51
|
Ahuja S, Lazar IM. Systems-Level Proteomics Evaluation of Microglia Response to Tumor-Supportive Anti-Inflammatory Cytokines. Front Immunol 2021; 12:646043. [PMID: 34566949 PMCID: PMC8458581 DOI: 10.3389/fimmu.2021.646043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Microglia safeguard the CNS against injuries and pathogens, and in the presence of certain harmful stimuli are capable of inducing a disease-dependent inflammatory response. When exposed to anti-inflammatory cytokines, however, these cells possess the ability to switch from an inflammatory to an immunosuppressive phenotype. Cancer cells exploit this property to evade the immune system, and elicit an anti-inflammatory microenvironment that facilitates tumor attachment and growth. Objective The tumor-supportive biological processes that are activated in microglia cells in response to anti-inflammatory cytokines released from cancer cells were explored with mass spectrometry and proteomic technologies. Methods Serum-depleted and non-depleted human microglia cells (HMC3) were treated with a cocktail of IL-4, IL-13, IL-10, TGFβ, and CCL2. The cellular protein extracts were analyzed by LC-MS/MS. Using functional annotation clustering tools, statistically significant proteins that displayed a change in abundance between cytokine-treated and non-treated cells were mapped to their biological networks and pathways. Results The proteomic analysis of HMC3 cells enabled the identification of ~10,000 proteins. Stimulation with anti-inflammatory cytokines resulted in the activation of distinct, yet integrated clusters of proteins that trigger downstream a number of tumor-promoting biological processes. The observed changes could be classified into four major categories, i.e., mitochondrial gene expression, ECM remodeling, immune response, and impaired cell cycle progression. Intracellular immune activation was mediated mainly by the transducers of MAPK, STAT, TGFβ, NFKB, and integrin signaling pathways. Abundant collagen formation along with the expression of additional receptors, matrix components, growth factors, proteases and protease inhibitors, was indicative of ECM remodeling processes supportive of cell-cell and cell-matrix adhesion. Overexpression of integrins and their modulators was reflective of signaling processes that link ECM reorganization with cytoskeletal re-arrangements supportive of cell migration. Antigen processing/presentation was represented by HLA class I histocompatibility antigens, and correlated with upregulated proteasomal subunits, vesicular/viral transport, and secretory processes. Immunosuppressive and proangiogenic chemokines, as well as anti-angiogenic factors, were detectable in low abundance. Pronounced pro-inflammatory, chemotactic or phagocytic trends were not observed, however, the expression of certain receptors, signaling and ECM proteins indicated the presence of such capabilities. Conclusions Comprehensive proteomic profiling of HMC3 cells stimulated with anti-inflammatory cytokines revealed a spectrum of microglia phenotypes supportive of cancer development in the brain via microenvironment-dependent biological mechanisms.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
52
|
Kukimoto-Niino M, Ihara K, Murayama K, Shirouzu M. Structural insights into the small GTPase specificity of the DOCK guanine nucleotide exchange factors. Curr Opin Struct Biol 2021; 71:249-258. [PMID: 34507037 DOI: 10.1016/j.sbi.2021.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
The dedicator of cytokinesis (DOCK) family of guanine nucleotide exchange factors (GEFs) regulates cytoskeletal dynamics by activating the GTPases Rac and/or Cdc42. Eleven human DOCK proteins play various important roles in developmental processes and the immune system. Of these, DOCK1-5 proteins bind to engulfment and cell motility (ELMO) proteins to perform their physiological functions. Recent structural studies have greatly enhanced our understanding of the complex and diverse mechanisms of DOCK GEF activity and GTPase recognition and its regulation by ELMO. This review is focused on gaining structural insights into the substrate specificity of the DOCK GEFs, and discuss how Rac and Cdc42 are specifically recognized by the catalytic DHR-2 and surrounding domains of DOCK or binding partners.
Collapse
Affiliation(s)
- Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazutaka Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
53
|
Lukácsi S, Farkas Z, Saskői É, Bajtay Z, Takács-Vellai K. Conserved and Distinct Elements of Phagocytosis in Human and C. elegans. Int J Mol Sci 2021; 22:ijms22168934. [PMID: 34445642 PMCID: PMC8396242 DOI: 10.3390/ijms22168934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Endocytosis provides the cellular nutrition and homeostasis of organisms, but pathogens often take advantage of this entry point to infect host cells. This is counteracted by phagocytosis that plays a key role in the protection against invading microbes both during the initial engulfment of pathogens and in the clearance of infected cells. Phagocytic cells balance two vital functions: preventing the accumulation of cell corpses to avoid pathological inflammation and autoimmunity, whilst maintaining host defence. In this review, we compare elements of phagocytosis in mammals and the nematode Caenorhabditis elegans. Initial recognition of infection requires different mechanisms. In mammals, pattern recognition receptors bind pathogens directly, whereas activation of the innate immune response in the nematode rather relies on the detection of cellular damage. In contrast, molecules involved in efferocytosis—the engulfment and elimination of dying cells and cell debris—are highly conserved between the two species. Therefore, C. elegans is a powerful model to research mechanisms of the phagocytic machinery. Finally, we show that both mammalian and worm studies help to understand how the two phagocytic functions are interconnected: emerging data suggest the activation of innate immunity as a consequence of defective apoptotic cell clearance.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (S.L.); (Z.B.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
| | - Éva Saskői
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
| | - Zsuzsa Bajtay
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (S.L.); (Z.B.)
- Department of Immunology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
- Correspondence:
| |
Collapse
|
54
|
ELMO1 signaling is a promoter of osteoclast function and bone loss. Nat Commun 2021; 12:4974. [PMID: 34404802 PMCID: PMC8371122 DOI: 10.1038/s41467-021-25239-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis affects millions worldwide and is often caused by osteoclast induced bone loss. Here, we identify the cytoplasmic protein ELMO1 as an important ‘signaling node’ in osteoclasts. We note that ELMO1 SNPs associate with bone abnormalities in humans, and that ELMO1 deletion in mice reduces bone loss in four in vivo models: osteoprotegerin deficiency, ovariectomy, and two types of inflammatory arthritis. Our transcriptomic analyses coupled with CRISPR/Cas9 genetic deletion identify Elmo1 associated regulators of osteoclast function, including cathepsin G and myeloperoxidase. Further, we define the ‘ELMO1 interactome’ in osteoclasts via proteomics and reveal proteins required for bone degradation. ELMO1 also contributes to osteoclast sealing zone on bone-like surfaces and distribution of osteoclast-specific proteases. Finally, a 3D structure-based ELMO1 inhibitory peptide reduces bone resorption in wild type osteoclasts. Collectively, we identify ELMO1 as a signaling hub that regulates osteoclast function and bone loss, with relevance to osteoporosis and arthritis. Osteoporosis and bone fractures affect millions of patients worldwide and are often due to increased bone resorption. Here the authors identify the cytoplasmic protein ELMO1 as an important ‘signaling node’ promoting the bone resorption function of osteoclasts.
Collapse
|
55
|
Jimi E, Honda H, Nakamura I. The unique function of p130Cas in regulating the bone metabolism. Pharmacol Ther 2021; 230:107965. [PMID: 34391790 DOI: 10.1016/j.pharmthera.2021.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/20/2021] [Indexed: 11/19/2022]
Abstract
p130 Crk-associated substrate (Cas) functions as an adapter protein and plays important roles in certain cell functions, such as cell proliferation, spreading, migration, and invasion. Furthermore, it has recently been reported to have a new function as a mechanosensor. Since bone is a tissue that is constantly under gravity, it is exposed to mechanical stress. Mechanical unloading, such as in a microgravity environment in space or during bed rest, leads to a decrease in bone mass because of the suppression of bone formation and the stimulation of bone resorption. Osteoclasts are multinucleated bone-resorbing giant cells that recognize bone and then form a ruffled border in the resorption lacuna. p130Cas is a molecule located downstream of c-Src that is important for the formation of a ruffled border in osteoclasts. Indeed, osteoclast-specific p130Cas-deficient mice exhibit osteopetrosis due to osteoclast dysfunction, similar to c-Src-deficient mice. Osteoblasts subjected to mechanical stress induce both the phosphorylation of p130Cas and osteoblast differentiation. In osteocytes, mechanical stress regulates bone mass by shuttling p130Cas between the cytoplasm and nucleus. Oral squamous cell carcinoma (OSCC) cells express p130Cas more strongly than epithelial cells in normal tissues. The knockdown of p130Cas in OSCC cells suppressed the cell growth, the expression of receptor activator of NF-κB ligand, which induces osteoclast formation, and bone invasion by OSCC. Taken together, these findings suggest that p130Cas might be a novel therapeutic target molecule in bone diseases, such as osteoporosis, rheumatoid arthritis, bone loss due to bed rest, and bone invasion and metastasis of cancer.
Collapse
Affiliation(s)
- Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| |
Collapse
|
56
|
Kukimoto-Niino M, Katsura K, Kaushik R, Ehara H, Yokoyama T, Uchikubo-Kamo T, Nakagawa R, Mishima-Tsumagari C, Yonemochi M, Ikeda M, Hanada K, Zhang KYJ, Shirouzu M. Cryo-EM structure of the human ELMO1-DOCK5-Rac1 complex. SCIENCE ADVANCES 2021; 7:7/30/eabg3147. [PMID: 34290093 PMCID: PMC8294757 DOI: 10.1126/sciadv.abg3147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
The dedicator of cytokinesis (DOCK) family of guanine nucleotide exchange factors (GEFs) promotes cell motility, phagocytosis, and cancer metastasis through activation of Rho guanosine triphosphatases. Engulfment and cell motility (ELMO) proteins are binding partners of DOCK and regulate Rac activation. Here, we report the cryo-electron microscopy structure of the active ELMO1-DOCK5 complex bound to Rac1 at 3.8-Å resolution. The C-terminal region of ELMO1, including the pleckstrin homology (PH) domain, aids in the binding of the catalytic DOCK homology region 2 (DHR-2) domain of DOCK5 to Rac1 in its nucleotide-free state. A complex α-helical scaffold between ELMO1 and DOCK5 stabilizes the binding of Rac1. Mutagenesis studies revealed that the PH domain of ELMO1 enhances the GEF activity of DOCK5 through specific interactions with Rac1. The structure provides insights into how ELMO modulates the biochemical activity of DOCK and how Rac selectivity is achieved by ELMO.
Collapse
Affiliation(s)
- Mutsuko Kukimoto-Niino
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazushige Katsura
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Rahul Kaushik
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Ehara
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Yokoyama
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tomomi Uchikubo-Kamo
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Chiemi Mishima-Tsumagari
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mayumi Yonemochi
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mariko Ikeda
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuharu Hanada
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
57
|
Kakoki M, Ramanathan PV, Hagaman JR, Grant R, Wilder JC, Taylor JM, Charles Jennette J, Smithies O, Maeda-Smithies N. Cyanocobalamin prevents cardiomyopathy in type 1 diabetes by modulating oxidative stress and DNMT-SOCS1/3-IGF-1 signaling. Commun Biol 2021; 4:775. [PMID: 34163008 PMCID: PMC8222371 DOI: 10.1038/s42003-021-02291-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with long-standing diabetes have a high risk for cardiac complications that is exacerbated by increased reactive oxygen species (ROS) production. We found that feeding cyanocobalamin (B12), a scavenger of superoxide, not only prevented but reversed signs of cardiomyopathy in type 1 diabetic Elmo1H/H Ins2Akita/+ mice. ROS reductions in plasma and hearts were comparable to those in mice treated with other antioxidants, N-acetyl-L-cysteine or tempol, but B12 produced better cardioprotective effects. Diabetes markedly decreased plasma insulin-like growth factor (IGF)-1 levels, while B12, but not N-acetyl-L-cysteine nor tempol, restored them. B12 activated hepatic IGF-1 production via normalization of S-adenosylmethionine levels, DNA methyltransferase (DNMT)-1/3a/3b mRNA, and DNA methylation of promoters for suppressor of cytokine signaling (SOCS)-1/3. Reductions of cardiac IGF-1 mRNA and phosphorylated IGF-1 receptors were also restored. Thus, B12 is a promising option for preventing diabetic cardiomyopathy via ROS reduction and IGF-1 retrieval through DNMT-SOCS1/3 signaling.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Purushotham V Ramanathan
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John R Hagaman
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruriko Grant
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer C Wilder
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oliver Smithies
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
58
|
Britt EA, Gitau V, Saha A, Williamson AP. Modular Organization of Engulfment Receptors and Proximal Signaling Networks: Avenues to Reprogram Phagocytosis. Front Immunol 2021; 12:661974. [PMID: 33953723 PMCID: PMC8092387 DOI: 10.3389/fimmu.2021.661974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Transmembrane protein engulfment receptors expressed on the surface of phagocytes engage ligands on apoptotic cells and debris to initiate a sequence of events culminating in material internalization and immunologically beneficial outcomes. Engulfment receptors are modular, comprised of functionally independent extracellular ligation domains and cytosolic signaling motifs. Cognate kinases, adaptors, and phosphatases regulate engulfment by controlling the degree of receptor activation in phagocyte plasma membranes, thus acting as receptor-proximal signaling modules. Here, we review recent efforts to reprogram phagocytes using modular synthetic receptors composed of antibody-based extracellular domains fused to engulfment receptor signaling domains. To aid the development of new phagocyte reprogramming methods, we then define the kinases, adaptors, and phosphatases that regulate a conserved family of engulfment receptors. Finally, we discuss current challenges and opportunities for the field.
Collapse
Affiliation(s)
- Emily A Britt
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Vanessa Gitau
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Amara Saha
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Adam P Williamson
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| |
Collapse
|
59
|
Thompson AP, Bitsina C, Gray JL, von Delft F, Brennan PE. RHO to the DOCK for GDP disembarking: Structural insights into the DOCK GTPase nucleotide exchange factors. J Biol Chem 2021; 296:100521. [PMID: 33684443 PMCID: PMC8063744 DOI: 10.1016/j.jbc.2021.100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
The human dedicator of cytokinesis (DOCK) family consists of 11 structurally conserved proteins that serve as atypical RHO guanine nucleotide exchange factors (RHO GEFs). These regulatory proteins act as mediators in numerous cellular cascades that promote cytoskeletal remodeling, playing roles in various crucial processes such as differentiation, migration, polarization, and axon growth in neurons. At the molecular level, DOCK DHR2 domains facilitate nucleotide dissociation from small GTPases, a process that is otherwise too slow for rapid spatiotemporal control of cellular signaling. Here, we provide an overview of the biological and structural characteristics for the various DOCK proteins and describe how they differ from other RHO GEFs and between DOCK subfamilies. The expression of the family varies depending on cell or tissue type, and they are consequently implicated in a broad range of disease phenotypes, particularly in the brain. A growing body of available structural information reveals the mechanism by which the catalytic DHR2 domain elicits nucleotide dissociation and also indicates strategies for the discovery and design of high-affinity small-molecule inhibitors. Such compounds could serve as chemical probes to interrogate the cellular function and provide starting points for drug discovery of this important class of enzymes.
Collapse
Affiliation(s)
- Andrew P Thompson
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Christina Bitsina
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Janine L Gray
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Frank von Delft
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom; Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Paul E Brennan
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
60
|
Perez MA, Watts JL. Worms, Fat, and Death: Caenorhabditis elegans Lipid Metabolites Regulate Cell Death. Metabolites 2021; 11:metabo11020125. [PMID: 33672292 PMCID: PMC7926963 DOI: 10.3390/metabo11020125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is well-known as the model organism used to elucidate the genetic pathways underlying the first described form of regulated cell death, apoptosis. Since then, C. elegans investigations have contributed to the further understanding of lipids in apoptosis, especially the roles of phosphatidylserines and phosphatidylinositols. More recently, studies in C. elegans have shown that dietary polyunsaturated fatty acids can induce the non-apoptotic, iron-dependent form of cell death, ferroptosis. In this review, we examine the roles of various lipids in specific aspects of regulated cell death, emphasizing recent work in C. elegans.
Collapse
|
61
|
Bonavita R, Laukkanen MO. Common Signal Transduction Molecules Activated by Bacterial Entry into a Host Cell and by Reactive Oxygen Species. Antioxid Redox Signal 2021; 34:486-503. [PMID: 32600071 DOI: 10.1089/ars.2019.7968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: An increasing number of pathogens are acquiring resistance to antibiotics. Efficient antimicrobial drug regimens are important even for the most advanced therapies, which range from cutting-edge invasive clinical protocols, such as robotic surgeries, to the treatment of harmless bacterial diseases and to minor scratches to the skin. Therefore, there is an urgent need to survey alternative antimicrobial drugs that can reinforce or replace existing antibiotics. Recent Advances: Bacterial proteins that are critical for energy metabolism, promising novel anticancer thiourea derivatives, and the use of synthetic molecules that increase the sensitivity of currently used antibiotics are among the recently discovered antimicrobial drugs. Critical Issues: In the development of new drugs, serious consideration should be given to the previous bacterial evolutionary selection caused by antibiotics, by the high proliferation rate of bacteria, and by the simple prokaryotic structure of bacteria. Future Directions: The survey of drug targets has mainly focused on bacterial proteins, although host signaling molecules involved in the treatment of various pathologies may have unknown antimicrobial characteristics. Recent data have suggested that small molecule inhibitors might enhance the effect of antibiotics, for example, by limiting bacterial entry into host cells. Phagocytosis, the mechanism by which host cells internalize pathogens through β-actin cytoskeletal rearrangement, induces calcium signaling, small GTPase activation, and phosphorylation of the phosphatidylinositol 3-kinase-serine/threonine-specific protein kinase B pathway. Antioxid. Redox Signal. 34, 486-503.
Collapse
Affiliation(s)
- Raffaella Bonavita
- Experimental Institute of Endocrinology and Oncology G. Salvatore, IEOS CNR, Naples, Italy
| | | |
Collapse
|
62
|
Karimi K, Farid AH, Myles S, Miar Y. Detection of selection signatures for response to Aleutian mink disease virus infection in American mink. Sci Rep 2021; 11:2944. [PMID: 33536540 PMCID: PMC7859209 DOI: 10.1038/s41598-021-82522-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Aleutian disease (AD) is the most significant health issue for farmed American mink. The objective of this study was to identify the genomic regions subjected to selection for response to infection with Aleutian mink disease virus (AMDV) in American mink using genotyping by sequencing (GBS) data. A total of 225 black mink were inoculated with AMDV and genotyped using a GBS assay based on the sequencing of ApeKI-digested libraries. Five AD-characterized phenotypes were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (FST) and nucleotide diversity (θπ), that were validated by haplotype-based (hap-FLK) test. The total of 99 putatively selected regions harbouring 63 genes were detected in different groups. The gene ontology revealed numerous genes related to immune response (e.g. TRAF3IP2, WDR7, SWAP70, CBFB, and GPR65), liver development (e.g. SULF2, SRSF5) and reproduction process (e.g. FBXO5, CatSperβ, CATSPER4, and IGF2R). The hapFLK test supported two strongly selected regions that contained five candidate genes related to immune response, virus–host interaction, reproduction and liver regeneration. This study provided the first map of putative selection signals of response to AMDV infection in American mink, bringing new insights into genomic regions controlling the AD phenotypes.
Collapse
Affiliation(s)
- Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - A Hossain Farid
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Sean Myles
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
63
|
Ghose P, Wehman AM. The developmental and physiological roles of phagocytosis in Caenorhabditis elegans. Curr Top Dev Biol 2020; 144:409-432. [PMID: 33992160 DOI: 10.1016/bs.ctdb.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phagocytosis is an essential process by which cellular debris and pathogens are cleared from the environment. Cells extend their plasma membrane to engulf objects and contain them within a limiting membrane for isolation from the cytosol or for intracellular degradation in phagolysosomes. The basic mechanisms of phagocytosis and intracellular clearance are well conserved between animals. Indeed, much of our understanding is derived from studies on the nematode worm, Caenorhabditis elegans. Here, we review the latest progress in understanding the mechanisms and functions of phagocytic clearance from C. elegans studies. In particular, we highlight new insights into phagocytic signaling pathways, phagosome formation and phagolysosome resolution, as well as the challenges in studying these cyclic processes.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, University of Texas, Arlington, TX, United States.
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, United States.
| |
Collapse
|
64
|
Mizuno H, Kihara Y. Druggable Lipid GPCRs: Past, Present, and Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:223-258. [PMID: 32894513 DOI: 10.1007/978-3-030-50621-6_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) have seven transmembrane spanning domains and comprise the largest superfamily with ~800 receptors in humans. GPCRs are attractive targets for drug discovery because they transduce intracellular signaling in response to endogenous ligands via heterotrimeric G proteins or arrestins, resulting in a wide variety of physiological and pathophysiological responses. The endogenous ligands for GPCRs are highly chemically diverse and include ions, biogenic amines, nucleotides, peptides, and lipids. In this review, we follow the KonMari method to better understand druggable lipid GPCRs. First, we have a comprehensive tidying up of lipid GPCRs including receptors for prostanoids, leukotrienes, specialized pro-resolving mediators (SPMs), lysophospholipids, sphingosine 1-phosphate (S1P), cannabinoids, platelet-activating factor (PAF), free fatty acids (FFAs), and sterols. This tidying up consolidates 46 lipid GPCRs and declutters several perplexing lipid GPCRs. Then, we further tidy up the lipid GPCR-directed drugs from the literature and databases, which identified 24 clinical drugs targeting 16 unique lipid GPCRs available in the market and 44 drugs under evaluation in more than 100 clinical trials as of 2019. Finally, we introduce drug designs for GPCRs that spark joy, such as positive or negative allosteric modulators (PAM or NAM), biased agonism, functional antagonism like fingolimod, and monoclonal antibodies (MAbs). These strategic drug designs may increase the efficacy and specificity of drugs and reduce side effects. Technological advances will help to discover more endogenous lipid ligands from the vast number of remaining orphan GPCRs and will also lead to the development novel lipid GPCR drugs to treat various diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
65
|
Nagata S, Segawa K. Sensing and clearance of apoptotic cells. Curr Opin Immunol 2020; 68:1-8. [PMID: 32853880 DOI: 10.1016/j.coi.2020.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Macrophages specifically engulf apoptotic cells but not healthy cells. Phosphatidylserine (PtdSer) is localized at the inner leaflet of plasma membranes as a result of the action of flippases (ATP11A and 11C). When cells undergo apoptosis, caspase 3 cleaves and inactivates the flippases, while simultaneously cleaving XKR8 to activate its phospholipid scramblase activity. PtdSer is thus swiftly and irreversibly exposed to the cell surface as an 'eat me' signal. Tissue resident macrophages recognize the apoptotic cells using a PtdSer-receptor TIM4 and engulf them with TAM tyrosine-kinase receptors, and integrins. The PtdSer 'eat me' signal appears to override 'don't eat me' signals in most cases.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Katsumori Segawa
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
66
|
Asare PF, Roscioli E, Hurtado PR, Tran HB, Mah CY, Hodge S. LC3-Associated Phagocytosis (LAP): A Potentially Influential Mediator of Efferocytosis-Related Tumor Progression and Aggressiveness. Front Oncol 2020; 10:1298. [PMID: 32850405 PMCID: PMC7422669 DOI: 10.3389/fonc.2020.01298] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
One aim of cancer therapies is to induce apoptosis of tumor cells. Efficient removal of the apoptotic cells requires coordinated efforts between the processes of efferocytosis and LC3-associated phagocytosis (LAP). However, this activity has also been shown to produce anti-inflammatory and immunosuppressive signals that can be utilized by live tumor cells to evade immune defense mechanisms, resulting in tumor progression and aggressiveness. In the absence of LAP, mice exhibit suppressed tumor growth during efferocytosis, while LAP-sufficient mice show enhanced tumor progression. Little is known about how LAP or its regulators directly affect efferocytosis, tumor growth and treatment responses, and identifying the mechanisms involved has the potential to lead to the discovery of novel approaches to target cancer cells. Also incompletely understood is the direct effect of apoptotic cancer cells on LAP. This is particularly important as induction of apoptosis by current cytotoxic cancer therapies can potentially stimulate LAP following efferocytosis. Herein, we highlight the current understanding of the role of LAP and its relationship with efferocytosis in the tumor microenvironment with a view to presenting novel therapeutic strategies.
Collapse
Affiliation(s)
- Patrick F. Asare
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Eugene Roscioli
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Plinio R. Hurtado
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Renal Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Hai B. Tran
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Chui Yan Mah
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Freemasons Foundation Centre for Men's Health, Adelaide, SA, Australia
| | - Sandra Hodge
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
67
|
Chang L, Yang J, Jo CH, Boland A, Zhang Z, McLaughlin SH, Abu-Thuraia A, Killoran RC, Smith MJ, Côté JF, Barford D. Structure of the DOCK2-ELMO1 complex provides insights into regulation of the auto-inhibited state. Nat Commun 2020; 11:3464. [PMID: 32651375 PMCID: PMC7351999 DOI: 10.1038/s41467-020-17271-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
DOCK (dedicator of cytokinesis) proteins are multidomain guanine nucleotide exchange factors (GEFs) for RHO GTPases that regulate intracellular actin dynamics. DOCK proteins share catalytic (DOCKDHR2) and membrane-associated (DOCKDHR1) domains. The structurally-related DOCK1 and DOCK2 GEFs are specific for RAC, and require ELMO (engulfment and cell motility) proteins for function. The N-terminal RAS-binding domain (RBD) of ELMO (ELMORBD) interacts with RHOG to modulate DOCK1/2 activity. Here, we determine the cryo-EM structures of DOCK2-ELMO1 alone, and as a ternary complex with RAC1, together with the crystal structure of a RHOG-ELMO2RBD complex. The binary DOCK2-ELMO1 complex adopts a closed, auto-inhibited conformation. Relief of auto-inhibition to an active, open state, due to a conformational change of the ELMO1 subunit, exposes binding sites for RAC1 on DOCK2DHR2, and RHOG and BAI GPCRs on ELMO1. Our structure explains how up-stream effectors, including DOCK2 and ELMO1 phosphorylation, destabilise the auto-inhibited state to promote an active GEF.
Collapse
Affiliation(s)
- Leifu Chang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Andreas Boland
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Department of Molecular Biology, Science III, University of Geneva, Geneva, Switzerland
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - Afnan Abu-Thuraia
- Montreal Institute of Clinical Research (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Ryan C Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jean-Francois Côté
- Montreal Institute of Clinical Research (IRCM), Montréal, QC, H2W 1R7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
68
|
Kim D, Lee SA, Moon H, Kim K, Park D. The Tim gene family in efferocytosis. Genes Genomics 2020; 42:979-986. [PMID: 32648232 DOI: 10.1007/s13258-020-00969-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
One of the key features of the plasma membrane is the asymmetrical distribution of phospholipids across it. Especially, phosphatidylserine (PS) exclusively locates on its inner leaflet. Thus, the exposure of PS on the surface of cells could function as a signal initiating various cellular processes such as phagocytosis of apoptotic cells called efferocytosis, blood clotting, muscle formation, and viral entry. Indeed, PS on apoptotic cells stimulates phagocytes to engulf them and functions as an essential ligand for efferocytosis. Due to the importance of PS in efferocytosis, the existence of the PS receptor had been conceived. However, the PS receptor had not been revealed for a long time. Thus, the first identification of the PS receptor was significant excitement. Tim-4, a member of the T cell immunoglobulin and mucin domain containing family of genes, was one of PS receptors which first identified and received the greatest attention due to its expression in macrophages and relevance to autoimmune and allergic diseases. This review will serve to provide a comprehensive overview of Tim proteins as PS receptors.
Collapse
Affiliation(s)
- Deokhwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Sang-Ah Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hyunji Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Kwanhyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea. .,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
69
|
Turn RE, East MP, Prekeris R, Kahn RA. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell 2020; 31:2070-2091. [PMID: 32614697 PMCID: PMC7543072 DOI: 10.1091/mbc.e20-01-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Michael P East
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
70
|
Chen Y, Chen Y, Yin W, Han H, Miller H, Li J, Herrada AA, Kubo M, Sui Z, Gong Q, Liu C. The regulation of DOCK family proteins on T and B cells. J Leukoc Biol 2020; 109:383-394. [PMID: 32542827 DOI: 10.1002/jlb.1mr0520-221rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/01/2023] Open
Abstract
The dedicator of cytokinesis (DOCK) family proteins consist of 11 members, each of which contains 2 domains, DOCK homology region (DHR)-1 and DHR-2, and as guanine nucleotide exchange factors, they mediate activation of small GTPases. Both DOCK2 and DOCK8 deficiencies in humans can cause severe combined immunodeficiency, but they have different characteristics. DOCK8 defect mainly causes high IgE, allergic disease, refractory skin virus infection, and increased incidence of malignant tumor, whereas DOCK2 defect mainly causes early-onset, invasive infection with less atopy and increased IgE. However, the underlying molecular mechanisms causing the disease remain unclear. This paper discusses the role of DOCK family proteins in regulating B and T cells, including development, survival, migration, activation, immune tolerance, and immune functions. Moreover, related signal pathways or molecule mechanisms are also described in this review. A greater understanding of DOCK family proteins and their regulation of lymphocyte functions may facilitate the development of new therapeutics for immunodeficient patients and improve their prognosis.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi, Zunyi, Guizhou, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Han
- Department of Hematology of Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jianrong Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andres A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Talca, Chile
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Zhiwei Sui
- Division of Medical and Biological Measurement, National Institute of Metrology, Beijing, China
| | - Quan Gong
- Department of immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
71
|
Mu G, Xiang Q, Zhang Z, Liu C, Zhang H, Liu Z, Pang X, Jiang J, Xie Q, Zhou S, Wang Z, Hu K, Wang Z, Jiang S, Qin X, Cui Y. PNPT1 and PCGF3 variants associated with angiotensin-converting enzyme inhibitor-induced cough: a nested case–control genome-wide study. Pharmacogenomics 2020; 21:601-614. [PMID: 32397904 DOI: 10.2217/pgs-2019-0167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: We aimed to identify genetic variants associated with ACE inhibitor (ACEI)-induced cough. Materials & methods: A nested case–control study was performed among hypertensive Chinese patients receiving enalapril-only therapy. Whole-exome sequencing and genome-wide association analysis were performed. Results: We identified that PNPT1 rs13015243 (odds ratio [OR]: 0.47; 95% CI: 0.34–0.66; p = 7.45 × 10-6), PNPT1 rs13009649 (OR: 0.48; 95% CI: 0.35–0.67; p = 9.96 × 10-6) and PCGF3 rs1044147 (OR: 2.67; 95% CI: 1.71–4.17; p = 9.91 × 10-6) were significantly associated with ACEI-induced cough. Nearly genome-wide significant associations in previously reported candidate risk genes CLASP1, ACE, CES1, CPN1, XPNPEP1, PDE11A or SLC38A were detected in our dataset. Conclusion: Our results suggest that ACEI-induced cough is associated with noncoding SNPs of PNPT1 and PCGF3, all of which are independent of the bradykinin pathway. Study registration: NCT03259399.
Collapse
Affiliation(s)
- Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhuo Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chengzhang Liu
- Research Center, Shenzhen Evergreen Medical Institute, Shenzhen, 518057, China
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Jie Jiang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Qiufen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zining Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Kun Hu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Shanqun Jiang
- School of Life Science, Anhui University, Hefei, 230601, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
72
|
Torres-Gomez A, Cabañas C, Lafuente EM. Phagocytic Integrins: Activation and Signaling. Front Immunol 2020; 11:738. [PMID: 32425937 PMCID: PMC7203660 DOI: 10.3389/fimmu.2020.00738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Phagocytic integrins are endowed with the ability to engulf and dispose of particles of different natures. Evolutionarily conserved from worms to humans, they are involved in pathogen elimination and apoptotic and tumoral cell clearance. Research in the field of integrin-mediated phagocytosis has shed light on the molecular events controlling integrin activation and their effector functions. However, there are still some aspects of the regulation of the phagocytic process that need to be clarified. Here, we have revised the molecular events controlling phagocytic integrin activation and the downstream signaling driving particle engulfment, and we have focused particularly on αMβ2/CR3, αXβ2/CR4, and a brief mention of αVβ5/αVβ3integrins.
Collapse
Affiliation(s)
- Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Severo Ochoa Center for Molecular Biology (CSIC-UAM), Madrid, Spain
| | - Esther M Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
73
|
Wang Y, Li H, Li F. ELMO2 association with G αi2 regulates pancreatic cancer cell chemotaxis and metastasis. PeerJ 2020; 8:e8910. [PMID: 32292657 PMCID: PMC7144586 DOI: 10.7717/peerj.8910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/15/2020] [Indexed: 01/22/2023] Open
Abstract
Background Pancreatic cancer is a highly lethal disease. Nearly half of the patients have distant metastasis and remain asymptomatic. Emerging evidence suggests that the chemokine, CXCL12, has a role in cancer metastasis. The interaction between CXCL12 and CXCR4 activates heterotrimeric G proteins, which regulates actin polymerization and cancer cell migration. However, the molecular mechanisms underlying pancreatic cancer cell migration are still largely obscure. Here, we addressed the role of ELMO2 in chemotaxis and metastasis of pancreatic cancer cells. Methods Pancreatic cancer cell lines PANC-1 and AsPC-1 and siRNA-mediated knockdown of ELMO2 were used to determine the effects of ELMO2 on cancer cell chemotaxis, invasion, migration. Co-immunoprecipitation assays were carried out to identify interacting partners of ELMO2. Results ELMO2 knockdown inhibited pancreatic cancer cell chemotaxis, migration, invasion, and F-actin polymerization. Co-immunoprecipitation assays revealed that ELMO2 interacted with Gαi2 and that CXCL12 triggered Gα i2-dependent membrane translocation of ELMO2. Thus, ELMO2 is a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Yecheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongyan Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
74
|
Davidson AJ, Wood W. Phagocyte Responses to Cell Death in Flies. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036350. [PMID: 31501193 DOI: 10.1101/cshperspect.a036350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multicellular organisms are not created through cell proliferation alone. It is through cell death that an indefinite cellular mass is pared back to reveal its true form. Cells are also lost throughout life as part of homeostasis and through injury. This detritus represents a significant burden to the living organism and must be cleared, most notably through the use of specialized phagocytic cells. Our understanding of these phagocytes and how they engulf cell corpses has been greatly aided by studying the fruit fly, Drosophila melanogaster Here we review the contribution of Drosophila research to our understanding of how phagocytes respond to cell death. We focus on the best studied phagocytes in the fly: the glia of the central nervous system, the ovarian follicle cells, and the macrophage-like hemocytes. Each is explored in the context of the tissue they maintain as well as how they function during development and in response to injury.
Collapse
Affiliation(s)
- Andrew J Davidson
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Will Wood
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
75
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
76
|
Abstract
Phosphatidylinositol 3-kinase is an important signaling molecule that, once activated, leads to the generation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). We performed a proteomic screen to identify PIP3-interacting proteins in human platelets. Among these proteins, we found engulfment and cell motility 1 (ELMO1), a scaffold protein with no catalytic activity. ELMO1 is expressed in platelets and interacts with active RhoG. However, the function of ELMO1 in platelets is not known. The focus of this study was to determine the function of ELMO1 in platelets utilizing ELMO1-/- mice. Platelet aggregation, granule secretion, integrin αIIbβ3 activation, and thromboxane generation were enhanced in ELMO1-/- platelets in response to glycoprotein VI (GPVI) agonists but unaltered when a protease-activated receptor 4 agonist was used. The kinetics of spreading on immobilized fibrinogen was enhanced in ELMO1-/- platelets compared with wild-type (WT) littermate controls. This suggests that ELMO1 plays a role downstream of the GPVI and integrin αIIbβ3 pathway. Furthermore, whole blood from ELMO1-/- mice perfused over collagen exhibited enhanced thrombus formation compared with WT littermate controls. ELMO1-/- mice showed reduced survival compared with control following pulmonary embolism. ELMO1-/- mice also exhibited a shorter time to occlusion using the ferric-chloride injury model and reduced bleeding times compared with WT littermate controls. These results indicate that ELMO1 plays an important role in hemostasis and thrombosis in vivo. RhoG activity was enhanced in ELMO1-/- murine platelets compared with WT littermate controls in response to GPVI agonist. Together, these data suggest that ELMO1 negatively regulates GPVI-mediated thrombus formation via RhoG.
Collapse
|
77
|
Sayed IM, Suarez K, Lim E, Singh S, Pereira M, Ibeawuchi SR, Katkar G, Dunkel Y, Mittal Y, Chattopadhyay R, Guma M, Boland BS, Dulai PS, Sandborn WJ, Ghosh P, Das S. Host engulfment pathway controls inflammation in inflammatory bowel disease. FEBS J 2020; 287:3967-3988. [PMID: 32003126 DOI: 10.1111/febs.15236] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Chronic diseases, including inflammatory bowel disease (IBD) urgently need new biomarkers as a significant proportion of patients, do not respond to current medications. Inflammation is a common factor in these diseases, and microbial sensing in the intestinal tract is critical to initiate the inflammation. We have identified ELMO1 (engulfment and cell motility protein 1) as a microbial sensor in epithelial and phagocytic cells that turns on inflammatory signals. Using a stem cell-based 'gut-in-a-dish' coculture model, we studied the interactions between microbes, epithelium, and monocytes in the context of IBD. To mimic the in vivo cell physiology, enteroid-derived monolayers (EDMs) were generated from the organoids isolated from WT and ELMO1-/- mice and colonic biopsies of IBD patients. The EDMs were infected with the IBD-associated microbes to monitor the inflammatory responses. ELMO1-depleted EDMs displayed a significant reduction in bacterial internalization, a decrease in pro-inflammatory cytokine productions and monocyte recruitment. The expression of ELMO1 is elevated in the colonic epithelium and in the inflammatory infiltrates within the lamina propria of IBD patients where the higher expression is positively correlated with the elevated expression of pro-inflammatory cytokines, MCP-1 and TNF-α. MCP-1 is released from the epithelium and recruits monocytes to the site of inflammation. Once recruited, monocytes require ELMO1 to engulf the bacteria and propagate a robust TNF-α storm. These findings highlight that the dysregulated epithelial ELMO1 → MCP-1 axis can serve as an early biomarker in the diagnostics of IBD and other inflammatory disorders.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, USA
| | - Katherine Suarez
- Department of Pathology, University of California, San Diego, CA, USA
| | - Eileen Lim
- Department of Pathology, University of California, San Diego, CA, USA
| | - Sujay Singh
- Department of Pathology, University of California, San Diego, CA, USA
| | - Matheus Pereira
- Department of Pathology, University of California, San Diego, CA, USA
| | | | - Gajanan Katkar
- Department of Cellular & Molecular Medicine, University of California, San Diego, CA, USA
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, CA, USA
| | - Yash Mittal
- Department of Medicine, University of California, San Diego, CA, USA
| | - Ranajoy Chattopadhyay
- Department of Cellular & Molecular Medicine, University of California, San Diego, CA, USA
| | - Monica Guma
- Department of Medicine, University of California, San Diego, CA, USA
| | - Brigid S Boland
- Department of Medicine, University of California, San Diego, CA, USA
| | - Parambir S Dulai
- Department of Medicine, University of California, San Diego, CA, USA
| | | | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, CA, USA.,Department of Cellular & Molecular Medicine, University of California, San Diego, CA, USA
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, USA
| |
Collapse
|
78
|
Planarian EGF repeat-containing genes megf6 and hemicentin are required to restrict the stem cell compartment. PLoS Genet 2020; 16:e1008613. [PMID: 32078629 PMCID: PMC7059952 DOI: 10.1371/journal.pgen.1008613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/06/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is important for maintaining the boundaries between tissues. This role is particularly critical in the stem cell niche, as pre-neoplastic or cancerous stem cells must pass these boundaries in order to invade into the surrounding tissue. Here, we examine the role of the ECM as a regulator of the stem cell compartment in the planarian Schmidtea mediterranea, a highly regenerative, long-lived organism with a large population of adult stem cells. We identify two EGF repeat-containing genes, megf6 and hemicentin, with identical knockdown phenotypes. We find that megf6 and hemicentin are needed to maintain the structure of the basal lamina, and in the absence of either gene, pluripotent stem cells migrate ectopically outside of their compartment and hyper-proliferate, causing lesions in the body wall muscle. These muscle lesions and ectopic stem cells are also associated with ectopic gut branches, which protrude from the normal gut towards the dorsal side of the animal. Interestingly, both megf6 and hemicentin knockdown worms are capable of regenerating tissue free of both muscle lesions and ectopic cells, indicating that these genes are dispensable for regeneration. These results provide insight into the role of planarian ECM in restricting the stem cell compartment, and suggest that signals within the compartment may act to suppress stem cell hyperproliferation. The freshwater planarian maintains a large population of adult stem cells throughout its long lifespan. Although these stem cells are constantly dividing, the rate of division is tightly controlled to such a degree that planarians almost never develop neoplastic growths. In addition, the stem cells are located in a specific spatial compartment within the animal, although no known physical boundary keeps them in place. What mechanisms do planarians use to control the number, rate of division, and location of their stem cells? Here, we find that two EGF repeat-containing genes, megf6 and hemicentin, are required to keep stem cells within their compartment. Although these two genes are expressed in different cell populations, we find that both are required to maintain the epithelial basal lamina. In the absence of either gene, stem cells can escape their compartment and migrate towards the skin of the animal, where they divide at an accelerated rate and cause lesions in the muscle. These results show that the extracellular matrix plays a role in limiting the boundaries of the stem cell compartment.
Collapse
|
79
|
Mikdache A, Fontenas L, Albadri S, Revenu C, Loisel-Duwattez J, Lesport E, Degerny C, Del Bene F, Tawk M. Elmo1 function, linked to Rac1 activity, regulates peripheral neuronal numbers and myelination in zebrafish. Cell Mol Life Sci 2020; 77:161-177. [PMID: 31161284 PMCID: PMC11104998 DOI: 10.1007/s00018-019-03167-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Peripheral nervous system development involves a tight coordination of neuronal birth and death and a substantial remodelling of the myelinating glia cytoskeleton to achieve myelin wrapping of its projecting axons. However, how these processes are coordinated through time is still not understood. We have identified engulfment and cell motility 1, Elmo1, as a novel component that regulates (i) neuronal numbers within the Posterior Lateral Line ganglion and (ii) radial sorting of axons by Schwann cells (SC) and myelination in the PLL system in zebrafish. Our results show that neuronal and myelination defects observed in elmo1 mutant are rescued through small GTPase Rac1 activation. Inhibiting macrophage development leads to a decrease in neuronal numbers, while peripheral myelination is intact. However, elmo1 mutants do not show defective macrophage activity, suggesting a role for Elmo1 in PLLg neuronal development and SC myelination independent of macrophages. Forcing early Elmo1 and Rac1 expression specifically within SCs rescues elmo1-/- myelination defects, highlighting an autonomous role for Elmo1 and Rac1 in radial sorting of axons by SCs and myelination. This uncovers a previously unknown function of Elmo1 that regulates fundamental aspects of PNS development.
Collapse
Affiliation(s)
- Aya Mikdache
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France
| | - Laura Fontenas
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Shahad Albadri
- Institut Curie, PSL Research University, 75005, Paris, France
| | - Celine Revenu
- Institut Curie, PSL Research University, 75005, Paris, France
| | - Julien Loisel-Duwattez
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France
| | - Emilie Lesport
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France
| | - Cindy Degerny
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France
| | | | - Marcel Tawk
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France.
| |
Collapse
|
80
|
Qasim MU, Zhao Q, Shahid M, Samad RA, Ahmar S, Wu J, Fan C, Zhou Y. Identification of QTLs Containing Resistance Genes for Sclerotinia Stem Rot in Brassica napus Using Comparative Transcriptomic Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:776. [PMID: 32655594 PMCID: PMC7325899 DOI: 10.3389/fpls.2020.00776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/15/2020] [Indexed: 05/21/2023]
Abstract
Sclerotinia stem rot is a major disease in Brassica napus that causes yield losses of 10-20% and reaching 80% in severely infected fields. SSR not only causes yield reduction but also causes low oil quality by reducing fatty acid content. There is a need to identify resistant genetic sources with functional significance for the breeding of SSR-resistant cultivars. In this study, we identified 17 QTLs involved in SSR resistance in three different seasons using SNP markers and disease lesion development after artificial inoculation. There were no common QTLs in all 3 years, but there were three QTLs that appeared in two seasons covering all seasons with a shared QTL. The QTLs identified in the 2 years were SRA9a, SRC2a and SRC3a with phenotypic effect variances of 14.75 and 11.57% for SRA9a, 7.49 and 10.38% for SRC3a and 7.73 and 6.81% for SRC2a in their 2 years, respectively. The flowering time was also found to have a negative correlation with disease resistance, i.e., early-maturing lines were more susceptible to disease. The stem width has shown a notably weak effect on disease development, causing researchers to ignore its effect. Given that flowering time is an important factor in disease resistance, we used comparative RNA-sequencing analysis of resistant and susceptible lines with consistent performance in 3 years with almost the same flowering time to identify the resistance genes directly involved in resistance within the QTL regions. Overall, there were more genes differentially expressed in resistant lines 19,970 than in susceptible lines 3936 compared to their mock-inoculated lines, demonstrating their tendency to cope with disease. We identified 36 putative candidate genes from the resistant lines that were upregulated in resistant lines compared to resistant mock and susceptible lines that might be involved in resistance to SSR.
Collapse
Affiliation(s)
- Muhammad Uzair Qasim
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rana Abdul Samad
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Yongming Zhou,
| |
Collapse
|
81
|
Haley R, Zhou Z. The small GTPase RAB-35 facilitates the initiation of phagosome maturation and acts as a robustness factor for apoptotic cell clearance. Small GTPases 2019; 12:188-201. [PMID: 31607221 DOI: 10.1080/21541248.2019.1680066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We recently identified the novel function of the small GTPase RAB-35 in apoptotic cell clearance in Caenorhabditis elegans, a process in which dying cells are engulfed and degraded inside phagosomes. We have found that RAB-35 functions in two separate steps of cell corpse clearance, cell corpse recognition and the initiation of phagosome maturation. During the latter process, RAB-35 facilitates the removal of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) from the membranes of nascent phagosomes and the simultaneous production of phosphatidylinositol-3-P (PI(3)P) on these same membranes, a process that we have coined the PI(4,5)P2 to PI(3)P shift. RAB-35 also promotes the recruitment of the small GTPase RAB-5 to the phagosomal surface. During these processes, the activity of RAB-35 is controlled by the candidate GTPase-activating protein (GAP) TBC-10 and the candidate guanine nucleotide exchange factor (GEF) FLCN-1. Overall, RAB-35 leads a third pathway during cell corpse clearance that functions in parallel to the two known pathways, one led by the phagocytic receptor CED-1 and the other led by the CED-10/Rac1 GTPase. Here, we further report that RAB-35 acts as a robustness factor that maintains the clearance activity and embryonic viability under conditions of heat stress. Moreover, we obtained additional evidence suggesting that RAB-35 acts upstream of RAB-5 and RAB-7. To establish a precise temporal pattern for its own dissociation from phagosomal surfaces, RAB-35 controls the removal of its own GAP. We propose that RAB-35 defines a largely unexplored initial phase of phagosome maturation.
Collapse
Affiliation(s)
- Ryan Haley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
82
|
Rival CM, Xu W, Shankman LS, Morioka S, Arandjelovic S, Lee CS, Wheeler KM, Smith RP, Haney LB, Isakson BE, Purcell S, Lysiak JJ, Ravichandran KS. Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nat Commun 2019; 10:4456. [PMID: 31575859 PMCID: PMC6773685 DOI: 10.1038/s41467-019-12406-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
Fertilization is essential for species survival. Although Izumo1 and Juno are critical for initial interaction between gametes, additional molecules necessary for sperm:egg fusion on both the sperm and the oocyte remain to be defined. Here, we show that phosphatidylserine (PtdSer) is exposed on the head region of viable and motile sperm, with PtdSer exposure progressively increasing during sperm transit through the epididymis. Functionally, masking phosphatidylserine on sperm via three different approaches inhibits fertilization. On the oocyte, phosphatidylserine recognition receptors BAI1, CD36, Tim-4, and Mer-TK contribute to fertilization. Further, oocytes lacking the cytoplasmic ELMO1, or functional disruption of RAC1 (both of which signal downstream of BAI1/BAI3), also affect sperm entry into oocytes. Intriguingly, mammalian sperm could fuse with skeletal myoblasts, requiring PtdSer on sperm and BAI1/3, ELMO2, RAC1 in myoblasts. Collectively, these data identify phosphatidylserine on viable sperm and PtdSer recognition receptors on oocytes as key players in sperm:egg fusion.
Collapse
Affiliation(s)
- Claudia M Rival
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Wenhao Xu
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Laura S Shankman
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Sho Morioka
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Sanja Arandjelovic
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Chang Sup Lee
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Karen M Wheeler
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Ryan P Smith
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Lisa B Haney
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Scott Purcell
- Reproductive Medicine and Surgery Center of Virginia, 595 Martha Jefferson Dr., Charlottesville, VA, 22911, USA
| | - Jeffrey J Lysiak
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
| | - Kodi S Ravichandran
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Biomedical Molecular Biology, Ghent University, and the UGent-VIB Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
83
|
Adaptor protein CrkII negatively regulates osteoblast differentiation and function through JNK phosphorylation. Exp Mol Med 2019; 51:1-10. [PMID: 31554784 PMCID: PMC6802640 DOI: 10.1038/s12276-019-0314-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
The adaptor protein CrkII is involved in several biological activities, including mitogenesis, phagocytosis, and cytoskeleton reorganization. Previously, we demonstrated that CrkII plays an important role in osteoclast differentiation and function through Rac1 activation both in vitro and in vivo. In this study, we investigated whether CrkII also regulates the differentiation and function of another type of bone cells, osteoblasts. Overexpression of CrkII in primary osteoblasts inhibited bone morphogenetic protein (BMP) 2-induced osteoblast differentiation and function, whereas knockdown of CrkII expression exerted the opposite effect. Importantly, CrkII strongly enhanced c-Jun-N-terminal kinase (JNK) phosphorylation, and the CrkII overexpression-mediated attenuation of osteoblast differentiation and function was recovered by JNK inhibitor treatment. Furthermore, transgenic mice overexpressing CrkII under control of the alpha-1 type I collagen promoter exhibited a reduced bone mass phenotype. Together, these results indicate that CrkII negatively regulates osteoblast differentiation and function through JNK phosphorylation. Given that CrkII acts as a negative and positive regulator of osteoblast and osteoclast differentiation, respectively, the regulation of CrkII expression in bone cells may help to develop new strategies to enhance bone formation and inhibit bone resorption.
Collapse
|
84
|
Comparative gene expression analysis of the engulfment and cell motility (ELMO) protein family in the mouse brain. Gene Expr Patterns 2019; 34:119070. [PMID: 31521773 DOI: 10.1016/j.gep.2019.119070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022]
Abstract
Engulfment and cell motility (ELMO) proteins bind to Dock180, a guanine nucleotide exchange factor (GEF) of the Rac family, and regulate GEF activity. The resultant ELMO/Dock180/Rac module regulates cytoskeletal reorganization responsible for the engulfment of apoptotic cells, cell migration, and neurite extension. The expression and function of Elmo family proteins in the nervous system, however, are not yet fully understood. Here, we characterize the comparative gene expression profiles of three Elmo family members (Elmo1, Elmo2, and Elmo3) in the brain of C57BL/6J mice, a widely used inbred strain, together with reeler mutant mice to understand gene expression in normal laminated brain areas compared with abnormal areas. Although all three Elmo genes showed widespread mRNA expression over various mouse tissues tested, Elmo1 and Elmo2 were the major types expressed in the brain, and three Elmo genes were up-regulated between the first postnatal week (infant stage) and the third postnatal week (juvenile, weaning stage). In addition, the mRNAs of Elmo genes showed distinct distribution patterns in various brain areas and cell-types; such as neurons including inhibitory interneurons as well as some non-neuronal cells. In the cerebral cortex, the three Elmo genes were widely expressed over many cortical regions, but the predominant areas of Elmo1 and Elmo2 expression tended to be distributed unevenly in the deep (a lower part of the VI) and superficial (II/III) layers, respectively, which also changed depending on the cortical areas and postnatal stages. In the dentate gyrus of the hippocampus, Elmo2 was expressed in dentate granule cells more in the mature stage rather than the immature-differentiating stage. In the thalamus, Elmo1 but not the other members was highly expressed in many nuclei. In the medial habenula, Elmo2 and Elmo3 were expressed at intermediate levels. In the cerebellar cortex, Elmo1 and Elmo2 were expressed in differentiating-mature granule cells and mature granule cells, respectively. In the Purkinje cell layer, Elmo1 and Elmo2 were expressed in Purkinje cells and Bergmann glia, respectively. Disturbed cellular distributions and laminar structures caused by the reeler mutation did not severely change expression in these cell types despite the disturbed cellular distributions and laminar structures, including those of the cerebrum, hippocampus, and cerebellum. Taken together, these results suggested that these three Elmo family members share their functional roles in various brain regions during prenatal-postnatal development.
Collapse
|
85
|
Abstract
Tissue macrophages rapidly recognize and engulf apoptotic cells. These events require the display of so-called eat-me signals on the apoptotic cell surface, the most fundamental of which is phosphatidylserine (PtdSer). Externalization of this phospholipid is catalysed by scramblase enzymes, several of which are activated by caspase cleavage. PtdSer is detected both by macrophage receptors that bind to this phospholipid directly and by receptors that bind to a soluble bridging protein that is independently bound to PtdSer. Prominent among the latter receptors are the MER and AXL receptor tyrosine kinases. Eat-me signals also trigger macrophages to engulf virus-infected or metabolically traumatized, but still living, cells, and this 'murder by phagocytosis' may be a common phenomenon. Finally, the localized presentation of PtdSer and other eat-me signals on delimited cell surface domains may enable the phagocytic pruning of these 'locally dead' domains by macrophages, most notably by microglia of the central nervous system.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
86
|
Doll MA, Soltanmohammadi N, Schumacher B. ALG-2/AGO-Dependent mir-35 Family Regulates DNA Damage-Induced Apoptosis Through MPK-1/ERK MAPK Signaling Downstream of the Core Apoptotic Machinery in Caenorhabditis elegans. Genetics 2019; 213:173-194. [PMID: 31296532 PMCID: PMC6727803 DOI: 10.1534/genetics.119.302458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) associate with argonaute (AGO) proteins to post-transcriptionally modulate the expression of genes involved in various cellular processes. Herein, we show that loss of the Caenorhabditis elegans AGO gene alg-2 results in rapid and significantly increased germ cell apoptosis in response to DNA damage inflicted by ionizing radiation (IR). We demonstrate that the abnormal apoptosis phenotype in alg-2 mutant animals can be explained by reduced expression of mir-35 miRNA family members. We show that the increased apoptosis levels in IR-treated alg-2 or mir-35 family mutants depend on a transient hyperactivation of the C. elegans ERK1/2 MAPK ortholog MPK-1 in dying germ cells. Unexpectedly, MPK-1 phosphorylation occurs downstream of caspase activation and depends at least in part on a functional cell corpse-engulfment machinery. Therefore, we propose a refined mechanism, in which an initial proapoptotic stimulus by the core apoptotic machinery initiates the engulfment process, which in turn activates MAPK signaling to facilitate the demise of genomically compromised germ cells.
Collapse
Affiliation(s)
- Markus Alexander Doll
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Najmeh Soltanmohammadi
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| |
Collapse
|
87
|
Stabilin Receptors: Role as Phosphatidylserine Receptors. Biomolecules 2019; 9:biom9080387. [PMID: 31434355 PMCID: PMC6723754 DOI: 10.3390/biom9080387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylserine is a membrane phospholipid that is localized to the inner leaflet of the plasma membrane. Phosphatidylserine externalization to the outer leaflet of the plasma membrane is an important signal for various physiological processes, including apoptosis, platelet activation, cell fusion, lymphocyte activation, and regenerative axonal fusion. Stabilin-1 and stabilin-2 are membrane receptors that recognize phosphatidylserine on the cell surface. Here, we discuss the functions of Stabilin-1 and stabilin-2 as phosphatidylserine receptors in apoptotic cell clearance (efferocytosis) and cell fusion, and their ligand-recognition and signaling pathways.
Collapse
|
88
|
Song X, Xu W, Xu G, Kong S, Ding L, Xiao J, Cao X, Wang F. ACAP4 interacts with CrkII to promote the recycling of integrin β1. Biochem Biophys Res Commun 2019; 516:8-14. [PMID: 31182282 DOI: 10.1016/j.bbrc.2019.05.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
ACAP4, a GTPase-activating protein (GAP) for the ADP-ribosylation factor 6 (ARF6), plays import roles in cell migration, cell polarity, vesicle trafficking and tumorigenesis. Similarly, the ubiquitously expressed adaptor protein CrkII functions in a wide range of cellular activities, including cell proliferation, T cell adhesion and activation, tumorigenesis, and bacterial pathogenesis. Here, we demonstrate that ACAP4 physically interacts with CrkII. Biochemical experiments revealed that ACAP4550-660 and the SH3N domain of CrkII are responsible for the interaction. Functional characterization showed that the interaction is required for the recruitment of ACAP4 to the plasma membrane where ACAP4 functions to regulate the recycling of the signal transducer integrin β1. Thus, we suggest that the CrkII-ACAP4 complex may be involved in regulation of cell adhesion.
Collapse
Affiliation(s)
- Xueyan Song
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wenjuan Xu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Guangsheng Xu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shuai Kong
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lu Ding
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jin Xiao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fengsong Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
89
|
Spracklen AJ, Thornton-Kolbe EM, Bonner AN, Florea A, Compton PJ, Fernandez-Gonzalez R, Peifer M. The Crk adapter protein is essential for Drosophila embryogenesis, where it regulates multiple actin-dependent morphogenic events. Mol Biol Cell 2019; 30:2399-2421. [PMID: 31318326 PMCID: PMC6741062 DOI: 10.1091/mbc.e19-05-0302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Small Src homology domain 2 (SH2) and 3 (SH3) adapter proteins regulate cell fate and behavior by mediating interactions between cell surface receptors and downstream signaling effectors in many signal transduction pathways. The CT10 regulator of kinase (Crk) family has tissue-specific roles in phagocytosis, cell migration, and neuronal development and mediates oncogenic signaling in pathways like that of Abelson kinase. However, redundancy among the two mammalian family members and the position of the Drosophila gene on the fourth chromosome precluded assessment of Crk's full role in embryogenesis. We circumvented these limitations with short hairpin RNA and CRISPR technology to assess Crk's function in Drosophila morphogenesis. We found that Crk is essential beginning in the first few hours of development, where it ensures accurate mitosis by regulating orchestrated dynamics of the actin cytoskeleton to keep mitotic spindles in syncytial embryos from colliding. In this role, it positively regulates cortical localization of the actin-related protein 2/3 complex (Arp2/3), its regulator suppressor of cAMP receptor (SCAR), and filamentous actin to actin caps and pseudocleavage furrows. Crk loss leads to the loss of nuclei and formation of multinucleate cells. We also found roles for Crk in embryonic wound healing and in axon patterning in the nervous system, where it localizes to the axons and midline glia. Thus, Crk regulates diverse events in embryogenesis that require orchestrated cytoskeletal dynamics.
Collapse
Affiliation(s)
- Andrew J Spracklen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Emma M Thornton-Kolbe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alison N Bonner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alexandru Florea
- Institute of Biomaterials and Biomedical Engineering, Ted Rogers Centre for Heart Research, and Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Peter J Compton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering, Ted Rogers Centre for Heart Research, and Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
90
|
Bae DJ, Seo J, Kim SY, Park SY, Do Yoo J, Pyo JH, Cho W, Cho JY, Kim S, Kim IS. ArhGAP12 plays dual roles in Stabilin-2 mediated efferocytosis: Regulates Rac1 basal activity and spatiotemporally turns off the Rac1 to orchestrate phagosome maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1595-1607. [PMID: 31301364 DOI: 10.1016/j.bbamcr.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
The rapid and precise clearance of apoptotic cells (efferocytosis) involves a series of phagocytic processes through which apoptotic cells are recognized, engulfed, and degraded within phagocytes. The Rho-family GTPases critically rearrange the cytoskeleton for these phagocytic processes, but we know little about the mechanisms by which regulatory proteins control the spatiotemporal activities of the Rho-family GTPases. Here, we identify ArhGAP12 as a functional GTPase-activating protein (GAP) of Rac1 during Stabilin-2 mediated efferocytosis. ArhGAP12 constitutively forms a complex with the phosphatidylserine receptor, Stabilin-2, via direct interaction with the downstream protein, GULP, but is released from the complex when Stabilin-2 interacts with apoptotic cells. When the phagocytic cup is closed and the apoptotic cell is surrounded by the phagosomal membrane, ArhGAP12 localizes to the phagocytic cup via a specific interaction with phosphatidylinositol-4,5-bisphosphate, which is transiently biosynthesized in the phagocytic cup. Down-regulation of ArhGAP12 results in sustained Rac1 activity, arrangement of F-actin, and delayed phagosome-lysosome fusion. Our results collectively suggest that ArhGAP12 carries dual roles in Stabilin-2 mediated efferocytosis: it binds to GULP/Stabilin-2 and switches off Rac1 basal activity and switches on the Rac1 by releasing itself from the complex. In addition, the spatiotemporal membrane targeting of ArhGAP12 inactivates Rac1 in a time-specific and spatially coordinated manner to orchestrate phagosome maturation. This may shed light on how other RhoGAPs spatiotemporally inactivate Rac or Cdc42 during phagocytosis by various cells, in different circumstances.
Collapse
Affiliation(s)
- Dong-Jun Bae
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea; ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 138-736, Republic of Korea
| | - Junyoung Seo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Sang-Yeob Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea; ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 138-736, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - Jae Do Yoo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Jae-Hoon Pyo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Soyoun Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea.
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea; KU-KIST school, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
91
|
Kakoki M, Bahnson EM, Hagaman JR, Siletzky RM, Grant R, Kayashima Y, Li F, Lee EY, Sun MT, Taylor JM, Rice JC, Almeida MF, Bahr BA, Jennette JC, Smithies O, Maeda-Smithies N. Engulfment and cell motility protein 1 potentiates diabetic cardiomyopathy via Rac-dependent and Rac-independent ROS production. JCI Insight 2019; 4:127660. [PMID: 31217360 DOI: 10.1172/jci.insight.127660] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/08/2019] [Indexed: 01/31/2023] Open
Abstract
Engulfment and cell motility protein 1 (ELMO1) is part of a guanine nucleotide exchange factor for Ras-related C3 botulinum toxin substrate (Rac), and ELMO1 polymorphisms were identified to be associated with diabetic nephropathy in genome-wide association studies. We generated a set of Akita Ins2C96Y diabetic mice having 5 graded cardiac mRNA levels of ELMO1 from 30% to 200% of normal and found that severe dilated cardiomyopathy develops in ELMO1-hypermorphic mice independent of renal function at age 16 weeks, whereas ELMO1-hypomorphic mice were completely protected. As ELMO1 expression increased, reactive oxygen species indicators, dissociation of the intercalated disc, mitochondrial fragmentation/dysfunction, cleaved caspase-3 levels, and actin polymerization increased in hearts from Akita mice. Cardiomyocyte-specific overexpression in otherwise ELMO1-hypomorphic Akita mice was sufficient to promote cardiomyopathy. Cardiac Rac1 activity was positively correlated with the ELMO1 levels, and oral administration of a pan-Rac inhibitor, EHT1864, partially mitigated cardiomyopathy of the ELMO1 hypermorphs. Disrupting Nox4, a Rac-independent NADPH oxidase, also partially mitigated it. In contrast, a pan-NADPH oxidase inhibitor, VAS3947, markedly prevented cardiomyopathy. Our data demonstrate that in diabetes mellitus ELMO1 is the "rate-limiting" factor of reactive oxygen species production via both Rac-dependent and Rac-independent NADPH oxidases, which in turn trigger cellular signaling cascades toward cardiomyopathy.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward M Bahnson
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Surgery, Division of Vascular Surgery, and Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John R Hagaman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robin M Siletzky
- Department of Surgery, Division of Vascular Surgery, and Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruriko Grant
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Feng Li
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Esther Y Lee
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle T Sun
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica C Rice
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, North Carolina, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, North Carolina, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, North Carolina, USA
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Oliver Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
92
|
Tamgue O, Gcanga L, Ozturk M, Whitehead L, Pillay S, Jacobs R, Roy S, Schmeier S, Davids M, Medvedeva YA, Dheda K, Suzuki H, Brombacher F, Guler R. Differential Targeting of c-Maf, Bach-1, and Elmo-1 by microRNA-143 and microRNA-365 Promotes the Intracellular Growth of Mycobacterium tuberculosis in Alternatively IL-4/IL-13 Activated Macrophages. Front Immunol 2019; 10:421. [PMID: 30941122 PMCID: PMC6433885 DOI: 10.3389/fimmu.2019.00421] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can subvert the host defense by skewing macrophage activation toward a less microbicidal alternative activated state to avoid classical effector killing functions. Investigating the molecular basis of this evasion mechanism could uncover potential candidates for host directed therapy against tuberculosis (TB). A limited number of miRNAs have recently been shown to regulate host-mycobacterial interactions. Here, we performed time course kinetics experiments on bone marrow-derived macrophages (BMDMs) and human monocyte-derived macrophages (MDMs) alternatively activated with IL-4, IL-13, or a combination of IL-4/IL-13, followed by infection with Mtb clinical Beijing strain HN878. MiR-143 and miR-365 were highly induced in Mtb-infected M(IL-4/IL-13) BMDMs and MDMs. Knockdown of miR-143 and miR-365 using antagomiRs decreased the intracellular growth of Mtb HN878, reduced the production of IL-6 and CCL5 and promoted the apoptotic death of Mtb HN878-infected M(IL-4/IL-13) BMDMs. Computational target prediction identified c-Maf, Bach-1 and Elmo-1 as potential targets for both miR-143 and miR-365. Functional validation using luciferase assay, RNA-pulldown assay and Western blotting revealed that c-Maf and Bach-1 are directly targeted by miR-143 while c-Maf, Bach-1, and Elmo-1 are direct targets of miR-365. Knockdown of c-Maf using GapmeRs promoted intracellular Mtb growth when compared to control treated M(IL-4/IL-13) macrophages. Meanwhile, the blocking of Bach-1 had no effect and blocking Elmo-1 resulted in decreased Mtb growth. Combination treatment of M(IL-4/IL-13) macrophages with miR-143 mimics or miR-365 mimics and c-Maf, Bach-1, or Elmo-1 gene-specific GapmeRs restored Mtb growth in miR-143 mimic-treated groups and enhanced Mtb growth in miR-365 mimics-treated groups, thus suggesting the Mtb growth-promoting activities of miR-143 and miR-365 are mediated at least partially through interaction with c-Maf, Bach-1, and Elmo-1. We further show that knockdown of miR-143 and miR-365 in M(IL-4/IL-13) BMDMs decreased the expression of HO-1 and IL-10 which are known targets of Bach-1 and c-Maf, respectively, with Mtb growth-promoting activities in macrophages. Altogether, our work reports a host detrimental role of miR-143 and miR-365 during Mtb infection and highlights for the first time the role and miRNA-mediated regulation of c-Maf, Bach-1, and Elmo-1 in Mtb-infected M(IL-4/IL-13) macrophages.
Collapse
Affiliation(s)
- Ousman Tamgue
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Lorna Gcanga
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lauren Whitehead
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shandre Pillay
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Raygaana Jacobs
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sugata Roy
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sebastian Schmeier
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Malika Davids
- Centre for Lung Infection and Immunity, Department of Medicine and UCT Lung Institute, Division of Pulmonology, University of Cape Town, Cape Town, South Africa
| | - Yulia A. Medvedeva
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Science, Moscow, Russia
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Department of Medicine and UCT Lung Institute, Division of Pulmonology, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
93
|
Nishi C, Yanagihashi Y, Segawa K, Nagata S. MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation. J Biol Chem 2019; 294:7221-7230. [PMID: 30846565 DOI: 10.1074/jbc.ra118.006628] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Apoptotic cells expose phosphatidylserine (PtdSer) on their surface, leading to efferocytosis, i.e. their engulfment by resident macrophages that express the PtdSer receptor T cell immunoglobulin mucin receptor 4 (TIM4) and TAM family receptor tyrosine kinase receptors (MERTK, AXL, and TYRO3). TAM family receptors stimulate cell proliferation, and the many aspects of the growth signaling pathway downstream of TAM family receptors have been elucidated previously. However, the signaling cascade for TAM receptor-mediated efferocytosis has been elusive. Here we observed that efferocytosis by mouse-resident peritoneal macrophages was blocked by inhibitors against the MERTK, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), AKT Ser/Thr kinase (AKT), focal adhesion kinase (FAK), or STAT6 pathway. Accordingly, apoptotic cells stimulated the phosphorylation of MERTK, ERK, AKT, FAK, and STAT6, but not of IκB or STAT5. A reconstituted efferocytosis system using MERTK- and TIM4-expressing NIH3T3-derived cells revealed that the juxtamembrane and C-terminal regions of MERTK have redundant roles in efferocytosis. The transformation of murine IL-3-dependent Ba/F3 cells (a pro-B cell line) with MERTK and TIM4 enabled them to proliferate in response to apoptotic cells in a PtdSer-dependent manner. This apoptotic cell-induced MERTK-mediated proliferation required both MERTK's juxtamembrane and C-terminal regions and was blocked by inhibitors of not only ERK, AKT, FAK, and STAT6 but also of NF-κB and STAT5 signaling. These results suggest that apoptotic cells stimulate distinct sets of signal transduction pathways via MERTK to induce either efferocytosis or proliferation.
Collapse
Affiliation(s)
- Chihiro Nishi
- From the Laboratory of Biochemistry and Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichi Yanagihashi
- From the Laboratory of Biochemistry and Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsumori Segawa
- From the Laboratory of Biochemistry and Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigekazu Nagata
- From the Laboratory of Biochemistry and Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
94
|
A noncanonical role for the engulfment gene ELMO1 in neutrophils that promotes inflammatory arthritis. Nat Immunol 2019; 20:141-151. [PMID: 30643265 PMCID: PMC6402828 DOI: 10.1038/s41590-018-0293-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis is characterized by progressive joint inflammation and affects ~1% of the human population. We noted single nucleotide polymorphisms (SNPs) in the apoptotic cell engulfment genes ELMO1, DOCK2, and RAC1 linked to rheumatoid arthritis. As ELMO1 promotes cytoskeletal reorganization during engulfment, we hypothesized that ELMO1 loss would worsen inflammatory arthritis. Surprisingly, Elmo1-deficient mice showed reduced joint inflammation in acute and chronic arthritis models. Genetic and cell biological studies revealed that ELMO1 associates with receptors linked to neutrophil function in arthritis and regulates activation and early neutrophil recruitment to the joints, without general inhibition of inflammatory responses. Further, neutrophils from peripheral blood of human donors that carry the SNP in ELMO1 associated with arthritis display increased migratory capacity, whereas ELMO1 knockdown reduces human neutrophil migration to chemokines linked to arthritis. These data identify ‘non-canonical’ roles for ELMO1 as an important cytoplasmic regulator of specific neutrophil receptors and promoter of arthritis.
Collapse
|
95
|
Zheng XB, Liu HS, Zhang LJ, Liu XH, Zhong XL, Zhou C, Hu T, Wu XR, Hu JC, Lian L, Deng QL, Chen YF, Ke J, He XW, Wu XJ, He XS, Lan P. Engulfment and Cell Motility Protein 1 Protects Against DSS-induced Colonic Injury in Mice via Rac1 Activation. J Crohns Colitis 2019; 13:100-114. [PMID: 30219846 DOI: 10.1093/ecco-jcc/jjy133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Mucosal healing is an emerging therapeutic goal that could result in clinical remission of inflammatory bowel disease [IBD]. We sought to determine the role of engulfment and cell motility protein 1 [ELMO1] in wound healing in vitro and in vivo and to investigate the underlying pathways. METHODS RNA transcriptome sequencing was performed to detect the expression profiles of mRNA between inflamed tissues and corresponding non-inflamed tissues of IBD patients, followed by Gene Expression Omnibus [GEO] datasets and western blot analysis. The effects of ELMO1 overexpression or knockdown on cell migration and proliferation were determined. The dependence of these effects on Rac1 was assessed using a Rac1 inhibitor [NSC23766] and a Rac1 pull-down assay. We identified the underlying pathways involved by Gene Ontology [GO] analysis. A dextran sulphate sodium [DSS]-induced colitis model was established to evaluate the role of ELMO1 in colonic mucosal healing. RESULTS ELMO1 was upregulated in inflamed tissues compared with corresponding non-inflamed tissues. ELMO1 overexpression increased cell migration in a Rac1-dependent manner. Depletion of ELMO1, or NSC23766 administration, abolished this effect. GO analysis revealed that ELMO1 overexpression preferentially affected pathways involved in cytoskeletal regulation and wound healing, which was demonstrated by enhanced F-actin staining and increased numbers of extending lamellipodia in cells overexpressing ELMO1. In DSS-induced colitis, systemic delivery of pSin-EF2-ELMO1-Pur attenuated colonic inflammation and promoted recovery from colonic injury. The protective effect of ELMO1 was dependent on Rac1 activation. CONCLUSIONS ELMO1 protects against DSS-induced colonic injury in mice through its effect on epithelial migration via Rac1 activation.
Collapse
Affiliation(s)
- Xiao-Bin Zheng
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua-Shan Liu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Long-Juan Zhang
- Laboratory of Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuan-Hui Liu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Li Zhong
- Joint Cardiac Surgery Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chi Zhou
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tuo Hu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Cong Hu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Lian
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi-Ling Deng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Feng Chen
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Ke
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Wen He
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Sheng He
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
96
|
Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Curr Top Behav Neurosci 2019; 44:9-34. [PMID: 30739307 DOI: 10.1007/7854_2018_83] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypothesis that the neuroimmune system plays a role in the pathogenesis of different psychiatric disorders, including schizophrenia, depression, and bipolar disease, has attained increasing interest over the past years. Previously thought to have the sole purpose of protecting the central nervous system (CNS) from harmful stimuli, it is now known that the central immune system is critically involved in regulating physiological processes including neurodevelopment, synaptic plasticity, and circuit maintenance. Hence, alterations in microglia - the main immune cell of the CNS - and/or inflammatory factors do not unequivocally connote ongoing neuroinflammation or neuroinflammatory processes per se but rather might signify changes in brain homoeostasis. Despite this, psychiatric research tends to equate functional changes in microglia or alterations in other immune mediators with neuroinflammation. It is the main impetus of this chapter to overcome some of the current misconceptions and possible oversimplifications with respect to neuroinflammation and microglia activity in psychiatry. In order to do so, we will first provide an overview of the basic concepts of neuroinflammation and neuroinflammatory processes. We will then focus on microglia with respect to their ontogeny and immunological and non-immunological functions presenting novel insights on how microglia communicate with other cell types of the central nervous system to ensure proper brain functioning. And lastly, we will delineate the non-immunological functions of inflammatory cytokines in order to address the possible misconception of equating alterations in central cytokine levels with ongoing central inflammation. We hereby hope to help unravel the functional relevance of neuroimmune dysfunctions in psychiatric illnesses and provide future research directions in the field of psychoneuroimmunology.
Collapse
|
97
|
Moon SY, Shin SA, Oh YS, Park HH, Lee CS. Understanding the Role of the BAI Subfamily of Adhesion G Protein-Coupled Receptors (GPCRs) in Pathological and Physiological Conditions. Genes (Basel) 2018; 9:genes9120597. [PMID: 30513696 PMCID: PMC6316137 DOI: 10.3390/genes9120597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Brain-specific angiogenesis inhibitors (BAIs) 1, 2, and 3 are members of the adhesion G protein-coupled receptors, subfamily B, which share a conserved seven-transmembrane structure and an N-terminal extracellular domain. In cell- and animal-based studies, these receptors have been shown to play diverse roles under physiological and pathological conditions. BAI1 is an engulfment receptor and performs major functions in apoptotic-cell clearance and interacts (as a pattern recognition receptor) with pathogen components. BAI1 and -3 also participate in myoblast fusion. Furthermore, BAI1–3 have been linked to tumor progression and neurological diseases. In this review, we summarize the current understanding of the functions of BAI1–3 in pathological and physiological conditions and discuss future directions in terms of the importance of BAIs as pharmacological targets in diseases.
Collapse
Affiliation(s)
- Sun Young Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Seong-Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Yong-Seok Oh
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Korea.
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
98
|
Neumann B, Linton C, Giordano-Santini R, Hilliard MA. Axonal fusion: An alternative and efficient mechanism of nerve repair. Prog Neurobiol 2018; 173:88-101. [PMID: 30500382 DOI: 10.1016/j.pneurobio.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Injuries to the nervous system can cause lifelong morbidity due to the disconnect that occurs between nerve cells and their cellular targets. Re-establishing these lost connections is the ultimate goal of endogenous regenerative mechanisms, as well as those induced by exogenous manipulations in a laboratory or clinical setting. Reconnection between severed neuronal fibers occurs spontaneously in some invertebrate species and can be induced in mammalian systems. This process, known as axonal fusion, represents a highly efficient means of repair after injury. Recent progress has greatly enhanced our understanding of the molecular control of axonal fusion, demonstrating that the machinery required for the engulfment of apoptotic cells is repurposed to mediate the reconnection between severed axon fragments, which are subsequently merged by fusogen proteins. Here, we review our current understanding of naturally occurring axonal fusion events, as well as those being ectopically produced with the aim of achieving better clinical outcomes.
Collapse
Affiliation(s)
- Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia.
| | - Casey Linton
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosina Giordano-Santini
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
99
|
Membrane protein carbonylation of Plasmodium falciparum infected erythrocytes under conditions of sickle cell trait and G6PD deficiency. Mol Biochem Parasitol 2018; 227:5-14. [PMID: 30472238 DOI: 10.1016/j.molbiopara.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Deficiency of glucose-6-phosphate dehydrogenase (G6PD) and sickle cell trait (SCT) are described as the polymorphic disorders prevalent in erythrocytes. Both are considered the result of the selective pressure exerted by Plasmodium parasites over human genome, due to a certain degree of resistance to the clinical symptoms of severe malaria. There exist in both a prooxidant environment that favors the oxidative damage on membrane proteins, which probably is part of molecular protector mechanisms. Nevertheless, mechanisms are not completely understood at molecular level for each polymorphism yet, and even less if are commons for several of them. Here, synchronous cultures at high parasitemia levels of P. falciparum 3D7 were used to quantify oxidative damage in membrane proteins of erythrocytes with G6PD deficient and SCT. Carbonyl index by dot blot assay was used to calculate the variation of oxidative damage during the asexual phases. Besides, protein carbonylation profiles were obtained by Western blot and complemented with mass spectrometry using MALDI-TOF-TOF analysis. Erythrocytes with G6PD deficient and SCT showed higher carbonyl index values than control and similar profiles of carbonylated proteins; moreover, cytoskeletal and stress response proteins were identified as the main targets of oxidative damage. Therefore, both polymorphisms promote carbonylation on the same membrane proteins. Finally, these results allowed to reinforce the hypothesis of oxidative damage in erythrocyte membrane proteins as molecular mechanism of human adaptation to malaria infection.
Collapse
|
100
|
Chiu H, Zou Y, Suzuki N, Hsieh YW, Chuang CF, Wu YC, Chang C. Engulfing cells promote neuronal regeneration and remove neuronal debris through distinct biochemical functions of CED-1. Nat Commun 2018; 9:4842. [PMID: 30451835 PMCID: PMC6242819 DOI: 10.1038/s41467-018-07291-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/22/2018] [Indexed: 11/25/2022] Open
Abstract
Two important biological events happen coincidently soon after nerve injury in the peripheral nervous system in C. elegans: removal of axon debris and initiation of axon regeneration. But, it is not known how these two events are co-regulated. Mutants of ced-1, a homolog of Draper and MEGF10, display defects in both events. One model is that those events could be related. But our data suggest that they are actually separable. CED-1 functions in the muscle-type engulfing cells in both events and is enriched in muscle protrusions in close contact with axon debris and regenerating axons. Its two functions occur through distinct biochemical mechanisms; extracellular domain-mediated adhesion for regeneration and extracellular domain binding-induced intracellular domain signaling for debris removal. These studies identify CED-1 in engulfing cells as a receptor in debris removal but as an adhesion molecule in neuronal regeneration, and have important implications for understanding neural circuit repair after injury.
Collapse
Affiliation(s)
- Hui Chiu
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
- Division of Biology and Biological Engineering and HHMI, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yan Zou
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
- School of Life Science, ShanghaiTech University, Shanghai, 200031, China
| | - Nobuko Suzuki
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chieh Chang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.
| |
Collapse
|