ARLs.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
58
|
Andre J, Kerry L, Qi X, Hawkins E, Drizyte K, Ginger ML, McKean PG. An alternative model for the role of RP2 protein in flagellum assembly in the African trypanosome. J Biol Chem 2013; 289:464-75. [PMID: 24257747 PMCID: PMC3879569 DOI: 10.1074/jbc.m113.509521] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The tubulin cofactor C domain-containing protein TbRP2 is a basal body (centriolar) protein essential for axoneme formation in the flagellate protist Trypanosoma brucei, the causal agent of African sleeping sickness. Here, we show how TbRP2 is targeted and tethered at mature basal bodies and provide novel insight into TbRP2 function. Regarding targeting, understanding how several hundred proteins combine to build a microtubule axoneme is a fundamental challenge in eukaryotic cell biology. We show that basal body localization of TbRP2 is mediated by twinned, N-terminal TOF (TON1, OFD1, and FOP) and LisH motifs, motifs that otherwise facilitate localization of only a few conserved proteins at microtubule-organizing centers in animals, plants, and flagellate protists. Regarding TbRP2 function, there is a debate as to whether the flagellar assembly function of specialized, centriolar tubulin cofactor C domain-containing proteins is processing tubulin, the major component of axonemes, or general vesicular trafficking in a flagellum assembly context. Here we report that TbRP2 is required for the recruitment of T. brucei orthologs of MKS1 and MKS6, proteins that, in animal cells, are part of a complex that assembles at the base of the flagellum to regulate protein composition and cilium function. We also identify that TbRP2 is detected by YL1/2, an antibody classically used to detect α-tubulin. Together, these data suggest a general processing role for TbRP2 in trypanosome flagellum assembly and challenge the notion that TbRP2 functions solely in assessing tubulin “quality” prior to tubulin incorporation into the elongating axoneme.
Collapse
Affiliation(s)
- Jane Andre
- From the Faculty of Health and Medicine, Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
59
|
Rak K, Frenz S, Radeloff A, Groh J, Jablonka S, Martini R, Hagen R, Mlynski R. Mutation of the TBCE gene causes disturbance of microtubules in the auditory nerve and cochlear outer hair cell degeneration accompanied by progressive hearing loss in the pmn/pmn mouse. Exp Neurol 2013; 250:333-40. [PMID: 24120439 DOI: 10.1016/j.expneurol.2013.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
The progressive motor neuronopathy (pmn/pmn) mouse, an animal model for a fast developing human motor neuron disorder, is additionally characterized by simultaneous progressive sensorineural hearing loss. The gene defect in the pmn/pmn mouse is localized to a missense mutation in the tubulin-specific chaperone E (TBCE) gene on mouse chromosome 13, which is one of the five tubulin-specific chaperons involved in tubulin folding and dimerization. The missense mutation leads to a disturbance of tubulin structures in the auditory nerve and a progressive outer hair cell loss due to apoptosis, which is accompanied by highly elevated ABR-thresholds and loss of DPOAEs. In addition the TBCE protein is selectively expressed in the outer hair cells and the transcellular processes of the inner pillar cells in the cochlea of control and pmn/pmn mouse. We conclude from our study that the mutation of the TBCE gene affects the auditory nerve and the cochlear hair cells simultaneously, leading to progressive hearing loss. This animal model will give the chance to test possible therapeutic strategies in special forms of hearing loss, in which the auditory nerve and the cochlear hair cells are simultaneously affected.
Collapse
Affiliation(s)
- Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Germany; Comprehensive Hearing Center, University of Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
60
|
André J, Harrison S, Towers K, Qi X, Vaughan S, McKean PG, Ginger ML. The tubulin cofactor C family member TBCCD1 orchestrates cytoskeletal filament formation. J Cell Sci 2013; 126:5350-6. [PMID: 24101722 DOI: 10.1242/jcs.136515] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TBCCD1 is an enigmatic member of the tubulin-binding cofactor C (TBCC) family of proteins required for mother-daughter centriole linkage in the green alga Chlamydomonas reinhardtii and nucleus-centrosome-Golgi linkage in mammalian cells. Loss of these linkages has severe morphogenetic consequences, but the mechanism(s) through which TBCCD1 contributes to cell organisation is unknown. In the African sleeping sickness parasite Trypanosoma brucei a microtubule-dominant cytoskeleton dictates cell shape, influencing strongly the positioning and inheritance patterns of key intracellular organelles. Here, we show the trypanosome orthologue of TBCCD1 is found at multiple locations: centrioles, the centriole-associated Golgi 'bi-lobe', and the anterior end of the cell body. Loss of Trypanosoma brucei TBCCD1 results in disorganisation of the structurally complex bi-lobe architecture and loss of centriole linkage to the single unit-copy mitochondrial genome (or kinetoplast) of the parasite. We therefore identify TBCCD1 as an essential protein associated with at least two filament-based structures in the trypanosome cytoskeleton. The last common ancestor of trypanosomes, animals and green algae was arguably the last common ancestor of all eukaryotes. On the basis of our observations, and interpretation of published data, we argue for an unexpected co-option of the TBCC domain for an essential non-tubulin-related function at an early point during evolution of the eukaryotic cytoskeleton.
Collapse
Affiliation(s)
- Jane André
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | | | | | | | |
Collapse
|
61
|
Zhang P, Ma X, Song E, Chen W, Pang H, Ni D, Gao Y, Fan Y, Ding Q, Zhang Y, Zhang X. Tubulin cofactor A functions as a novel positive regulator of ccRCC progression, invasion and metastasis. Int J Cancer 2013; 133:2801-11. [PMID: 23740643 DOI: 10.1002/ijc.28306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/10/2013] [Indexed: 11/11/2022]
Abstract
Microtubules (Mts), which consist of α/β-tubulin heterodimers, are involved in cancer development and metastasis. Tubulin cofactor A (TBCA) plays crucial roles in modulating tubulin folding and α/β-tubulin heterodimer polymerization. Here, we identified the aberrant expression of TBCA in clear cell renal cell carcinoma (ccRCC) specimens as well as cell lines and revealed the function of TBCA as a novel positive regulator in ccRCC progression, invasion and metastasis. qRT-PCR, Western blot and immunohistochemistry assays confirmed that TBCA was significantly highly expressed in ccRCC specimens and cell lines compared to their corresponding normal kidney tissues and HKC. Accordingly, the influence of TBCA on cell proliferation, apoptosis and invasion/migration was detected through overexpression and knockdown of endogenous TBCA protein level in ccRCC cells via plasmids. Silencing of TBCA expression inhibited the proliferation of 786-O cells and Caki-1 cells and promoted the apoptosis of 786-O cells. Down-regulation of TBCA expression also reduced the invasion and migration ability of 786-O cells. Interestingly, overexpression of TBCA did not induce biocharacteristics that directly contrasted to those of TBCA knockdown. Importantly, exploration of the mechanism showed that TBCA could function via modulating cytoskeleton integration and influencing cell cycle progress. Furthermore, down-regulation of TBCA expression in 786-O and Caki-1 cells affected cytoskeleton integration and cell size, induced S/G2 cell cycle arrest and led to cyclineA/E and CDK2 aberrant expression. By investigating novel roles of TBCA in regulation of ccRCC cell progression, invasion and metastasis, our study identified that TBCA may be a potential molecular target for ccRCC therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Urology, PLA General Hospital, Beijing, People's Republic of China; State Key Laboratory of Kidney Diseases, PLA General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Mori R, Toda T. The dual role of fission yeast Tbc1/cofactor C orchestrates microtubule homeostasis in tubulin folding and acts as a GAP for GTPase Alp41/Arl2. Mol Biol Cell 2013; 24:1713-24, S1-8. [PMID: 23576550 PMCID: PMC3667724 DOI: 10.1091/mbc.e12-11-0792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/22/2013] [Accepted: 03/29/2013] [Indexed: 11/11/2022] Open
Abstract
Supplying the appropriate amount of correctly folded α/β-tubulin heterodimers is critical for microtubule dynamics. Formation of assembly-competent heterodimers is remarkably elaborate at the molecular level, in which the α- and β-tubulins are separately processed in a chaperone-dependent manner. This sequential step is performed by the tubulin-folding cofactor pathway, comprising a specific set of regulatory proteins: cofactors A-E. We identified the fission yeast cofactor: the orthologue of cofactor C, Tbc1. In addition to its roles in tubulin folding, Tbc1 acts as a GAP in regulating Alp41/Arl2, a highly conserved small GTPase. Of interest, the expression of GDP- or GTP-bound Alp41 showed the identical microtubule loss phenotype, suggesting that continuous cycling between these forms is important for its functions. In addition, we found that Alp41 interacts with Alp1(D), the orthologue of cofactor D, specifically when in the GDP-bound form. Intriguingly, Alp1(D) colocalizes with microtubules when in excess, eventually leading to depolymerization, which is sequestered by co-overproducing GDP-bound Alp41. We present a model of the final stages of the tubulin cofactor pathway that includes a dual role for both Tbc1 and Alp1(D) in opposing regulation of the microtubule.
Collapse
Affiliation(s)
- Risa Mori
- Cell Regulation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| | - Takashi Toda
- Cell Regulation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| |
Collapse
|
63
|
Qi LM, Wade J. Sexually dimorphic and developmentally regulated expression of tubulin-specific chaperone protein A in the LMAN of zebra finches. Neuroscience 2013; 247:182-90. [PMID: 23727504 DOI: 10.1016/j.neuroscience.2013.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 01/06/2023]
Abstract
Sex differences in brain and behavior exist across vertebrates, but the molecular factors regulating their development are largely unknown. Songbirds exhibit substantial sexual dimorphisms. In zebra finches, only males sing, and the brain areas regulating song learning and production are much larger in males. Recent data suggest that sex chromosome genes (males ZZ; females ZW) may play roles in sexual differentiation. The present studies tested the hypothesis that a Z-gene, tubulin-specific chaperone protein A (TBCA), contributes to sexual differentiation of the song system. This taxonomically conserved gene is integral to microtubule synthesis, and within the song system, its mRNA is specifically increased in males compared to females in the lateral magnocellular nucleus of the anterior nidopallium (LMAN), a region critical for song learning and plasticity. Using in situ hybridization, Western blot analysis, and immunohistochemistry, we observed effects of both age and sex on TBCA mRNA and protein expression. The transcript is increased in males compared to females at three juvenile ages, but not in adults. TBCA protein, both the number of immunoreactive cells and relative concentration in LMAN, is diminished in adults compared to juveniles. The latter was also increased in males compared to females at post-hatching day 25. With double-label immunofluorescence and retrograde tract tracing, we also document that the majority of TBCA+ cells in LMAN are neurons, and that they include robust nucleus of the arcopallium-projecting cells. These results indicate that TBCA is both temporally and spatially primed to facilitate the development of a sexually dimorphic neural pathway critical for song.
Collapse
Affiliation(s)
- L M Qi
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, USA.
| | | |
Collapse
|
64
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
65
|
Abstract
The alpha-beta tubulin heterodimer is the subunit from which microtubules are assembled. The pathway leading to correctly folded alpha- and beta-tubulins is unusually complex: it involves cycles of ATP-dependent interaction of newly synthesized tubulin subunits with cytosolic chaperonin, resulting in the production of quasi-native folding intermediates, which must then be acted upon by additional protein cofactors. These cofactors form a supercomplex containing both alpha- and beta-tubulin polypeptides, from which native heterodimer is released in a GTP-dependent reaction. Here, we discuss the current state of our understanding of the function of cytosolic chaperonin and cofactors in tubulin folding.
Collapse
|
66
|
Abstract
Kenny-Caffey syndrome type 1 (KCS1) (OMIM 244460) is a rare syndrome characterized by growth retardation, uniformly small slender long bones with medullary stenosis, thickened cortex of the long bones, hypocalcemia possibly with tetany at an early age and normal intelligence. The primary outcome of KCS1 is short stature. We present here an Egyptian girl aged 32 months with typical feature of KCS1.
Collapse
Affiliation(s)
- Kotb Abbass Metwalley
- Department of Pediatrics, Pediatric Endocrinology Unit, Assiut Children University Hospital, Assiut, Egypt
| | - Hekma Saad Farghaly
- Department of Pediatrics, Pediatric Endocrinology Unit, Assiut Children University Hospital, Assiut, Egypt
| |
Collapse
|
67
|
Fabrizio JJ, Aqeel N, Cote J, Estevez J, Jongoy M, Mangal V, Tema W, Rivera A, Wnukowski J, Bencosme Y. Mulet (mlt) encodes a tubulin-binding cofactor E-like homolog required for spermatid individualization in Drosophila melanogaster. Fly (Austin) 2012; 6:261-72. [PMID: 22885996 DOI: 10.4161/fly.21533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spermatogenesis in all animal species occurs within a syncytium. Only at the very end of spermatogenesis are individual sperm cells resolved from this syncytium in a process known as individualization. Individualization in Drosophila begins as a membrane-cytoskeletal complex known as the individualization complex (IC) assembles around the sperm heads and proceeds down the flagella, removing cytoplasm from between the sperm tails and shrink-wrapping each spermatid into its own plasma membrane as it travels. The mulet (mlt) mutation results in severely disrupted ICs, indicating that the mlt gene product is required for individualization. Inverse PCR followed by cycle sequencing maps all known P-insertion alleles of mlt to two overlapping genes, CG12214 (the Drosophila tubulin-binding cofactor E-like homolog) and KCNQ (a large voltage-gated potassium channel). However, since the alleles of mlt map to the 5'-UTR of CG12214 and since CG12214 is contained within an intron of KCNQ, it was hypothesized that mlt and CG12214 are allelic. Indeed, CG12214 mutant testes exhibited severely disrupted ICs and were indistinguishable from mlt mutant testes, thus further suggesting allelism. To test this hypothesis, alleles of mlt were crossed to CG12214 in order to generate trans-heterozygous males. Testes from all trans-heterozygous combinations revealed severely disrupted ICs and were also indistinguishable from mlt mutant testes, indicating that mlt and CG12214 fail to complement one another and are thus allelic. In addition, complementation testing against null alleles of KCNQ verified that the observed individualization defect is not caused by a disruption of KCNQ. Finally, since a population of spermatid-associated microtubules known to disappear prior to movement of the IC abnormally persists during individualization in CG12214 mutant testes, this work implicates TBCE-like in the removal of these microtubules prior to IC movement. Taken together, these results identify mlt as CG12214 and suggest that the removal of microtubules by TBCE-like is a necessary pre-requisite for proper coordinated movement of the IC.
Collapse
Affiliation(s)
- James J Fabrizio
- Biology Department, Division of Natural Sciences, College of Mount Saint Vincent, Riverdale, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Nolasco S, Bellido J, Gonçalves J, Tavares A, Zabala JC, Soares H. The expression of tubulin cofactor A (TBCA) is regulated by a noncoding antisense Tbca RNA during testis maturation. PLoS One 2012; 7:e42536. [PMID: 22880023 PMCID: PMC3412815 DOI: 10.1371/journal.pone.0042536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Background Recently, long noncoding RNAs have emerged as pivotal molecules for the regulation of coding genes' expression. These molecules might result from antisense transcription of functional genes originating natural antisense transcripts (NATs) or from transcriptional active pseudogenes. TBCA interacts with β-tubulin and is involved in the folding and dimerization of new tubulin heterodimers, the building blocks of microtubules. Methodology/Principal Findings We found that the mouse genome contains two structurally distinct Tbca genes located in chromosomes 13 (Tbca13) and 16 (Tbca16). Interestingly, the two Tbca genes albeit ubiquitously expressed, present differential expression during mouse testis maturation. In fact, as testis maturation progresses Tbca13 mRNA levels increase progressively, while Tbca16 mRNA levels decrease. This suggests a regulatory mechanism between the two genes and prompted us to investigate the presence of the two proteins. However, using tandem mass spectrometry we were unable to identify the TBCA16 protein in testis extracts even in those corresponding to the maturation step with the highest levels of Tbca16 transcripts. These puzzling results led us to re-analyze the expression of Tbca16. We then detected that Tbca16 transcription produces sense and natural antisense transcripts. Strikingly, the specific depletion by RNAi of these transcripts leads to an increase of Tbca13 transcript levels in a mouse spermatocyte cell line. Conclusions/Significance Our results demonstrate that Tbca13 mRNA levels are post-transcriptionally regulated by the sense and natural antisense Tbca16 mRNA levels. We propose that this regulatory mechanism operates during spermatogenesis, a process that involves microtubule rearrangements, the assembly of specific microtubule structures and requires critical TBCA levels.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Chromosomes, Mammalian/genetics
- Gene Expression Regulation, Developmental
- Gene Knockdown Techniques
- Genome/genetics
- Male
- Mice
- Microtubule-Associated Proteins/chemistry
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Models, Molecular
- Molecular Chaperones/chemistry
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Molecular Sequence Data
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Spermatocytes/metabolism
- Spermatogenesis/genetics
- Testis/growth & development
- Testis/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Sofia Nolasco
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, Santander, Spain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Javier Bellido
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, Santander, Spain
| | - João Gonçalves
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandra Tavares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, Santander, Spain
| | - Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
69
|
Baffet AD, Benoit B, Januschke J, Audo J, Gourhand V, Roth S, Guichet A. Drosophila tubulin-binding cofactor B is required for microtubule network formation and for cell polarity. Mol Biol Cell 2012; 23:3591-601. [PMID: 22855530 PMCID: PMC3442407 DOI: 10.1091/mbc.e11-07-0633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Microtubules (MTs) are essential for cell division, shape, intracellular transport, and polarity. MT stability is regulated by many factors, including MT-associated proteins and proteins controlling the amount of free tubulin heterodimers available for polymerization. Tubulin-binding cofactors are potential key regulators of free tubulin concentration, since they are required for α-β-tubulin dimerization in vitro. In this paper, we show that mutation of the Drosophila tubulin-binding cofactor B (dTBCB) affects the levels of both α- and β-tubulins and dramatically destabilizes the MT network in different fly tissues. However, we find that dTBCB is dispensable for the early MT-dependent steps of oogenesis, including cell division, and that dTBCB is not required for mitosis in several tissues. In striking contrast, the absence of dTBCB during later stages of oogenesis causes major defects in cell polarity. We show that dTBCB is required for the polarized localization of the axis-determining mRNAs within the oocyte and for the apico-basal polarity of the surrounding follicle cells. These results establish a developmental function for the dTBCB gene that is essential for viability and MT-dependent cell polarity, but not cell division.
Collapse
Affiliation(s)
- Alexandre D Baffet
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | |
Collapse
|
70
|
Schwarz N, Hardcastle AJ, Cheetham ME. The role of the X-linked retinitis pigmentosa protein RP2 in vesicle traffic and cilia function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:527-32. [PMID: 22183373 DOI: 10.1007/978-1-4614-0631-0_66] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nele Schwarz
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | | | | |
Collapse
|
71
|
Schwarz N, Novoselova TV, Wait R, Hardcastle AJ, Cheetham ME. The X-linked retinitis pigmentosa protein RP2 facilitates G protein traffic. Hum Mol Genet 2011; 21:863-73. [PMID: 22072390 DOI: 10.1093/hmg/ddr520] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The X-linked retinitis pigmentosa protein RP2 is a GTPase activating protein (GAP) for the small GTPase Arl3 and both proteins are implicated in the traffic of proteins to the primary cilia. Here, we show that RP2 can facilitate the traffic of the Gβ subunit of transducin (Gβ1). Glutathione S-transferase (GST)-RP2 pulled down Gβ from retinal lysates and the interaction was specific to Gβ1, as Gβ3 or Gβ5L did not bind RP2. RP2 did not appear to interact with the Gβ:Gγ heterodimer, in contrast Gγ1 competed with RP2 for Gβ binding. Overexpression of Gβ1 in SK-N-SH cells led to a cytoplasmic accumulation of Gβ1, while co-expression of RP2 or Gγ1 with Gβ1 restored membrane association of Gβ1. Furthermore, RP2 small interfering RNA in ARPE19 cells resulted in a reduction in Gβ1 membrane association that was rescued by Gγ1 overexpression. The interaction of RP2 with Gβ1 required RP2 N-terminal myristolyation and the co-factor C (TBCC) homology domain. The interaction was also disrupted by the pathogenic mutation R118H, which blocks Arl3 GAP activity. Interestingly, Arl3-Q71L competed with Gβ1 for RP2 binding, suggesting that Arl3-GTP binding by RP2 would release Gβ1. RP2 also stimulated the association of Gβ1 with Rab11 vesicles. Collectively, the data support a role for RP2 in facilitating the membrane association and traffic of Gβ1, potentially prior to the formation of the obligate Gβ:Gγ heterodimer. Combined with other recent evidence, this suggests that RP2 may co-operate with Arl3 and its effectors in the cilia-associated traffic of G proteins.
Collapse
Affiliation(s)
- Nele Schwarz
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | | | | | | |
Collapse
|
72
|
Garcia-Mayoral MF, Castaño R, Fanarraga ML, Zabala JC, Rico M, Bruix M. The solution structure of the N-terminal domain of human tubulin binding cofactor C reveals a platform for tubulin interaction. PLoS One 2011; 6:e25912. [PMID: 22028797 PMCID: PMC3196536 DOI: 10.1371/journal.pone.0025912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/13/2011] [Indexed: 01/11/2023] Open
Abstract
Human Tubulin Binding Cofactor C (TBCC) is a post-chaperonin involved in the folding and assembly of α- and β-tubulin monomers leading to the release of productive tubulin heterodimers ready to polymerize into microtubules. In this process it collaborates with other cofactors (TBC's A, B, D, and E) and forms a supercomplex with TBCD, β-tubulin, TBCE and α-tubulin. Here, we demonstrate that TBCC depletion results in multipolar spindles and mitotic failure. Accordingly, TBCC is found at the centrosome and is implicated in bipolar spindle formation. We also determine by NMR the structure of the N-terminal domain of TBCC. The TBCC N-terminal domain adopts a spectrin-like fold topology composed of a left-handed 3-stranded α-helix bundle. Remarkably, the 30-residue N-terminal segment of the TBCC N-terminal domain is flexible and disordered in solution. This unstructured region is involved in the interaction with tubulin. Our data lead us to propose a testable model for TBCC N-terminal domain/tubulin recognition in which the highly charged N-terminus as well as residues from the three helices and the loops interact with the acidic hypervariable regions of tubulin monomers.
Collapse
Affiliation(s)
- Mª Flor Garcia-Mayoral
- Departamento de Química Física Biológica, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raquel Castaño
- Departamento de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Monica L. Fanarraga
- Departamento de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Instituto de Formación e Investigación Marqués de Valdecilla, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Manuel Rico
- Departamento de Química Física Biológica, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Marta Bruix
- Departamento de Química Física Biológica, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
73
|
Szolajska E, Chroboczek J. Faithful chaperones. Cell Mol Life Sci 2011; 68:3307-22. [PMID: 21655914 PMCID: PMC3181412 DOI: 10.1007/s00018-011-0740-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 12/01/2022]
Abstract
This review describes the properties of some rare eukaryotic chaperones that each assist in the folding of only one target protein. In particular, we describe (1) the tubulin cofactors, (2) p47, which assists in the folding of collagen, (3) α-hemoglobin stabilizing protein (AHSP), (4) the adenovirus L4-100 K protein, which is a chaperone of the major structural viral protein, hexon, and (5) HYPK, the huntingtin-interacting protein. These various-sized proteins (102–1,190 amino acids long) are all involved in the folding of oligomeric polypeptides but are otherwise functionally unique, as they each assist only one particular client. This raises a question regarding the biosynthetic cost of the high-level production of such chaperones. As the clients of faithful chaperones are all abundant proteins that are essential cellular or viral components, it is conceivable that this necessary metabolic expenditure withstood evolutionary pressure to minimize biosynthetic costs. Nevertheless, the complexity of the folding pathways in which these chaperones are involved results in error-prone processes. Several human disorders associated with these chaperones are discussed.
Collapse
Affiliation(s)
- Ewa Szolajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02106 Warsaw, Poland
| | | |
Collapse
|
74
|
Marsit CJ, Koestler DC, Christensen BC, Karagas MR, Houseman EA, Kelsey KT. DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer. J Clin Oncol 2011; 29:1133-9. [PMID: 21343564 DOI: 10.1200/jco.2010.31.3577] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Epigenetic alterations in tissues targeted for cancer play a causal role in carcinogenesis. Changes in DNA methylation in nontarget tissues, specifically peripheral blood, can also affect risk of malignant disease. We sought to identify specific profiles of DNA methylation in peripheral blood that are associated with bladder cancer risk and therefore serve as an epigenetic marker of disease susceptibility. METHODS We performed genome-wide DNA methylation profiling on participants involved in a population-based incident case-control study of bladder cancer. RESULTS In a training set of 112 cases and 118 controls, we identified a panel of 9 CpG loci whose profile of DNA methylation was significantly associated with bladder cancer in a masked, independent testing series of 111 cases and 119 controls (P < .0001). Membership in three of the most methylated classes was associated with a 5.2-fold increased risk of bladder cancer (95% CI, 2.8 to 9.7), and a model that included the methylation classification, participant age, sex, smoking status, and family history of bladder cancer was a significant predictor of bladder cancer (area under the curve, 0.76; 95% CI, 0.70 to 0.82). CpG loci associated with bladder cancer and aging had neighboring sequences enriched for transcription-factor binding sites related to immune modulation and forkhead family members. CONCLUSION These results indicate that profiles of epigenetic states in blood are associated with risk of bladder cancer and signal the potential utility of epigenetic profiles in peripheral blood as novel markers of susceptibility to this and other malignancies.
Collapse
Affiliation(s)
- Carmen J Marsit
- Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Tian G, Thomas S, Cowan NJ. Effect of TBCD and its regulatory interactor Arl2 on tubulin and microtubule integrity. Cytoskeleton (Hoboken) 2011; 67:706-14. [PMID: 20740604 DOI: 10.1002/cm.20480] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Assembly of the α/β tubulin heterodimer requires the participation of a series of chaperone proteins (TBCA-E) that function downstream of the cytosolic chaperonin (CCT) as a heterodimer assembly machine. TBCD and TBCE are also capable of acting in a reverse reaction in which they disrupt native heterodimers. Homologs of TBCA-E exist in all eukaryotes, and the amino acid sequences of α- and β-tubulin isotypes are rigidly conserved among vertebrates. However, the efficiency with which TBCD effects tubulin disruption in vivo depends on its origin: bovine (but not human) TBCD efficiently destroys tubulin and microtubules upon overexpression in cultured cells. Here we show that recombinant bovine TBCD is produced in HeLa cells as a stoichiometric cocomplex with β-tubulin, consistent with its behavior in vitro and in vivo. In contrast, expression of human TBCD using the same host/vector system results in the generation of TBCD that is not complexed with β-tubulin. We show that recombinant human TBCD functions indistinguishably from its nonrecombinant bovine counterpart in in vitro CCT-driven folding reactions, in tubulin disruption reactions, and in tubulin GTPase activating protein assays in which TBCD and TBCC stimulate GTP hydrolysis by β-tubulin at a heterodimer concentration far below that required for polymerization into microtubules. We conclude that bovine and human TBCD have functionally identical roles in de novo tubulin heterodimer assembly, and show that the inability of human TBCD to disrupt microtubule integrity upon overexpression in vivo can be overcome by siRNA-mediated suppression of expression of the TBCD regulator Arl2 (ADP ribosylation factor-like protein).
Collapse
Affiliation(s)
- Guoling Tian
- Department of Biochemistry, NYU Langone Medical Center, 550 First Avenue, New York, New York 10016, USA
| | | | | |
Collapse
|
76
|
Hage-Sleiman R, Herveau S, Matera EL, Laurier JF, Dumontet C. Silencing of tubulin binding cofactor C modifies microtubule dynamics and cell cycle distribution and enhances sensitivity to gemcitabine in breast cancer cells. Mol Cancer Ther 2011; 10:303-12. [PMID: 21216936 DOI: 10.1158/1535-7163.mct-10-0568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tubulin binding cofactor C (TBCC) is essential for the proper folding of α- and β-tubulins into microtubule polymerizable heterodimers. Because microtubules are considered major targets in the treatment of breast cancer, we investigated the influence of TBCC silencing on tubulin pools, microtubule dynamics, and cell cycle distribution of breast cancer cells by developing a variant MCF7 cells with reduced content of TBCC (MC-). MC- cells displayed decreased content in nonpolymerizable tubulins and increased content of polymerizable/microtubule tubulins when compared with control MP6 cells. Microtubules in MC- cells showed stronger dynamics than those of MP6 cells. MC- cells proliferated faster than MP6 cells and showed an altered cell cycle distribution, with a higher percentage in S-phase of the cell cycle. Consequently, MC- cells presented higher sensitivity to the S-phase-targeting agent gemcitabine than MP6 cells in vitro. Although the complete duration of mitosis was shorter in MC- cells and their microtubule dynamics was enhanced, the percentage of cells in G(2)-M phase was not altered nor was there any difference in sensitivity to antimicrotubule-targeting agents when compared with MP6 cells. Xenografts derived from TBCC variants displayed significantly enhanced tumor growth in vivo and increased sensitivity to gemcitabine in comparison to controls. These results are the first to suggest that proteins involved in the proper folding of cytoskeletal components may have an important influence on the cell cycle distribution, proliferation, and chemosensitivity of tumor cells.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- INSERM 590, Faculté Rockefeller, 8 avenue Rockefeller, 69008 Lyon, France.
| | | | | | | | | |
Collapse
|
77
|
Kilner J, Corfe BM, Wilkinson SJ. Modelling the microtubule: towards a better understanding of short-chain fatty acid molecular pharmacology. MOLECULAR BIOSYSTEMS 2011; 7:975-83. [DOI: 10.1039/c0mb00281j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
78
|
Poirier K, Saillour Y, Bahi-Buisson N, Jaglin XH, Fallet-Bianco C, Nabbout R, Castelnau-Ptakhine L, Roubertie A, Attie-Bitach T, Desguerre I, Genevieve D, Barnerias C, Keren B, Lebrun N, Boddaert N, Encha-Razavi F, Chelly J. Mutations in the neuronal ß-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet 2010; 19:4462-73. [PMID: 20829227 PMCID: PMC3298850 DOI: 10.1093/hmg/ddq377] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 11/12/2022] Open
Abstract
Mutations in the TUBB3 gene, encoding β-tubulin isotype III, were recently shown to be associated with various neurological syndromes which all have in common the ocular motility disorder, congenital fibrosis of the extraocular muscle type 3 (CFEOM3). Surprisingly and in contrast to previously described TUBA1A and TUBB2B phenotypes, no evidence of dysfunctional neuronal migration and cortical organization was reported. In our study, we report the discovery of six novel missense mutations in the TUBB3 gene, including one fetal case and one homozygous variation, in nine patients that all share cortical disorganization, axonal abnormalities associated with pontocerebellar hypoplasia, but with no ocular motility defects, CFEOM3. These new findings demonstrate that the spectrum of TUBB3-related phenotype is broader than previously described and includes malformations of cortical development (MCD) associated with neuronal migration and differentiation defects, axonal guidance and tract organization impairment. Complementary functional studies revealed that the mutated βIII-tubulin causing the MCD phenotype results in a reduction of heterodimer formation, yet produce correctly formed microtubules (MTs) in mammalian cells. Further to this, we investigated the properties of the MT network in patients' fibroblasts and revealed that MCD mutations can alter the resistance of MTs to depolymerization. Interestingly, this finding contrasts with the increased MT stability observed in the case of CFEOM3-related mutations. These results led us to hypothesize that either MT dynamics or their interactions with various MT-interacting proteins could be differently affected by TUBB3 variations, thus resulting in distinct alteration of downstream processes and therefore explaining the phenotypic diversity of the TUBB3-related spectrum.
Collapse
Affiliation(s)
- Karine Poirier
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U1016, Paris, France
| | - Yoann Saillour
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U1016, Paris, France
| | - Nadia Bahi-Buisson
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U1016, Paris, France
- Service de Neurologie pédiatrique
| | - Xavier H. Jaglin
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U1016, Paris, France
| | - Catherine Fallet-Bianco
- Département d'anatomie pathologique, AP-HP, hôpital saint Anne, Paris, France
- Inserm, U894, Paris, France
| | - Rima Nabbout
- Service de Neurologie pédiatrique
- Inserm, U663, Paris, France
| | | | - Agathe Roubertie
- Service de pédiatrie, centre hospitalier Guy de Chauliac, Montpellier, France and
| | | | - Isabelle Desguerre
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U1016, Paris, France
- Service de Neurologie pédiatrique
| | | | | | - Boris Keren
- Génétique Chromosomique, AP-HP, hôpital Pitié-Salpétrière, Paris, France
| | - Nicolas Lebrun
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U1016, Paris, France
| | | | - Féréchté Encha-Razavi
- Service d'histologie-embryologie-cytogénétique, Assistance Publique-Hôpitaux de Paris (AP-HP), hôpital Necker, Paris, France
| | - Jamel Chelly
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U1016, Paris, France
| |
Collapse
|
79
|
Abstract
Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agents with novel properties. In the current search for novel microtubule-binding agents, enhanced tumour specificity, reduced neurotoxicity and insensitivity to chemoresistance mechanisms are the three main objectives.
Collapse
Affiliation(s)
- Charles Dumontet
- INSERM 590, Faculté Rockefeller, 8 Avenue Rockefeller, 69008 Lyon, France and Université Lyon 1, ISPB, Lyon, F-69003, France.
| | | |
Collapse
|
80
|
García-Mayoral MF, Castaño R, Zabala JC, Santoro J, Rico M, Bruix M. 1H, 13C, and 15N resonance assignments of the N-terminal domain of human Tubulin Binding Cofactor C. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:219-221. [PMID: 20617401 DOI: 10.1007/s12104-010-9250-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/29/2010] [Indexed: 05/29/2023]
Abstract
Human Tubulin Binding Cofactor C (hTBCC) is a 346 amino acid protein composed of two domains, which is involved in the folding pathway of newly synthesized α and β-tubulins. The 3D structure of the 111-residue hTBCC N-terminal domain of the protein has not yet been determined. As a previous step to that end, here we report the NMR (1)H, (15)N, and (13)C chemical shift assignments at pH 6.0 and 25°C, based on a uniformly doubly labelled (13)C/(15)N sample of the domain.
Collapse
Affiliation(s)
- M F García-Mayoral
- Departamento de Química Física Biológica, Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
81
|
Fanarraga ML, Carranza G, Castaño R, Nolasco S, Avila J, Zabala JC. Nondenaturing electrophoresis as a tool to investigate tubulin complexes. Methods Cell Biol 2010; 95:59-75. [PMID: 20466130 DOI: 10.1016/s0091-679x(10)95005-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
A protein molecule may exist as a monomer, homo-oligomer, or hetero-oligomer in a multiprotein complex. One-dimensional (1-D) native electrophoresis has long been used to characterize tubulins and their complexes. In this chapter, we describe the simplest way to identify the state of aggregation of commercial or homemade tubulins for further studies based on 1-D electrophoresis under nondenaturing conditions. We present a series of detailed protocols that can be used to analyze the maturation of alpha- and beta-tubulins and to identify the complexes formed during the folding and dimerization pathway as well as their stability.
Collapse
Affiliation(s)
- Mónica López Fanarraga
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
82
|
Lu L, Nan J, Mi W, Li LF, Wei CH, Su XD, Li Y. Crystal structure of tubulin folding cofactor A from Arabidopsis thaliana and its beta-tubulin binding characterization. FEBS Lett 2010; 584:3533-9. [PMID: 20638386 DOI: 10.1016/j.febslet.2010.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/05/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022]
Abstract
Microtubules are composed of polymerized alpha/beta-tubulin heterodimers. Biogenesis of assembly-competent tubulin dimers is a complex multistep process that requires sequential actions of distinct molecular chaperones and cofactors. Tubulin folding cofactor A (TFCA), which captures beta-tubulin during the folding pathway, has been identified in many organisms. Here, we report the crystal structure of Arabidopsis thaliana TFC A (KIESEL, KIS), which forms a monomeric three-helix bundle. The functional binding analysis demonstrated that KIS interacts with beta-tubulin in plant. Furthermore, mutagenesis studies indicated that the alpha-helical regions of KIS participate in beta-tubulin binding. Unlike the budding yeast TFC A, the two loop regions of KIS are not required for this interaction suggesting a distinct binding mechanism of TFC A to beta-tubulin in plants.
Collapse
Affiliation(s)
- Lu Lu
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
83
|
Tian G, Jaglin XH, Keays DA, Francis F, Chelly J, Cowan NJ. Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway. Hum Mol Genet 2010; 19:3599-613. [PMID: 20603323 DOI: 10.1093/hmg/ddq276] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malformations of cortical development are characteristic of a plethora of diseases that includes polymicrogyria, periventricular and subcortical heterotopia and lissencephaly. Mutations in TUBA1A and TUBB2B, each a member of the multigene families that encode alpha- and beta-tubulins, have recently been implicated in these diseases. Here we examine the defects that result from nine disease-causing mutations (I188L, I238V, P263T, L286F, V303G, L397P, R402C, 402H, S419L) in TUBA1A. We show that the expression of all the mutant proteins in vitro results in the generation of tubulin heterodimers in varying yield and that these can co-polymerize with microtubules in vitro. We identify several kinds of defects that result from these mutations. Among these are various defects in the chaperone-dependent pathway leading to de novo tubulin heterodimer formation. These include a defective interaction with the chaperone prefoldin, a reduced efficiency in the generation of productive folding intermediates as a result of inefficient interaction with the cytosolic chaperonin, CCT, and, in several cases, a failure to stably interact with TBCB, one of five tubulin-specific chaperones that act downstream of CCT in the tubulin heterodimer assembly pathway. Other defects include structural instability in vitro, diminished stability in vivo, a compromised ability to co-assemble with microtubules in vivo and a suppression of microtubule growth rate in the neurites (but not the soma) of cultured neurons. Our data are consistent with the notion that some mutations in TUBA1A result in tubulin deficit, whereas others reflect compromised interactions with one or more MAPs that are essential to proper neuronal migration.
Collapse
Affiliation(s)
- Guoling Tian
- Department of Biochemistry, NYU Langone Medical Center, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
84
|
Tischfield MA, Engle EC. Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the 'multi-tubulin' hypothesis. Biosci Rep 2010; 30:319-30. [PMID: 20406197 PMCID: PMC3319081 DOI: 10.1042/bsr20100025] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The many functions of the microtubule cytoskeleton are essential for shaping the development and maintaining the operation of the nervous system. With the recent discovery of congenital neurological disorders that result from mutations in genes that encode different alpha- and beta-tubulin isotypes (TUBA1A, TUBB2B, TUBA8 and TUBB3), scientists have a novel paradigm to assess how select perturbations in microtubule function affect a range of cellular processes in humans. Moreover, important phenotypic distinctions found among the syndromes suggest that different tubulin isotypes can be utilized for distinct cellular functions during nervous system development. In the present review, we discuss: (i) the spectrum of congenital nervous system diseases that result from mutations in tubulin and MAPs (microtubule-associated proteins); (ii) the known or putative roles of these proteins during nervous system development; (iii) how the findings collectively support the 'multi-tubulin' hypothesis, which postulates that different tubulin isotypes may be required for specialized microtubule functions.
Collapse
Affiliation(s)
- Max A Tischfield
- Department of Neurology and Ophthalmology, Manten Center for Orphan Disease Research, Children's Hospital Boston, Harvard Medical School, MA, USA. <>
| | | |
Collapse
|
85
|
Hage-Sleiman R, Herveau S, Matera EL, Laurier JF, Dumontet C. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells. BMC Cancer 2010; 10:135. [PMID: 20384997 PMCID: PMC2859754 DOI: 10.1186/1471-2407-10-135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 04/12/2010] [Indexed: 12/22/2022] Open
Abstract
Background Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers. Methods We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. In vivo growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. In vitro sensitivity to antimicrotubule agents was studied by flow cytometry. In vivo chemosensitivity was assayed by treatment of mice implanted with tumor cells. Results TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation in vitro, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts in vivo. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both in vitro and in xenografts. Conclusion These results underline the essential role of fine tuned regulation of tubulin content in tumor cells and the major impact of dysregulation of tubulin dimer content on tumor cell phenotype and response to chemotherapy. A better understanding of how the microtubule cytoskeleton is dysregulated in cancer cells would greatly contribute to a better understanding of tumor cell biology and characterisation of resistant phenotypes.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Inserm U590, Laboratoire de Cytologie Analytique, Université Lyon 1, 69008 Lyon, France.
| | | | | | | | | |
Collapse
|
86
|
Fedyanina OS. The alp1-1315 mutation of the tubulin-folding cofactor D gene delays the mitosis initiation in cdc25-22 mutant cells of Schizosaccharomyces pombe. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410030051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
87
|
Jostrup R, Shen W, Burrows JTA, Sivak JG, McConkey BJ, Singer TD. Identification of myopia-related marker proteins in tilapia retinal, RPE, and choroidal tissue following induced form deprivation. Curr Eye Res 2010; 34:966-75. [PMID: 19958113 DOI: 10.3109/02713680903244138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Experimentally induced myopia is characterized by axial elongation of the eye. The molecular pathways leading to this condition are largely unknown, even though many candidate proteins have been proposed to be involved in this process. This study has identified proteins that were differentially expressed in myopic and control combined retina, retinal pigment epithelium (RPE), and choroidal tissue in tilapia (Oreochromis niloticus). METHODS Form deprivation was used to induce myopia in tilapia (n = 3). In this initial study on tilapia retina, RPE and choroid, 2-D differential in gel electrophoresis (DIGE) and mass spectrometry were used to identify differentially expressed proteins. Homology-based gene cloning was used to obtain full sequence data for one of the identified proteins. RESULTS A total of 18 protein spots separated by 2-D electrophoresis exhibited statistically significant differences in expression between the myopic and contralateral control combined retinal, RPE, and choroidal tissue. Three proteins were identified at a significance level of p < 0.05, as annexin A5 (down-regulated 47%), Gelsolin (down-regulated 27%), and TCP-1 (CCT) (down-regulated 54%). DNA sequencing of tilapia annexin A5 shows an amino acid sequence identity of 84.5% with the homologous Japanese ricefish annexin max2. CONCLUSIONS A proteomics approach has been used to identify differentially expressed proteins in form-deprived combined retinal, RPE, and choroidal tissue from myopic versus normal eyes. The identified proteins may be components of pathways involved in myopia pathogenesis.
Collapse
Affiliation(s)
- Rasmus Jostrup
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
88
|
Pal K, Moammar H, Mitra DK. Visceral myopathy causing chronic intestinal pseudoobstruction and intestinal failure in a child with Sanjad-Sakati syndrome. J Pediatr Surg 2010; 45:430-4. [PMID: 20152369 DOI: 10.1016/j.jpedsurg.2009.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 11/15/2022]
Abstract
Sanjad-Sakati syndrome is a rare autosomal recessive disorder mainly occurring in the Arab Peninsula. This condition is associated with metabolic and septic complications starting in the neonatal period. Chronic intestinal pseudoobstruction owing to visceral myopathy is a rare disabling condition. We report a rare concurrence of Sanjad-Sakati syndrome and chronic intestinal pseudoobstruction in a Saudi child complicated by intestinal failure, sepsis, and early mortality.
Collapse
Affiliation(s)
- Kamalesh Pal
- Division of Pediatric Surgery, Department of Surgery, College of Medicine, King Faisal University, King Fahad Hospital of the University, Al Khobar, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|
89
|
Evans RJ, Schwarz N, Nagel-Wolfrum K, Wolfrum U, Hardcastle AJ, Cheetham ME. The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium. Hum Mol Genet 2010; 19:1358-67. [PMID: 20106869 DOI: 10.1093/hmg/ddq012] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoreceptors are complex ciliated sensory neurons. The basal body and periciliary ridge of photoreceptors function in association with the Golgi complex to regulate the export of proteins from the inner segment to the outer segment sensory axoneme. Here, we show that the retinitis pigmentosa protein RP2, which is a GTPase activating protein (GAP) for Arl3, localizes to the ciliary apparatus, namely the basal body and the associated centriole at the base of the photoreceptor cilium. Targeting to the ciliary base was dependent on N-terminal myristoylation. RP2 also localized to the Golgi and periciliary ridge of photoreceptors, which suggested a role for RP2 in regulating vesicle traffic and docking. To explore this hypothesis, we investigated the effect of RP2 depletion and the expression of a constitutively active form of Arl3 (Q71L) on pericentriolar vesicle transport. Kif3a, a component of intraflagellar transport (IFT), is important in cilia maintenance and transport of proteins through the connecting cilium in photoreceptors. Similar to Kif3a and Arl3 depletion, loss of RP2 led to fragmentation of the Golgi network. Depletion of RP2 and dysregulation of Arl3 resulted in dispersal of vesicles cycling cargo from the Golgi complex to the cilium, including the IFT protein IFT20. We propose that RP2 regulation of Arl3 is important for maintaining Golgi cohesion, facilitating the transport and docking of vesicles and thereby carrying proteins to the base of the photoreceptor connecting cilium for transport to the outer segment.
Collapse
|
90
|
Jaglin XH, Chelly J. Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 2009; 25:555-66. [PMID: 19864038 DOI: 10.1016/j.tig.2009.10.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/02/2009] [Accepted: 10/03/2009] [Indexed: 01/14/2023]
Abstract
The fine tuning of proliferation and neurogenesis, neuronal migration and differentiation and connectivity underlies the proper development of the cerebral cortex. Mutations in genes involved in these processes are responsible for neurodevelopmental disorders, such as cortical dysgeneses, which are usually associated with severe mental retardation and epilepsy. Over the past few years, the importance of cytoskeleton components in cellular processes crucial for cortical development has emerged from a body of functional data. This was reinforced by the association of mutations in the LIS1 and DCX genes, which both encode proteins involved in microtubule (MT) homeostasis, with cerebral cortex developmental disorders. The recent discovery of patients with lissencephaly and bilateral asymmetrical polymicrogyria (PMG) carrying mutations in the alpha- and beta-tubulin-encoding genes TUBA1A and TUBB2B further supports this view, and also raises interesting questions about the specific roles played by certain tubulin isotypes during the development of the cortex.
Collapse
Affiliation(s)
- Xavier H Jaglin
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | |
Collapse
|
91
|
Volkenstein S, Brors D, Hansen S, Berend A, Mlynski R, Aletsee C, Dazert S. Auditory development in progressive motor neuronopathy mouse mutants. Neurosci Lett 2009; 465:45-9. [PMID: 19735697 DOI: 10.1016/j.neulet.2009.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/30/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
The present study was performed to elucidate the hearing development in the progressive motor neuronopathy (pmn) mouse mutant. This mouse has been used as a model for human motoneuron disease. A missense mutation in the tubulin-specific chaperon E (Tbce) gene on mouse chromosome 13 was localized as the underlying genetic defect. The protein encoded by the Tbce gene is essential for the formation of primary tubulin complexes. Studies on motoneurons show disorganization in microtubules and disturbed axonal transport, followed by retrograde degeneration of the motoneurons. A similar pathomechanism is also possible for hearing disorders where disrupted microtubules could cause functional deficits in spiral ganglion neurons or in cochlear hair cells. Click auditory brainstem response (ABR) audiometry in homozygous pmn mutants showed a normal onset of hearing, but an increasing hearing threshold from postnatal day 26 (P26) on to death, compared to heterozygous mutants and wild-type mice. Histological sections of the cochlea at different ages showed a regular morphology. Additionally, spiral ganglion explants from mutant and wild-type mice were cultured. The neurite length from pmn mutants was shorter than in wild-type mice, and the neurite number/explant was significantly decreased in pmn mutants. We show that the pmn mouse mutant is a model for a progressive rapid hearing loss from P26 on, after initially normal hearing development. Heterozygous mice are not affected by this defect. With the knowledge of the well-known pathomechanism of this defect in motoneurons, a dysfunction of cellular mechanisms regulating tubulin assembling suggests that tubulin assembling plays an essential role in hearing function and maintenance.
Collapse
Affiliation(s)
- Stefan Volkenstein
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University of Bochum, St. Elisabeth-Hospital, Bleichstr. 15, 44787 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
92
|
The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Mol Cell Neurosci 2009; 43:15-32. [PMID: 19660553 DOI: 10.1016/j.mcn.2009.07.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022] Open
Abstract
Nervous system function and plasticity rely on the complex architecture of neuronal networks elaborated during development, when neurons acquire their specific and complex shape. During neuronal morphogenesis, the formation and outgrowth of functionally and structurally distinct axons and dendrites require a coordinated and dynamic reorganization of the microtubule cytoskeleton involving numerous regulators. While most of these factors act directly on microtubules to stabilize them or promote their assembly, depolymerization or fragmentation, others are now emerging as essential regulators of neuronal differentiation by controlling tubulin availability and modulating microtubule dynamics. In this review, we recapitulate how the microtubule network is actively regulated during the successive phases of neuronal morphogenesis, and what are the specific roles of the various microtubule-regulating proteins in that process. We then describe the specific signaling pathways and inter-regulations that coordinate the different activities of these proteins to sustain neuronal development in response to environmental cues.
Collapse
|
93
|
Feldman JL, Marshall WF. ASQ2 encodes a TBCC-like protein required for mother-daughter centriole linkage and mitotic spindle orientation. Curr Biol 2009; 19:1238-43. [PMID: 19631545 PMCID: PMC2764367 DOI: 10.1016/j.cub.2009.05.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
An intriguing feature of centrioles is that these highly complicated microtubule-based structures duplicate once per cell cycle, affording the cell precise control over their number. Each cell contains exactly two centrioles, linked together as a pair, one of which is a mother centriole formed in a previous cell cycle and the other of which is a daughter centriole whose assembly is templated by the mother. Neither the molecular basis nor the functional role of mother-daughter centriole linkage is understood. We have identified a mutant, asq2, with defects in centriole linkage. asq2 mutant cells have variable numbers of centrioles and centriole positioning defects. Here, we show that ASQ2 encodes the conserved protein Tbccd1, a member of a protein family including a tubulin folding cochaperone and the retinitis pigmentosa protein RP2, involved in tubulin quality control during ciliogenesis. We characterize mitosis in asq2 cells and show that the majority of cells establish a bipolar spindle but have defects in spindle orientation. Few asq2 cells have centrioles at both poles, and these cells have properly positioned spindles, indicating that centrioles at the poles might be important for spindle orientation. The defects in centriole number control, centriole positioning, and spindle orientation appear to arise from perturbation of centriole linkage mediated by Tbccd1/Asq2p.
Collapse
Affiliation(s)
- Jessica L Feldman
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
94
|
McCormack EA, Altschuler GM, Dekker C, Filmore H, Willison KR. Yeast phosducin-like protein 2 acts as a stimulatory co-factor for the folding of actin by the chaperonin CCT via a ternary complex. J Mol Biol 2009; 391:192-206. [PMID: 19501098 DOI: 10.1016/j.jmb.2009.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 11/18/2022]
Abstract
The eukaryotic chaperonin-containing TCP-1 (CCT) folds the cytoskeletal protein actin. The folding mechanism of this 16-subunit, 1-MDa machine is poorly characterised due to the absence of quantitative in vitro assays. We identified phosducin-like protein 2, Plp2p (=PLP2), as an ATP-elutable binding partner of yeast CCT while establishing the CCT interactome. In a novel in vitro CCT-ACT1 folding assay that is functional under physiological conditions, PLP2 is a stimulatory co-factor. In a single ATP-driven cycle, PLP2-CCT-ACT1 complexes yield 30-fold more native actin than CCT-ACT1 complexes. PLP2 interacts directly with ACT1 through the C-terminus of its thioredoxin fold and the CCT-binding subdomain 4 of actin. The in vitro CCT-ACT1-PLP2 folding cycle of the preassembled complex takes 90 s at 30 degrees C, several times slower than the canonical chaperonin GroEL. The specific interactions between PLP2, CCT and ACT1 in the yeast-component in vitro system and the pronounced stimulatory effect of PLP2 on actin folding are consistent with in vivo genetic approaches demonstrating an essential and positive role for PLP2 in cellular processes involving actin in Saccharomyces cerevisiae. In mammalian systems, however, several members of the PLP family, including human PDCL3, the orthologue of PLP2, have been shown to be inhibitory toward CCT-mediated folding of actin in vivo and in vitro. Here, using a rabbit-reticulocyte-derived in vitro translation system, we found that inhibition of beta-actin folding by PDCL3 can be relieved by exchanging its acidic C-terminal extension for that of PLP2. It seems that additional levels of regulatory control of CCT activity by this PLP have emerged in higher eukaryotes.
Collapse
Affiliation(s)
- Elizabeth A McCormack
- Protein Folding and Assembly Team, Section of Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London, UK
| | | | | | | | | |
Collapse
|
95
|
Jaglin XH, Poirier K, Saillour Y, Buhler E, Tian G, Bahi-Buisson N, Fallet-Bianco C, Phan-Dinh-Tuy F, Kong XP, Bomont P, Castelnau-Ptakhine L, Odent S, Loget P, Kossorotoff M, Snoeck I, Plessis G, Parent P, Beldjord C, Cardoso C, Represa A, Flint J, Keays DA, Cowan NJ, Chelly J. Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet 2009; 41:746-52. [PMID: 19465910 DOI: 10.1038/ng.380] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/09/2009] [Indexed: 01/08/2023]
Abstract
Polymicrogyria is a relatively common but poorly understood defect of cortical development characterized by numerous small gyri and a thick disorganized cortical plate lacking normal lamination. Here we report de novo mutations in a beta-tubulin gene, TUBB2B, in four individuals and a 27-gestational-week fetus with bilateral asymmetrical polymicrogyria. Neuropathological examination of the fetus revealed an absence of cortical lamination associated with the presence of ectopic neuronal cells in the white matter and in the leptomeningeal spaces due to breaches in the pial basement membrane. In utero RNAi-based inactivation demonstrates that TUBB2B is required for neuronal migration. We also show that two disease-associated mutations lead to impaired formation of tubulin heterodimers. These observations, together with previous data, show that disruption of microtubule-based processes underlies a large spectrum of neuronal migration disorders that includes not only lissencephaly and pachygyria, but also polymicrogyria malformations.
Collapse
|
96
|
Fedyanina OS, Book AJ, Grishchuk EL. Tubulin heterodimers remain functional for one cell cycle after the inactivation of tubulin-folding cofactor D in fission yeast cells. Yeast 2009; 26:235-47. [PMID: 19330768 PMCID: PMC5705012 DOI: 10.1002/yea.1663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tubulin-folding cofactor D plays a major role in the formation of functional tubulin heterodimers, the subunits of microtubules (MTs) that are essential for cell division. Previous work has suggested that, in Schizosaccharomyces pombe, cofactor D function is required during G(1) or S phases of the cell cycle, and when it fails to function due to the temperature-sensitive mutation alp1-t1, cells are unable to segregate their chromosomes in the subsequent mitosis. Here we report that another mutation in the cofactor D gene, alp1-1315, causes failures in either the first or second mitosis in cells synchronized in G(1) or G(2) phases, respectively. Other results, however, suggest that the kinetics of viability loss in these mutants does not depend on progression through the cell cycle. When cofactor D function is perturbed in cells blocked in G(2), cytoplasmic MTs appear normal for 2-3 h but thereafter they disintegrate quickly, so that only a few short MTs remain. These residual MTs are, however, stably maintained, suggesting that they do not require active cofactor D function. The abrupt disassembly of MT cytoskeleton at restrictive temperature in non-cycling cofactor D mutant cells strongly suggests that the life-span of folded tubulin dimers might be downregulated. Indeed, this period is significantly shorter than the previously determined dissociation time of bovine tubulins in vitro. The death of mutant cells occurs inevitably after 2-3 h at restrictive temperature in the following mitosis, and is explained by the idea that MT structures formed in the absence of cofactor D cannot support normal cell division.
Collapse
|
97
|
Jin S, Pan L, Liu Z, Wang Q, Xu Z, Zhang YQ. Drosophila Tubulin-specific chaperone E functions at neuromuscular synapses and is required for microtubule network formation. Development 2009; 136:1571-81. [PMID: 19297412 DOI: 10.1242/dev.029983] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoparathyroidism, mental retardation and facial dysmorphism (HRD) is a fatal developmental disease caused by mutations in tubulin-specific chaperone E (TBCE). A mouse Tbce mutation causes progressive motor neuronopathy. To dissect the functions of TBCE and the pathogenesis of HRD, we generated mutations in Drosophila tbce, and manipulated its expression in a tissue-specific manner. Drosophila tbce nulls are embryonic lethal. Tissue-specific knockdown and overexpression of tbce in neuromusculature resulted in disrupted and increased microtubules, respectively. Alterations in TBCE expression also affected neuromuscular synapses. Genetic analyses revealed an antagonistic interaction between TBCE and the microtubule-severing protein Spastin. Moreover, treatment of muscles with the microtubule-depolymerizing drug nocodazole implicated TBCE as a tubulin polymerizing protein. Taken together, our results demonstrate that TBCE is required for the normal development and function of neuromuscular synapses and that it promotes microtubule formation. As defective microtubules are implicated in many neurological and developmental diseases, our work on TBCE may offer novel insights into their basis.
Collapse
Affiliation(s)
- Shan Jin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
98
|
Chi YH, Salzman RA, Balfe S, Ahn JE, Sun W, Moon J, Yun DJ, Lee SY, Higgins TJV, Pittendrigh B, Murdock LL, Zhu-Salzman K. Cowpea bruchid midgut transcriptome response to a soybean cystatin--costs and benefits of counter-defence. INSECT MOLECULAR BIOLOGY 2009; 18:97-110. [PMID: 19196350 DOI: 10.1111/j.1365-2583.2008.00854.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The insect digestive system is the first line of defence protecting cells and tissues of the body from a broad spectrum of toxins and antinutritional factors in its food. To gain insight into the nature and breadth of genes involved in adaptation to dietary challenge, a collection of 20 352 cDNAs was prepared from the midgut tissue of cowpea bruchid larvae (Callosobruchus maculatus) fed on regular diet and diets containing antinutritional compounds. Transcript responses of the larvae to dietary soybean cystatin (scN) were analysed using cDNA microarrays, followed by quantitative real-time PCR (RT-PCR) confirmation with selected genes. The midgut transcript profile of insects fed a sustained sublethal scN dose over the larval life was compared with that of insects treated with an acute high dose of scN for 24 h. A total of 1756 scN-responsive cDNAs was sequenced; these clustered into 967 contigs, of which 653 were singletons. Many contigs (451) did not show homology with known genes, or had homology only with genes of unknown function in a Blast search. The identified differentially regulated sequences encoded proteins presumptively involved in metabolism, structure, development, signalling, defence and stress response. Expression patterns of some scN-responsive genes were consistent in each larval stage, whereas others exhibited developmental stage-specificity. Acute (24 h), high level exposure to dietary scN caused altered expression of a set of genes partially overlapping with the transcript profile seen under chronic lower level exposure. Protein and carbohydrate hydrolases were generally up-regulated by scN whereas structural, defence and stress-related genes were largely down-regulated. These results show that insects actively mobilize genomic resources in the alimentary tract to mitigate the impact of a digestive protease inhibitor. The enhanced or restored digestibility that may result is possibly crucial for insect survival, yet may be bought at the cost of weakened response to other stresses.
Collapse
Affiliation(s)
- Y H Chi
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Cleveland DW, Yamanaka K, Bomont P. Gigaxonin controls vimentin organization through a tubulin chaperone-independent pathway. Hum Mol Genet 2009; 18:1384-94. [PMID: 19168853 DOI: 10.1093/hmg/ddp044] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gigaxonin mutations cause the fatal human neurodegenerative disorder giant axonal neuropathy (GAN). Broad deterioration of the nervous system in GAN patients is accompanied by massive disorganization of intermediate filaments (IFs) both in neurons and many non-neuronal cells. With newly developed antibodies, gigaxonin is now shown to be expressed at extremely low levels throughout the nervous system. In lymphoblast cell lines derived from severe and mild forms of GAN, mutations in gigaxonin are shown to yield highly unstable proteins, thereby permitting a rapid diagnostic test for the spectrum of GAN mutations as an alternative to invasive nerve biopsy or systematic sequencing of the GAN gene. Gigaxonin has been proposed as a substrate adaptor for an E3 ubiquitin ligase, which affects proteasome-dependent degradation of microtubule-related proteins including MAP1B, MAP8 and the tubulin folding chaperone TBCB. We demonstrate that, unlike its counterpart TBCE, TBCB only moderately destabilizes microtubules. Neither TBCB abundance nor microtubule organization or densities are altered in GAN mutant fibroblasts, thus demonstrating that altered TBCB levels are not primary determinants of IF disorganization in GAN. Characteristic GAN mutant-induced ovoid aggregates of vimentin are not produced in normal fibroblasts after disrupting microtubule assembly, either by TBCE overexpression or depolymerizing drugs. Thus, IF disorganization in GAN fibroblasts is independent of TBCB and microtubule loss and must be regulated by a yet unidentified mechanism.
Collapse
Affiliation(s)
- Don W Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
100
|
Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. Proc Natl Acad Sci U S A 2008; 105:18064-9. [PMID: 19004800 DOI: 10.1073/pnas.0808652105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Newly translated tubulin molecules undergo a series of complex interactions with nascent chain-binding chaperones, including prefoldin (PFD) and chaperonin-containing TCP-1 (CCT). By screening for oryzalin hypersensitivity, we identified several mutants of Arabidopsis that have lesions in PFD subunits. The pfd6-1 mutant exhibits a range of microtubule defects, including hypersensitivity to oryzalin, defects in cell division, cortical array organization, and microtubule dynamicity. Consistent with phenotypic analysis, proteomic analysis indicates several isoforms of tubulins were reduced in pfd6-1. These results support the concept that the function of microtubules is critically dependent on the absolute amount of tubulins.
Collapse
|