51
|
BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat Struct Mol Biol 2016; 23:540-8. [PMID: 27159561 PMCID: PMC4899182 DOI: 10.1038/nsmb.3228] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
Abstract
Bromodomain protein 4 (BRD4) is a chromatin-binding protein implicated in cancer and autoimmune diseases that functions as a scaffold for transcription factors at promoters and super-enhancers. Whereas chromatin de-compaction and transcriptional activation of target genes are associated with BRD4 binding, the mechanism(s) involved are unknown. We report that BRD4 is a novel histone acetyltransferase (HAT) that acetylates histones H3 and H4 with a pattern distinct from other HAT’s. Both mouse and human BRD4 demonstrate intrinsic HAT activity. Importantly, BRD4 acetylates H3K122, a residue critical for nucleosome stability, resulting in nucleosome eviction and chromatin de-compaction. Nucleosome clearance by BRD4 occurs genome-wide, including at its targets MYC, FOS and AURKB (Aurora B kinase), resulting in increased transcription. Since BRD4 regulates transcription, these findings lead to a model where BRD4 actively links chromatin structure and transcription: It mediates chromatin de-compaction by acetylating and evicting nucleosomes of target genes, thereby activating their transcription.
Collapse
|
52
|
Gupta K, Sari-Ak D, Haffke M, Trowitzsch S, Berger I. Zooming in on Transcription Preinitiation. J Mol Biol 2016; 428:2581-2591. [PMID: 27067110 PMCID: PMC4906157 DOI: 10.1016/j.jmb.2016.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 02/08/2023]
Abstract
Class II gene transcription commences with the assembly of the Preinitiation Complex (PIC) from a plethora of proteins and protein assemblies in the nucleus, including the General Transcription Factors (GTFs), RNA polymerase II (RNA pol II), co-activators, co-repressors, and more. TFIID, a megadalton-sized multiprotein complex comprising 20 subunits, is among the first GTFs to bind the core promoter. TFIID assists in nucleating PIC formation, completed by binding of further factors in a highly regulated stepwise fashion. Recent results indicate that TFIID itself is built from distinct preformed submodules, which reside in the nucleus but also in the cytosol of cells. Here, we highlight recent insights in transcription factor assembly and the regulation of transcription preinitiation. Architectural models of human and yeast PIC were proposed. Mediator core–ITC complex structure reveals novel interactions. TFIID submodule residing in the cytoplasm has been discovered. Complex assembly emerges as key concept in transcription regulation.
Collapse
Affiliation(s)
- Kapil Gupta
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France
| | - Duygu Sari-Ak
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France
| | - Matthias Haffke
- Center for Proteomic Chemistry, Structural Biophysics, Novartis Institute for Biomedical Research NIBR, Fabrikstrasse 2, 4056 Basel, Switzerland
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main Germany
| | - Imre Berger
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France; The School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
53
|
Dong OX, Meteignier LV, Plourde MB, Ahmed B, Wang M, Jensen C, Jin H, Moffett P, Li X, Germain H. Arabidopsis TAF15b Localizes to RNA Processing Bodies and Contributes to snc1-Mediated Autoimmunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:247-57. [PMID: 26713351 DOI: 10.1094/mpmi-11-15-0246-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In both animals and plants, messenger (m)RNA export has been shown to contribute to immune response regulation. The Arabidopsis nuclear protein MOS11, along with the nucleoporins MOS3/Nup96/SAR3 and Nup160/SAR1 are components of the mRNA export machinery and contribute to immunity mediated by nucleotide binding leucine-rich repeat immune receptors (NLR). The human MOS11 ortholog CIP29 is part of a small protein complex with three additional members: the RNA helicase DDX39, ALY, and TAF15b. We systematically assessed the biological roles of the Arabidopsis homologs of these proteins in toll interleukin 1 receptor-type NLR (TNL)-mediated immunity using reverse genetics. Although mutations in ALY and DDX39 did not result in obvious defects, taf15b mutation partially suppressed the autoimmune phenotypes of a gain-of-function TNL mutant, snc1. An additive effect on snc1 suppression was observed in mos11-1 taf15b snc1 triple mutant plants, suggesting that MOS11 and TAF15b have independent functions. TAF15b-GFP fusion protein, which fully complemented taf15b mutant phenotypes, localized to nuclei similarly to MOS11. However, it was also targeted to cytosolic granules identified as processing bodies. In addition, we observed no change in SNC1 mRNA levels, whereas less SNC1 protein accumulated in taf15b mutant, suggesting that TAF15b contributes to SNC1 homeostasis through posttranscriptional mechanisms. In summary, this study highlights the importance of posttranscriptional RNA processing mediated by TAF15b in the regulation of TNL-mediated immunity.
Collapse
Affiliation(s)
- Oliver X Dong
- 1 Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- 2 Michael Smith Laboratories, University of British Columbia
| | | | - Melodie B Plourde
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| | - Bulbul Ahmed
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| | - Ming Wang
- 6 Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, U.S.A
| | | | - Hailing Jin
- 6 Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, U.S.A
| | - Peter Moffett
- 3 Department of Biology, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Xin Li
- 1 Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- 2 Michael Smith Laboratories, University of British Columbia
| | - Hugo Germain
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| |
Collapse
|
54
|
Yuan H, Marmorstein R. Histone acetyltransferases: Rising ancient counterparts to protein kinases. Biopolymers 2016; 99:98-111. [PMID: 23175385 DOI: 10.1002/bip.22128] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/01/2012] [Accepted: 07/06/2012] [Indexed: 01/19/2023]
Abstract
Protein kinases catalyze phosphorylation, a posttranslational modification widely utilized in cell signaling. Histone acetyltransferases (HATs) catalyze a counterpart posttranslational modification of acetylation which marks histones for epigenetic signaling but in some cases modifies non-histone proteins to mediate other cellular activities. In addition, recent proteomic studies have revealed that thousands of proteins are acetylated throughout the cell to regulate diverse biological processes, thus placing acetyltransferases on the same playing field as kinases. Emerging biochemical and structural data further supports mechanistic and biological links between the two enzyme families. In this article, we will review what is known to date about the structure, catalysis and mode of regulation of HAT enzymes and draw analogies, where relevant, to protein kinases. This comparison reveals that HATs may be rising ancient counterparts to protein kinases.
Collapse
Affiliation(s)
- Hua Yuan
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104
| | | |
Collapse
|
55
|
Simon RP, Robaa D, Alhalabi Z, Sippl W, Jung M. KATching-Up on Small Molecule Modulators of Lysine Acetyltransferases. J Med Chem 2016; 59:1249-70. [PMID: 26701186 DOI: 10.1021/acs.jmedchem.5b01502] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reversible acetylation of lysines is one of the best characterized epigenetic modifications. Its involvement in many key physiological and pathological processes has been documented in numerous studies. Lysine deacetylases (KDACs) and acetyltransferases (KATs) maintain the acetylation equilibrium at histones but also many other proteins. Besides acetylation, also other acyl groups are reversibly installed at the side chain of lysines in proteins. Because of their involvement in disease, KDACs and KATs were proposed to be promising drug targets, and for KDACs, indeed, five inhibitors are now approved for human use. While there is a similar level of evidence for the potential of KATs as drug targets, no inhibitor is in clinical trials. Here, we review the evidence for the diverse roles of KATs in disease pathology, provide an overview of structural features and the available modulators, including those targeting the bromodomains of KATs, and present an outlook.
Collapse
Affiliation(s)
- Roman P Simon
- Institute of Pharmaceutical Sciences, University of Freiburg , Albertstraße 25, Freiburg 79104, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, University Halle-Wittenberg , Halle/Saale 06120, Germany
| | - Zayan Alhalabi
- Department of Pharmaceutical Chemistry, University Halle-Wittenberg , Halle/Saale 06120, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, University Halle-Wittenberg , Halle/Saale 06120, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg , Albertstraße 25, Freiburg 79104, Germany
| |
Collapse
|
56
|
O’Rawe J, Wu Y, Dörfel M, Rope A, Au P, Parboosingh J, Moon S, Kousi M, Kosma K, Smith C, Tzetis M, Schuette J, Hufnagel R, Prada C, Martinez F, Orellana C, Crain J, Caro-Llopis A, Oltra S, Monfort S, Jiménez-Barrón L, Swensen J, Ellingwood S, Smith R, Fang H, Ospina S, Stegmann S, Den Hollander N, Mittelman D, Highnam G, Robison R, Yang E, Faivre L, Roubertie A, Rivière JB, Monaghan K, Wang K, Davis E, Katsanis N, Kalscheuer V, Wang E, Metcalfe K, Kleefstra T, Innes A, Kitsiou-Tzeli S, Rosello M, Keegan C, Lyon G. TAF1 Variants Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological Manifestations. Am J Hum Genet 2015; 97:922-32. [PMID: 26637982 PMCID: PMC4678794 DOI: 10.1016/j.ajhg.2015.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/05/2015] [Indexed: 11/30/2022] Open
Abstract
We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.
Collapse
|
57
|
Waterworth WM, Drury GE, Blundell-Hunter G, West CE. Arabidopsis TAF1 is an MRE11-interacting protein required for resistance to genotoxic stress and viability of the male gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:545-57. [PMID: 26358508 PMCID: PMC4949998 DOI: 10.1111/tpj.13020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 05/07/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) by recombination pathways is essential for plant growth and fertility. The recombination endonuclease MRE11 plays important roles in sensing and repair of DNA DSBs. Here we demonstrate protein interaction between Arabidopsis MRE11 and the histone acetyltransferase TAF1, a TATA-binding protein Associated Factor (TAF) of the RNA polymerase II transcription initiation factor complex TFIID. Arabidopsis has two TAF1 homologues termed TAF1 and TAF1b and mutant taf1b lines are viable and fertile. In contrast, taf1 null mutations are lethal, demonstrating that TAF1 is an essential gene. Heterozygous taf1+/- plants display abnormal segregation of the mutant allele resulting from defects in pollen tube development, indicating that TAF1 is important for gamete viability. Characterization of an allelic series of taf1 lines revealed that hypomorphic mutants are viable but display developmental defects and reduced plant fertility. Hypersensitivity of taf1 mutants lacking the C-terminal bromodomain to X-rays and mitomycin C, but not to other forms of abiotic stress, established a specific role for TAF1 in plant DNA repair processes. Collectively these studies reveal a function for TAF1 in plant resistance to genotoxic stress, providing further insight into the molecular mechanisms of the DNA damage response in plants.
Collapse
Affiliation(s)
- Wanda M Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | | | - Christopher E West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
58
|
Affiliation(s)
- Guangtao Zhang
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Steven G Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
59
|
Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015; 7:a025064. [PMID: 26330523 DOI: 10.1101/cshperspect.a025064] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern techniques in molecular biology, genomics, and mass spectrometry-based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits.
Collapse
Affiliation(s)
- Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
60
|
Abstract
Dynamic packaging of DNA into strings of nucleosomes is a major mechanism whereby eukaryotic cells regulate gene expression. Intricate control of nucleosomal structure and assembly governs access of RNA polymerase II to DNA and consequent RNA synthesis. As part of this, post-translational modifications of histone proteins are central to the regulation of chromatin structure, playing vital roles in regulating the activation and repression of gene transcription. In the heart, dynamic homeostasis of histone modification-driven by the actions of modifiers and recruitment of downstream effectors-is a fundamental regulator of the transcriptional reprogramming that occurs in the setting of disease-related stress. Here, we examine the growing evidence for histone modification as a key mechanism governing pathological growth and remodeling of the myocardium.
Collapse
Affiliation(s)
- Thomas G Gillette
- From the Departments of Internal Medicine (Cardiology) (T.G.G., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas.
| | - Joseph A Hill
- From the Departments of Internal Medicine (Cardiology) (T.G.G., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
61
|
Hamm CA, Costa FF. Epigenomes as therapeutic targets. Pharmacol Ther 2015; 151:72-86. [PMID: 25797698 DOI: 10.1016/j.pharmthera.2015.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/19/2022]
Abstract
Epigenetics is a molecular phenomenon that pertains to heritable changes in gene expression that do not involve changes in the DNA sequence. Epigenetic modifications in a whole genome, known as the epigenome, play an essential role in the regulation of gene expression in both normal development and disease. Traditional epigenetic changes include DNA methylation and histone modifications. Recent evidence reveals that other players, such as non-coding RNAs, may have an epigenetic regulatory role. Aberrant epigenetic signaling is becoming to be known as a central component of human disease, and the reversible nature of the epigenetic modifications provides an exciting opportunity for the development of clinically relevant therapeutics. Current epigenetic therapies provide a clinical benefit through disrupting DNA methyltransferases or histone deacetylases. However, the emergence of next-generation epigenetic therapies provides an opportunity to more effectively disrupt epigenetic disease states. Novel epigenetic therapies may improve drug targeting and drug delivery, optimize dosing schedules, and improve the efficacy of preexisting treatment modalities (chemotherapy, radiation, and immunotherapy). This review discusses the epigenetic mechanisms that contribute to the disease, available epigenetic therapies, epigenetic therapies currently in development, and the potential future use of epigenetic therapeutics in a clinical setting.
Collapse
Affiliation(s)
- Christopher A Hamm
- Cancer Biology and Epigenomics Program, Ann & Robert H Lurie Children's Hospital of Chicago Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, 225 E. Chicago Avenue, Box 220, Chicago, IL 60611-2605, USA.
| | - Fabricio F Costa
- Cancer Biology and Epigenomics Program, Ann & Robert H Lurie Children's Hospital of Chicago Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, 225 E. Chicago Avenue, Box 220, Chicago, IL 60611-2605, USA; StartUp Health Academy, 2000 Broadway St, 18th Floor, New York, NY 10.023, USA; Genomic Enterprise, 2405 N. Sheffield Av., # 14088, Chicago, IL 60.614, USA; Genomic Sciences and Biotechnology Program, UCB - Brasilia, SGAN 916 Modulo B, Bloco C, 70.790-160 Brasilia, Brazil.
| |
Collapse
|
62
|
Chemical “Diversity” of Chromatin Through Histone Variants and Histone Modifications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0005-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
63
|
Audano M, Ferrari A, Fiorino E, Kuenzl M, Caruso D, Mitro N, Crestani M, De Fabiani E. Energizing Genetics and Epi-genetics: Role in the Regulation of Mitochondrial Function. Curr Genomics 2015; 15:436-56. [PMID: 25646072 PMCID: PMC4311388 DOI: 10.2174/138920291506150106151119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/18/2014] [Indexed: 12/15/2022] Open
Abstract
Energy metabolism and mitochondrial function hold a core position in cellular homeostasis. Oxidative metabolism is regulated at multiple levels, ranging from gene transcription to allosteric modulation. To accomplish the fine tuning of these multiple regulatory circuits, the nuclear and mitochondrial compartments are tightly and reciprocally controlled. The fact that nuclear encoded factors, PPARγ coactivator 1α and mitochondrial transcription factor A, play pivotal roles in the regulation of oxidative metabolism and mitochondrial biogenesis is paradigmatic of this crosstalk. Here we provide an updated survey of the genetic and epigenetic mechanisms involved in the control of energy metabolism and mitochondrial function. Chromatin dynamics highly depends on post-translational modifications occurring at specific amino acids in histone proteins and other factors associated to nuclear DNA. In addition to the well characterized enzymes responsible for histone methylation/demethylation and acetylation/deacetylation, other factors have gone on the "metabolic stage". This is the case of the new class of α-ketoglutarate-regulated demethylases (Jumonji C domain containing demethylases) and of the NAD+-dependent deacetylases, also known as sirtuins. Moreover, unexpected features of the machineries involved in mitochondrial DNA (mtDNA) replication and transcription, mitochondrial RNA processing and maturation have recently emerged. Mutations or defects of any component of these machineries profoundly affect mitochondrial activity and oxidative metabolism. Finally, recent evidences support the importance of mtDNA packaging in replication and transcription. These observations, along with the discovery that non-classical CpG islands present in mtDNA undergo methylation, indicate that epigenetics also plays a role in the regulation of the mitochondrial genome function.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Alessandra Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Erika Fiorino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Martin Kuenzl
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| |
Collapse
|
64
|
50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 2014; 16:258-64. [PMID: 25549891 DOI: 10.1038/nrm3931] [Citation(s) in RCA: 608] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 1964, Vincent Allfrey and colleagues reported the identification of histone acetylation and with deep insight proposed a regulatory role for this protein modification in transcription regulation. Subsequently, histone acetyltransferases (HATs), histone deacetylases (HDACs) and acetyl-Lys-binding proteins were identified as transcription regulators, thereby providing compelling evidence for his daring hypothesis. During the past 15 years, reversible protein acetylation and its modifying enzymes have been implicated in many cellular functions beyond transcription regulation. Here, we review the progress accomplished during the past 50 years and discuss the future of protein acetylation.
Collapse
|
65
|
Wang H, Curran EC, Hinds TR, Wang EH, Zheng N. Crystal structure of a TAF1-TAF7 complex in human transcription factor IID reveals a promoter binding module. Cell Res 2014; 24:1433-44. [PMID: 25412659 PMCID: PMC4260347 DOI: 10.1038/cr.2014.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/07/2023] Open
Abstract
The general transcription factor IID (TFIID) initiates RNA polymerase II-mediated eukaryotic transcription by nucleating pre-initiation complex formation at the core promoter of protein-encoding genes. TAF1, the largest integral subunit of TFIID, contains an evolutionarily conserved yet poorly characterized central core domain, whose specific mutation disrupts cell proliferation in the temperature-sensitive mutant hamster cell line ts13. Although the impaired TAF1 function in the ts13 mutant has been associated with defective transcriptional regulation of cell cycle genes, the mechanism by which TAF1 mediates transcription as part of TFIID remains unclear. Here, we present the crystal structure of the human TAF1 central core domain in complex with another conserved TFIID subunit, TAF7, which biochemically solubilizes TAF1. The TAF1-TAF7 complex displays an inter-digitated compact architecture, featuring an unexpected TAF1 winged helix (WH) domain mounted on top of a heterodimeric triple barrel. The single TAF1 residue altered in the ts13 mutant is buried at the junction of these two structural domains. We show that the TAF1 WH domain has intrinsic DNA-binding activity, which depends on characteristic residues that are commonly used by WH fold proteins for interacting with DNA. Importantly, mutations of these residues not only compromise DNA binding by TAF1, but also abrogate its ability to rescue the ts13 mutant phenotype. Together, our results resolve the structural organization of the TAF1-TAF7 module in TFIID and unveil a critical promoter-binding function of TAF1 in transcription regulation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth C Curran
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Thomas R Hinds
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Edith H Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,E-mail:
| | - Ning Zheng
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA,E-mail:
| |
Collapse
|
66
|
Dai L, Endo D, Akiyama N, Yamamoto-Fukuda T, Koji T. Aberrant levels of histone H3 acetylation induce spermatid anomaly in mouse testis. Histochem Cell Biol 2014; 143:209-24. [DOI: 10.1007/s00418-014-1283-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/17/2022]
|
67
|
Karmodiya K, Anamika K, Muley V, Pradhan SJ, Bhide Y, Galande S. Camello, a novel family of Histone Acetyltransferases that acetylate histone H4 and is essential for zebrafish development. Sci Rep 2014; 4:6076. [PMID: 25123547 PMCID: PMC4133703 DOI: 10.1038/srep06076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/07/2014] [Indexed: 12/04/2022] Open
Abstract
In this study, we have investigated genome-wide occurrence of Histone Acetyltransferases (HATs) in genomes of Mus musculus and Danio rerio on the basis of presence of HAT domain. Our study identified a group of proteins that lacks characteristic features of known HAT families, relatively smaller in size and has no other associated domains. Most of the proteins in this unclassified group are Camello proteins, which are not yet known and classified as functional HATs. Our in vitro and in vivo analysis revealed that Camello family proteins are active HATs and exhibit specificity towards histone H4. Interestingly, Camello proteins are among the first identified HATs showing perinuclear localization. Moreover, Camello proteins are evolutionarily conserved in all chordates and are observed for the first time in cnidarians in phylogeny. Furthermore, knockdown of Camello protein (CMLO3) in zebrafish embryos exhibited defects in axis elongation and head formation. Thus, our study identified a novel family of active HATs that is specific for histone H4 acetylation, exhibits perinuclear localization and is essential for zebrafish development.
Collapse
Affiliation(s)
- Krishanpal Karmodiya
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India
| | - Krishanpal Anamika
- 1] Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India [2]
| | - Vijaykumar Muley
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India
| | - Saurabh J Pradhan
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India
| | - Yoshita Bhide
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India
| | - Sanjeev Galande
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pashan, Pune 411 021, India
| |
Collapse
|
68
|
Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 2014; 6:a018762. [PMID: 24984779 DOI: 10.1101/cshperspect.a018762] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been developed. Structural and biochemical studies of HATs and BrDs have revealed that HATs fall into distinct subfamilies containing a structurally related core for cofactor binding, but divergent flanking regions for substrate-specific binding, catalysis, and autoregulation. BrDs adopt a conserved left-handed four-helix bundle to recognize acetyllysine; divergent loop residues contribute to substrate-specific acetyllysine recognition.
Collapse
Affiliation(s)
- Ronen Marmorstein
- Program in Gene Expression and Regulation, Wistar Institute, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10065
| |
Collapse
|
69
|
Relationship between interleukin-1 type 1 and 2 receptor gene polymorphisms and the expression level of membrane-bound receptors. Cell Mol Immunol 2014; 12:222-30. [PMID: 24976267 DOI: 10.1038/cmi.2014.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
The biological activity of the multifunctional cytokine interleukin-1 (IL-1) is mediated by its receptors. The aim of this study was to determine if an association exists between single nucleotide polymorphisms (SNPs) in the IL-1 type 1 and 2 receptor genes (IL1R1 and IL1R2) and the expression level of membrane-bound IL1Rs on subpopulations of mononuclear cells or serum levels of soluble IL-1 receptors. It was observed that healthy individuals with the genotype TT in SNP rs2234650:C>T had a lower percentage of intact CD14(+) monocytes expressing IL1R1 on their surface. The SNP rs4141134:T>C in IL1R2 has also been associated with the percentage of intact CD3(+) T cells expressing IL1R2. Furthermore, individuals carrying the CC allele of SNP rs4141134:T>C and the TT allele of SNP rs2071008:T>G in IL1R2 had a lower density of IL1R2s on the surface of CD14(+) monocytes in lipopolysaccharide (LPS)-stimulated PBMC cultures. In summary, this study demonstrated that IL-1 receptor gene polymorphisms could be one of the factors influencing the expression of membrane-bound IL-1 receptors (IL1R) on immunocompetent cells.
Collapse
|
70
|
Bhattacharya S, Lou X, Hwang P, Rajashankar KR, Wang X, Gustafsson JÅ, Fletterick RJ, Jacobson RH, Webb P. Structural and functional insight into TAF1-TAF7, a subcomplex of transcription factor II D. Proc Natl Acad Sci U S A 2014; 111:9103-8. [PMID: 24927529 PMCID: PMC4078864 DOI: 10.1073/pnas.1408293111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factor II D (TFIID) is a multiprotein complex that nucleates formation of the basal transcription machinery. TATA binding protein-associated factors 1 and 7 (TAF1 and TAF7), two subunits of TFIID, are integral to the regulation of eukaryotic transcription initiation and play key roles in preinitiation complex (PIC) assembly. Current models suggest that TAF7 acts as a dissociable inhibitor of TAF1 histone acetyltransferase activity and that this event ensures appropriate assembly of the RNA polymerase II-mediated PIC before transcriptional initiation. Here, we report the 3D structure of a complex of yeast TAF1 with TAF7 at 2.9 Å resolution. The structure displays novel architecture and is characterized by a large predominantly hydrophobic heterodimer interface and extensive cofolding of TAF subunits. There are no obvious similarities between TAF1 and known histone acetyltransferases. Instead, the surface of the TAF1-TAF7 complex contains two prominent conserved surface pockets, one of which binds selectively to an inhibitory trimethylated histone H3 mark on Lys27 in a manner that is also regulated by phosphorylation at the neighboring H3 serine. Our findings could point toward novel roles for the TAF1-TAF7 complex in regulation of PIC assembly via reading epigenetic histone marks.
Collapse
Affiliation(s)
- Suparna Bhattacharya
- Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Xiaohua Lou
- Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030;Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204
| | - Peter Hwang
- University of California Medical Center, San Francisco, CA 94158
| | - Kanagalaghatta R Rajashankar
- The Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439; and
| | - Xiaoping Wang
- Department of Molecular Biology and Biochemistry, MD Anderson Cancer Center, Houston, TX 77030
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204;
| | | | - Raymond H Jacobson
- Department of Molecular Biology and Biochemistry, MD Anderson Cancer Center, Houston, TX 77030
| | - Paul Webb
- Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030;
| |
Collapse
|
71
|
Sheikh BN. Crafting the brain - role of histone acetyltransferases in neural development and disease. Cell Tissue Res 2014; 356:553-73. [PMID: 24788822 DOI: 10.1007/s00441-014-1835-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023]
Abstract
The human brain is a highly specialized organ containing nearly 170 billion cells with specific functions. Development of the brain requires adequate proliferation, proper cell migration, differentiation and maturation of progenitors. This is in turn dependent on spatial and temporal coordination of gene transcription, which requires the integration of both cell intrinsic and environmental factors. Histone acetyltransferases (HATs) are one family of proteins that modulate expression levels of genes in a space- and time-dependent manner. HATs and their molecular complexes are able to integrate multiple molecular inputs and mediate transcriptional levels by acetylating histone proteins. In mammals, 19 HATs have been described and are separated into five families (p300/CBP, MYST, GNAT, NCOA and transcription-related HATs). During embryogenesis, individual HATs are expressed or activated at specific times and locations to coordinate proper development. Not surprisingly, mutations in HATs lead to severe developmental abnormalities in the nervous system and increased neurodegeneration. This review focuses on our current understanding of HATs and their biological roles during neural development.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Division of Development and Cancer, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Victoria, Australia,
| |
Collapse
|
72
|
Boycheva I, Vassileva V, Iantcheva A. Histone acetyltransferases in plant development and plasticity. Curr Genomics 2014; 15:28-37. [PMID: 24653661 PMCID: PMC3958957 DOI: 10.2174/138920291501140306112742] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 12/16/2022] Open
Abstract
In eukaryotes, transcriptional regulation is determined by dynamic and reversible chromatin modifications, such as acetylation, methylation, phosphorylation, ubiquitination, glycosylation, that are essential for the processes of DNA replication, DNA-repair, recombination and gene transcription. The reversible and rapid changes in histone acetylation induce genome-wide and specific alterations in gene expression and play a key role in chromatin modification. Because of their sessile lifestyle, plants cannot escape environmental stress, and hence have evolved a number of adaptations to survive in stress surroundings. Chromatin modifications play a major role in regulating plant gene expression following abiotic and biotic stress. Plants are also able to respond to signals that affect the maintaince of genome integrity. All these factors are associated with changes in gene expression levels through modification of histone acetylation. This review focuses on the major types of genes encoding for histone acetyltransferases, their structure, function, interaction with other genes, and participation in plant responses to environmental stimuli, as well as their role in cell cycle progression. We also bring together the most recent findings on the study of the histone acetyltransferase HAC1 in the model legumes Medicago truncatula and Lotus japonicus.
Collapse
Affiliation(s)
- Irina Boycheva
- AgroBioInstitute, Blvd. Dragan Tzankov 8, 1164 Sofia, Bulgaria
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Acad. Georgi Bonchev str. Bl. 21 1113, Sofia, Bulgaria
| | | |
Collapse
|
73
|
Devaiah BN, Singer DS. CIITA and Its Dual Roles in MHC Gene Transcription. Front Immunol 2013; 4:476. [PMID: 24391648 PMCID: PMC3868913 DOI: 10.3389/fimmu.2013.00476] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/07/2013] [Indexed: 01/07/2023] Open
Abstract
Class II transactivator (CIITA) is a transcriptional coactivator that regulates γ-interferon-activated transcription of Major Histocompatibility Complex (MHC) class I and II genes. As such, it plays a critical role in immune responses: CIITA deficiency results in aberrant MHC gene expression and consequently in autoimmune diseases such as Type II bare lymphocyte syndrome. Although CIITA does not bind DNA directly, it regulates MHC transcription in two distinct ways - as a transcriptional activator and as a general transcription factor. As an activator, CIITA nucleates an enhanceosome consisting of the DNA binding transcription factors RFX, cyclic AMP response element binding protein, and NF-Y. As a general transcription factor, CIITA functionally replaces the TFIID component, TAF1. Like TAF1, CIITA possesses acetyltransferase (AT) and kinase activities, both of which contribute to proper transcription of MHC class I and II genes. The substrate specificity and regulation of the CIITA AT and kinase activities also parallel those of TAF1. In addition, CIITA is tightly regulated by its various regulatory domains that undergo phosphorylation and influence its targeted localization. Thus, a complex picture of the mechanisms regulating CIITA function is emerging suggesting that CIITA has dual roles in transcriptional regulation which are summarized in this review.
Collapse
Affiliation(s)
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, NIH , Bethesda, MD , USA
| |
Collapse
|
74
|
Chen WY, Zhang J, Geng H, Du Z, Nakadai T, Roeder RG. A TAF4 coactivator function for E proteins that involves enhanced TFIID binding. Genes Dev 2013; 27:1596-609. [PMID: 23873942 DOI: 10.1101/gad.216192.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The multisubunit TFIID plays a direct role in transcription initiation by binding to core promoter elements and directing preinitiation complex assembly. Although TFIID may also function as a coactivator through direct interactions with promoter-bound activators, mechanistic aspects of this poorly defined function remain unclear. Here, biochemical studies show a direct TFIID-E-protein interaction that (1) is mediated through interaction of a novel E-protein activation domain (activation domain 3 [AD3]) with the TAF homology (TAFH) domain of TAF4, (2) is critical for activation of a natural target gene by an E protein, and (3) mechanistically acts by enhancing TFIID binding to the core promoter. Complementary assays establish a gene-specific role for the TAFH domain in TFIID recruitment and activation of a large subset of genes in vivo. These results firmly establish TAF4 as a bona fide E-protein coactivator as well as a mechanism involving facilitated TFIID binding through direct interaction with an E-protein activation domain.
Collapse
Affiliation(s)
- Wei-Yi Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
75
|
Soe KC, Devaiah BN, Singer DS. Transcriptional coactivator CIITA, a functional homolog of TAF1, has kinase activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1184-90. [PMID: 24036077 DOI: 10.1016/j.bbagrm.2013.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 11/26/2022]
Abstract
The Major Histocompatibility Complex (MHC) class II transactivator (CIITA) mediates activated immune responses and its deficiency results in the Type II Bare Lymphocyte Syndrome. CIITA is a transcriptional co-activator that regulates γ-interferon-activated transcription of MHC class I and class II genes. It is also a functional homolog of TAF1, a component of the general transcription factor complex TFIID. TAF1 and CIITA both possess intrinsic acetyltransferase (AT) activity that is required for transcription initiation. In response to induction by γ-interferon, CIITA and it's AT activity bypass the requirement for TAF1 AT activity. TAF1 also has kinase activity that is essential for its function. However, no similar activity has been identified for CIITA thus far. Here we report that CIITA, like TAF1, is a serine-threonine kinase. Its substrate specificity parallels, but does not duplicate, that of TAF1 in phosphorylating the TFIID component TAF7, the RAP74 subunit of the general transcription factor TFIIF and histone H2B. Like TAF1, CIITA autophosphorylates, affecting its interaction with TAF7. Additionally, CIITA phosphorylates histone H2B at Ser36, a target of TAF1 that is required for transcription during cell cycle progression and stress response. However, unlike TAF1, CIITA also phosphorylates all the other histones. The identification of this novel kinase activity of CIITA further clarifies its role as a functional homolog of TAF1 which may operate during stress and γ-IFN activated MHC gene transcription.
Collapse
Affiliation(s)
- Katherine C Soe
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
76
|
Abstract
A number of pharmacological agents are currently available for the induction of the fetal hemoglobin (Hb F) to treat the patients with sickle cell disease and beta-thalassemia. In the present review, we summarized the investigation and development of these Hb F-inducing agents and introduced histone deacetylase inhibitors as the new strategy to induce Hb F to treat the hemoglobin disorders
Collapse
Affiliation(s)
- Hua Cao
- Division of Medical Genetics, University of Washington, Seattle 98195, USA.
| |
Collapse
|
77
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
78
|
Gegonne A, Devaiah BN, Singer DS. TAF7: traffic controller in transcription initiation. Transcription 2013; 4:29-33. [PMID: 23340207 DOI: 10.4161/trns.22842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
TAF7, a component of the TFIID complex, controls the first steps of transcription. It interacts with and regulates the enzymatic activities of transcription factors that regulate RNA polymerase II progression. Its diverse functions in transcription initiation are consistent with its essential role in cell proliferation.
Collapse
Affiliation(s)
- Anne Gegonne
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
79
|
Layer JH, Weil PA. Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription. J Biol Chem 2013; 288:23273-94. [PMID: 23814059 DOI: 10.1074/jbc.m113.486829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously shown that yeast TFIID provides coactivator function on the promoters of ribosomal protein-encoding genes (RPGs) by making direct contact with the transactivator repressor activator protein 1 (Rap1). Further, our structural studies of assemblies generated with purified Rap1, TFIID, and TFIIA on RPG enhancer-promoter DNA indicate that Rap1-TFIID interaction induces dramatic conformational rearrangements of enhancer-promoter DNA and TFIID-bound TFIIA. These data indicate a previously unknown yet critical role for yeast TFIIA in the integration of activator-TFIID contacts with promoter conformation and downstream preinitiation complex formation and/or function. Here we describe the use of systematic mutagenesis to define how specific TFIIA contacts contribute to these processes. We have verified that TFIIA is required for RPG transcription in vivo and in vitro, consistent with the existence of a critical Rap1-TFIIA-TFIID interaction network. We also identified essential points of contact for TFIIA and Rap1 within the Rap1 binding domain of the Taf4 subunit of TFIID. These data suggest a mechanism for how interactions between TFIID, TFIIA, and Rap1 contribute to the high rate of transcription initiation seen on RPGs in vivo.
Collapse
Affiliation(s)
- Justin H Layer
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0615, USA
| | | |
Collapse
|
80
|
|
81
|
Structural bioinformatics of the general transcription factor TFIID. Biochimie 2013; 95:680-91. [DOI: 10.1016/j.biochi.2012.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022]
|
82
|
Fu J, Hou J, Liu L, Chen L, Wang M, Shen Y, Zhang Z, Bao X. Interplay between BDF1 and BDF2 and their roles in regulating the yeast salt stress response. FEBS J 2013; 280:1991-2001. [PMID: 23452060 DOI: 10.1111/febs.12219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/23/2013] [Accepted: 02/26/2013] [Indexed: 01/30/2023]
Abstract
The homologous genes BDF1 and BDF2 in Saccharomyces cerevisiae encode bromodomain-containing transcription factors. Although double deletion of BDF1 and BDF2 is lethal, single deletion does not affect cell viability. The bdf2∆ cells showed normal growth upon salt stress. However, the absence of Bdf1p resulted in a salt-sensitive phenotype, and the salt sensitivity was suppressed by overexpression of BDF2. In this study, we further demonstrated that BDF2 shows dosage compensation in suppressing the salt sensitivity of bdf1∆. None of the tested domains replaced the function of intact Bdf1p. The 494-626 region in Bdf1p was more important than the other domains for salt resistance. In addition, Bdf1p negatively regulated the expression of BDF2 by binding its promoter at loci -387 to -48. However, Bdf2p did not affect the expression of BDF1. In addition, Bdf1p and its defective functional domain mutants could combine with Bdf2p. This physical interaction increased the salt tolerance of bdf1∆. The mitochondrial dysfunctions caused by BDF1 deletion were restored by overexpression of BDF2 under salt stress conditions.
Collapse
Affiliation(s)
- Jiafang Fu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Generation of a Monoclonal Antibody Specifically Reacting with Neuron-specific TATA-Box Binding Protein-Associated Factor 1 (N-TAF1). Antibodies (Basel) 2012. [DOI: 10.3390/antib2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
84
|
Shiama N. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 2012; 7:230-6. [PMID: 17708951 DOI: 10.1016/s0962-8924(97)01048-9] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Studies on the mechanisms through which the oncogene products of DNA tumour viruses subvert the physiological processes that control cell proliferation have yielded many important insights into the mammalian cell cycle. In the case of the adenovirus E1a oncoprotein, a number of distinct protein domains are required for it to exert its growth-promoting effects. These domains allow E1a to associate physically with and inactivate cellular proteins that normally restrain proliferation. Recently, a group of E1a-interacting proteins discovered in part through studies on viral oncoproteins has become a major focus of research activity. Members of this family, known as p300/CBP, function to regulate transcription and chromatin, and thereby enable diverse signals, particularly those that facilitate differentiation, to be integrated and coordinated with gene expression. Furthermore, accumulating evidence connects genes encoding p300/CBP with diseases such as cancer.
Collapse
|
85
|
Smolle M, Workman JL. Transcription-associated histone modifications and cryptic transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:84-97. [PMID: 22982198 DOI: 10.1016/j.bbagrm.2012.08.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022]
Abstract
Eukaryotic genomes are packaged into chromatin, a highly organized structure consisting of DNA and histone proteins. All nuclear processes take place in the context of chromatin. Modifications of either DNA or histone proteins have fundamental effects on chromatin structure and function, and thus influence processes such as transcription, replication or recombination. In this review we highlight histone modifications specifically associated with gene transcription by RNA polymerase II and summarize their genomic distributions. Finally, we discuss how (mis-)regulation of these histone modifications perturbs chromatin organization over coding regions and results in the appearance of aberrant, intragenic transcription. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Michaela Smolle
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
86
|
Gatekeepers of chromatin: Small metabolites elicit big changes in gene expression. Trends Biochem Sci 2012; 37:477-83. [PMID: 22944281 DOI: 10.1016/j.tibs.2012.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 01/05/2023]
Abstract
Eukaryotes are constantly fine-tuning their gene expression programs in response to the demands of the environment and the availability of nutrients. Such dynamic regulation of the genome necessitates versatile chromatin architecture. Rapid changes in transcript levels are brought about via a wide range of post-translational modifications of the histone proteins that control chromatin structure. Many enzymes responsible for these modifications have been identified and they require various metabolic cofactors or substrates for their activity. Herein, we highlight recent developments that have begun to reveal particular cellular metabolites that might in fact be underappreciated regulators of gene expression through their ability to modulate particular histone modifications.
Collapse
|
87
|
|
88
|
Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice. Biochem Biophys Res Commun 2012; 425:273-7. [PMID: 22842574 DOI: 10.1016/j.bbrc.2012.07.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 11/22/2022]
Abstract
TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1), which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.
Collapse
|
89
|
Phosphorylation-dependent regulation of cyclin D1 and cyclin A gene transcription by TFIID subunits TAF1 and TAF7. Mol Cell Biol 2012; 32:3358-69. [PMID: 22711989 DOI: 10.1128/mcb.00416-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The largest transcription factor IID (TFIID) subunit, TBP-associated factor 1 (TAF1), possesses protein kinase and histone acetyltransferase (HAT) activities. Both enzymatic activities are essential for transcription from a subset of genes and G(1) progression in mammalian cells. TAF7, another TFIID subunit, binds TAF1 and inhibits TAF1 HAT activity. Here we present data demonstrating that disruption of the TAF1/TAF7 interaction within TFIID by protein phosphorylation leads to activation of TAF1 HAT activity and stimulation of cyclin D1 and cyclin A gene transcription. Overexpression and small interfering RNA knockdown experiments confirmed that TAF7 functions as a transcriptional repressor at these promoters. Release of TAF7 from TFIID by TAF1 phosphorylation of TAF7 increased TAF1 HAT activity and elevated histone H3 acetylation levels at the cyclin D1 and cyclin A promoters. Serine-264 of TAF7 was identified as a substrate for TAF1 kinase activity. Using TAF7 S264A and S264D phosphomutants, we determined that the phosphorylation state of TAF7 at S264 influences the levels of cyclin D1 and cyclin A gene transcription and promoter histone H3 acetylation. Our studies have uncovered a novel function for the TFIID subunit TAF7 as a phosphorylation-dependent regulator of TAF1-catalyzed histone H3 acetylation at the cyclin D1 and cyclin A promoters.
Collapse
|
90
|
Lam KC, Mühlpfordt F, Vaquerizas JM, Raja SJ, Holz H, Luscombe NM, Manke T, Akhtar A. The NSL complex regulates housekeeping genes in Drosophila. PLoS Genet 2012; 8:e1002736. [PMID: 22723752 PMCID: PMC3375229 DOI: 10.1371/journal.pgen.1002736] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/13/2012] [Indexed: 11/18/2022] Open
Abstract
MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP-seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP-seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication-related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription.
Collapse
Affiliation(s)
- Kin Chung Lam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Friederike Mühlpfordt
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juan M. Vaquerizas
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | | | - Herbert Holz
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Nicholas M. Luscombe
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Okinawa Institute of Science and Technology, Kunigami-gun, Okinawa, Japan
| | - Thomas Manke
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
91
|
Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 2012; 189:705-36. [PMID: 22084422 DOI: 10.1534/genetics.111.127019] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms.
Collapse
|
92
|
García-Oliver E, García-Molinero V, Rodríguez-Navarro S. mRNA export and gene expression: the SAGA-TREX-2 connection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:555-65. [PMID: 22178374 DOI: 10.1016/j.bbagrm.2011.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/07/2023]
Abstract
In the gene expression field, different steps have been traditionally viewed as discrete and unconnected events. Nowadays, genetic and functional studies support the model of a coupled network of physical and functional connections to carry out mRNA biogenesis. Gene expression is a coordinated process that comprises different linked steps like transcription, RNA processing, export to the cytoplasm, translation and degradation of mRNAs. Its regulation is essential for cellular survival and can occur at many different levels. Transcription is the central function that occurs in the nucleus, and RNAPII plays an essential role in mRNA biogenesis. During transcription, nascent mRNA is associated with the mRNA-binding proteins involved in processing and export of the mRNA particle. Cells have developed a network of multi-protein complexes whose functions regulate the different factors involved both temporally and spatially. This coupling mechanism acts as a quality control to solve some of the organization problems of gene expression in vivo, where all the factors implicated ensure that mRNAs are ready to be exported and translated. In this review, we focus on the functional coupling of gene transcription and mRNA export, and place particular emphasis on the relationship between the NPC-associated complex, TREX2, and the transcription co-activator, SAGA. We have pinpointed the experimental evidence for Sus1's roles in transcription initiation, transcription elongation and mRNA export. In addition, we have reviewed other NPC-related processes such as gene gating to the nuclear envelope, the chromatin structure and the cellular context in which these processes take place. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Encar García-Oliver
- Centro de Investigación Príncipe Felipe (CIPF), Gene Expression coupled with RNA Transport Laboratory, Valencia, Spain
| | | | | |
Collapse
|
93
|
Martowicz ML, Meyer MB, Pike JW. The mouse RANKL gene locus is defined by a broad pattern of histone H4 acetylation and regulated through distinct distal enhancers. J Cell Biochem 2011; 112:2030-45. [PMID: 21465526 DOI: 10.1002/jcb.23123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RANKL is a stromal cell-derived tumor necrosis factor (TNF)-like factor that plays a primary role in osteoclast formation and function. Recent studies suggest that 1,25(OH)(2) D(3) induces Rankl expression via vitamin D receptor (VDR) interaction at several enhancers located up to 76 kb upstream of the gene's transcriptional start site (TSS). In the current studies, we explored these interactions further using ChIP-chip and RNA analysis. We confirm VDR and RXR binding to the five enhancers described previously and identify two additional sites, one located within the Rankl coding region. We also show that RNA polymerase II is recruited to these enhancers, most likely through transcription factors TBP, TFIIB, and TAF(II) 250. Interestingly, the recruitment of these factors leads to the production of RNA transcripts, although their role at present is unknown. We also discovered that histone H4 acetylation (H4ac) marks many upstream Rankl enhancers under basal conditions and that H4ac is increased upon 1,25(OH)(2) D(3) treatment. Surprisingly, the hormone also induces C/EBPβ binding across the Rankl locus. C/EBPβ binding correlates directly with increased H4ac activity following 1,25(OH)(2) D(3) treatment. Finally, elevated H4ac is restricted to an extended region located between two potential insulator sites occupied by CTCF and Rad21. These data suggest a mechanism whereby 1,25(OH)(2) D(3) functions via the VDR and C/EBPβ to upregulate Rankl expression.
Collapse
Affiliation(s)
- Melissa L Martowicz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
94
|
Shi-Chen Ou D, Lee SB, Chu CS, Chang LH, Chung BC, Juan LJ. Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE1-72 protein. Cell Res 2011; 21:642-53. [PMID: 21221131 PMCID: PMC3203653 DOI: 10.1038/cr.2011.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucose-regulated protein 78 (GRP78), a key regulator of endoplasmic reticulum (ER) stress, facilitates cancer cell growth and viral replication. The mechanism leading to grp78 gene activation during viral infection is largely unknown. In this study, we show that the immediate-early 1 (IE1-72) protein of the human cytomegalovirus (HCMV) is essential for HCMV-mediated GRP78 activation. IE1-72 upregulated grp78 gene expression depending on the ATP-binding site, the zinc-finger domain and the putative leucine-zipper motif of IE1-72, as well as the ER stress response elements (ERSEs) on the grp78 promoter. The purified IE1-72 protein bound to the CCAAT box within ERSE in vitro, whereas deletion mutants of IE1-72 deficient in grp78 promoter stimulation failed to do so. Moreover, IE1-72 binding to the grp78 promoter in infected cells accompanied the recruitment of TATA box-binding protein-associated factor 1 (TAF1), a histone acetyltransferase, and the increased level of acetylated histone H4, an indicator of active-state chromatin. These results provide evidence that HCMV IE1-72 activates grp78 gene expression through direct promoter binding and modulation of the local chromatin structure, indicating an active viral mechanism of cellular chaperone induction for viral growth.
Collapse
Affiliation(s)
- Derick Shi-Chen Ou
- Institute of Molecular and Cellular Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Sung-Bau Lee
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Chi-Shuen Chu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Liang-Hao Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
| | - Bon-chu Chung
- Institute of Molecular and Cellular Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
- Tel: +886-2-2789-9215; Fax: +886-2-27826085
E-mail:
| | - Li-Jung Juan
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115
- Institute of Molecular Medicine, National Taiwan University, No.7, Chung San South Road, Taipei 100
- Tel: +886-2-27871234; Fax: +886-2-27898811
E-mail:
| |
Collapse
|
95
|
Papai G, Weil PA, Schultz P. New insights into the function of transcription factor TFIID from recent structural studies. Curr Opin Genet Dev 2011; 21:219-24. [PMID: 21420851 DOI: 10.1016/j.gde.2011.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/18/2011] [Indexed: 01/31/2023]
Abstract
The general transcription factor IID is a key player in the early events of gene expression. TFIID is a multisubunit complex composed of the TATA binding protein and at least 13 TBP associated factors (TAfs) which recognize the promoter of protein coding genes in an activator dependant way. This review highlights recent findings on the molecular architecture and dynamics of TFIID. The structural analysis of functional transcription complexes formed by TFIID, TFIIA, activators and/or promoter DNA illuminates the faculty of TFIID to adjust to various promoter architectures and highlights its role as a platform for preinitiation complex assembly.
Collapse
Affiliation(s)
- Gabor Papai
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), U964 Inserm, UMR7104 CNRS-Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch, France
| | | | | |
Collapse
|
96
|
Boutet SC, Biressi S, Iori K, Natu V, Rando TA. Taf1 regulates Pax3 protein by monoubiquitination in skeletal muscle progenitors. Mol Cell 2011; 40:749-61. [PMID: 21145483 DOI: 10.1016/j.molcel.2010.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 06/22/2010] [Accepted: 09/15/2010] [Indexed: 11/19/2022]
Abstract
Pax3 plays critical roles during developmental and postnatal myogenesis. We have previously shown that levels of Pax3 protein are regulated by monoubiquitination and proteasomal degradation during postnatal myogenesis, but none of the key regulators of the monoubiquitination process were known. Here we show that Pax3 monoubiquitination is mediated by the ubiquitin-activating/conjugating activity of Taf1, a component of the core transcriptional machinery that was recently reported to be downregulated during myogenic differentiation. We show that Taf1 binds directly to Pax3 and overexpression of Taf1 increases the level of monoubiquitinated Pax3 and its degradation by the proteasome. A decrease of Taf1 results in a decrease in Pax3 monoubiquitination, an increase in the levels of Pax3 protein, and a concomitant increase in Pax3-mediated inhibition of myogenic differentiation and myoblast migration. These results suggest that Taf1 regulates Pax3 protein levels through its ability to mediate monoubiquitination, revealing a critical interaction between two proteins that are involved in distinct aspects of myogenic differentiation. Finally, these results suggest that the components of the core transcriptional are integrally involved in the process of myogenic differentiation, acting as nodal regulators of the differentiation program.
Collapse
Affiliation(s)
- Stéphane C Boutet
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
97
|
Abstract
Epigenetic modifications regulate critical functions that underlie chromosome metabolism. Understanding the molecular changes to chromatin structure and the functional relationship with altered signaling pathways is now considered to represent an important conceptual challenge to explain diabetes and the phenomenon of metabolic or hyperglycemic memory. Although it remains unknown as to the specific molecular mechanisms whereby hyperglycemic memory leads to the development of diabetic vascular complications, emerging evidence now indicates that critical gene-activating epigenetic changes may confer future cell memories. Chemical modification of the H3 histone tail of lysine 4 and 9 has recently been identified with gene expression conferred by hyperglycemia. The persistence of these key epigenetic determinants in models of glycemic variability and the development of diabetic complications has been associated with these primary findings. Transient hyperglycemia promotes gene-activating epigenetic changes and signaling events critical in the development and progression of vascular complications. As for the role of specific epigenomic changes, it is postulated that further understanding enzymes involved in writing and erasing chemical changes could transform our understanding of the pathways implicated in diabetic vascular injury providing new therapeutic strategies.
Collapse
Affiliation(s)
- Mark E Cooper
- Baker IDI Heart and Diabetes Institute, Monash University, Victoria, Australia
| | | |
Collapse
|
98
|
Gardner KE, Zhou L, Parra MA, Chen X, Strahl BD. Identification of lysine 37 of histone H2B as a novel site of methylation. PLoS One 2011; 6:e16244. [PMID: 21249157 PMCID: PMC3020972 DOI: 10.1371/journal.pone.0016244] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022] Open
Abstract
Recent technological advancements have allowed for highly-sophisticated mass spectrometry-based studies of the histone code, which predicts that combinations of post-translational modifications (PTMs) on histone proteins result in defined biological outcomes mediated by effector proteins that recognize such marks. While significant progress has been made in the identification and characterization of histone PTMs, a full appreciation of the complexity of the histone code will require a complete understanding of all the modifications that putatively contribute to it. Here, using the top-down mass spectrometry approach for identifying PTMs on full-length histones, we report that lysine 37 of histone H2B is dimethylated in the budding yeast Saccharomyces cerevisiae. By generating a modification-specific antibody and yeast strains that harbor mutations in the putative site of methylation, we provide evidence that this mark exist in vivo. Importantly, we show that this lysine residue is highly conserved through evolution, and provide evidence that this methylation event also occurs in higher eukaryotes. By identifying a novel site of histone methylation, this study adds to our overall understanding of the complex number of histone modifications that contribute to chromatin function.
Collapse
Affiliation(s)
- Kathryn E. Gardner
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Li Zhou
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael A. Parra
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xian Chen
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
99
|
Chemical biology of histone acetyltransferase natural compounds modulators. Mol Divers 2011; 15:401-16. [PMID: 21197572 DOI: 10.1007/s11030-010-9299-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 12/08/2010] [Indexed: 12/17/2022]
Abstract
Histone acetyltransferases (HATs) are a class of epigenetic enzymes crucial for chromatin restructuring and transcriptional regulation in eukaryotic cells, thus being a promising target for therapeutic development. Nonetheless, differently from histone deacetylases (HDACs) inhibitors, there is still paucity of small-molecule modulators of HAT activity. After a decline during past decade, natural products and their derivatives could be once again a valuable tool in the lead discovery process and meet such need of Novel Chemical Entities (NCEs). In this review, we will provide a comprehensive summary on the discovery of small-molecule HAT modulators from naturally occurring molecular scaffolds.
Collapse
|
100
|
Devaiah BN, Lu H, Gegonne A, Sercan Z, Zhang H, Clifford RJ, Lee MP, Singer DS. Novel functions for TAF7, a regulator of TAF1-independent transcription. J Biol Chem 2010; 285:38772-80. [PMID: 20937824 DOI: 10.1074/jbc.m110.173864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcription factor TFIID components TAF7 and TAF1 regulate eukaryotic transcription initiation. TAF7 regulates transcription initiation of TAF1-dependent genes by binding to the acetyltransferase (AT) domain of TAF1 and inhibiting the enzymatic activity that is essential for transcription. TAF7 is released from the TAF1-TFIID complex upon completion of preinitiation complex assembly, allowing transcription to initiate. However, not all transcription is TAF1-dependent, and the role of TAF7 in regulating TAF1-independent transcription has not been defined. The IFNγ-induced transcriptional co-activator CIITA activates MHC class I and II genes, which are vital for immune responses, in a TAF1-independent manner. Activation by CIITA depends on its intrinsic AT activity. We now show that TAF7 binds to CIITA and inhibits its AT activity, thereby repressing activated transcription. Consistent with this TAF7 function, siRNA-mediated depletion of TAF7 resulted in increased CIITA-dependent transcription. A more global role for TAF7 as a regulator of transcription was revealed by expression profiling analysis: expression of 30-40% of genes affected by TAF7 depletion was independent of either TAF1 or CIITA. Surprisingly, although TAF1-dependent transcripts were largely down-regulated by TAF7 depletion, TAF1-independent transcripts were predominantly up-regulated. We conclude that TAF7, until now considered only a TFIID component and regulator of TAF1-dependent transcription, also regulates TAF1-independent transcription.
Collapse
Affiliation(s)
- Ballachanda N Devaiah
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|