51
|
Aleksandrova K, Leise J, Priesner C, Aktas M, Apel M, Assenmacher M, Bürger I, Richter A, Altefrohne P, Schubert C, Holzinger A, Barden M, Bezler V, von Bergwelt-Baildon M, Borchmann P, Goudeva L, Glienke W, Arseniev L, Esser R, Abken H, Koehl U. Automated manufacturing and characterization of clinical grade autologous CD20 CAR T cells for the treatment of patients with stage III/IV melanoma. Front Immunol 2024; 15:1328368. [PMID: 39386211 PMCID: PMC11461191 DOI: 10.3389/fimmu.2024.1328368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/02/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Point-of-care (POC) manufacturing of chimeric antigen receptor (CAR) modified T cell has expanded rapidly over the last decade. In addition to the use of CD19 CAR T cells for hematological diseases, there is a growing interest in targeting a variety of tumor-associated epitopes. Methods Here, we report the manufacturing and characterization of autologous anti-CD20 CAR T cells from melanoma patients within phase I clinical trial (NCT03893019). Using a second-generation lentiviral vector for the production of the CD20 CAR T cells on the CliniMACS Prodigy®. Results We demonstrated consistency in cell composition and functionality of the products manufactured at two different production sites. The T cell purity was >98.5%, a CD4/CD8 ratio between 2.5 and 5.5 and transduction rate between 34% and 61% on day 12 (harvest). Median expansion rate was 53-fold (range, 42-65-fold) with 1.7-3.8×109 CAR T cells at harvest, a sufficient number for the planned dose escalation steps (1×105/kg, 1×106/kg, 1×107/kg BW). Complementary research of some of the products pointed out that the CAR+ cells expressed mainly central memory T-cell phenotype. All tested CAR T cell products were capable to translate into T cell activation upon engagement of CAR target cells, indicated by the increase in pro-inflammatory cytokine release and by the increase in CAR T cell amplification. Notably, there were some interindividual, cell-intrinsic differences at the level of cytokine release and amplification. CAR-mediated T cell activation depended on the level of CAR cognate antigen. Discussion In conclusion, the CliniMACS Prodigy® platform is well suited for decentralized POC manufacturing of anti-CD20 CAR T cells and may be likewise applicable for the rapid and automated manufacturing of CAR T cells directed against other targets. Clinical trial registration https://clinicaltrials.gov/study/NCT03893019?cond=Melanoma&term=NCT03893019&rank=1, identifier NCT03893019.
Collapse
Affiliation(s)
- Krasimira Aleksandrova
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Jana Leise
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Christoph Priesner
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Murat Aktas
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Michael Apel
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Iris Bürger
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Richter
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | | | - Astrid Holzinger
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Markus Barden
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Valerie Bezler
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | | | - Peter Borchmann
- Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Lilia Goudeva
- Institute of Transfusion Medicine and Transplant Engineering (ITMTE), Hannover Medical School, Hannover, Germany
| | - Wolfgang Glienke
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Lubomir Arseniev
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Ruth Esser
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
| | - Hinrich Abken
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Ulrike Koehl
- Institute of Cellular Therapeutics (ICT), Hannover Medical School (MHH), Hanover, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
52
|
Martínez-Quintanilla J, Cabot D, Sabia D, Arqués O, Vergés J, Chicote I, Bijelic L, Cabellos L, Alcántara AM, Ramos I, Barrios P, Crusellas O, Palacio LM, Cámara JA, Barriuso J, Jiménez JJ, Muñoz-Torres P, Nonell L, Flores R, Médico E, Guaglio M, Ros J, Élez E, Tabernero J, Aziz O, Deraco M, Palmer HG. Precision Oncology and Systemic Targeted Therapy in Pseudomyxoma Peritonei. Clin Cancer Res 2024; 30:4082-4099. [PMID: 39018564 PMCID: PMC11393541 DOI: 10.1158/1078-0432.ccr-23-4072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/18/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE Pseudomyxoma peritonei (PMP) is a rare and poorly understood malignant condition characterized by the accumulation of intra-abdominal mucin produced from peritoneal metastases. Currently, cytoreductive surgery remains the mainstay of treatment but disease recurrence and death after relapse frequently occur in patients with PMP. New therapeutic strategies are therefore urgently needed for these patients. EXPERIMENTAL DESIGN A total of 120 PMP samples from 50 patients were processed to generate a collection of 50 patient-derived organoid (PDO) and xenograft (PDX) models. Whole exome sequencing, immunohistochemistry analyses, and in vitro and in vivo drug efficacy studies were performed. RESULTS In this study, we have generated a collection of PMP preclinical models and identified druggable targets, including BRAFV600E, KRASG12C, and KRASG12D, that could also be detected in intra-abdominal mucin biopsies of patients with PMP using droplet digital PCR. Preclinical models preserved the histopathological markers from the original patient sample. The BRAFV600E inhibitor encorafenib reduced cell viability of BRAFV600E PMP-PDO models. Proof-of-concept in vivo experiments showed that a systemic treatment with encorafenib significantly reduced tumor growth and prolonged survival in subcutaneous and orthotopic BRAFV600E-PMP-PDX mouse models. CONCLUSIONS Our study demonstrates for the first time that systemic targeted therapies can effectively control PMP tumors. BRAF signaling pathway inhibition represents a new therapeutic opportunity for patients with BRAFV600E PMP who have a poor prognosis. Importantly, our present data and collection of preclinical models pave the way for evaluating the efficacy of other systemic targeted therapies toward extending the promise of precision oncology to patients with PMP.
Collapse
Affiliation(s)
- Jordi Martínez-Quintanilla
- Translational Program, Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Débora Cabot
- Translational Program, Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Doménico Sabia
- Peritoneal Surface Malignancies Surgery Unit, Hospital Sant Joan Despí, Moises Broggi, Sant Joan Despí, Spain
| | - Oriol Arqués
- Translational Program, Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jordi Vergés
- Translational Program, Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Irene Chicote
- Translational Program, Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lana Bijelic
- Peritoneal Surface Malignancies Surgery Unit, Hospital Sant Joan Despí, Moises Broggi, Sant Joan Despí, Spain
| | - Laia Cabellos
- Translational Program, Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Anna M Alcántara
- Translational Program, Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Isabel Ramos
- Department of General Surgery, Hospital Sant Joan Despí, Consorci Sanitari Integral, Sant Joan Despí, Spain
| | - Pedro Barrios
- Former Peritoneal Surface Malignancies Surgery Unit, Hospital Sant Joan Despí, Moises Broggi, Sant Joan Despí, Spain
| | - Oriol Crusellas
- Department of General Surgery, Hospital Sant Joan Despí, Consorci Sanitari Integral, Sant Joan Despí, Spain
- Department of General Surgery, Hospital de Barcelona, Assistència Sanitària Col·legial, Barcelona, Spain
| | - Lina M Palacio
- Peritoneal Surface Malignancies Surgery Unit, Hospital Sant Joan Despí, Moises Broggi, Sant Joan Despí, Spain
| | - Juan A Cámara
- Preclinical Therapeutics Core, University of California, San Francisco, California
| | - Jorge Barriuso
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Colorectal and Peritoneal Oncology Centre, The Christie NHSFT, Manchester, United Kingdom
| | - Juan J Jiménez
- Preclinical Imaging Platform, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Pau Muñoz-Torres
- Bioinformatics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lara Nonell
- Bioinformatics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Raquel Flores
- Translational Program, Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Enzo Médico
- Department of Oncology, University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Marcello Guaglio
- Consultant Surgeon, Peritoneal Surface Malignancies Unit, Division of Colorectal Surgery, National Cancer Institute, Milan, Italy
| | - Javier Ros
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elena Élez
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Omer Aziz
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Colorectal and Peritoneal Oncology Centre, The Christie NHSFT, Manchester, United Kingdom
| | - Marcello Deraco
- Peritoneal Surfaces Malignance Unit, Fondazione IRCCS Instituto Nazionale dei Tumori, Milan, Italy
| | - Héctor G Palmer
- Translational Program, Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBERONC, Madrid, Spain
| |
Collapse
|
53
|
Dirven I, Calliauw E, Awada G, Vounckx M, Kessels JI, Neyns B. Successful treatment of MAP2K1 mutant stage IV-M1d melanoma with trametinib plus low-dose dabrafenib: a case report. Front Med (Lausanne) 2024; 11:1436774. [PMID: 39314226 PMCID: PMC11418105 DOI: 10.3389/fmed.2024.1436774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Clonal MAPK-pathway activating mutations in the MAP2K1 (MEK1) gene are present in approximately 9% of cutaneous melanomas. These mutations are divided into three classes: RAF-dependent, RAF-regulated, RAF-independent. Cell lines with class-2 or RAF-regulated MAP2K1-mutations are most responsive to MEK-inhibitors. We present a patient with a class-2 MAP2K1-mutant stage IV-M1d melanoma who experienced extra- and intracranial progressive disease following treatment with immune-checkpoint inhibitors. The patient was treated with the MEK-inhibitor trametinib (2 mg OD) to which a low-dose of dabrafenib (50 mg BID) was added to mitigate skin-toxicity. Following documentation of a partial response (PR), she developed one new, and increase in volume of two pre-existing brain metastases that were treated with stereotactic radiosurgery (SRS) while continuing trametinib and dabrafenib. Thereafter, a deep partial radiologic and metabolic response both extra-and intra-cranially was achieved and is ongoing 88 weeks after initiating trametinib. She experienced no grade > 2 adverse events. Focal post-radiation necrosis at site of an irradiated brain metastasis developed 9 months after SRS and is successfully being treated with low-dose bevacizumab. This is the first published case of a durable intracranial disease control with the MEK-inhibitor trametinib of a stage IV-M1d class-2 MAP2K1-mutant melanoma. This illustrates the utility of NGS profiles that include class-1/2 MAP2K1-mutations in patients with melanoma and other malignancies to provide valuable information on a potentially active individualized treatment option. A prospective clinical trial that further evaluates the efficacy of MEK-inhibitor therapies in MAP2K1-mutated tumors is justified.
Collapse
Affiliation(s)
- Iris Dirven
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel) and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
54
|
Demidov L, Kharkevich G, Petenko N, Moiseenko V, Protsenko S, Semiglazova T, Zimina A, Kovalenko N, Fadeeva N, Kirtbaya D, Belogortsev I, Tantsyrev D, Odintsova S, Nesterova A, Vorontsova K, Makarycheva Y, Linkova Y, Zinkina-Orikhan A, Siliutina A, Sorokina I, Liaptseva D, Chistyakov V, Lutsky A. A phase III study to access the safety and efficacy of prolgolimab 250 mg fixed dose administered every 3 weeks versus prolgolimab 1 mg/kg every 2 weeks in patients with metastatic melanoma (FLAT). Front Oncol 2024; 14:1385685. [PMID: 39296979 PMCID: PMC11408354 DOI: 10.3389/fonc.2024.1385685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Background Prolgolimab is the first Russian PD-1 inhibitor approved for the first-line treatment of unresectable or metastatic melanoma and advanced non-small cell lung cancer. It was approved in two weight-based regimens of 1 mg/kg Q2W and 3 mg/kg Q3W, but because of re-evaluation of weight-based dosing paradigm, studying of a fixed-dose regimen was considered perspective. Methods We conducted a multicenter, single-arm, open-label efficacy, pharmacokinetics, and safety study to obtain data that would allow the approval of the new flat dosing regimen of prolgolimab in patients with previously untreated unresectable or metastatic melanoma (BCD-100-8/FLAT, NCT05783882). The primary objective was to prove the non-inferiority of prolgolimab 250 mg Q3W versus prolgolimab 1 mg/kg Q2W for the treatment of patients with unresectable or metastatic melanoma in terms of ORR according to RECIST 1.1. Patients from the MIRACULUM study (BCD-100-2/MIRACULUM, NCT03269565) comprised a historical control group. Results One hundred fourteen patients received prolgolimab 250 mg Q3W, and 61 patients received prolgolimab (Prolgo) 1 mg/kg Q2W (historical control). Objective response was achieved by 33.3% [95% confidence interval (CI): 24.8, 42.8] of patients in the Prolgo 250 mg group compared with 32.8% (95% CI: 21.3, 46.0) of patients in the Prolgo 1 mg/kg group. Risk difference was 0.00, 95% CI (-0.12; NA), p = 0.0082. Both regimens were well tolerated, and safety profiles were comparable. The pharmacokinetic analysis (PK) showed that the regimen with the fixed dose of 250 mg Q3W was characterized by higher PK parameters. The immunogenicity study did not detect binding antibodies to prolgolimab in any of the subjects. Conclusion The obtained results showed that the selected fixed dosing regimen of prolgolimab 250 mg Q3W is characterized by efficacy and safety parameters comparable to that observed for the 1 mg/kg Q2W regimen.
Collapse
Affiliation(s)
- Lev Demidov
- FSBI "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health (MoH) of the Russian Federation, Moscow, Russia
| | - Galina Kharkevich
- FSBI "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health (MoH) of the Russian Federation, Moscow, Russia
| | - Natalia Petenko
- FSBI "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health (MoH) of the Russian Federation, Moscow, Russia
| | - Vladimir Moiseenko
- State Budgetary Healthcare Institution (SBHI) "St. Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncology)", Saint Petersburg, Russia
| | - Svetlana Protsenko
- FSBI "N.N. Petrov National Medical Research Center of Oncology", Ministry of Health (MoH) of the Russian Federation, Saint Petersburg, Russia
| | - Tatiana Semiglazova
- FSBI "N.N. Petrov National Medical Research Center of Oncology", Ministry of Health (MoH) of the Russian Federation, Saint Petersburg, Russia
| | - Anastasia Zimina
- Budgetary Healthcare Institution (BHI) of the Omsk Region "Clinical Oncology Dispensary", Omsk, Russia
| | - Nadezhda Kovalenko
- State Budgetary Healthcare Institution (SBHI) "Volgograd Regional Clinical Oncology Dispensary", Volgograd, Russia
| | - Natalia Fadeeva
- State Autonomous Institution of Healthcare (SAHI) "Chelyabinsk Regional Clinical Center of Oncology and Nuclear Medicine", Chelyabinsk, Russia
| | - Dmitry Kirtbaya
- State Budgetary Healthcare Institution (SBHI) "Oncological Dispensary No. 2", Ministry of Health (MoH) of the Krasnodar Region, Krasnodar, Russia
| | - Igor Belogortsev
- Oncology Department, State Budgetary Healthcare Institution (SBHI) Leningrad Regional Clinical Hospital, Saint Petersburg, Russia
| | - Denis Tantsyrev
- Regional State Budgetary Healthcare Institution (SBHI) "Altai Regional Oncology Center", Barnaul, Russia
| | - Svetlana Odintsova
- Oncology Department, Joint-Stock Company "Modern Medical Technologies", Saint Petersburg, Russia
| | - Alfia Nesterova
- State Autonomous Institution of Healthcare (SAHI) "Professor M.Z. Sigal Republican Clinical Oncology Dispensary of the Ministry of Health of the Republic of Tatarstan", Kazan, Russia
| | - Karina Vorontsova
- Moscow State Budgetary Healthcare Institution "A.S. Loginov MCSC of the Moscow City Healthcare Department", Moscow, Russia
| | - Yulia Makarycheva
- State Budgetary Healthcare Institution (SBHI) "Samara Regional Clinical Oncology Dispensary", Samara, Russia
| | - Yulia Linkova
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Arina Zinkina-Orikhan
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Anna Siliutina
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Irina Sorokina
- Moscow State Budgetary Healthcare Institution "A.S. Loginov MCSC of the Moscow City Healthcare Department", Moscow, Russia
- Oncology Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Daria Liaptseva
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Vladimir Chistyakov
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| | - Anton Lutsky
- Clinical Research Department, Joint-Stock Company (JSC) Biocad, Saint Petersburg, Russia
| |
Collapse
|
55
|
van Berge Henegouwen JM, Zeverijn LJ, Geurts BS, Hoes LR, van der Wijngaart H, van der Noort V, Huitema ADR, de Vos FYF, Grünberg K, Bloemendal HJ, Verheul HMW, Voest EE, Gelderblom H. Maximizing Treatment Opportunities: Assessing Protocol Waivers' Impact on Safety and Outcome in the Drug Rediscovery Protocol. Clin Cancer Res 2024; 30:3937-3943. [PMID: 38926908 DOI: 10.1158/1078-0432.ccr-23-3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Although eligibility criteria are essential in trial design, overly restrictive criteria contribute to low accrual and limited generalizability. To enhance trial inclusivity, there has been growing interest in broadening eligibility criteria, especially for patients with advanced or treatment-refractory disease. Yet, the impact on patient safety remains uncertain. In the Drug Rediscovery Protocol (DRUP), protocol exceptions are frequently requested and occasionally granted. Here we describe the impact of these waivers on treatment safety and efficacy. EXPERIMENTAL DESIGN DRUP is a multicenter, nonrandomized clinical basket trial treating patients with therapy-refractory cancer with molecularly targeted and immunotherapies outside their registered indications (NCT02925234). Here, all granted waivers were revised, analyzed in terms of safety and efficacy outcome, and comparedwithoutcomes of includedpatientswho didnot receive awaiver. RESULTS Between September 1, 2016, and September 1, 2021, protocol waivers were granted for 82 patients (8%) of 1,019 included patients in DRUP. Most waivers (45%) were granted for general- or drug-related eligibility criteria; other categories were out-of-window testing, treatment, and testing exceptions. Serious adverse event rate was similar between patients who received a waiver (pW) and patients who did not (pNW): 39% vs. 41%, respectively (P = 0.81). The clinical benefit (either objective response or stable disease ≥ 16 weeks) rate of pW was 40% versus 33% in pNW (P = 0.43). CONCLUSIONS Safety and clinical benefit were preserved in patients for whom a waiver was granted. These data support a more personalized approach in assessing eligibility criteria, especially in trials with widely used and approved drugs accruing patients without other treatment options. See related commentary by Waqar and Govindan, p. 3655.
Collapse
Affiliation(s)
| | - Laurien J Zeverijn
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Birgit S Geurts
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Louisa R Hoes
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | | | | | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Filip Y F de Vos
- Department of Medical Oncology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Katrien Grünberg
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Haiko J Bloemendal
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
56
|
Benfield AH, Vernen F, Young RSE, Nadal-Bufí F, Lamb H, Hammerlindl H, Craik DJ, Schaider H, Lawrence N, Blanksby SJ, Henriques ST. Cyclic tachyplesin I kills proliferative, non-proliferative and drug-resistant melanoma cells without inducing resistance. Pharmacol Res 2024; 207:107298. [PMID: 39032840 DOI: 10.1016/j.phrs.2024.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Acquired drug resistance is the major cause for disease recurrence in cancer patients, and this is particularly true for patients with metastatic melanoma that carry a BRAF V600E mutation. To address this problem, we investigated cyclic membrane-active peptides as an alternative therapeutic modality to kill drug-tolerant and resistant melanoma cells to avoid acquired drug resistance. We selected two stable cyclic peptides (cTI and cGm), previously shown to have anti-melanoma properties, and compared them with dabrafenib, a drug used to treat cancer patients with the BRAF V600E mutation. The peptides act via a fast membrane-permeabilizing mechanism and kill metastatic melanoma cells that are sensitive, tolerant, or resistant to dabrafenib. Melanoma cells do not become resistant to long-term treatment with cTI, nor do they evolve their lipid membrane composition, as measured by lipidomic and proteomic studies. In vivo studies in mice demonstrated that the combination treatment of cTI and dabrafenib resulted in fewer metastases and improved overall survival. Such cyclic membrane-active peptides are thus well suited as templates to design new anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Felicitas Vernen
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Reuben S E Young
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ferran Nadal-Bufí
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Henry Lamb
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Heinz Hammerlindl
- Frazer Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Helmut Schaider
- Frazer Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia; Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
57
|
Loftus AW, Zarei M, Kakish H, Hajihassani O, Hue JJ, Boutros C, Graor HJ, Nakazzi F, Bahlibi T, Winter JM, Rothermel LD. Therapeutic implications of the metabolic changes associated with BRAF inhibition in melanoma. Cancer Treat Rev 2024; 129:102795. [PMID: 38972133 PMCID: PMC11361048 DOI: 10.1016/j.ctrv.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Melanoma metabolism can be reprogrammed by activating BRAF mutations. These mutations are present in up to 50% of cutaneous melanomas, with the most common being V600E. BRAF mutations augment glycolysis to promote macromolecular synthesis and proliferation. Prior to the development of targeted anti-BRAF therapies, these mutations were associated with accelerated clinical disease in the metastatic setting. Combination BRAF and MEK inhibition is a first line treatment option for locally advanced or metastatic melanoma harboring targetable BRAF mutations. This therapy shows excellent response rates but these responses are not durable, with almost all patients developing resistance. When BRAF mutated melanoma cells are inhibited with targeted therapies the metabolism of those cells also changes. These cells rely less on glycolysis for energy production, and instead shift to a mitochondrial phenotype with upregulated TCA cycle activity and oxidative phosphorylation. An increased dependence on glutamine utilization is exhibited to support TCA cycle substrates in this metabolic rewiring of BRAF mutated melanoma. Herein we describe the relevant core metabolic pathways modulated by BRAF inhibition. These adaptive pathways represent vulnerabilities that could be targeted to overcome resistance to BRAF inhibitors. This review evaluates current and future therapeutic strategies that target metabolic reprogramming in melanoma cells, particularly in response to BRAF inhibition.
Collapse
Affiliation(s)
- Alexander W Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hanna Kakish
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Christina Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Faith Nakazzi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Tsegaw Bahlibi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jordan M Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
58
|
Nakamura K, Yaguchi T, Murata M, Ota Y, Mikoshiba A, Kiniwa Y, Okuyama R, Kawakami Y. Tumor eradication by triplet therapy with BRAF inhibitor, TLR 7 agonist, and PD-1 antibody for BRAF-mutated melanoma. Cancer Sci 2024; 115:2879-2892. [PMID: 38894534 PMCID: PMC11462939 DOI: 10.1111/cas.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Programmed death 1 (PD-1)/programmed death-ligand 1 inhibitors are commonly used to treat various cancers, including melanoma. However, their efficacy as monotherapy is limited, and combination immunotherapies are being explored to improve outcomes. In this study, we investigated a combination immunotherapy involving an anti-PD-1 antibody that blocks the major adaptive immune-resistant mechanisms, a BRAF inhibitor that inhibits melanoma cell proliferation, and multiple primary immune-resistant mechanisms, such as cancer cell-derived immunosuppressive cytokines, and a Toll-like receptor 7 agonist that enhances innate immune responses that promote antitumor T-cell induction and functions. Using a xenogeneic nude mouse model implanted with human BRAF-mutated melanoma, a BRAF inhibitor vemurafenib was found to restore T-cell-stimulatory activity in conventional dendritic cells by reducing immunosuppressive cytokines, including interleukin 6, produced by human melanoma. Additionally, intravenous administration of the Toll-like receptor 7 agonist DSR6434 enhanced tumor growth inhibition by vemurafenib through stimulating the plasmacytoid dendritic cells/interferon-α/natural killer cell pathways and augmenting the T-cell-stimulatory activity of conventional dendritic cells. In a syngeneic mouse model implanted with murine BRAF-mutated melanoma, the vemurafenib and DSR6434 combination synergistically augmented the induction of melanoma antigen gp100-specific T cells and inhibited tumor growth. Notably, only triplet therapy with vemurafenib, DSR6434, and the anti-PD-1 antibody resulted in complete regression of SIY antigen-transduced BRAF-mutated melanoma in a CD8 T-cell-dependent manner. These findings indicate that a triple-combination strategy targeting adaptive and primary resistant mechanisms while enhancing innate immune responses that promote tumor-specific T cells may be crucial for effective tumor eradication.
Collapse
Affiliation(s)
- Kenta Nakamura
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of MedicineKeio UniversityTokyoJapan
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of MedicineKeio UniversityTokyoJapan
- Department of Immunology and Genomic MedicineKyoto University Graduate School of MedicineKyotoJapan
| | | | - Yosuke Ota
- Cancer Research UnitSumitomo Pharma Co. Ltd.OsakaJapan
| | - Asuka Mikoshiba
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Yukiko Kiniwa
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Ryuhei Okuyama
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of MedicineKeio UniversityTokyoJapan
- Department of Immunology, School of MedicineInternational University of Health and WelfareChibaJapan
| |
Collapse
|
59
|
Martínez-Vila C, González-Navarro EA, Teixido C, Martin R, Aya F, Juan M, Arance A. Lymphocyte T Subsets and Outcome of Immune Checkpoint Inhibitors in Melanoma Patients: An Oncologist's Perspective on Current Knowledge. Int J Mol Sci 2024; 25:9506. [PMID: 39273452 PMCID: PMC11394732 DOI: 10.3390/ijms25179506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer, and its incidence has been steadily increasing over the past few decades, particularly in the Caucasian population. Immune checkpoint inhibitors (ICI), anti-PD-1 monotherapy or in combination with anti-CTLA-4, and more recently, anti-PD-1 plus anti-LAG-3 have changed the clinical evolution of this disease. However, a significant percentage of patients do not benefit from these therapies. Therefore, to improve patient selection, it is imperative to look for novel biomarkers. Immune subsets, particularly the quantification of lymphocyte T populations, could contribute to the identification of ICI responders. The main purpose of this review is to thoroughly examine significant published data on the potential role of lymphocyte T subset distribution in peripheral blood (PB) or intratumorally as prognostic and predictive of response biomarkers in advanced melanoma patients treated with ICI regardless of BRAFV600 mutational status.
Collapse
Affiliation(s)
- Clara Martínez-Vila
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1-3, 08243 Manresa, Spain
- Programa de Doctorat en Medicina i Recerca Translacional, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Roda 70, 08500 Vic, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Roberto Martin
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Francisco Aya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| |
Collapse
|
60
|
Zhou J, Wuthrick E. Evidence for Radiation Therapy in Stage III Locoregionally Advanced Cutaneous Melanoma in the Post-Immunotherapy Era: A Literature Review. Cancers (Basel) 2024; 16:3027. [PMID: 39272885 PMCID: PMC11394305 DOI: 10.3390/cancers16173027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In the landscape of Stage III locoregionally advanced cutaneous melanoma treatment, the post-immunotherapy era has sparked a number of questions on the management of the nodal basin. However, much of the available literature is not focused on radiation therapy as an adjuvant therapy. This literature review aims to illuminate the evidence surrounding radiation therapy's potential to mitigate regional recurrences in the adjuvant setting for melanoma. Additionally, it seeks to identify adjunct systemic therapy options and explore the synergy between systemic therapy and radiation. Despite strides in surgical techniques and systemic therapies, controlling regional Stage III melanoma remains a formidable clinical hurdle. While historical data strongly suggest the efficacy of adjuvant radiation therapy in reducing regional recurrence risk, its evaluation predates the advent of MAPK pathway inhibitors and robust immunotherapy options. Notably, clinical trials have yet to definitively demonstrate a survival advantage with adjuvant radiation therapy. Additional research should focus on refining the definition of high risk for regional recurrence through gene expression profiling or tumor immune profiling scores and elucidate the optimal role of adjuvant radiation therapy in patients treated with neoadjuvant systemic therapy.
Collapse
Affiliation(s)
- Jennifer Zhou
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Evan Wuthrick
- Department of Radiation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
61
|
Li V, Frasier K, Vinagolu-Baur J, Chapman O, Loperfito A, Daly K, Taranto V. Beyond the Scalpel: Advancing Strategic Approaches and Targeted Therapies in Nonexcisable Melanomas. J Skin Cancer 2024; 2024:2167176. [PMID: 39229331 PMCID: PMC11371453 DOI: 10.1155/2024/2167176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Melanoma in challenging anatomical locations such as the face, acral surfaces, and mucosal areas presents unique hurdles for surgical excision. This review examines alternative nonsurgical treatment modalities in the context of these complexities, addressing the gaps in current guidelines and the varied efficacy of existing therapies. A comprehensive literature search was conducted using PubMed, Embase, and Web of Science databases. The review focuses on peer-reviewed articles discussing nonsurgical treatment options for melanoma in complex anatomical locations. Articles were screened by three independent researchers, ensuring a broad analysis of topical agents, immunotherapies, radiotherapies, and targeted therapies. The review highlights significant advancements in localized treatments such as imiquimod and intralesional therapy with talimogene laherparepvec (T-VEC), which show promise in managing nonexcisable melanomas. BRAF and MEK inhibitors, as well as checkpoint inhibitors targeting CTLA-4 and PD-1/PD-L1 pathways, demonstrate improved survival rates but pose challenges with resistance and systemic side effects. Radiotherapy serves as an adjunctive strategy due to melanoma's inherent radioresistant properties. Despite advancements, there is a notable absence of comprehensive, evidence-based protocols to guide the treatment of melanoma in these critical areas. This paper underscores the need for standardized treatment guidelines that account for the efficacy, side effects, and psychosocial impacts of therapies. Future research should focus on refining existing treatments and exploring innovative modalities to enhance patient outcomes in the management of nonexcisable melanomas. Comprehensive guidelines and long-term efficacy studies are essential to optimize care and improve the quality of life for patients afflicted with melanoma in challenging anatomical locations.
Collapse
Affiliation(s)
- Vivian Li
- Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, USA
| | - Kelly Frasier
- Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, USA
| | - Julia Vinagolu-Baur
- State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Olivia Chapman
- Mercy Health St. Elizabeth Boardman Hospital, Youngstown, OH 44512, USA
| | | | - Kathleen Daly
- The Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Viktoria Taranto
- New York Institute of Technology College of Osteopathic Medicine, Glean Head, NY 11545, USA
| |
Collapse
|
62
|
Lei J, Liu Y, Fan Y. The effects of dabrafenib and/or trametinib treatment in Braf V600-mutant glioma: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:458. [PMID: 39172230 PMCID: PMC11341626 DOI: 10.1007/s10143-024-02664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/22/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
This study aimed to evaluate the effects of dabrafenib and/or trametinib therapy in BRAF v600-mutant glioma treatment. PubMed, the Cochrane Library, EMBASE and Web of Science were searched from inception to Sep 2023. Inclusion criteria were designed based on the PICO principle to select relevant articles. Search keywords included 'dabrafenib', 'trametinib', 'glioma' and other related keywords. Outcomes included overall survival (OS), progression-free survival (PFS), adverse events (AEs), and death events. Methodological index for non-randomized studies (MINORS) was used to assess the methodological quality. Stata 14.0 was selected to perform the Cochrane Q and I2 statistics to test the heterogeneity among all studies. As for publication bias assessment and sensitivity analysis, the funnel plot, Egger regression test, Begg test, and trim and fill method were selected. Including 8 studies for meta-analysis. The pooled results of the single-arm trials showed that the median PFS and median OS after treatment were 6.10 months and 22.73 months, respectively. Notably, this study found a high incidence of AEs and death events of 50% and 43% after treatment. All the above findings were statistically significant. Also, this study statistically supported the advantage of disease response improvement after the combination therapy in BRAF v600-mutant glioma patients, which were shown as a pooled rate of PR (30%), a pooled rate of CR (18%), and a pooled rate of ORR (39%). And the AE rate was lower in the monotherapy group (AE: 25%) than in the combination treatment group (AE: 60%). Sensitivity analysis indicated that all the results were robust. Based on current literature outcomes, dabrafenib and/or trametinib may lead to the median PFS of 6.10 months and median OS as 22.73 months for BRAF v600-mutant glioma patients, and the safety of monotherapy is better than that of combination therapy. This conclusion needs to be treated with caution and further verified.
Collapse
Affiliation(s)
- Jun Lei
- Department of Neurosurgery, The First People's Hospital of Shuangliu District, No.120 Chengbei Uppersteet, Chengdu, Shuangliu District, 610200, China
- Department of Neurosurgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Chengdu, Wuhou District, 610041, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Chengdu, Wuhou District, 610041, China.
| | - Yingjun Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Chengdu, Wuhou District, 610041, China
| |
Collapse
|
63
|
Dastgheib ZS, Abolmaali SS, Farahavar G, Salmanpour M, Tamaddon AM. Gold nanostructures in melanoma: Advances in treatment, diagnosis, and theranostic applications. Heliyon 2024; 10:e35655. [PMID: 39170173 PMCID: PMC11336847 DOI: 10.1016/j.heliyon.2024.e35655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Melanoma, a lethal form of skin cancer, poses a significant challenge in oncology due to its aggressive nature and high mortality rates. Gold nanostructures, including gold nanoparticles (GNPs), offer myriad opportunities in melanoma therapy and imaging due to their facile synthesis and functionalization, robust stability, tunable physicochemical and optical properties, and biocompatibility. This review explores the emerging role of gold nanostructures and their composites in revolutionizing melanoma treatment paradigms, bridging the gap between nanotechnology and clinical oncology, and offering insights for researchers, clinicians, and stakeholders. It begins by elucidating the potential of nanotechnology-driven approaches in cancer therapy, highlighting the unique physicochemical properties and versatility of GNPs in biomedical applications. Various therapeutic modalities, including photothermal therapy, photodynamic therapy, targeted drug delivery, gene delivery, and nanovaccines, are discussed in detail, along with insights from ongoing clinical trials. In addition, the utility of GNPs in melanoma imaging and theranostics is explored, showcasing their potential in diagnosis, treatment monitoring, and personalized medicine. Furthermore, safety considerations and potential toxicities associated with GNPs are addressed, underscoring the importance of comprehensive risk assessment in clinical translation. Finally, the review concludes by discussing current challenges and future directions, emphasizing the need for innovative strategies to maximize the clinical impact of GNPs in melanoma therapy.
Collapse
Affiliation(s)
- Zahra Sadat Dastgheib
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Mohsen Salmanpour
- Cellular and Molecular Biology Research Center, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| |
Collapse
|
64
|
Tosca EM, Ronchi D, Rocchetti M, Magni P. Predicting Tumor Volume Doubling Time and Progression-Free Survival in Untreated Patients from Patient-Derived-Xenograft (PDX) Models: A Translational Model-Based Approach. AAPS J 2024; 26:92. [PMID: 39117850 DOI: 10.1208/s12248-024-00960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Tumor volume doubling time (TVDT) has been shown to be a potential surrogate marker of biological tumor activity. However, its availability in clinics is strongly limited due to ethical and practical reasons, as its assessment requires at least two subsequent tumor volume measurements in untreated patients. Here, a translational modeling framework to predict TVDT distributions in untreated cancer patient populations from tumor growth data in patient-derived xenograft (PDX) mice is proposed. Eleven solid cancer types were considered. For each of them, a set of tumor growth studies in PDX mice was selected and analyzed through a mathematical model to characterize the distribution of the exponential tumor growth rate in mice. Then, assuming an exponential growth of the tumor mass in humans, the growth rates were scaled from PDX mice to humans through an allometric scaling approach and used to predict TVDTs in untreated patients. A very good agreement was found between model predicted and clinically observed TVDTs, with 91% of the predicted TVDT medians fell within 1.5-fold of observations. Further, exploiting the intrinsic relationship between tumor growth dynamics and progression free survival (PFS), the exponential growth rates in humans were used to generate the expected PFS curves in absence of anticancer treatment. Predicted curves were extremely close to published PFS data from studies involving patient cohorts treated with supportive care or low effective therapies. The proposed approach shows promise as a potential tool to increase knowledge about TVDT in humans without the need of directly measuring tumor dimensions in untreated patients, and to predict PFS curves in untreated patients, that could fill the absence of placebo-controlled arms against which to compare treaded arms during clinical trials. However, further validation and refinement are needed to fully assess its effectiveness in this regard.
Collapse
Affiliation(s)
- E M Tosca
- Dipartimento Di Ingegneria Industriale E Dell'Informazione, Università Degli Studi Di Pavia, 27100, Pavia, Italy
| | - D Ronchi
- Dipartimento Di Ingegneria Industriale E Dell'Informazione, Università Degli Studi Di Pavia, 27100, Pavia, Italy
| | | | - P Magni
- Dipartimento Di Ingegneria Industriale E Dell'Informazione, Università Degli Studi Di Pavia, 27100, Pavia, Italy.
| |
Collapse
|
65
|
Ren L, Moreno D, Baer BR, Barbour P, Bettendorf T, Bouhana K, Brown K, Brown SA, Fell JB, Hartley DP, Hicken EJ, Laird ER, Lee P, McCown J, Otten JN, Prigaro B, Wallace R, Kahn D. Identification of the Clinical Candidate PF-07284890 ( ARRY-461), a Highly Potent and Brain Penetrant BRAF Inhibitor for the Treatment of Cancer. J Med Chem 2024; 67:13019-13032. [PMID: 39077892 DOI: 10.1021/acs.jmedchem.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mutant BRAFV600E is one of the most common oncogenic drivers in metastatic melanoma. While first generation BRAFV600E inhibitors are capable of controlling tumors systemically, they are unable to adequately treat tumors that have metastasized to the brain due to insufficient penetration across the blood-brain barrier (BBB). Through a combination of structure-based drug design (SBDD) and the optimization of physiochemical properties to enhance BBB penetration, we herein report the discovery of the brain-penetrant BRAFV600E inhibitor PF-07284890 (ARRY-461). In mice studies, ARRY-461 proved to be highly brain-penetrant and was able to drive regressions of A375 BRAFV600E tumors implanted both subcutaneously and intracranially. Based on compelling preclinical safety and efficacy studies, ARRY-461 was progressed into a Phase 1 A/B clinical trial (NCT04543188).
Collapse
Affiliation(s)
- Li Ren
- Enliven Therapeutics, Boulder, Colorado 80301, United States
| | - David Moreno
- Enliven Therapeutics, Boulder, Colorado 80301, United States
| | - Brian R Baer
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | | | | | - Karyn Bouhana
- Cogent Biosciences, Boulder, Colorado 80301, United States
| | - Karin Brown
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Suzy A Brown
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Jay B Fell
- Cogent Biosciences, Boulder, Colorado 80301, United States
| | | | - Erik J Hicken
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Ellen R Laird
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Patrice Lee
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Joseph McCown
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | | | | | - Ross Wallace
- Loxo Oncology, Louisville, Colorado 80027, United States
| | - Dean Kahn
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| |
Collapse
|
66
|
Shajari N, Baradaran B, Tohidkia MR, Nasiri H, Sepehri M, Setayesh S, Aghebati-Maleki L. Advancements in Melanoma Therapies: From Surgery to Immunotherapy. Curr Treat Options Oncol 2024; 25:1073-1088. [PMID: 39066854 DOI: 10.1007/s11864-024-01239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Melanoma is defined as the most aggressive and deadly form of skin cancer. The treatment of melanoma depends on the disease stage, tumor location, and extent of its spread from its point of origin. Melanoma treatment has made significant advances, notably in the context of targeted and immunotherapies. Surgical resection is the main therapeutic option for earlystage melanoma, and it provides favourable outcomes. With disease metastasis, systemic treatments such as immunotherapy and targeted therapy become increasingly important. The identification of mutations that lead to melanoma has influenced treatment strategies. Targeted therapies focusing on these mutations offer improved response rates and fewer toxicities than conventional chemotherapy. Furthermore, developing immunotherapies, including checkpoint inhibitors and tumor-infiltrating lymphocyte (TIL) therapies, has demonstrated encouraging outcomes in effectively combating cancer cells. These therapeutic agents demonstrate superior effectiveness and a more tolerable side-effect profile, improving the quality of life for patients receiving treatment. The future of melanoma treatment may involve a multimodal approach consisting of a combination of surgery, targeted therapy, and immunotherapy adapted to each patient's profile. This approach may improve survival rates and health outcomes.
Collapse
Affiliation(s)
- Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sepehri
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Setayesh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
67
|
van Not OJ, van den Eertwegh AJM, Jalving H, Bloem M, Haanen JB, van Rijn RS, Aarts MJB, van den Berkmortel FWPJ, Blank CU, Boers-Sonderen MJ, de Groot J. W. B. JW, Hospers GAP, Kapiteijn E, Leeneman B, D. P, Stevense-den Boer M, van der Veldt AAM, Vreugdenhil G. G, Wouters MWJM, Blokx WAM, Suijkerbuijk KPM. Long-Term Survival in Patients With Advanced Melanoma. JAMA Netw Open 2024; 7:e2426641. [PMID: 39141388 PMCID: PMC11325208 DOI: 10.1001/jamanetworkopen.2024.26641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/31/2024] [Indexed: 08/15/2024] Open
Abstract
IMPORTANCE Long-term survival data from clinical trials show that survival curves of patients with advanced melanoma treated with immune checkpoint inhibitors (ICIs) gradually reach a plateau, suggesting that patients have a chance of achieving long-term survival. OBJECTIVE To investigate long-term survival in patients with advanced melanoma treated with ICIs outside clinical trials. DESIGN, SETTING, AND PARTICIPANTS Cohort study using prospectively collected data from the nationwide Dutch Melanoma Treatment Registry, including patients in the Netherlands with advanced melanoma treated with first-line ICIs from 2012 to 2019. Data were analyzed from January to September 2023. EXPOSURES Patients were treated with first-line ipilimumab-nivolumab, antibodies that target programmed cell death (anti-PD-1), or ipilimumab. MAIN OUTCOMES AND MEASURES Progression-free survival (PFS) and melanoma-specific survival were analyzed, and a Cox proportional hazards model was used to investigate factors associated with PFS after reaching partial response (PR) or complete response (CR). RESULTS A total of 2490 patients treated with first-line ICIs were included (median [IQR] age, 65.0 [55.3-73.0] years; 1561 male patients [62.7%]). Most patients had an Eastern Cooperative Oncology Group Performance Status of 1 or lower (2202 patients [88.5%]) and normal lactate dehydrogenase levels (1715 patients [68.9%]). PFS for all patients was 23.4% (95% CI, 21.7%-25.2%) after 3 years and 19.7% (95% CI, 18.0%-21.4%) after 5 years. Overall survival for all patients was 44.0% (95% CI, 42.1%-46.1%) after 3 years and 35.9% (95% CI, 33.9%-38.0%) after 5 years. Patients with metastases in 3 or more organ sites had a significantly higher hazard of progression after reaching PR or CR (adjusted hazard ratio, 1.37; 95% CI, 1.11-1.69). CONCLUSIONS AND RELEVANCE This cohort study of patients with advanced melanoma treated with ICIs in clinical practice showed that their survival reached a plateau, comparable with patients participating in clinical trials. These findings can be used in daily clinical practice to guide long-term surveillance strategies and inform both physicians and patients regarding long-term treatment outcomes.
Collapse
Affiliation(s)
- Olivier J. van Not
- Scientific Bureau, Dutch Institute for Clinical Auditing, Leiden, the Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Alfons J. M. van den Eertwegh
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Hilde Jalving
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Manja Bloem
- Scientific Bureau, Dutch Institute for Clinical Auditing, Leiden, the Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B. Haanen
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Maureen J. B. Aarts
- Department of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | - Christian U. Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marye J. Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Geke A. P. Hospers
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Brenda Leeneman
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Erasmus Center for Health Economics Rotterdam, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Piersma D.
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede, the Netherlands
| | | | - Astrid A. M. van der Veldt
- Department of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Michel W. J. M. Wouters
- Scientific Bureau, Dutch Institute for Clinical Auditing, Leiden, the Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Willeke A. M. Blokx
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Karijn P. M. Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
68
|
Zhang X, Li R, Li Y, He L, Hou E. A Real-World Pharmacovigilance Study of the FDA Adverse Event Reporting System Events for Trametinib. Cureus 2024; 16:e67925. [PMID: 39328691 PMCID: PMC11426181 DOI: 10.7759/cureus.67925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVE This research investigates adverse drug events (ADEs) linked to trametinib, utilizing data from the FDA Adverse Event Reporting System (FAERS) database, covering the period from Q2 2013 to Q4 2023. METHODS We gathered data on ADEs associated with trametinib from the second quarter of 2013 to the fourth quarter of 2023. After standardizing the data, we applied various analytical methods to quantify signals, including the reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian Confidence Propagation for Neural Networks (BCPNN), and multi-item gamma Poisson shrinker (MGPS). RESULTS In our examination of 2200 ADE reports with trametinib cited as the primary suspect, we identified 191 adverse reaction terms across 23 system organ classifications. The most frequently reported classifications were general disorders and administration site conditions, with 1254 cases (ROR 0.83, PRR 0.85, IC -0.23, EBGM 0.85), followed by neoplasms (benign, malignant, and unspecified, including cysts and polyps) with 802 cases (ROR 3.59, PRR 3.32, IC 1.73, EBGM 3.32), and investigations with 794 cases (ROR 1.74, PRR 1.66, IC 0.73, EBGM 1.66). Notably, this study also uncovered previously unlabeled adverse reactions such as cheilitis, lobular panniculitis, ulcerative keratitis, and stridor. CONCLUSION While trametinib provides therapeutic advantages, it is associated with several potential adverse reactions. It is crucial for healthcare providers to closely monitor patients for symptoms such as cheilitis, lobular panniculitis, ulcerative keratitis, stridor, and other adverse events (AEs) during treatment.
Collapse
Affiliation(s)
- Xinyue Zhang
- Oncology, Guangxi University of Chinese Medicine, Nanning, CHN
| | - Rongrong Li
- Oncology, Guangxi University of Chinese Medicine, Nanning, CHN
| | - Yanrong Li
- Oncology, Guangxi University of Chinese Medicine, Nanning, CHN
| | - Lu He
- Oncology, Guangxi University of Chinese Medicine, Nanning, CHN
| | - Encun Hou
- Oncology, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, CHN
| |
Collapse
|
69
|
Bialves TS, Bastos LL, Parra JAA, Moysés MN, Marques E, de Castro Pimenta AM, Quintela FM, Mariano DCB, Carvalho FC, de Melo-Minardi RC, Boyle RT. Interaction of DisBa01 peptide from Bothrops alternatus venom with BRAF melanoma receptors: Modeling and molecular docking. Int J Biol Macromol 2024; 274:133283. [PMID: 38909731 DOI: 10.1016/j.ijbiomac.2024.133283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Metastatic melanoma is highly aggressive and challenging, often leading to a grim prognosis. Its progression is swift, especially when mutations like BRAFV600E continuously activate pathways vital for cell growth and survival. Although several treatments target this mutation, resistance typically emerges over time. In recent decades, research has underscored the potential of snake venoms and peptides as bioactive substances for innovative drugs, including anti-coagulants, anti-microbial, and anti-cancer agents. Leveraging this knowledge, we propose employing a bioinformatics simulation approach to: a) Predict how well a peptide (DisBa01) from Bothrops alternatus snake venom binds to the melanoma receptor BRAFV600E via Molecular Docking. b) Identify the specific peptide binding sites on receptors and analyze their proximity to active receptor sites. c) Evaluate the behavior of resulting complexes through molecular dynamics simulations. d) Assess whether this peptide qualifies as a candidate for anti-melanoma therapy. Our findings reveal that DisBa01 enhances stability in the BRAFV600E melanoma receptor structure by binding to its RGD motif, an interaction absent in the BRAF WT model. Consequently, both docking and molecular dynamics simulations suggest that DisBa01 shows promise as a BRAFV600E inhibitor.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Graduate Program in Physiological Sciences (PPGCF), Federal University of Rio Grande - FURG, Av. Italy, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Luana Luiza Bastos
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - John Alexanders Amaya Parra
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maurício Nogueira Moysés
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edleusa Marques
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano Monteiro de Castro Pimenta
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Marques Quintela
- Instituto Nacional de Pesquisas do Pantanal- Museu Paraense Emílio Goeldi, Av. Magalhães Barata, 376, Belém, Pará, Brazil
| | - Diego César Batista Mariano
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Chaves Carvalho
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel C de Melo-Minardi
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Tew Boyle
- Graduate Program in Physiological Sciences (PPGCF), Federal University of Rio Grande - FURG, Av. Italy, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
70
|
Chen S, Zeng J, Saad M, Lineaweaver WC, Chen Z, Pan Y. Precision Drug Repurposing: A Deep Learning Toolkit for Identifying 34 Hyperpigmentation-Associated Genes and Optimizing Treatment Selection. Ann Plast Surg 2024; 93:S30-S42. [PMID: 38896860 DOI: 10.1097/sap.0000000000004007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
BACKGROUND Hyperpigmentation is a skin disorder characterized by a localized darkening of the skin due to increased melanin production. When patients fail first line topical treatments, secondary treatments such as chemical peels and lasers are offered. However, these interventions are not devoid of risks and are associated with postinflammatory hyperpigmentation. In the quest for novel therapeutic potentials, this study aims to investigate computational methods in the identification of new targeted therapies in the treatment of hyperpigmentation. METHODS We used a comprehensive approach, which integrated text mining, interpreting gene lists through enrichment analysis and integration of diverse biological information (GeneCodis), protein-protein association networks and functional enrichment analyses (STRING), and plug-in network centrality parameters (Cytoscape) to pinpoint genes closely associated with hyperpigmentation. Subsequently, analysis of drug-gene interactions to identify potential drugs (Cortellis) was utilized to select drugs targeting these identified genes. Lastly, we used Deep Learning Based Drug Repurposing Toolkit (DeepPurpose) to conduct drug-target interaction predictions to ultimately identify candidate drugs with the most promising binding affinities. RESULTS Thirty-four hyperpigmentation-related genes were identified by text mining. Eight key genes were highlighted by utilizing GeneCodis, STRING, Cytoscape, gene enrichment, and protein-protein interaction analysis. Thirty-five drugs targeting hyperpigmentation-associated genes were identified by Cortellis, and 29 drugs, including 16 M2PK1 inhibitors, 11 KRAS inhibitors, and 2 BRAF inhibitors were recommended by DeepPurpose. CONCLUSIONS The study highlights the promise of advanced computational methodology for identifying potential treatments for hyperpigmentation.
Collapse
Affiliation(s)
- Shuwei Chen
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junhao Zeng
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mariam Saad
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | | | - Zhiwei Chen
- Big Data and Artificial Intelligence Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyan Pan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
71
|
Embaby A, Huijberts SCFA, Wang L, Leite de Oliveira R, Rosing H, Nuijen B, Sanders J, Hofland I, van Steenis C, Kluin RJC, Lieftink C, Smith CG, Blank CU, van Thienen JV, Haanen JBAG, Steeghs N, Opdam FL, Beijnen JH, Huitema ADR, Bernards R, Schellens JHM, Wilgenhof S. A Proof-of-Concept Study of Sequential Treatment with the HDAC Inhibitor Vorinostat following BRAF and MEK Inhibitors in BRAFV600-Mutated Melanoma. Clin Cancer Res 2024; 30:3157-3166. [PMID: 38739109 DOI: 10.1158/1078-0432.ccr-23-3171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE The development of resistance limits the clinical benefit of BRAF and MEK inhibitors (BRAFi/MEKi) in BRAFV600-mutated melanoma. It has been shown that short-term treatment (14 days) with vorinostat was able to initiate apoptosis of resistant tumor cells. We aimed to assess the antitumor activity of sequential treatment with vorinostat following BRAFi/MEKi in patients with BRAFV600-mutated melanoma who progressed after initial response to BRAFi/MEKi. PATIENTS AND METHODS Patients with BRAFi/MEKi-resistant BRAFV600-mutated melanoma were treated with vorinostat 360 mg once daily for 14 days followed by BRAFi/MEKi. The primary endpoint was an objective response rate of progressive lesions of at least 30% according to Response Evaluation Criteria in Solid Tumors 1.1. Secondary endpoints included progression-free survival, overall survival, safety, pharmacokinetics of vorinostat, and translational molecular analyses using ctDNA and tumor biopsies. RESULTS Of the 26 patients with progressive BRAFi/MEKi-resistant BRAFV600-mutated melanoma receiving treatment with vorinostat, 22 patients were evaluable for response. The objective response rate was 9%, with one complete response for 31.2 months and one partial response for 14.9 months. Median progression-free survival and overall survival were 1.4 and 5.4 months, respectively. Common adverse events were fatigue (23%) and nausea (19%). ctDNA analysis showed emerging secondary mutations in NRAS and MEK in eight patients at the time of BRAFi/MEKi resistance. Elimination of these mutations by vorinostat treatment was observed in three patients. CONCLUSIONS Intermittent treatment with vorinostat in patients with BRAFi/MEKi-resistant BRAFV600-mutated melanoma is well tolerated. Although the primary endpoint of this study was not met, durable antitumor responses were observed in a minority of patients (9%).
Collapse
Affiliation(s)
- Alaa Embaby
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sanne C F A Huijberts
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rodrigo Leite de Oliveira
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- CEMM, Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Charlaine van Steenis
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Christian U Blank
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johannes V van Thienen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Frans L Opdam
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos H Beijnen
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Sofie Wilgenhof
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
72
|
Kim KB. Personalized therapy in oncology: melanoma as a paradigm for molecular-targeted treatment approaches. Clin Exp Metastasis 2024; 41:465-471. [PMID: 38935186 DOI: 10.1007/s10585-024-10291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/28/2024]
Abstract
In recent decades, the field of systemic cancer treatment has seen remarkable changes due to advancements in the understanding of cancer's biology, immunology, and genetic makeup. As a result, individuals with late-stage cancers are now achieving survival rates that were previously unattainable. The goal of personalized cancer therapy is to enhance clinical outcomes by customizing drug treatments to suit the unique genetic and/or epigenetic profiles of each patient's tumor. This approach aims to reduce the side effects commonly associated with ineffective treatments. Advances in genetic sequencing and molecular cytogenetics have been instrumental in identifying cancer-driving mutations and epigenetic irregularities, leading to the development of specific molecular therapies. This review article highlights the progress and success of targeted molecular therapies in treating malignant melanoma, illustrating the concept of personalized cancer treatment.
Collapse
Affiliation(s)
- Kevin B Kim
- California Pacific Medical Center Research Institute, 2333 Buchanan St, San Francisco, CA, 94115, USA.
| |
Collapse
|
73
|
Wang M, Sullivan RJ, Mooradian MJ. Toxicities from BRAF and MEK Inhibitors: Strategies to Maximize Therapeutic Success. Curr Oncol Rep 2024; 26:934-944. [PMID: 38850505 DOI: 10.1007/s11912-024-01544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE OF REVIEW This report highlights several of the recent therapeutic advancements in the treatment of BRAF-mutant tumors, discusses the most common adverse events observed with BRAF-targeted agents, and suggests strategies to manage and mitigate treatment-related toxicities. RECENT FINDINGS BRAF and MEK inhibitors represent a significant advancement in the treatment of BRAF-mutated malignancies with data across tumor types demonstrating the anti-tumor efficacy of dual MAPK inhibition. Although these agents have a reasonable toxicity profile, variable side effects across organ systems can develop. The discovery of activating BRAF mutations and subsequent development of BRAF and MEK inhibitors has transformed the treatment algorithms of BRAF-mutant malignancies. With increased application of these targeted regimens, identification and prompt management of their unique adverse events are crucial.
Collapse
Affiliation(s)
- Mike Wang
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Ryan J Sullivan
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Meghan J Mooradian
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
74
|
Egeler MD, van Leeuwen M, Lai-Kwon J, Eriksson H, Bartula I, Elashwah S, Fox L, Van Hemelrijck M, Jefford M, Lijnsvelt J, Bagge ASL, Morag O, Ny L, Olofsson Bagge R, Rogiers A, Saw RPM, Serpentini S, Iannopollo L, Thompson J, Stiller HT, Vanlaer N, van Akkooi ACJ, van de Poll-Franse LV. Understanding quality of life issues in patients with advanced melanoma: Phase 1 and 2 in the development of the EORTC advanced melanoma module. Eur J Cancer 2024; 207:114176. [PMID: 38875843 DOI: 10.1016/j.ejca.2024.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
AIMS We aimed to develop a European Organization for Research and Treatment of Cancer (EORTC) Quality of Life (QoL) module tailored for patients with advanced (resectable or unresectable stage III/IV) melanoma receiving immune checkpoint inhibitors or targeted therapy. METHODS Following the EORTC QoL Group module development guidelines, we conducted phases 1 and 2 of the development process. In phase 1, we generated a list of health-related (HR)QoL issues through a systematic literature review and semi-structured interviews with healthcare professionals (HCPs) and patients with advanced melanoma. In phase 2, these issues were converted into questionnaire items to create the preliminary module. RESULTS Phase 1: we retrieved 8006 articles for the literature review, of which 35 were deemed relevant, resulting in 84 HRQoL issues being extracted to create the initial issue list. Semi-structured interviews with 18 HCPs and 28 patients with advanced melanoma resulted in 28 issues being added to the initial issue list. Following EORTC module development criteria, 26 issues were removed, and two issues were added after review by patient advocates. Phase 2: To ensure uniformity and avoid duplication, 16 issues were consolidated into eight items. Additionally, an independent expert contributed one new item, resulting in a preliminary module comprising 80 HRQoL items. CONCLUSION We identified a range of HRQoL issues (dry skin, xerostomia, and arthralgia) relevant to patients with stage III/IV melanoma. Future module development phases will refine the questionnaire. Once completed, this module will enable standardized assessment of HRQoL in patients with (locally) advanced melanoma.
Collapse
Affiliation(s)
- M D Egeler
- Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - M van Leeuwen
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - J Lai-Kwon
- Department of Medical Oncology and Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - H Eriksson
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Sweden
| | - I Bartula
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - S Elashwah
- Medical Oncology Unit, Oncology Center, Mansoura University (OCMU), Egypt
| | - L Fox
- King's College London, London, United Kingdom
| | | | - M Jefford
- Department of Medical Oncology and Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - J Lijnsvelt
- Netherlands Cancer Institute, Department of Medical Oncology, Amsterdam, the Netherlands
| | - A-S Lindqvist Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - O Morag
- Sheba Medical Center, The Jusjdman Cancer Center, Ramat-gan, Israel
| | - L Ny
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - R Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Rogiers
- Department of Medical Oncology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - R P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | | | - J Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | | | - N Vanlaer
- Sheba Medical Center, The Jusjdman Cancer Center, Ramat-gan, Israel
| | - A C J van Akkooi
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
75
|
Lei R, Liu X, Wu J. Nutrition and melanoma: the contribution of trace elements in onset, progression, and treatment of melanoma. Nutr Rev 2024; 82:1138-1149. [PMID: 37702535 DOI: 10.1093/nutrit/nuad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Melanoma is a highly malignant and drug-resistant disease that imposes a substantial economic burden on the world. There are many studies linking trace elements to diverse types of cancers, including melanoma. This review elucidates the relationship between trace elements exposure and melanoma. It was identified that copper, manganese, selenium, zinc, iron, and many other trace elements were associated with melanoma in humans. In terms of epidemiology, different elements have different correlations with melanoma. These trace elements affect the occurrence and development of melanoma through various mechanisms, such as oxidative stress and the MAPK pathway. The literature on the role of trace elements in the pathogenesis and treatment of melanoma depicts promising prospects for this field.
Collapse
Affiliation(s)
- Rui Lei
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
76
|
Dugan MM, Perez MC, Karapetyan L, Zager JS. Combination Atezolizumab, Cobimetinib, and Vemurafenib as a Treatment Option in BRAF V600 Mutation-Positive Melanoma: Patient Selection and Perspectives. Cancer Manag Res 2024; 16:933-939. [PMID: 39099762 PMCID: PMC11296355 DOI: 10.2147/cmar.s325514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
The treatment landscape for advanced and metastatic melanoma has drastically changed in recent years, with the advent of novel therapeutic options such as immune checkpoint inhibitors and targeted therapies offering remarkable efficacy and significantly improved patient outcomes compared to traditional approaches. Approximately 50% of melanomas harbor activating BRAF mutations, with over 90% resulting in BRAF V600E. Tumors treated with BRAF inhibitor monotherapy have a high rate of developing resistance within six months. Combination therapy with MEK inhibitors helped to mitigate this treatment resistance and led to improved outcomes. Due to the up-regulation of PD-1/PD-L1 receptors in tumors treated with BRAF/MEK inhibitor therapy, further studies included a third combination agent, anti-PD-1/PD-L1 inhibitors. This triple combination therapy may have superior efficacy and a manageable safety profile when compared with single or double agent therapy regimens.
Collapse
Affiliation(s)
- Michelle M Dugan
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Matthew C Perez
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Lilit Karapetyan
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
77
|
Almeida TC, Giannotti KC, Ribeiro Silva LM, Marques-Porto R, DeOcesano-Pereira C, Camargo L, Chudzinski-Tavassi AM, Reid P, Picolo G. Crotoxin induces cytotoxic effects in human malignant melanoma cells in both native and detoxified forms. Front Pharmacol 2024; 15:1425446. [PMID: 39114354 PMCID: PMC11303296 DOI: 10.3389/fphar.2024.1425446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Melanoma, a highly aggressive skin cancer originating in melanocytes, poses a significant threat due to its metastatic potential. While progress has been made in treating melanoma with targeted therapies and immunotherapies, challenges persist. Crotoxin (CTX), the principal toxin in Crotalus durissus terrificus snake venom, exhibits various biological activities, including anti-tumoral effects across multiple cancers. However, its clinical use is limited by toxicity. Thus, exploring alternatives to mitigate adverse effects is crucial. Methods and Results: This study investigates the antitumoral potential of CTX in its native and in a detoxified form, in melanoma cells. Firstly, we demonstrated that detoxified CTX presented reduced phospholipase activity. Both forms proved to be more cytotoxic to SK-MEL-28 and MeWo melanoma cells than non-tumoral cells. In SK-MEL-28 cells, where cytotoxic effects were more pronounced, native and detoxified CTX induced increased necrosis and apoptosis rates. We also confirmed the apoptosis death demonstrated by the activation of caspase-3 and 7, and the formation of apoptotic bodies. Furthermore, both CTX caused cell cycle arrest at the G2/M phase, interfering with melanoma cell proliferation. Cell migration and invasion were also suppressed by both CTX. These results confirm the antitumoral potential of CTX. Discussion: The maintenance of the antiproliferative effects in the detoxified version, with reduced enzymatic activity often liked to harm effects, supports further studies to identify active parts of the molecule responsible for the interesting effects without causing substantial toxic events, contributing to the future use of CTX-derived drugs with safety and efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Lauren Camargo
- Centre of Excellence in New Target Discovering (CENTD), Butantan Institute, Sao Paulo, Brazil
| | | | - Paul Reid
- Celtic Biotech Ltd., Dublin, Ireland
| | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| |
Collapse
|
78
|
Toye E, Chehrazi-Raffle A, Hwang J, Antonarakis ES. Targeting the multifaceted BRAF in cancer: New directions. Oncotarget 2024; 15:486-492. [PMID: 39018217 PMCID: PMC11254297 DOI: 10.18632/oncotarget.28612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Activating mutations in the mitogen-activated protein kinase (MAPK) pathway represent driver alterations governing tumorigenesis, metastasis, and therapy resistance. MAPK activation predominantly occurs through genomic alterations in RAS and BRAF. BRAF is an effector kinase that functions downstream of RAS and propagates this oncogenic activity through MEK and ERK. Across cancers, BRAF alterations include gain-of-function mutations, copy-number alterations, and structural rearrangements. In cancer patients, BRAF-targeting precision therapeutics are effective against Class I BRAF alterations (p.V600 hotspot mutations) in tumors such as melanomas, thyroid cancers, and colorectal cancers. However, numerous non-Class I BRAF inhibitors are also in development and have been explored in some cancers. Here we discuss the diverse forms of BRAF alterations found in human cancers and the strategies to inhibit them in patients harboring cancers of distinct origins.
Collapse
Affiliation(s)
- Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | | | - Justin Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
79
|
Chen S, Xie J, Ye R, Xu DD, Yang Y. Structure-aware dual-target drug design through collaborative learning of pharmacophore combination and molecular simulation. Chem Sci 2024; 15:10366-10380. [PMID: 38994407 PMCID: PMC11234869 DOI: 10.1039/d4sc00094c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/09/2024] [Indexed: 07/13/2024] Open
Abstract
Dual-target drug design has gained significant attention in the treatment of complex diseases, such as cancers and autoimmune disorders. A widely employed design strategy is combining pharmacophores to leverage the knowledge of structure-activity relationships of both targets. Unfortunately, pharmacophore combination often struggles with long and expensive trial and error, because the protein pockets of the two targets impose complex structural constraints. In this study, we propose AIxFuse, a structure-aware dual-target drug design method that learns pharmacophore fusion patterns to satisfy the dual-target structural constraints simulated by molecular docking. AIxFuse employs two self-play reinforcement learning (RL) agents to learn pharmacophore selection and fusion by comprehensive feedback including dual-target molecular docking scores. Collaboratively, the molecular docking scores are learned by active learning (AL). Through collaborative RL and AL, AIxFuse learns to generate molecules with multiple desired properties. AIxFuse is shown to outperform state-of-the-art methods in generating dual-target drugs against glycogen synthase kinase-3 beta (GSK3β) and c-Jun N-terminal kinase 3 (JNK3). When applied to another task against retinoic acid receptor-related orphan receptor γ-t (RORγt) and dihydroorotate dehydrogenase (DHODH), AIxFuse exhibits consistent performance while compared methods suffer from performance drops, leading to a 5 times higher performance in success rate. Docking studies demonstrate that AIxFuse can generate molecules concurrently satisfying the binding mode required by both targets. Further free energy perturbation calculation indicates that the generated candidates have promising binding free energies against both targets.
Collapse
Affiliation(s)
- Sheng Chen
- School of Computer Science and Engineering, Sun Yat-sen University Guangzhou 510006 China
- AixplorerBio Inc. Jiaxing 314031 China
| | - Junjie Xie
- School of Computer Science and Engineering, Sun Yat-sen University Guangzhou 510006 China
- AixplorerBio Inc. Jiaxing 314031 China
| | | | | | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
80
|
Amrane K, Meur CL, Thuillier P, Berthou C, Uguen A, Deandreis D, Bourhis D, Bourbonne V, Abgral R. Review on radiomic analysis in 18F-fluorodeoxyglucose positron emission tomography for prediction of melanoma outcomes. Cancer Imaging 2024; 24:87. [PMID: 38970050 PMCID: PMC11225300 DOI: 10.1186/s40644-024-00732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
Over the past decade, several strategies have revolutionized the clinical management of patients with cutaneous melanoma (CM), including immunotherapy and targeted tyrosine kinase inhibitor (TKI)-based therapies. Indeed, immune checkpoint inhibitors (ICIs), alone or in combination, represent the standard of care for patients with advanced disease without an actionable mutation. Notably BRAF combined with MEK inhibitors represent the therapeutic standard for disease disclosing BRAF mutation. At the same time, FDG PET/CT has become part of the routine staging and evaluation of patients with cutaneous melanoma. There is growing interest in using FDG PET/CT measurements to predict response to ICI therapy and/or target therapy. While semiquantitative values such as standardized uptake value (SUV) are limited for predicting outcome, new measures including tumor metabolic volume, total lesion glycolysis and radiomics seem promising as potential imaging biomarkers for nuclear medicine. The aim of this review, prepared by an interdisciplinary group of experts, is to take stock of the current literature on radiomics approaches that could improve outcomes in CM.
Collapse
Affiliation(s)
- Karim Amrane
- Department of Oncology, Regional Hospital of Morlaix, Morlaix, 29600, France.
- Lymphocytes B et Autoimmunité, Inserm, UMR1227, Univ Brest, Inserm, LabEx IGO, Brest, France.
| | - Coline Le Meur
- Department of Radiotherapy, University Hospital of Brest, Brest, France
| | - Philippe Thuillier
- Department of Endocrinology, University Hospital of Brest, Brest, France
- UMR Inserm 1304 GETBO, University of Western Brittany, Brest, IFR 148, France
| | - Christian Berthou
- Lymphocytes B et Autoimmunité, Inserm, UMR1227, Univ Brest, Inserm, LabEx IGO, Brest, France
- Department of Hematology, University Hospital of Brest, Brest, France
| | - Arnaud Uguen
- Lymphocytes B et Autoimmunité, Inserm, UMR1227, Univ Brest, Inserm, LabEx IGO, Brest, France
- Department of Pathology, University Hospital of Brest, Brest, France
| | - Désirée Deandreis
- Department of Nuclear Medicine, Gustave Roussy Institute, University of Paris Saclay, Paris, France
| | - David Bourhis
- UMR Inserm 1304 GETBO, University of Western Brittany, Brest, IFR 148, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Vincent Bourbonne
- Department of Radiotherapy, University Hospital of Brest, Brest, France
- Inserm, UMR1101, LaTIM, University of Western Brittany, Brest, France
| | - Ronan Abgral
- UMR Inserm 1304 GETBO, University of Western Brittany, Brest, IFR 148, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| |
Collapse
|
81
|
Kulkarni AM, Gayam PKR, Aranjani JM. Advances in Understanding and Management of Erdheim-Chester Disease. Life Sci 2024; 348:122692. [PMID: 38710283 DOI: 10.1016/j.lfs.2024.122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Erdheim Chester Disease (ECD) is a rare histiocytic disorder marked by infiltration of organs with CD68+ histiocytes. ECD stems from mutations of BRAF and MAP2K1 in hematopoietic stem and progenitor cells (HSPCs), which further differentiate into monocytes and histiocytes. Histopathology reveals lipid-containing histiocytes, which test positive for CD68 and CD133 in immunohistochemistry. Signs and symptoms vary and depend on the organ/s of manifestation. Definitive radiological results associated with ECD include hairy kidney, coated aorta, and cardiac pseudotumor. Treatment options primarily include anti-cytokine therapy and inhibitors of BRAF and MEK signaling.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
82
|
Combarel D, Dousset L, Bouchet S, Ferrer F, Tetu P, Lebbe C, Ciccolini J, Meyer N, Paci A. Tyrosine kinase inhibitors in cancers: Treatment optimization - Part I. Crit Rev Oncol Hematol 2024; 199:104384. [PMID: 38762217 DOI: 10.1016/j.critrevonc.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
A multitude of TKI has been developed and approved targeting various oncogenetic alterations. While these have provided improvements in efficacy compared with conventional chemotherapies, resistance to targeted therapies occurs. Mutations in the kinase domain result in the inability of TKI to inactivate the protein kinase. Also, gene amplification, increased protein expression and downstream activation or bypassing of signalling pathways are commonly reported mechanisms of resistance. Improved understanding of mechanisms involved in TKI resistance has resulted in the development of new generations of targeted agents. In a race against time, the search for new, more potent and efficient drugs, and/or combinations of drugs, remains necessary as new resistance mechanisms to the latest generation of TKI emerge. This review examines the various generations of TKI approved to date and their common mechanisms of resistance, focusing on TKI targeting BCR-ABL, epidermal growth factor receptor, anaplastic lymphoma kinase and BRAF/MEK tyrosine kinases.
Collapse
Affiliation(s)
- David Combarel
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris Saclay, Châtenay-Malabry 92 296, France
| | - Léa Dousset
- Dermatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Stéphane Bouchet
- Département de Pharmacologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Florent Ferrer
- Department of Pharmacology, Clermont-Ferrand University Hospital, Clermont-Ferrand, France; SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France
| | - Pauline Tetu
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France
| | - Céleste Lebbe
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France
| | - Joseph Ciccolini
- SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France
| | - Nicolas Meyer
- Université Paul Sabatier-Toulouse III, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037-CRCT, Toulouse, France
| | - Angelo Paci
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris Saclay, Châtenay-Malabry 92 296, France.
| |
Collapse
|
83
|
Perrone C, Angioli R, Luvero D, Giannini A, Di Donato V, Cuccu I, Muzii L, Raspagliesi F, Bogani G. Targeting BRAF pathway in low-grade serous ovarian cancer. J Gynecol Oncol 2024; 35:e104. [PMID: 38768941 PMCID: PMC11262891 DOI: 10.3802/jgo.2024.35.e104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Mutations in genes encoding for proteins along the RAS-RAF-MEK-ERK pathway have been detected in a variety of tumor entities including ovarian carcinomas. In the recent years, several inhibitors of this pathway have been developed, whose antitumor potential is currently being assessed in different clinical trials. Low grade serous ovarian carcinoma, is a rare gynecological tumor which shows favorable overall survival, compared to the general ovarian cancer population, but worrying resistance to conventional chemotherapies. The clinical behavior of low grade serous ovarian carcinoma reflects the different gene profile compared to high-grade serous carcinoma: KRAS/BRAF mutations. BRAF inhibitors as single agents were approved for the treatment of BRAF mutated tumors. Nevertheless, many patients face progressive disease. The understanding of the mechanisms of resistance to BRAF inhibitors therapy and preclinical studies showing that BRAF and mitogen-activated protein kinase kinase (MEK) inhibitors combined therapy delays the onset of resistance compared to BRAF inhibitor single agent, led to the clinical investigation of combined therapy. The aim of this paper is to review the efficacy and safety of the combination of BRAF plus MEK inhibitors on ovarian carcinomas, in particularly focusing on low grade serous ovarian carcinoma.
Collapse
Affiliation(s)
- Chiara Perrone
- Department of Gynecological, Obstetrical and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Angioli
- Department of Gynecology, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Daniela Luvero
- Department of Gynecology, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Andrea Giannini
- Department of Gynecological, Obstetrical and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Violante Di Donato
- Department of Gynecological, Obstetrical and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Ilaria Cuccu
- Department of Gynecological, Obstetrical and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Ludovico Muzii
- Department of Gynecological, Obstetrical and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Raspagliesi
- Gynecologic Oncologic Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giorgio Bogani
- Gynecologic Oncologic Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
| |
Collapse
|
84
|
Hu X, Deng X, Xie J, Zhang H, Zhang H, Feng B, Zou Y, Wang C. Evolutionary Trend Analysis of Research on Immunotherapy for Brain Metastasis Based on Machine-Learning Scientometrics. Pharmaceuticals (Basel) 2024; 17:850. [PMID: 39065701 PMCID: PMC11280367 DOI: 10.3390/ph17070850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
Brain metastases challenge cancer treatments with poor prognoses, despite ongoing advancements. Immunotherapy effectively alleviates advanced cancer, exhibiting immense potential to revolutionize brain metastasis management. To identify research priorities that optimize immunotherapies for brain metastases, 2164 related publications were analyzed. Scientometric visualization via R software, VOSviewer, and CiteSpace showed the interrelationships among literature, institutions, authors, and topic areas of focus. The publication rate and citations have grown exponentially over the past decade, with the US, China, and Germany as the major contributors. The University of Texas MD Anderson Cancer Center ranked highest in publications, while Memorial Sloan Kettering Cancer Center was most cited. Clusters of keywords revealed six hotspots: 'Immunology', 'Check Point Inhibitors', 'Lung Cancer', 'Immunotherapy', 'Melanoma', 'Breast Cancer', and 'Microenvironment'. Melanoma, the most studied primary tumor with brain metastases offers promising immunotherapy advancements with generalizability and adaptability to other cancers. Our results outline the holistic overview of immunotherapy research for brain metastases, which pinpoints the forefront in the field, and directs researchers toward critical inquiries for enhanced mechanistic insight and improved clinical outcomes. Moreover, governmental and funding agencies will benefit from assigning financial resources to entities and regions with the greatest potential for combating brain metastases through immunotherapy.
Collapse
Affiliation(s)
- Xiaoqian Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hanqi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huiting Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Beibei Feng
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
85
|
Castrejon N, Martin R, Carrasco A, Castillo P, Garcia A, Albero-González R, García M, Marginet M, Palau N, Hernández M, Montironi C, Clot G, Arance A, Alos L, Teixido C. Feasibility and Impact of Embedding an Extended DNA and RNA Tissue-Based Sequencing Panel for the Routine Care of Patients with Advanced Melanoma in Spain. Int J Mol Sci 2024; 25:6942. [PMID: 39000050 PMCID: PMC11241382 DOI: 10.3390/ijms25136942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Targeted NGS allows a fast and efficient multi-gene analysis and the detection of key gene aberrations in melanoma. In this study, we aim to describe the genetic alterations in a series of 87 melanoma cases using the oncomine focus assay (OFA), relate these results with the clinicopathological features of the patients, and compare them with our previous study results in which we used a smaller panel, the oncomine solid tumor (OST) DNA kit. Patients diagnosed with advanced melanoma at our center from 2020 to 2022 were included and DNA and RNA were extracted for sequencing. Common mutated genes were BRAF (29%), NRAS (28%), ALK, KIT, and MAP2K1 (5% each). Co-occurring mutations were detected in 29% of the samples, including BRAF with KIT, CTNNB1, EGFR, ALK, HRAS, or MAP2K1. Amplifications and rearrangements were detected in 5% of cases. Only BRAF mutation showed a significant statistical association with sun exposure. For patients with a given genetic profile, the melanoma survival and recurrence-free survival rates were equivalent, but not for stage and LDH values. This expanded knowledge of molecular alterations has helped to more comprehensively characterize our patients and has provided relevant information for deciding the best treatment strategy.
Collapse
Affiliation(s)
- Natalia Castrejon
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Roberto Martin
- Department of Medical Oncology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Antonio Carrasco
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Paola Castillo
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Adriana Garcia
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Raquel Albero-González
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Mireia García
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Marta Marginet
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Núria Palau
- Molecular Biology Core Facility, Hospital Clínic, 08036 Barcelona, Spain
| | - Mónica Hernández
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Carla Montironi
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Molecular Biology Core Facility, Hospital Clínic, 08036 Barcelona, Spain
| | - Guillem Clot
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Llucia Alos
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Molecular Biology Core Facility, Hospital Clínic, 08036 Barcelona, Spain
| |
Collapse
|
86
|
Di Leo L, Pagliuca C, Kishk A, Rizza S, Tsiavou C, Pecorari C, Dahl C, Pacheco MP, Tholstrup R, Brewer JR, Berico P, Hernando E, Cecconi F, Ballotti R, Bertolotto C, Filomeni G, Gjerstorff MF, Sauter T, Lovat P, Guldberg P, De Zio D. AMBRA1 levels predict resistance to MAPK inhibitors in melanoma. Proc Natl Acad Sci U S A 2024; 121:e2400566121. [PMID: 38870061 PMCID: PMC11194594 DOI: 10.1073/pnas.2400566121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Intrinsic and acquired resistance to mitogen-activated protein kinase inhibitors (MAPKi) in melanoma remains a major therapeutic challenge. Here, we show that the clinical development of resistance to MAPKi is associated with reduced tumor expression of the melanoma suppressor Autophagy and Beclin 1 Regulator 1 (AMBRA1) and that lower expression levels of AMBRA1 predict a poor response to MAPKi treatment. Functional analyses show that loss of AMBRA1 induces phenotype switching and orchestrates an extracellular signal-regulated kinase (ERK)-independent resistance mechanism by activating focal adhesion kinase 1 (FAK1). In both in vitro and in vivo settings, melanomas with low AMBRA1 expression exhibit intrinsic resistance to MAPKi therapy but higher sensitivity to FAK1 inhibition. Finally, we show that the rapid development of resistance in initially MAPKi-sensitive melanomas can be attributed to preexisting subclones characterized by low AMBRA1 expression and that cotreatment with MAPKi and FAK1 inhibitors (FAKi) effectively prevents the development of resistance in these tumors. In summary, our findings underscore the value of AMBRA1 expression for predicting melanoma response to MAPKi and supporting the therapeutic efficacy of FAKi to overcome MAPKi-induced resistance.
Collapse
Affiliation(s)
- Luca Di Leo
- Melanoma Research Team, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Chiara Pagliuca
- Melanoma Research Team, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux4365, Luxembourg
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Christina Tsiavou
- Melanoma Research Team, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Chiara Pecorari
- Redox Biology Group, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Christina Dahl
- Molecular Diagnostics Group, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux4365, Luxembourg
| | - Rikke Tholstrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense5230, Denmark
| | - Jonathan Richard Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense5230, Denmark
| | - Pietro Berico
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
| | - Eva Hernando
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
| | - Francesco Cecconi
- Cell Stress and Survival, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen2100, Denmark
- Faculty of Medicine and Surgery, Università Cattolica del “Sacro Cuore”, Fondazione Policlinico Gemelli—Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00136, Italy
| | - Robert Ballotti
- Université Côte d’Azur, Nice06200, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, Nice06200, France
| | - Corine Bertolotto
- Université Côte d’Azur, Nice06200, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, Nice06200, France
| | - Giuseppe Filomeni
- Redox Biology Group, Danish Cancer Institute, Copenhagen2100, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense5230, Denmark
- Department of Oncology, Odense University Hospital, Odense5000, Denmark
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux4365, Luxembourg
| | - Penny Lovat
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Per Guldberg
- Molecular Diagnostics Group, Danish Cancer Institute, Copenhagen2100, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense5230, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen2100, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense5230, Denmark
| |
Collapse
|
87
|
Fabiani I, Chianca M, Aimo A, Emdin M, Dent S, Fedele A, Cipolla CM, Cardinale DM. Use of new and emerging cancer drugs: what the cardiologist needs to know. Eur Heart J 2024; 45:1971-1987. [PMID: 38591670 DOI: 10.1093/eurheartj/ehae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
The last decade has witnessed a paradigm shift in cancer therapy, from non-specific cytotoxic chemotherapies to agents targeting specific molecular mechanisms. Nonetheless, cardiovascular toxicity of cancer therapies remains an important concern. This is particularly relevant given the significant improvement in survival of solid and haematological cancers achieved in the last decades. Cardio-oncology is a subspecialty of medicine focusing on the identification and prevention of cancer therapy-related cardiovascular toxicity (CTR-CVT). This review will examine the new definition of CTR-CVT and guiding principles for baseline cardiovascular assessment and risk stratification before cancer therapy, providing take-home messages for non-specialized cardiologists.
Collapse
Affiliation(s)
- Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Michela Chianca
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Aimo
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michele Emdin
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Susan Dent
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Antonella Fedele
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| |
Collapse
|
88
|
Rozendorn N, Shutan I, Feinmesser G, Grynberg S, Hodadov H, Alon E, Asher N. Real-World Outcomes of Inoperable and Metastatic Cutaneous Head and Neck Melanoma Patients. Laryngoscope 2024; 134:2762-2770. [PMID: 38230960 DOI: 10.1002/lary.31290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
OBJECTIVE This study aims to describe the overall survival (OS) and to identify associated prognostic factors in patients with inoperable and metastatic cutaneous melanoma of the head and neck (H&N) region, undergoing modern systemic treatments. METHODS This is a retrospective single institutional study. Data on all consecutive H&N melanoma patients treated with systemic oncologic treatments between 2015 and 2022 were collected from electronic medical files. Kaplan-Meier curves were used to describe survival and Cox regression analysis was used to identify patient and tumor factors associated with prognosis. RESULTS A total of 144 patients were included. Median OS was 45 months (95% confidence interval [CI] 28-65 m). On univariable analysis for OS, the primary disease site, specifically the nape and neck (hazard ratio [HR] 3.3, 95% CI 1.4-7.7, p = 0.007), high Eastern Cooperative Oncology Group Performance Status ([ECOG-PS], HR 2.5, 95% CI = 1.9-3.3, p < 0.001), high lactate dehydrogenase (LDH) levels (HR 2.8, 95% CI = 1.7-4.6, p < 0.001), and treatment with targeted therapy (TT) as compared with immunotherapy (HR 2.6, 95% CI = 1.06-6.3, p = 0.03) were all associated with shorter OS. High-grade adverse events (AEs) were associated with a longer OS (HR 0.41, 95% CI = 0.25-0.68, p = 0.001). On multivariable analysis for OS, the ECOG-PS, LDH levels, site of disease, and the development of moderate-severe AEs remained significant. CONCLUSIONS In the era of modern oncologic treatments, the prognosis of inoperable and metastatic cutaneous H&N melanoma aligns with other cutaneous melanomas. Primary tumor site of the nape and neck region emerges as a significant prognostic factor. LEVEL OF EVIDENCE 3 Laryngoscope, 134:2762-2770, 2024.
Collapse
Affiliation(s)
- Noa Rozendorn
- Department of Otolaryngology-Head and Neck Surgery, Sheba Medica Center, Ramat Gan, Israel
| | - Itay Shutan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Feinmesser
- Department of Otolaryngology-Head and Neck Surgery, Sheba Medica Center, Ramat Gan, Israel
| | - Shirly Grynberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Hadas Hodadov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Alon
- Department of Otolaryngology-Head and Neck Surgery, Sheba Medica Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nethanel Asher
- Skin Cancer and Melanoma Center, Davidoff Center, Beilinson Medical Center, Petah Tikva, Israel
| |
Collapse
|
89
|
Dong F. Pan-Cancer Molecular Biomarkers: A Paradigm Shift in Diagnostic Pathology. Clin Lab Med 2024; 44:325-337. [PMID: 38821647 DOI: 10.1016/j.cll.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The rapid adoption of next-generation sequencing in clinical oncology has enabled the detection of molecular biomarkers shared between multiple tumor types. These pan-cancer biomarkers include sequence-altering mutations, copy number changes, gene rearrangements, and mutational signatures and have been demonstrated to predict response to targeted therapy. This article reviews issues surrounding current and emerging pan-cancer molecular biomarkers in clinical oncology: technological advances that enable the broad detection of cancer mutations across hundreds of genes, the spectrum of driver and passenger mutations derived from human cancer genomes, and implications for patient care now and in the near future.
Collapse
Affiliation(s)
- Fei Dong
- Department of Pathology, Stanford University School of Medicine, 3375 Hillview Ave, Palo Alto, CA 94304, USA.
| |
Collapse
|
90
|
Wang X, Zhong F, Chen T, Wang H, Wang W, Jin H, Li C, Guo X, Liu Y, Zhang Y, Li B. Cholesterol neutralized vemurafenib treatment by promoting melanoma stem-like cells via its metabolite 27-hydroxycholesterol. Cell Mol Life Sci 2024; 81:226. [PMID: 38775844 PMCID: PMC11111659 DOI: 10.1007/s00018-024-05267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Vemurafenib has been used as first-line therapy for unresectable or metastatic melanoma with BRAFV600E mutation. However, overall survival is still limited due to treatment resistance after about one year. Therefore, identifying new therapeutic targets for melanoma is crucial for improving clinical outcomes. In the present study, we found that lowering intracellular cholesterol by knocking down DHCR24, the limiting synthetase, impaired tumor cell proliferation and migration and abrogated the ability to xenotransplant tumors. More importantly, administration of DHCR24 or cholesterol mediated resistance to vemurafenib and promoted the growth of melanoma spheroids. Mechanistically, we identified that 27-hydroxycholesterol (27HC), a primary metabolite of cholesterol synthesized by the enzyme cytochrome P450 27A1 (CYP27A1), reproduces the phenotypes induced by DHCR24 or cholesterol administration and activates Rap1-PI3K/AKT signaling. Accordingly, CYP27A1 is highly expressed in melanoma patients and upregulated by DHCR24 induction. Dafadine-A, a CYP27A1 inhibitor, attenuates cholesterol-induced growth of melanoma spheroids and abrogates the resistance property of vemurafenib-resistant melanoma cells. Finally, we confirmed that the effects of cholesterol on melanoma resistance require its metabolite 27HC through CYP27A1 catalysis, and that 27HC further upregulates Rap1A/Rap1B expression and increases AKT phosphorylation. Thus, our results suggest that targeting 27HC may be a useful strategy to overcome treatment resistance in metastatic melanoma.
Collapse
Affiliation(s)
- Xiaohong Wang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Feiliang Zhong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Hongbo Wang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Weifang Wang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Hongkai Jin
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Chouyang Li
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xuan Guo
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ying Liu
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Yu Zhang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Bo Li
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
91
|
Rasmussen DM, Semonis MM, Greene JT, Muretta JM, Thompson AR, Toledo Ramos S, Thomas DD, Pomerantz WCK, Freedman TS, Levinson NM. Allosteric coupling asymmetry mediates paradoxical activation of BRAF by type II inhibitors. eLife 2024; 13:RP95481. [PMID: 38742856 PMCID: PMC11093583 DOI: 10.7554/elife.95481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.
Collapse
Affiliation(s)
- Damien M Rasmussen
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Manny M Semonis
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
| | - Joseph T Greene
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
| | - Joseph M Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | | | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | | | - Tanya S Freedman
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
- Center for Immunology, University of MinnesotaMinneapolisUnited States
- Masonic Cancer Center, University of MinnesotaMinneapolisUnited States
| | - Nicholas M Levinson
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
- Masonic Cancer Center, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
92
|
Hussain S, Mursal M, Verma G, Hasan SM, Khan MF. Targeting oncogenic kinases: Insights on FDA approved tyrosine kinase inhibitors. Eur J Pharmacol 2024; 970:176484. [PMID: 38467235 DOI: 10.1016/j.ejphar.2024.176484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Protein kinases play pivotal roles in various biological functions, influencing cell differentiation, promoting survival, and regulating the cell cycle. The disruption of protein kinase activity is intricately linked to pathways in tumor development. This manuscript explores the transformative impact of protein kinase inhibitors on cancer therapy, particularly their efficacy in cases driven by targeted mutations. Focusing on key tyrosine kinase inhibitors (TKIs) like Bcr-Abl, Epidermal Growth Factor Receptor (EGFR), and Vascular Endothelial Growth Factor Receptor (VEGFR), it targets critical kinase families in cancer progression. Clinical trial details of these TKIs offer insights into their therapeutic potentials. Learning from FDA-approved kinase inhibitors, the review dissects trends in kinase drug development since imatinib's paradigm-shifting approval in 2001. TKIs have evolved into pivotal drugs, extending beyond oncology. Ongoing clinical trials explore novel kinase targets, revealing the vast potential within the human kinome. The manuscript provides a detailed analysis of advancements until 2022, discussing the roles of specific oncogenic protein kinases in cancer development and carcinogenesis. Our exploration on PubMed for relevant and significant TKIs undergoing pre-FDA approval phase III clinical trials enriches the discussion with valuable findings. While kinase inhibitors exhibit lower toxicity than traditional chemotherapy in cancer treatment, challenges like resistance and side effects emphasize the necessity of understanding resistance mechanisms, prompting the development of novel inhibitors like osimertinib targeting specific mutant proteins. The review advocates thorough research on effective combination therapies, highlighting the future development of more selective RTKIs to optimize patient-specific cancer treatment and reduce adverse events.
Collapse
Affiliation(s)
- Sahil Hussain
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohd Mursal
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Garima Verma
- RWE Specialist, HealthPlix Technologies, Bengaluru, Karnataka 560103, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohemmed Faraz Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
93
|
Isaak AJ, Clements GR, Buenaventura RGM, Merlino G, Yu Y. Development of Personalized Strategies for Precisely Battling Malignant Melanoma. Int J Mol Sci 2024; 25:5023. [PMID: 38732242 PMCID: PMC11084485 DOI: 10.3390/ijms25095023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Melanoma is the most severe and fatal form of skin cancer, resulting from multiple gene mutations with high intra-tumor and inter-tumor molecular heterogeneity. Treatment options for patients whose disease has progressed beyond the ability for surgical resection rely on currently accepted standard therapies, notably immune checkpoint inhibitors and targeted therapies. Acquired resistance to these therapies and treatment-associated toxicity necessitate exploring novel strategies, especially those that can be personalized for specific patients and/or populations. Here, we review the current landscape and progress of standard therapies and explore what personalized oncology techniques may entail in the scope of melanoma. Our purpose is to provide an up-to-date summary of the tools at our disposal that work to circumvent the common barriers faced when battling melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
94
|
Aya F, Lanuza-Gracia P, González-Pérez A, Bonnal S, Mancini E, López-Bigas N, Arance A, Valcárcel J. Genomic deletions explain the generation of alternative BRAF isoforms conferring resistance to MAPK inhibitors in melanoma. Cell Rep 2024; 43:114048. [PMID: 38614086 DOI: 10.1016/j.celrep.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/15/2024] Open
Abstract
Resistance to MAPK inhibitors (MAPKi), the main cause of relapse in BRAF-mutant melanoma, is associated with the production of alternative BRAF mRNA isoforms (altBRAFs) in up to 30% of patients receiving BRAF inhibitor monotherapy. These altBRAFs have been described as being generated by alternative pre-mRNA splicing, and splicing modulation has been proposed as a therapeutic strategy to overcome resistance. In contrast, we report that altBRAFs are generated through genomic deletions. Using different in vitro models of altBRAF-mediated melanoma resistance, we demonstrate the production of altBRAFs exclusively from the BRAF V600E allele, correlating with corresponding genomic deletions. Genomic deletions are also detected in tumor samples from melanoma and breast cancer patients expressing altBRAFs. Along with the identification of altBRAFs in BRAF wild-type and in MAPKi-naive melanoma samples, our results represent a major shift in our understanding of mechanisms leading to the generation of BRAF transcripts variants associated with resistance in melanoma.
Collapse
Affiliation(s)
- Francisco Aya
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Institut de Investigacions Biomedicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Lanuza-Gracia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria López-Bigas
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ana Arance
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Institut de Investigacions Biomedicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
95
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
96
|
Hornsteiner F, Vierthaler J, Strandt H, Resag A, Fu Z, Ausserhofer M, Tripp CH, Dieckmann S, Kanduth M, Farrand K, Bregar S, Nemati N, Hermann-Kleiter N, Seretis A, Morla S, Mullins D, Finotello F, Trajanoski Z, Wollmann G, Ronchese F, Schmitz M, Hermans IF, Stoitzner P. Tumor-targeted therapy with BRAF-inhibitor recruits activated dendritic cells to promote tumor immunity in melanoma. J Immunother Cancer 2024; 12:e008606. [PMID: 38631706 PMCID: PMC11029477 DOI: 10.1136/jitc-2023-008606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Tumor-targeted therapy causes impressive tumor regression, but the emergence of resistance limits long-term survival benefits in patients. Little information is available on the role of the myeloid cell network, especially dendritic cells (DC) during tumor-targeted therapy. METHODS Here, we investigated therapy-mediated immunological alterations in the tumor microenvironment (TME) and tumor-draining lymph nodes (LN) in the D4M.3A preclinical melanoma mouse model (harboring the V-Raf murine sarcoma viral oncogene homolog B (BRAF)V600E mutation) by using high-dimensional multicolor flow cytometry in combination with multiplex immunohistochemistry. This was complemented with RNA sequencing and cytokine quantification to characterize the immune status of the tumors. The importance of T cells during tumor-targeted therapy was investigated by depleting CD4+ or CD8+ T cells in tumor-bearing mice. Tumor antigen-specific T-cell responses were characterized by performing in vivo T-cell proliferation assays and the contribution of conventional type 1 DC (cDC1) to T-cell immunity during tumor-targeted therapy was assessed using Batf3-/- mice lacking cDC1. RESULTS Our findings reveal that BRAF-inhibitor therapy increased tumor immunogenicity, reflected by an upregulation of genes associated with immune activation. The T cell-inflamed TME contained higher numbers of activated cDC1 and cDC2 but also inflammatory CCR2-expressing monocytes. At the same time, tumor-targeted therapy enhanced the frequency of migratory, activated DC subsets in tumor-draining LN. Even more, we identified a cDC2 population expressing the Fc gamma receptor I (FcγRI)/CD64 in tumors and LN that displayed high levels of CD40 and CCR7 indicating involvement in T cell-mediated tumor immunity. The importance of cDC2 is underlined by just a partial loss of therapy response in a cDC1-deficient mouse model. Both CD4+ and CD8+ T cells were essential for therapy response as their respective depletion impaired therapy success. On resistance development, the tumors reverted to an immunologically inert state with a loss of DC and inflammatory monocytes together with the accumulation of regulatory T cells. Moreover, tumor antigen-specific CD8+ T cells were compromised in proliferation and interferon-γ-production. CONCLUSION Our results give novel insights into the remodeling of the myeloid landscape by tumor-targeted therapy. We demonstrate that the transient immunogenic tumor milieu contains more activated DC. This knowledge has important implications for the development of future combinatorial therapies.
Collapse
Affiliation(s)
- Florian Hornsteiner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Vierthaler
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helen Strandt
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonia Resag
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Zhe Fu
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Markus Ausserhofer
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sophie Dieckmann
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Kanduth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kathryn Farrand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sarah Bregar
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Niloofar Nemati
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Athanasios Seretis
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Sudhir Morla
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - David Mullins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Guido Wollmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
97
|
Mukhtar AB, Morgan HJ, Gibbs A, Davies GE, Lovatt C, Patel GK. Targeting CD20-expressing malignant melanoma cells augments BRAF inhibitor killing. Br J Dermatol 2024; 190:729-739. [PMID: 38288865 DOI: 10.1093/bjd/ljad502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/08/2023] [Indexed: 04/19/2024]
Abstract
BACKGROUND Mutant BRAF targeted therapies remain a standard of care for the treatment of metastatic malignant melanoma (MM); however, high initial response rates are tempered by the persistence of residual MM cells that eventually lead to disease recurrence and mortality. As MM recurrence during targeted therapy can present with the simultaneous occurrence of multiple tumour nodules at the original body sites, we hypothesized the presence of an intrinsically resistant MM cell subpopulation. OBJECTIVES To identify an MM cell subpopulation that is intrinsically resistant to targeted therapy and possibly responsible for MM recurrence. METHODS Using melanoma cell lines, we defined culture conditions for the reproducible three-dimensional growth of melanospheres to investigate putative cancer stem cell populations. We undertook RNA sequencing and bioinformatic analysis to characterize cell populations between adherent and nonadherent culture, and cells expressing or not expressing CD20. Furthermore, we defined an in vitro assay to evaluate the killing of melanoma cancer stem cells as a therapeutic test using combination therapies targeting driver mutation and CD20. RESULTS We described the culture conditions that promote MM cells to form melanospheres with a reproducible colony-forming efficiency rate of 0.3-1.3%. RNA sequencing of melanosphere vs. conventional MM cell cultures (n = 6), irrespective of the BRAF mutation status, showed that melanosphere formation was associated with growth and differentiation transcriptional signatures resembling MM tumours. Importantly, melanosphere formation also led to the emergence of a CD20+ MM cell subpopulation, similar to that observed in primary human MM tumours. CD20+ MM cells were resistant to BRAF inhibitor therapy and, consistent with this finding, demonstrated a Forkhead box protein M1 transcriptomic profile (n = 6). Combining BRAF inhibitor and anti-CD20 antibody treatment led to the additional killing of previously resistant CD20+ BRAF mutant MM cells. CONCLUSIONS In patients with MM that harbour a CD20+ subpopulation, combined therapy with BRAF inhibitor and anti-CD20 antibody could potentially kill residual MM cells and prevent disease recurrence.
Collapse
Affiliation(s)
- Abdullahi B Mukhtar
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Huw J Morgan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Gemma E Davies
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Charlotte Lovatt
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
98
|
Boutros A, Croce E, Ferrari M, Gili R, Massaro G, Marconcini R, Arecco L, Tanda ET, Spagnolo F. The treatment of advanced melanoma: Current approaches and new challenges. Crit Rev Oncol Hematol 2024; 196:104276. [PMID: 38295889 DOI: 10.1016/j.critrevonc.2024.104276] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
In recent years, advances in melanoma treatment have renewed patient hope. This comprehensive review emphasizes the evolving treatment landscape, particularly highlighting first-line strategies and the interplay between immune-checkpoint inhibitors (ICIs) and targeted therapies. Ipilimumab plus nivolumab has achieved the best median overall survival, exceeding 70 months. However, the introduction of new ICIs, like relatlimab, has added complexity to first-line therapy decisions. Our aim is to guide clinicians in making personalized treatment decisions. Various features, including brain metastases, PD-L1 expression, BRAF mutation, performance status, and prior adjuvant therapy, significantly impact the direction of advanced melanoma treatment. We also provide the latest insights into the treatment of rare melanoma subtypes, such as uveal melanoma, where tebentafusp has shown promising improvements in overall survival for metastatic uveal melanoma patients. This review provides invaluable insights for clinicians, enabling informed treatment choices and deepening our understanding of the multifaceted challenges associated with advanced melanoma management.
Collapse
Affiliation(s)
- Andrea Boutros
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy.
| | - Elena Croce
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Ferrari
- Azienda Ospedaliero Universitaria Pisana, Medical Oncology Unit, Pisa, Italy
| | - Riccardo Gili
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Giulia Massaro
- Unit of Medical Oncology, Careggi University-Hospital, 50134 Florence, Italy
| | - Riccardo Marconcini
- Azienda Ospedaliero Universitaria Pisana, Medical Oncology Unit, Pisa, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Enrica Teresa Tanda
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Spagnolo
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery Division, University of Genova, Genova, Italy
| |
Collapse
|
99
|
Zhang J, Joshua AM, Li Y, O'Meara CH, Morris MJ, Khachigian LM. Targeted therapy, immunotherapy, and small molecules and peptidomimetics as emerging immunoregulatory agents for melanoma. Cancer Lett 2024; 586:216633. [PMID: 38281663 DOI: 10.1016/j.canlet.2024.216633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Primary cutaneous melanoma is the most lethal of all skin neoplasms and its incidence is increasing. Clinical management of advanced melanoma in the last decade has been revolutionised by the availability of immunotherapies and targeted therapies, used alone and in combination. This article summarizes advances in the treatment of late-stage melanoma including use of protein kinase inhibitors, antibody-based immune checkpoint inhibitors, adoptive immunotherapy, vaccines and more recently, small molecules and peptidomimetics as emerging immunoregulatory agents.
Collapse
Affiliation(s)
- Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincent's Hospital, Garvan Institute of Medical Research, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Yue Li
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Connor H O'Meara
- Department of Otorhinolaryngology, Head & Neck Surgery, ANU Medical School and Canberra Health Services, Australian National University, Acton, Canberra, ACT, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
100
|
Costanzo V, Ratre YK, Andretta E, Acharya R, Bhaskar LVKS, Verma HK. A Comprehensive Review of Cancer Drug-Induced Cardiotoxicity in Blood Cancer Patients: Current Perspectives and Therapeutic Strategies. Curr Treat Options Oncol 2024; 25:465-495. [PMID: 38372853 DOI: 10.1007/s11864-023-01175-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Cardiotoxicity has emerged as a serious outcome catalyzed by various therapeutic targets in the field of cancer treatment, which includes chemotherapy, radiation, and targeted therapies. The growing significance of cancer drug-induced cardiotoxicity (CDIC) and radiation-induced cardiotoxicity (CRIC) necessitates immediate attention. This article intricately unveils how cancer treatments cause cardiotoxicity, which is exacerbated by patient-specific risks. In particular, drugs like anthracyclines, alkylating agents, and tyrosine kinase inhibitors pose a risk, along with factors such as hypertension and diabetes. Mechanistic insights into oxidative stress and topoisomerase-II-B inhibition are crucial, while cardiac biomarkers show early damage. Timely intervention and prompt treatment, especially with specific agents like dexrazoxane and beta-blockers, are pivotal in the proactive management of CDIC.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764, Munich, Germany.
| |
Collapse
|