51
|
Approaching reactive species in the frame of their clinical significance: A toxicological appraisal. Food Chem Toxicol 2020; 138:111206. [PMID: 32113950 DOI: 10.1016/j.fct.2020.111206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
Redox biology and toxicology are interrelated fields that have produced valuable evidence regarding the role and clinical significance of reactive species. These issues are analyzed herein by presenting 6 arguments, as follows: Argument 1: There is no direct connection of redox-related pathologies with specific reactive species; Argument 2: The measurement of reactive species concentration is a major challenge due to their very short half lives; Argument 3: There is an interplay between reactive species generation and fundamental biological processes, such as energy metabolism; Argument 4: Reactive species exert beneficial biological action; Argument 5: Reactive species follow the hormesis phenomenon; Argument 6: Oxidative modifications of redox-related molecules are not necessarily interpreted as oxidative damage. We conclude that reactive species do not seem to exert clinical significance, which means that they lack a measurable cause-effect relation with chronic diseases. Unpredictable results could, nevertheless, arise through novel experimental setups applied in the field of toxicology. These are related to the real-life exposure scenario via the regimen of long-term low-dose (far below NOAEL) exposure to mixtures of xenobiotics and can potentially offer perspectives in order to investigate in depth whether or not reactive species can be introduced as clinically significant redox biomarkers.
Collapse
|
52
|
Álvarez-Almazán S, Filisola-Villaseñor JG, Alemán-González-Duhart D, Tamay-Cach F, Mendieta-Wejebe JE. Current molecular aspects in the development and treatment of diabetes. J Physiol Biochem 2020; 76:13-35. [PMID: 31925679 DOI: 10.1007/s13105-019-00717-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus (DM) leads to microvascular, macrovascular, and neurological complications. Less is understood about the mechanisms of this disease that give rise to weak bones. The many molecular mechanisms proposed to explain the damage caused by chronic hyperglycemia are organ and tissue dependent. Since all the different treatments for DM involve therapeutic activity combined with side effects and each patient represents a unique condition, there is no generalized therapy. The alterations stemming from hyperglycemia affect metabolism, osmotic pressure, oxidative stress, and inflammation. In part, hemodynamic modifications are linked to the osmotic potential of the excess of carbohydrates implicated in the disease. The change in osmotic balance increases as the disease progresses because hyperglycemia becomes chronic. The aim of the current contribution is to provide an updated overview of the molecular mechanisms that participate in the development and treatment of diabetes.
Collapse
Affiliation(s)
- Samuel Álvarez-Almazán
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México.,Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México
| | - Jessica Georgina Filisola-Villaseñor
- Laboratorio 2, Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Diana Alemán-González-Duhart
- Centro Interdisciplinario de Ciencias de la Salud-Unidad Santo Tomás, Instituto Politécnico Nacional, Av. de los Maestros s/n, Casco de Santo Tomás, 11340, Ciudad de México, México
| | - Feliciano Tamay-Cach
- Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México.
| | - Jessica Elena Mendieta-Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México.
| |
Collapse
|
53
|
Liu C, Hao Y, Yin F, Liu J. Geniposide Balances the Redox Signaling to Mediate Glucose-Stimulated Insulin Secretion in Pancreatic β-Cells. Diabetes Metab Syndr Obes 2020; 13:509-520. [PMID: 32158246 PMCID: PMC7049278 DOI: 10.2147/dmso.s240794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate the effect of geniposide on the biosynthesis of insulin and the expression protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductin 1 (ERO1) in the presence of low (5 mM) and high (25 mM) glucose in pancreatic β cells. METHODS The content of insulin was measured by ELISA, the number of SH groups was determined with the classical chromogenic reagent, 5,5'-dithiobis-(2-nitrobenzoic) acid (DTNB; also known as Ellman's reagent), the expressions of PDI and ERO1 were analyzed by Western blot. RESULTS Geniposide played contrary roles on the accumulation of H2O2, the ratio of GSH/GSSG and the thiol-disulfide balance in the presence of low (5 mM) and high (25 mM) glucose in rat pancreatic INS-1 cells. Geniposide also regulated the protein levels of protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductin1 (ERO1), the two key enzymes for the production of H2O2 during the biosynthesis of insulin in INS-1 cells. CONCLUSION Geniposide affects glucose-stimulated insulin secretion by modulating the thiol-disulfide balance that is controlled by the redox signaling in pancreatic β cells.
Collapse
Affiliation(s)
- Chunyan Liu
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing400054, People’s Republic of China
| | - Yanan Hao
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing400054, People’s Republic of China
| | - Fei Yin
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing400054, People’s Republic of China
| | - Jianhui Liu
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing400054, People’s Republic of China
- Correspondence: Jianhui Liu; Fei Yin Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Hongguang Road 69, Ba’nan District, Chongqing400054, People’s Republic of China Tel/Fax +86-23-6256-3182 Email ;
| |
Collapse
|
54
|
The “Metabolic biomarkers of frailty in older people with type 2 diabetes mellitus” (MetaboFrail) study: Rationale, design and methods. Exp Gerontol 2020; 129:110782. [DOI: 10.1016/j.exger.2019.110782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
|
55
|
Abstract
Introduction: Protein thiols are susceptible to oxidation in health and disease. Redox proteomics methods facilitate the identification, quantification, and rationalization of oxidation processes including those involving protein thiols. These residues are crucial to understanding redox homeostasis underpinning normal cell functioning and regulation as well as novel biomarkers of pathology and promising novel drug targets.Areas covered: This article reviews redox proteomic approaches to study of protein thiols in some important human pathologies and assesses the clinical potential of individual Cys residues as novel biomarkers for disease detection and as targets for novel treatments.Expert commentary: Although protein thiols are not as routinely used as redox biomarkers as some other lesions such as carbonylation, there has been growing recent interest in their potential. Driven largely by developments in high-resolution mass spectrometry it is possible now to identify proteins that are redox modified at thiol groups or that interact with regulatory oxidoreductases. Thiols that are specifically susceptible to modification by reactive oxygen species can be routinely identified now and quantitative MS can be used to quantify the proportion of a protein that is redox modified.
Collapse
Affiliation(s)
- David Sheehan
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Brian McDonagh
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
56
|
Cheng WH. Green Tea: An Ancient Antioxidant Drink for Optimal Health? J Nutr 2019; 149:1877-1879. [PMID: 31498400 DOI: 10.1093/jn/nxz187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- Wen-Hsing Cheng
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
57
|
Hu L, Zeng Z, Xia Q, Liu Z, Feng X, Chen J, Huang M, Chen L, Fang Z, Liu Q, Zeng H, Zhou X, Liu J. Metformin attenuates hepatoma cell proliferation by decreasing glycolytic flux through the HIF-1α/PFKFB3/PFK1 pathway. Life Sci 2019; 239:116966. [PMID: 31626790 DOI: 10.1016/j.lfs.2019.116966] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022]
Abstract
AIMS Enhanced aerobic glycolysis is an essential hallmark of malignant cancer. Blocking the glycolytic pathway has been suggested as a therapeutic strategy to impair the proliferation of tumor cells. Metformin, a widely used anti-diabetes drug, exhibits anti-tumor properties. However, the underlying molecular mechanism of its action linking glucose metabolism with the suppression of proliferation has not been fully clarified. MAIN METHODS Stable isotope tracing technology and gas chromatography-mass spectrometry method were utilized to analyze the effect of metformin on glycolytic flux in HCC cells. Western blot and immunohistochemistry were utilized to analyze the expression of phosphofructokinase-1 (PFK1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in HCC cells or xenograft tumor tissues. Lactate measurement and glucose uptake assay were used to analyze the level of lactate and glucose in the presence of frucose-2,6-diphosphate (F2,6BP) in HCC cells treated with metformin. KEY FINDINGS We found that metformin significantly impaired hepatoma cell proliferation by inhibiting the glycolytic flux via PFK1 blockade. Interestingly, activation of PFK1 by F2,6BP reverses the inhibitory effect of metformin on hepatoma cell proliferation and glycolysis. Mechanistically, PFKFB3,a potent allosteric activator of PFK1, was markedly suppressed through inhibiting hypoxia-induced factor 1 (HIF-1α) accumulation mediated by metformin. SIGNIFICANCE Taken together these data indicate that HIF-1α/PFKFB3/PFK1 regulatory axis is a vital determinant of glucose metabolic reprogramming in hepatocellular carcinoma, which gives new insights into the action of metformin in combatting liver cancer.
Collapse
Affiliation(s)
- La Hu
- Cancer Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Zicheng Zeng
- Cancer Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Qing Xia
- Department of Oncology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Zhaoyu Liu
- Cancer Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xiao Feng
- Cancer Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Jitao Chen
- Cancer Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Mengqiu Huang
- Cancer Institute, Southern Medical University, Guangzhou, 510515, China
| | - Liangcai Chen
- Cancer Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Zhiyuan Fang
- Cancer Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Qiuzhen Liu
- Cancer Institute, Southern Medical University, Guangzhou, 510515, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Xinke Zhou
- Cancer Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| |
Collapse
|
58
|
The Effects of Combined High-Intensity Interval and Resistance Training on Glycemic Control and Oxidative Stress in T2DM. Asian J Sports Med 2019. [DOI: 10.5812/asjsm.91841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
59
|
Oxidative Stress: Role and Response of Short Guanine Tracts at Genomic Locations. Int J Mol Sci 2019; 20:ijms20174258. [PMID: 31480304 PMCID: PMC6747389 DOI: 10.3390/ijms20174258] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Over the decades, oxidative stress has emerged as a major concern to biological researchers. It is involved in the pathogenesis of various lifestyle-related diseases such as hypertension, diabetes, atherosclerosis, and neurodegenerative diseases. The connection between oxidative stress and telomere shortening via oxidative guanine lesion is well documented. Telomeres are confined to guanine rich ends of chromosomes. Owing to its self-association properties, it adopts G-quadruplex structures and hampers the overexpression of telomerase in the cancer cells. Guanine, being the most oxidation prone nucleobase, when structured in G-quadruplex entity, is found to respond peculiarly towards oxidative stress. Interestingly, this non-Watson-Crick structural feature exists abundantly in promoters of various oncogenes, exons and other genomic locations. The involvement of G-quadruplex architecture in oncogene promoters is well recognized in gene regulation processes. Development of small molecules aimed to target G-quadruplex structures, have found to alter the overexpression of oncogenes. The interaction may lead to the obstruction of diseased cell having elevated level of reactive oxygen species (ROS). Thus, presence of short guanine tracts (Gn) forming G-quadruplexes suggests its critical role in oxidative genome damage. Present review is a modest attempt to gain insight on the association of oxidative stress and G-quadruplexes, in various biological processes.
Collapse
|
60
|
Purine metabolism in sprint- vs endurance-trained athletes aged 20‒90 years. Sci Rep 2019; 9:12075. [PMID: 31427706 PMCID: PMC6700101 DOI: 10.1038/s41598-019-48633-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Purine metabolism is crucial for efficient ATP resynthesis during exercise. The aim of this study was to assess the effect of lifelong exercise training on blood purine metabolites in ageing humans at rest and after exhausting exercise. Plasma concentrations of hypoxanthine (Hx), xanthine (X), uric acid (UA) and the activity of erythrocyte hypoxanthine-guanine phosphoribosyl transferase (HGPRT) were measured in 55 sprinters (SP, 20‒90 years), 91 endurance runners (ER, 20‒81 years) and 61 untrained participants (UT, 21‒69 years). SP had significantly lower levels of plasma purine metabolites and higher erythrocyte HGPRT activity than ER and UT. In all three groups, plasma purine levels (except UA in UT) significantly increased with age (1.8‒44.0% per decade). HGPRT activity increased in SP and ER (0.5‒1.0%), while it remained unchanged in UT. Hx and X concentrations increased faster with age than UA and HGPRT levels. In summary, plasma purine concentration increases with age, representing the depletion of skeletal muscle adenine nucleotide (AdN) pool. In highly-trained athletes, this disadvantageous effect is compensated by an increase in HGPRT activity, supporting the salvage pathway of the AdN pool restoration. Such a mechanism is absent in untrained individuals. Lifelong exercise, especially speed-power training, limits the age-related purine metabolism deterioration.
Collapse
|
61
|
Proresolving Lipid Mediators: Endogenous Modulators of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8107265. [PMID: 31316721 PMCID: PMC6604337 DOI: 10.1155/2019/8107265] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Specialized proresolving mediators (SPMs) are a novel class of endogenous lipids, derived by ω-6 and ω-3 essential polyunsaturated fatty acids such as arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) that trigger and orchestrate the resolution of inflammation, which is the series of cellular and molecular events that leads to spontaneous regression of inflammatory processes and restoring of tissue homeostasis. These lipids are emerging as highly effective therapeutic agents that exert their immunoregulatory activity by activating the proresolving pathway, as reported by a consistent bulk of evidences gathered in the last two decades since their discovery. The production of reactive oxygen (ROS) and nitrogen (RNS) species by immune cells plays indeed an important role in the inflammatory mechanisms of host defence, and it is now clear that oxidative stress, viewed as an imbalance between such species and their elimination, can lead to many chronic inflammatory diseases. This review, the first of its kind, is aimed at exploring the manifold effects of SPMs on modulation of reactive species production, along with the mechanisms through which they either inhibit molecular signalling pathways that are activated by oxidative stress or induce the expression of endogenous antioxidant systems. Furthermore, the possible role of SPMs in oxidative stress-mediated chronic disorders is also summarized, suggesting not only that their anti-inflammatory and proresolving properties are strictly associated with their antioxidant role but also that these endogenous lipids might be exploited in the treatment of several pathologies in which uncontrolled production of ROS and RNS or impairment of the antioxidant machinery represents a main pathogenetic mechanism.
Collapse
|
62
|
Yepes-Calderón M, Sotomayor CG, Gomes-Neto AW, Gans ROB, Berger SP, Rimbach G, Esatbeyoglu T, Rodrigo R, Geleijnse JM, Navis GJ, Bakker SJL. Plasma Malondialdehyde and Risk of New-Onset Diabetes after Transplantation in Renal Transplant Recipients: A Prospective Cohort Study. J Clin Med 2019; 8:453. [PMID: 30987358 PMCID: PMC6518172 DOI: 10.3390/jcm8040453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/14/2022] Open
Abstract
New-onset diabetes after transplantation (NODAT) is a frequent complication in renal transplant recipients (RTR). Although oxidative stress has been associated with diabetes mellitus, data regarding NODAT are limited. We aimed to prospectively investigate the long-term association between the oxidative stress biomarker malondialdehyde (measured by high-performance liquid chromatography) and NODAT in an extensively phenotyped cohort of non-diabetic RTR with a functioning graft ≥1 year. We included 516 RTR (51 ± 13 years-old, 57% male). Median plasma malondialdehyde (MDA) was 2.55 (IQR, 1.92-3.66) µmol/L. During a median follow-up of 5.3 (IQR, 4.6-6.0) years, 56 (11%) RTR developed NODAT. In Cox proportional-hazards regression analyses, MDA was inversely associated with NODAT, independent of immunosuppressive therapy, transplant-specific covariates, lifestyle, inflammation, and metabolism parameters (HR, 0.55; 95% CI, 0.36-0.83 per 1-SD increase; p < 0.01). Dietary antioxidants intake (e.g., vitamin E, α-lipoic acid, and linoleic acid) were effect-modifiers of the association between MDA and NODAT, with particularly strong inverse associations within the subgroup of RTR with relatively higher dietary antioxidants intake. In conclusion, plasma MDA concentration is inversely and independently associated with long-term risk of NODAT in RTR. Our findings support a potential underrecognized role of oxidative stress in post-transplantation glucose homeostasis.
Collapse
Affiliation(s)
- Manuela Yepes-Calderón
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Camilo G Sotomayor
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - António W Gomes-Neto
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Rijk O B Gans
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Herrmann Rodewaldstrasse 6, D-24118 Kiel, Germany.
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Department Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, D-30167 Hannover, Germany.
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, CP 8380453 Santiago, Chile.
| | - Johanna M Geleijnse
- Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | - Gerjan J Navis
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
63
|
Sharma AK, Khandelwal R, Sharma Y. Veiled Potential of Secretagogin in Diabetes: Correlation or Coincidence? Trends Endocrinol Metab 2019; 30:234-243. [PMID: 30772140 DOI: 10.1016/j.tem.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Secretagogin (SCGN) is a calcium sensor protein enriched in neuroendocrine cells in general and pancreatic β-cells in particular. SCGN regulates insulin secretion through several Ca2+-dependent interactions. Recent studies implicate SCGN in the β-cell physiology and extracellular insulin function, making it an intriguing candidate in diabetes research. Here, we propose a conjoining theme of diversified SCGN function in diabetes pathology. In our opinion, SCGN is an attractive therapeutic candidate ascribed by its role in β-cell maintenance and neuronal functions and in the efficacy of insulin. To scrutinize the therapeutic prospects of SCGN, we abridge putative diabetes-related properties of SCGN and put forth strategies to determine the precise role of SCGN in the pathogenesis/preclusion of diabetes.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India.
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
64
|
Chinese Medicine FTZ Recipe Protects against High-Glucose-Induced Beta Cell Injury through Alleviating Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6378786. [PMID: 30941199 PMCID: PMC6421024 DOI: 10.1155/2019/6378786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022]
Abstract
Objective To investigate the effect of FTZ on high-glucose-induced oxidative stress and underlying mechanisms. Methods We used a β cell dysfunction and diabetes model that was induced in rats fed a high-fat high-sugar diet (HFHSD) for 6 weeks and injected once with 35 mg/kg streptozocin (STZ). Then, 3 and 6 g/kg of FTZ were administered by gavage for 8 weeks. In addition, an ex vivo model of oxidative stress was induced by stimulating INS-1 cells with 25 mmol/L glucose for 48 h. Result The levels of fasting blood glucose (FBG) in diabetic model rats were obviously higher than those in the normal group; furthermore with reduced levels of β cells, catalase (CAT), superoxide dismutase (SOD), and Bcl-2 increased lipid peroxide malondialdehyde (MDA) and caspase-3 in the pancreatic tissue of the diabetic model rats. Afterward, the cells were incubated with FTZ-containing serum and edaravone. The 25 mmol/L glucose-induced SOD reduction increased MDA and intracellular ROS. The protein expression level of Mn-SOD and CAT in the model group decreased significantly compared with that in the control group. Conclusion FTZ treatment significantly improved the alteration in the level of SOD, CAT, Bcl-2, caspase-3, and MDA coupled with β cell dysfunction in diabetic rats. Oxidative stress in INS-1 cells was closely associated with a higher rate of apoptosis, increased production of ROS and MDA, enhanced Bax expression, and caspase-3, -9 activities and markedly decreased protein expression of Mn-SOD and CAT. FTZ-containing serum incubation notably reversed the high-glucose-evoked increase in cell apoptosis, production of ROS and MDA, and Bax protein levels. Furthermore, FTZ stimulation upregulated the expression levels of several genes, including Mn-SOD, CAT, and Bcl-2/Bcl-xl. In addition, FTZ decreased the intracellular activity of caspase-3, -9 in INS-1 cells. FTZ protected β-cells from oxidative stress induced by high glucose in vivo and in vitro. The beneficial effect of FTZ was closely associated with a decrease in the activity of caspase-3, -9 and intracellular production of ROS, MDA, and Bax coupled with an increase in the expression of Mn-SOD, CAT, and Bcl-2/Bcl-xl.
Collapse
|
65
|
Réus GZ, Carlessi AS, Silva RH, Ceretta LB, Quevedo J. Relationship of Oxidative Stress as a Link between Diabetes Mellitus and Major Depressive Disorder. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8637970. [PMID: 30944699 PMCID: PMC6421821 DOI: 10.1155/2019/8637970] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/21/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Both conditions, major depressive disorder (MDD) and diabetes mellitus (DM) are chronic and disabling diseases that affect a very significant percentage of the world's population. Studies have been shown that patients with DM are more susceptible to develop depression, when compared to the general population. The opposite also happens; MDD could be a risk factor for DM development. Some mechanisms have been proposed to explain the pathophysiological mechanisms involved with these conditions, such as excess of glucocorticoids, hyperglycemia, insulin resistance, and inflammation. These processes can lead to an increase in damage to biomolecules and a decrease in antioxidant defense capacity, leading to oxidative stress.
Collapse
Affiliation(s)
- Gislaine Z. Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Anelise S. Carlessi
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Ritele H. Silva
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Luciane B. Ceretta
- Programa de Pós-graduação em Saúde Coletiva, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
66
|
Squillacioti G, Bellisario V, Grignani E, Mengozzi G, Bardaglio G, Dalmasso P, Bono R. The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030490. [PMID: 30744094 PMCID: PMC6388278 DOI: 10.3390/ijerph16030490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
Obesity and exposure to second-hand tobacco smoking (SHS) may influence oxidative stress (OS) levels, especially in children. This study investigated body composition and SHS influence on OS induction in the paediatric population. The first purpose was identifying an appropriate BMI standard for adiposity assessment in OS investigations. Secondly, SHS and obesity were analysed as inductors of OS. The epidemiologic sample involved 330 children. Three BMI (body mass index) references (IOTF, CDC, and WHO) and an impedentiometric scale supplied body-composition measurements. Partecipants filled out a questionnaire and provided urinary samples for biomarker quantifications: isoprostane (15-F2t IsoP) and cotinine as OS and SHS biomarker, respectively. Obesity prevalence changed over different BMI references (14%, 21%, and 34% for IOTF, CDC, and WHO, respectively). Obese children, by IOTF, showed an increase of 56% in 15-F2t IsoP compared to those normal weight (p = 0.020). Children belonging to the third and the fourth cotinine quartile compared to those of the first quartile had higher 15-F2t IsoP (1.45 ng/mg, 95% CI: 1.06⁻1.97, p = 0.020 and 2.04 ng/mg, 95% CI: 1.55⁻2.69, p < 0.0001, respectively). Obesity assessment in children requires appropriate BMI reference depending on research field. Both SHS exposure and obesity may increase OS in children.
Collapse
Affiliation(s)
- Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.
| | - Elena Grignani
- Maugeri Scientific Clinical Institutes, 27100 Pavia, Italy.
| | - Giulio Mengozzi
- City of Health and Science of Turin, Molinette Hospital, 10145 Turin, Italy.
| | - Giulia Bardaglio
- SUISM, Structure of Hygiene, Sport Sciences and Physical Activities, headquarters of Asti, University of Turin, 10126 Turin, Italy.
| | - Paola Dalmasso
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.
- SUISM, Structure of Hygiene, Sport Sciences and Physical Activities, headquarters of Asti, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
67
|
Wu X. Candidate genes associated with the effect of rosiglitazone on glycemic control and cardiovascular system in the treatment of type 2 diabetes mellitus. Exp Ther Med 2019; 17:2039-2046. [PMID: 30783475 PMCID: PMC6364243 DOI: 10.3892/etm.2019.7160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 11/01/2018] [Indexed: 11/07/2022] Open
Abstract
In the present study, candidate genes affected by rosiglitazone to exert glycemic control in the treatment of type 2 diabetes mellitus (T2DM) and associated with its adverse cardiovascular effects were identified using a bioinformatics analysis. The gene expression profiles of the dataset GSE36875 from the Gene Expression Omnibus database, including heart samples from 5 non-diabetic control mice (NC), 5 untreated diabetic mice (NH) and 5 rosiglitazone-treated diabetic mice (TH), were used to identify differentially expressed genes (DEGs) in the NC vs. NH, NC vs. TH and TH vs. NH groups. Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by the DEGs were determined. Furthermore, genes associated with the action of rosiglitazone were identified using Short Time-series Expression Miner, which were then subjected to enrichment analysis in gene ontology (GO) terms in the category biological process (BP), and networks of the GO terms, KEGG pathways and genes associated with the action of rosiglitazone were constructed. Finally, biological abnormalities associated with these genes were identified using WebGestalt. A set of 791 DEGs in three groups (NC vs. NH, NC vs. TH and NH vs. TH) were identified. Subsequently, 72 DEGs [e.g., apolipoprotein (Apo)A1, ApoA5, cytochrome P450 (Cyp)2c37, Cyp2J5, Cyp2b9 and Cyp2b10] were identified as genes associated with the action of rosiglitazone. In addition, a network of 13 GO terms in the category BP, 6 KEGG pathways and 41 genes associated with the action of rosiglitazone was constructed, with major terms/pathways including oxidation/reduction, lipid transport, peroxisome proliferator-activated receptor signaling pathway and metabolism of xenobiotics by Cyp. Finally, 15 biological abnormalities (including abnormal triglyceride levels, abnormal cholesterol homeostasis, abnormal lipid homeostasis) associated with these genes were identified. ApoA1, ApoA5, Cyp2c37, Cyp2J5, Cyp2b9 and Cyp2b10 were differently expressed after rosiglitazone treatment, which may be accountable for affecting cardiovascular outcomes and glycemic control in T2DM. The present results may expand the current understanding of the mechanism of action of rosiglitazone to exert glycemic control in T2DM, as well as its effects on the cardiovascular system.
Collapse
Affiliation(s)
- Xiaoli Wu
- Department of Pharmacy, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
68
|
Manoj KM, Parashar A, David Jacob V, Ramasamy S. Aerobic respiration: proof of concept for the oxygen-centric murburn perspective. J Biomol Struct Dyn 2019; 37:4542-4556. [PMID: 30488771 DOI: 10.1080/07391102.2018.1552896] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inner mitochondrial membrane protein complexes (I-V) and prokaryotic respiratory machinery are examined for a deeper understanding of their structure-function correlations and dynamics. In silico analysis of the structure of complexes I-IV, docking studies and erstwhile literature confirm that they carry sites which are in close proximity to DROS (diffusible reactive oxygen species) generating redox centers. These findings provide supportive evidence for the newly proposed oxygen-centric chemical-coupling mechanism (murburn concept), wherein DROS catalyzes the esterification of inorganic phosphate to ADP. Further, in a reductionist system, we demonstrate that a DROS (like superoxide) can effectively esterify inorganic phosphate to ADP. The impact of these findings and the interactive dynamics of classical inhibitors (rotenone and cyanide), uncouplers (dinitrophenol and uncoupling protein) and other toxins (atractyloside and oligomycin) are briefly discussed. Highlights • Earlier perception: Complexes (I-IV) pump protons and Complex V make ATP (aided by protons) • Herein: Respiratory molecular machinery is probed for new structure-function correlations • Analyses: Quantitative arguments discount proton-centric ATP synthesis in mitochondria and bacteria • In silico data: ADP-binding sites and O2/ diffusible reactive oxygen species (DROS)-accessible channels are unveiled in respiratory proteins • In vitro data: Using luminometry, ATP synthesis is demonstrated from ADP, Pi and superoxide • Inference: Findings agree with decentralized ADP-Pi activation via oxygen-centric murburn scheme Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Abhinav Parashar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research , Vadlamudi , Guntur, Andhra Pradesh, India
| | | | - Surjith Ramasamy
- Department of Biotechnology, Indian Institute of Technology Guwahati , Guwahati , Assam, India
| |
Collapse
|
69
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
70
|
Fan XX, Pan HD, Li Y, Guo RJ, Leung ELH, Liu L. Novel therapeutic strategy for cancer and autoimmune conditions: Modulating cell metabolism and redox capacity. Pharmacol Ther 2018; 191:148-161. [PMID: 29953901 DOI: 10.1016/j.pharmthera.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysregulation of cell metabolism and redox balance is implicated in the pathogenesis and progression of cancer and autoimmune diseases. Because the cell proliferation and apoptotic regulatory pathways are interconnected with metabolic and redox signalling pathways, the current mono-target treatment is ineffective, and multi-drug resistance remains common. Complex diseases are often implicated in a network-based context of pathology; therefore, a new holistic intervention approach is required to block multi-crosstalk in such complicated circumstances. The use of therapeutic agents isolated from herbs to holistically modulate metabolism and redox state has been shown to relieve carcinoma growth and the inflammatory response in autoimmune disorders. Multiple clinically applied or novel herbal chemicals with metabolic and redox modulatory capacity as well as low toxicity have recently been identified. Moreover, new metabolic targets and mechanisms of drug action have been discovered, leading to the exploration of new pathways for drug repositioning, clinical biomarker spectra, clinical treatment strategies and drug development. Taken together with multiple supporting examples, the modulation of cell metabolism and the redox capacity using herbal chemicals is emerging as a new, alternative strategy for the holistic treatment of cancer and autoimmune disorders. In the future, the development of new diagnostic tools based on the detection of metabolic and redox biomarkers, reformulation of optimized herbal compositions using artificial intelligence, and the combination of herbs with mono-targeting drugs will reveal new potential for clinical application.
Collapse
Affiliation(s)
- Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Rui-Jin Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China; Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China; Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China.
| |
Collapse
|
71
|
Khafaie MA, Salvi SS, Ojha A, Khafaie B, Gore SD, Yajnik CS. Particulate matter and markers of glycemic control and insulin resistance in type 2 diabetic patients: result from Wellcome Trust Genetic study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:328-336. [PMID: 29269753 DOI: 10.1038/s41370-017-0001-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 08/06/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
There is growing evidence that air pollution is associated with increased risk of type 2 diabetes (T2DM). However, information related to whether particulate matter (PM) contributing to worsened metabolic control in T2DM patients is inconsistent. We examined the association of PM10 exposure with glucose-function parameters in young-onset T2DM patients. We investigated the association between a year ambient concentration of PM10 at residential places, using AERMOD dispersion model, with fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), 2 h post meal plasma glucose (2hPG), homeostasis model assessment of insulin resistance (HOMA-IR), β-cell function (HOMA-β) and disposition index (DI) in 1213 diabetic patients from the Wellcome Trust Genetic study at the Diabetes Unit, KEM Hospital Research Center, Pune, India. We used linear regression models and adjusted for a variety of individual and environmental confounding variables. Possible effect modification by age, gender, waist-to-hip ratio (WHR) and smoking status were investigated. Sensitivity analysis assessed the impact of relative humidity (RH) and temperature a day before examination and anti-diabetic and HHR medication (Hydralazine, Hydrochlorothiazide and Reserpine). We found that 1 SD increment in background concentration of PM10 at residential places (43.83 µg/m3) was significantly associated with 2.25 mmol/mol and 0.38 mmol/l increase in arithmetic means of HbA1c and 2hPG, respectively. A similar increase in PM10 was also associated with 4.89% increase in geometric mean of HOMA-IR. The associations remained significant after adjustment to RH and temperature, and WHR and smoking enhanced the size of the effect. Our study suggests that long-term exposure to PM10 is associated with higher glycaemia and insulin resistance. In context of our previous demonstration of association of SO2 and NO x and plasma C-reactive protein, we suggest that air pollution could influence progression of diabetes complications. Prospective studies and interventions are required to define mechanism and confirm causality.
Collapse
Affiliation(s)
- Morteza Abdullatif Khafaie
- Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Public Health, Faculty of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ajay Ojha
- Technogreen Environmental Solutions, Pune, Maharashtra, India
| | - Behzad Khafaie
- Department of Statistics, Islamic Azad University, Omidiyeh Branch, Omidiyeh, Iran
| | | | | |
Collapse
|
72
|
Goutzourelas N, Orfanou M, Charizanis I, Leon G, Spandidos DA, Kouretas D. GSH levels affect weight loss in individuals with metabolic syndrome and obesity following dietary therapy. Exp Ther Med 2018; 16:635-642. [PMID: 30116319 PMCID: PMC6090313 DOI: 10.3892/etm.2018.6204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
This study examined the effects of redox status markers on metabolic syndrome (MetS) and obesity before and after dietary intervention and exercise for weight loss. A total of 103 adults suffering from MetS and obesity participated in this study and followed a personalized diet plan for 6 months. Body weight, body fat (BF) percentage (BF%), respiratory quotient (RQ) and the redox status markers, reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and protein carbonyls (CARB), were measured twice in each individual, before and after intervention. Dietary intervention resulted in weight loss, a reduction in BF% and a decrease in RQ. The GSH levels were significantly decreased following intervention, while the levels of TBARS and CARB were not affected. Based on the initial GSH levels, the patients were divided into 2 groups as follows: The high GSH group (GSH, >3.5 µmol/g Hb) and the low GSH group (GSH <3.5 µmol/g Hb). Greater weight and BF loss were observed in patients with high GSH levels. It was observed that patients with MetS and obesity with high GSH values responded better to the dietary therapy, exhibiting more significant changes in weight and BF%. This finding underscores the importance of identifying redox status markers, particularly GSH, in obese patients with MetS. Knowing the levels of GSH may aid in developing a better design of an individualized dietary plan for individuals who wish to lose weight.
Collapse
Affiliation(s)
- Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece.,Eatwalk IKE, 15124 Athens, Greece
| | | | | | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, 71409 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
73
|
Zhang J, Ye ZW, Singh S, Townsend DM, Tew KD. An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radic Biol Med 2018; 120:204-216. [PMID: 29578070 PMCID: PMC5940525 DOI: 10.1016/j.freeradbiomed.2018.03.038] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
By nature of the reversibility of the addition of glutathione to low pKa cysteine residues, the post-translational modification of S-glutathionylation sanctions a cycle that can create a conduit for cell signaling events linked with cellular exposure to oxidative or nitrosative stress. The modification can also avert proteolysis by protection from over-oxidation of those clusters of target proteins that are substrates. Altered functions are associated with S-glutathionylation of proteins within the mitochondria and endoplasmic reticulum compartments, and these impact energy production and protein folding pathways. The existence of human polymorphisms of enzymes involved in the cycle (particularly glutathione S-transferase P) create a scenario for inter-individual variance in response to oxidative stress and a number of human diseases with associated aberrant S-glutathionylation have now been identified.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Shweta Singh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street, MSC141, Charleston, SC 29425, United States
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States.
| |
Collapse
|
74
|
Tang WW, McGee P, Lachin JM, Li DY, Hoogwerf B, Hazen SL, Nathan D, Zinman B, Crofford O, Genuth S, Brown‐Friday J, Crandall J, Engel H, Engel S, Martinez H, Phillips M, Reid M, Shamoon H, Sheindlin J, Gubitosi‐Klug R, Mayer L, Pendegast S, Zegarra H, Miller D, Singerman L, Smith‐Brewer S, Novak M, Quin J, Genuth S, Palmert M, Brown E, McConnell J, Pugsley P, Crawford P, Dahms W, Gregory N, Lackaye M, Kiss S, Chan R, Orlin A, Rubin M, Brillon D, Reppucci V, Lee T, Heinemann M, Chang S, Levy B, Jovanovic L, Richardson M, Bosco B, Dwoskin A, Hanna R, Barron S, Campbell R, Bhan A, Kruger D, Jones J, Edwards P, Bhan A, Carey J, Angus E, Thomas A, Galprin A, McLellan M, Whitehouse F, Bergenstal R, Johnson M, Gunyou K, Thomas L, Laechelt J, Hollander P, Spencer M, Kendall D, Cuddihy R, Callahan P, List S, Gott J, Rude N, Olson B, Franz M, Castle G, Birk R, Nelson J, Freking D, Gill L, Mestrezat W, Etzwiler D, Morgan K, Aiello L, Golden E, Arrigg P, Asuquo V, Beaser R, Bestourous L, Cavallerano J, Cavicchi R, Ganda O, Hamdy O, Kirby R, Murtha T, et alTang WW, McGee P, Lachin JM, Li DY, Hoogwerf B, Hazen SL, Nathan D, Zinman B, Crofford O, Genuth S, Brown‐Friday J, Crandall J, Engel H, Engel S, Martinez H, Phillips M, Reid M, Shamoon H, Sheindlin J, Gubitosi‐Klug R, Mayer L, Pendegast S, Zegarra H, Miller D, Singerman L, Smith‐Brewer S, Novak M, Quin J, Genuth S, Palmert M, Brown E, McConnell J, Pugsley P, Crawford P, Dahms W, Gregory N, Lackaye M, Kiss S, Chan R, Orlin A, Rubin M, Brillon D, Reppucci V, Lee T, Heinemann M, Chang S, Levy B, Jovanovic L, Richardson M, Bosco B, Dwoskin A, Hanna R, Barron S, Campbell R, Bhan A, Kruger D, Jones J, Edwards P, Bhan A, Carey J, Angus E, Thomas A, Galprin A, McLellan M, Whitehouse F, Bergenstal R, Johnson M, Gunyou K, Thomas L, Laechelt J, Hollander P, Spencer M, Kendall D, Cuddihy R, Callahan P, List S, Gott J, Rude N, Olson B, Franz M, Castle G, Birk R, Nelson J, Freking D, Gill L, Mestrezat W, Etzwiler D, Morgan K, Aiello L, Golden E, Arrigg P, Asuquo V, Beaser R, Bestourous L, Cavallerano J, Cavicchi R, Ganda O, Hamdy O, Kirby R, Murtha T, Schlossman D, Shah S, Sharuk G, Silva P, Silver P, Stockman M, Sun J, Weimann E, Wolpert H, Aiello L, Jacobson A, Rand L, Rosenzwieg J, Nathan D, Larkin M, Christofi M, Folino K, Godine J, Lou P, Stevens C, Anderson E, Bode H, Brink S, Cornish C, Cros D, Delahanty L, eManbey ., Haggan C, Lynch J, McKitrick C, Norman D, Moore D, Ong M, Taylor C, Zimbler D, Crowell S, Fritz S, Hansen K, Gauthier‐Kelly C, Service F, Ziegler G, Barkmeier A, Schmidt L, French B, Woodwick R, Rizza R, Schwenk W, Haymond M, Pach J, Mortenson J, Zimmerman B, Lucas A, Colligan R, Luttrell L, Lopes‐Virella M, Caulder S, Pittman C, Patel N, Lee K, Nutaitis M, Fernandes J, Hermayer K, Kwon S, Blevins A, Parker J, Colwell J, Lee D, Soule J, Lindsey P, Bracey M, Farr A, Elsing S, Thompson T, Selby J, Lyons T, Yacoub‐Wasef S, Szpiech M, Wood D, Mayfield R, Molitch M, Adelman D, Colson S, Jampol L, Lyon A, Gill M, Strugula Z, Kaminski L, Mirza R, Simjanoski E, Ryan D, Johnson C, Wallia A, Ajroud‐Driss S, Astelford P, Leloudes N, Degillio A, Schaefer B, Mudaliar S, Lorenzi G, Goldbaum M, Jones K, Prince M, Swenson M, Grant I, Reed R, Lyon R, Kolterman O, Giotta M, Clark T, Friedenberg G, Sivitz W, Vittetoe B, Kramer J, Bayless M, Zeitler R, Schrott H, Olson N, Snetselaar L, Hoffman R, MacIndoe J, Weingeist T, Fountain C, Miller R, Johnsonbaugh S, Patronas M, Carney M, Mendley S, Salemi P, Liss R, Hebdon M, Counts D, Donner T, Gordon J, Hemady R, Kowarski A, Ostrowski D, Steidl S, Jones B, Herman W, Martin C, Pop‐Busui R, Greene D, Stevens M, Burkhart N, Sandford T, Floyd J, Bantle J, Flaherty N, Terry J, Koozekanani D, Montezuma S, Wimmergren N, Rogness B, Mech M, Strand T, Olson J, McKenzie L, Kwong C, Goetz F, Warhol R, Hainsworth D, Goldstein D, Hitt S, Giangiacomo J, Schade D, Canady J, Burge M, Das A, Avery R, Ketai L, Chapin J, Schluter M, Rich J, Johannes C, Hornbeck D, Schutta M, Bourne P, Brucker A, Braunstein S, Schwartz S, Maschak‐Carey B, Baker L, Orchard T, Cimino L, Songer T, Doft B, Olson S, Becker D, Rubinstein D, Bergren R, Fruit J, Hyre R, Palmer C, Silvers N, Lobes L, Rath PP, Conrad P, Yalamanchi S, Wesche J, Bratkowksi M, Arslanian S, Rinkoff J, Warnicki J, Curtin D, Steinberg D, Vagstad G, Harris R, Steranchak L, Arch J, Kelly K, Ostrosaka P, Guiliani M, Good M, Williams T, Olsen K, Campbell A, Shipe C, Conwit R, Finegold D, Zaucha M, Drash A, Morrison A, Malone J, Bernal M, Pavan P, Grove N, Tanaka E, McMillan D, Vaccaro‐Kish J, Babbione L, Solc H, DeClue T, Dagogo‐Jack S, Wigley C, Ricks H, Kitabchi A, Chaum E, Murphy M, Moser S, Meyer D, Iannacone A, Yoser S, Bryer‐Ash M, Schussler S, Lambeth H, Raskin P, Strowig S, Basco M, Cercone S, Zinman B, Barnie A, Devenyi R, Mandelcorn M, Brent M, Rogers S, Gordon A, Bakshi N, Perkins B, Tuason L, Perdikaris F, Ehrlich R, Daneman D, Perlman K, Ferguson S, Palmer J, Fahlstrom R, de Boer I, Kinyoun J, Van Ottingham L, Catton S, Ginsberg J, McDonald C, Harth J, Driscoll M, Sheidow T, Mahon J, Canny C, Nicolle D, Colby P, Dupre J, Hramiak I, Rodger N, Jenner M, Smith T, Brown W, May M, Lipps Hagan J, Agarwal A, Adkins T, Lorenz R, Feman S, Survant L, White N, Levandoski L, Grand G, Thomas M, Joseph D, Blinder K, Shah G, Burgess D, Boniuk I, Santiago J, Tamborlane W, Gatcomb P, Stoessel K, Ramos P, Fong K, Ossorio P, Ahern J, Gubitosi‐Klug R, Meadema‐Mayer L, Beck C, Farrell K, Genuth S, Quin J, Gaston P, Palmert M, Trail R, Dahms W, Lachin J, Backlund J, Bebu I, Braffett B, Diminick L, Gao X, Hsu W, Klumpp K, Pan H, Trapani V, Cleary P, McGee P, Sun W, Villavicencio S, Anderson K, Dews L, Younes N, Rutledge B, Chan K, Rosenberg D, Petty B, Determan A, Kenny D, Williams C, Cowie C, Siebert C, Steffes M, Arends V, Bucksa J, Nowicki M, Chavers B, O'Leary D, Polak J, Harrington A, Funk L, Crow R, Gloeb B, Thomas S, O'Donnell C, Soliman E, Zhang Z, Li Y, Campbell C, Keasler L, Hensley S, Hu J, Barr M, Taylor T, Prineas R, Feldman E, Albers J, Low P, Sommer C, Nickander K, Speigelberg T, Pfiefer M, Schumer M, Moran M, Farquhar J, Ryan C, Sandstrom D, Williams T, Geckle M, Cupelli E, Thoma F, Burzuk B, Woodfill T, Danis R, Blodi B, Lawrence D, Wabers H, Gangaputra S, Neill S, Burger M, Dingledine J, Gama V, Sussman R, Davis M, Hubbard L, Budoff M, Darabian S, Rezaeian P, Wong N, Fox M, Oudiz R, Kim L, Detrano R, Cruickshanks K, Dalton D, Bainbridge K, Lima J, Bluemke D, Turkbey E, der Geest ., Liu C, Malayeri A, Jain A, Miao C, Chahal H, Jarboe R, Nathan D, Monnier V, Sell D, Strauch C, Hazen S, Pratt A, Tang W, Brunzell J, Purnell J, Natarajan R, Miao F, Zhang L, Chen Z, Paterson A, Boright A, Bull S, Sun L, Scherer S, Lopes‐Virella M, Lyons T, Jenkins A, Klein R, Virella G, Jaffa A, Carter R, Stoner J, Garvey W, Lackland D, Brabham M, McGee D, Zheng D, Mayfield R, Maynard J, Wessells H, Sarma A, Jacobson A, Dunn R, Holt S, Hotaling J, Kim C, Clemens Q, Brown J, McVary K. Oxidative Stress and Cardiovascular Risk in Type 1 Diabetes Mellitus: Insights From the DCCT/EDIC Study. J Am Heart Assoc 2018. [PMCID: PMC6015340 DOI: 10.1161/jaha.117.008368] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Hyperglycemia leading to increased oxidative stress is implicated in the increased risk for the development of macrovascular and microvascular complications in patients with type 1 diabetes mellitus.
Methods and Results
A random subcohort of 349 participants was selected from the
DCCT
/
EDIC
(Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications) cohort. This included 320 controls and 29 cardiovascular disease cases that were augmented with 98 additional known cases to yield a case cohort of 447 participants (320 controls, 127 cases). Biosamples from
DCCT
baseline, year 1, and closeout of
DCCT
, and 1 to 2 years post‐
DCCT
(
EDIC
years 1 and 2) were measured for markers of oxidative stress, including plasma myeloperoxidase, paraoxonase activity, urinary F
2α
isoprostanes, and its metabolite, 2,3 dinor‐8
iso
prostaglandin F
2α
. Following adjustment for glycated hemoblobin and weighting the observations inversely proportional to the sampling selection probabilities, higher paraoxonase activity, reflective of antioxidant activity, and 2,3 dinor‐8
iso
prostaglandin F
2α
, an oxidative marker, were significantly associated with lower risk of cardiovascular disease (−4.5% risk for 10% higher paraoxonase,
P
<0.003; −5.3% risk for 10% higher 2,3 dinor‐8
iso
prostaglandin F
2α
,
P
=0.0092). In contrast, the oxidative markers myeloperoxidase and F
2α
isoprostanes were not significantly associated with cardiovascular disease after adjustment for glycated hemoblobin. There were no significant differences between
DCCT
intensive and conventional treatment groups in the change in all biomarkers across time segments.
Conclusions
Heightened antioxidant activity (rather than diminished oxidative stress markers) is associated with lower cardiovascular disease risk in type 1 diabetes mellitus, but these biomarkers did not change over time with intensification of glycemic control.
Clinical Trial Registration
URL
:
https://www.clinicaltrials.gov
. Unique identifiers:
NCT
00360815 and
NCT
00360893.
Collapse
Affiliation(s)
- W.H. Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH
| | - Paula McGee
- The Biostatistics Center, George Washington University, Rockville, MD
| | - John M. Lachin
- The Biostatistics Center, George Washington University, Rockville, MD
| | - Daniel Y. Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | | | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sepasi Tehrani H, Moosavi-Movahedi AA. Catalase and its mysteries. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018. [PMID: 29530789 DOI: 10.1016/j.pbiomolbio.2018.03.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalase is one of the firsts in every realm of biological sciences. At the same time it also has a number of unusual features. It has one of the highest turnover numbers of all enzymes. It is essential for neutralizing the noxious hydrogen peroxide both in the nature and the various industries such as dairy, textile and pharmaceutics. It also has the merit of being one of the first protein crystals to be isolated. Ironically its three-dimensional structure was discerned some forty years later. However through the times this senile enzyme has continued to intrigue the scientists by surprising facts and phenomena, such as peculiar interweaving of subunits and remarkable thermal stability. It is also known for suicide inactivation by its own substrate. Catalase is known to be implicated in various medical scenarios and its levels have served as a marker in that capacity. It has even been incorporated into several pharmaceuticals. This review strives to clarify these perspectives. It also draws attention to the biophysical contributions offered by thermodynamics and kinetics in these discoveries. The ultimate aim of this review, however, is to state that the venerable catalase will continue to bewilder us with its mysteries well into the twenty-first century.
Collapse
Affiliation(s)
- Hessam Sepasi Tehrani
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | | |
Collapse
|
76
|
Nrf2-Keap1 signaling in oxidative and reductive stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:721-733. [PMID: 29499228 DOI: 10.1016/j.bbamcr.2018.02.010] [Citation(s) in RCA: 1166] [Impact Index Per Article: 166.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
Nrf2 and its endogenous inhibitor, Keap1, function as a ubiquitous, evolutionarily conserved intracellular defense mechanism to counteract oxidative stress. Sequestered by cytoplasmic Keap1 and targeted to proteasomal degradation in basal conditions, in case of oxidative stress Nrf2 detaches from Keap1 and translocates to the nucleus, where it heterodimerizes with one of the small Maf proteins. The heterodimers recognize the AREs, that are enhancer sequences present in the regulatory regions of Nrf2 target genes, essential for the recruitment of key factors for transcription. In the present review we briefly introduce the Nrf2-Keap1 system and describe Nrf2 functions, illustrate the Nrf2-NF-κB cross-talk, and highlight the effects of the Nrf2-Keap1 system in the physiology and pathophysiology of striated muscle tissue taking into account its role(s) in oxidative stress and reductive stress.
Collapse
|
77
|
Wang H, Hong X, Wang Y. Mitochondrial Repair Effects of Oxygen Treatment on Alzheimer's Disease Model Mice Revealed by Quantitative Proteomics. J Alzheimers Dis 2018; 56:875-883. [PMID: 28059791 DOI: 10.3233/jad-161010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondrial dysfunction plays a pivotal role in Alzheimer's disease (AD), even before signs of AD pathology are evident. Our previous research has shown that oxygen treatment can improve cognitive function in AD model mice. To address whether oxygen treatment is beneficial to mitochondrial biology, we analyzed differential expressions of hippocampal mitochondrial proteins in AD model mice given supplementary oxygen. Numerous respiratory chain, Kreb's cycle, and glycolysis proteins were upregulated significantly after oxygen treatment, suggesting that oxygen therapy can alleviate mitochondrial damage. Furthermore, the treatment was associated with decreased expressions of some AD biomarkers, suggesting oxygen treatment to be a potential therapy for AD.
Collapse
Affiliation(s)
- Hao Wang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaoyu Hong
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Yong Wang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| |
Collapse
|
78
|
Oxidation Reduction Potential (ORP) is Predictive of Complications Following Pediatric Cardiac Surgery. Pediatr Cardiol 2018; 39:299-306. [PMID: 29090352 DOI: 10.1007/s00246-017-1755-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/23/2017] [Indexed: 01/24/2023]
Abstract
Oxidation reduction potential (ORP) or Redox is the ratio of activity between oxidizers and reducers. Oxidative stress (OS) can cause cellular injury and death, and is important in the regulation of immune response to injury or disease. In the present study, we investigated changes in the redox system as a function of cardiopulmonary bypass (CPB) in pediatric patients. 664 plasma samples were collected from 162 pediatric patients having cardiac surgery of various CPB times. Lower ORP values at 12 h post-CPB were associated with poor survival rate (mean ± SD 167 ± 20 vs. 138 ± 19, p = 0.005) and higher rate of thrombotic complications (153 ± 21 vs. 168 ± 20, p < 0.008). Similarly, patients who developed infections had lower ORP values at 6 h (149 ± 19 vs. 160 ± 22, p = 0.02) and 12 h (156 ± 17 vs. 168 ± 21, p = 0.004) post-CPB. Patients that developed any post-operative complication also had lower 6 h (149 ± 17 vs. 161 ± 23, p = 0.002) and 12 h (157 ± 18 vs. 170 ± 21, p = 0.0007) post-CPB ORP values. Free hemoglobin and IL-6, IL-10, and CRP were not associated with ORP levels. However, higher haptoglobin levels preoperatively were protective against decreases in ORP. Decreased ORP is a marker for poor outcome and predictive of post-operative thrombosis, infection, and other complications in critically ill pediatric cardiac surgery patients. These results suggest that redox imbalance and OS may contribute to the risk of complications and poor outcome in pediatric CBP patients. Haptoglobin may be a marker for increased resilience to OS in this population.
Collapse
|
79
|
Wang H, Wang Y, Hong X, Li S, Wang Y. Quantitative Proteomics Reveals the Mechanism of Oxygen Treatment on Lenses of Alzheimer's Disease Model Mice. J Alzheimers Dis 2018; 54:275-86. [PMID: 27567828 DOI: 10.3233/jad-160263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease with well-characterized pathological features. Yet the underlying mechanisms have not been resolved and an effective therapeutic approach is lacking. Cerebral hypoxia is considered a risk factor of AD. OBJECTIVE We tested whether oxygen supplementation can relieve AD symptoms and how it affects the expression levels of proteins in the lens. METHODS Triple transgenic AD model (3xTg-AD) mice were divided into oxygen treated (OT) and control (Ctrl) groups. Their cognitive performances were tested in a Morris water maze (MWM) paradigm. Then, their eye lens tissues were subjected to quantitative proteomics analysis by the iTRAQ (isobaric tags for relative and absolute quantification) method. The up- and downregulated proteins were classified according to a Gene Ontology (GO) database in PANTHER. Behavioral and proteomic data were compared between the groups. RESULTS Mice in the OT group had better learning and memorizing performance compared with the Ctrl group in MWM test. Lenses from the OT group had 205 differentially regulated proteins, relative to lenses from the Ctrl group, including proteins that are involved in the clearance of amyloid β-protein. CONCLUSION The results of this study indicate that oxygen treatment can improve cognitive function in AD model mice and alters protein expression in a manner consistent with improved redox regulation.
Collapse
Affiliation(s)
- Hao Wang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Ying Wang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaoyu Hong
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Yong Wang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| |
Collapse
|
80
|
Yuan S, Zhang ZW, Li ZL. Antacids' side effect hyperuricaemia could be alleviated by long-term aerobic exercise via accelerating ATP turnover rate. Biomed Pharmacother 2018; 99:18-24. [PMID: 29324308 DOI: 10.1016/j.biopha.2018.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 01/31/2023] Open
Abstract
Hyperuricemia is the term for an abnormally high serum uric acid level. Many factors contribute to hyperuricemia, however no definite correlation between proton pump inhibitors (PPIs) and hyperuricemia has been reported before. Physical exercise also decreases serum uric acid levels. However, the detailed biochemical-regulatory mechanisms remain unknown. Here we found that adenylate deaminase activities are much higher in hyperuricemia patients than in the healthy people. Therefore, the patients have higher levels of adenosine metabolites hypoxanthine and uric acid. Acid-inhibitory drugs (antacids) significantly increased serum uric acid level and may lead to gout in the hyperuricemia patient. Long-term aerobic exercise significantly increased serum phosphorus and decreased serum ATP and its metabolites, and therefore decreased serum uric acid. Antacids slow down the ATP turnover rate and result in serum uric acid elevation subsequently. While the long-term aerobic exercise decreases serum uric acid levels by accelerating ATP turnover rate. The results imply that long-term aerobic exercise may be a useful strategy to prevent and treat hyperuricaemia.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China.
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zi-Lin Li
- Department of Internal Medicine, Xijing Hospital, Medical University of the Air Force, Xi'an, China
| |
Collapse
|
81
|
Shen J, Fang Y, Zhu H, Ge W. Plasma interleukin-22 levels are associated with prediabetes and type 2 diabetes in the Han Chinese population. J Diabetes Investig 2018; 9:33-38. [PMID: 28170163 PMCID: PMC5754531 DOI: 10.1111/jdi.12640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/19/2017] [Accepted: 02/01/2017] [Indexed: 12/18/2022] Open
Abstract
AIMS/INTRODUCTION The objective of the present study was to investigate the relationship between plasma interleukin-22 (IL-22) levels and prediabetes or type 2 diabetes, and search the relevance between plasma concentrations of IL-22 and selected diabetes risk factors in Chinese people. MATERIALS AND METHODS The Han Chinese origin men and women participants were recruited in our study during a conventional medical checkup. Fasting plasma IL-22 levels were detected by enzyme-linked immunosorbent assay, and their relevance with selected diabetes risk factors was explored. Multiple logistic regression analysis was carried out to assess the odds ratio of impaired fasting glucose (IFG) and type 2 diabetes according to plasma IL-22 level. RESULTS Compared with normal glucose participants (250 pg/mL [interquartile range 154-901]), the plasma IL-22 levels in IFG participants (185 pg/mL [interquartile range 145-414]) and type 2 diabetes participants (162 pg/mL [interquartile range 128-266]) were significantly lower (P < 0.05, P < 0.001, respectively). Correlation analysis showed that plasma concentrations of IL-22 were negatively associated with some diabetes risk factors, including body mass index, glucose, systolic blood pressure, diastolic blood pressure and triglyceride. Furthermore, the plasma concentrations of IL-22 showed a highly significant association with IFG and type 2 diabetes. CONCLUSIONS In Chinese subjects, the plasma concentration of IL-22 is profoundly associated with susceptibility to IFG and type 2 diabetes, and decreased plasma IL-22 level is a potential trigger of IFG and type 2 diabetes.
Collapse
Affiliation(s)
- Jizhong Shen
- Department of PharmacyDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingJiangsuChina
| | - Yun Fang
- Department of PharmacyDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingJiangsuChina
| | - Huaijun Zhu
- Department of PharmacyDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingJiangsuChina
| | - Weihong Ge
- Department of PharmacyDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingJiangsuChina
| |
Collapse
|
82
|
Tóthová L, Celec P. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis. Front Physiol 2017; 8:1055. [PMID: 29311982 PMCID: PMC5735291 DOI: 10.3389/fphys.2017.01055] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status.
Collapse
Affiliation(s)
- L'ubomíra Tóthová
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia.,Faculty of Medicine, Institute of Physiology, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia.,Faculty of Medicine, Institute of Pathophysiology, Comenius University, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
83
|
Kjær LK, Cejvanovic V, Henriksen T, Petersen KM, Hansen T, Pedersen O, Christensen CK, Torp-Pedersen C, Gerds TA, Brandslund I, Mandrup-Poulsen T, Poulsen HE. Cardiovascular and All-Cause Mortality Risk Associated With Urinary Excretion of 8-oxoGuo, a Biomarker for RNA Oxidation, in Patients With Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care 2017; 40:1771-1778. [PMID: 29061564 DOI: 10.2337/dc17-1150] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/14/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Cardiovascular mortality risk remains high among patients with type 2 diabetes. Oxidative stress indicated by high urinary excretion of the biomarker for RNA oxidation, 8-oxo-7,8-dihydroguanosine (8-oxoGuo), is associated with an increased risk of death in newly diagnosed and treated patients. We assessed whether 8-oxoGuo is associated with specific cardiovascular and all-cause mortality risk. RESEARCH DESIGN AND METHODS Urinary biomarkers for nucleic acid oxidation were measured in a cohort of patients with type 2 diabetes aged ≥60 years (n = 1,863), along with biochemical measurements, questionnaire findings, and Central Person Registry information to estimate the hazard ratios (HRs) for log2-transformed RNA oxidation using Cox regression. RESULTS During the 5-year follow-up, 173 of 1,863 patients had died (9.3%), including 73 patients who died of cardiovascular disease (42.2%). Doubling of RNA oxidation was associated with an HR of all-cause mortality of 2.10 (95% CI 1.63-2.71; P < 0.001) and an HR of cardiovascular death of 1.82 (95% CI 1.20-2.77; P = 0.005) after multiple adjustments. The 5-year absolute risks (ARs) of all-cause mortality (AR 13.9 [95% CI 10.8-17.0] vs. AR 6.10 [95% CI 4.00-8.30]) and cardiovascular mortality (AR 5.49 [95% CI 3.44-7.55] vs. AR 3.16 [95% CI 1.59-4.73]) were approximately two times higher in the highest quartile of RNA oxidation than in the lowest quartile. CONCLUSIONS We conclude that high RNA oxidation is associated with all-cause and cardiovascular mortality risk in patients with type 2 diabetes. Targeting oxidative stress via interventions with long-term follow-up may reveal the predictive potential of the biomarker 8-oxoGuo.
Collapse
Affiliation(s)
- Laura K Kjær
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark .,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vanja Cejvanovic
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Kasper M Petersen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cramer K Christensen
- Department of Internal Medicine and Endocrinology, Lillebaelt Hospital, Vejle, Denmark
| | - Christian Torp-Pedersen
- Department of Health, Science and Technology, Aalborg University, Aalborg, Denmark.,Department of Cardiology and Epidemiology/Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| | - Thomas A Gerds
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark.,Faculty of Health Science, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik E Poulsen
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
84
|
Goncharov NV, Nadeev AD, Jenkins RO, Avdonin PV. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9759735. [PMID: 29333215 PMCID: PMC5733214 DOI: 10.1155/2017/9759735] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Endothelium is a community of endothelial cells (ECs), which line the blood and lymphatic vessels, thus forming an interface between the tissues and the blood or lympha. This strategic position of endothelium infers its indispensable functional role in controlling vasoregulation, haemostasis, and inflammation. The state of endothelium is simultaneously the cause and effect of many diseases, and this is coupled with modifications of endothelial phenotype represented by markers and with biochemical profile of blood represented by biomarkers. In this paper, we briefly review data on the functional role of endothelium, give definitions of endothelial markers and biomarkers, touch on the methodological approaches for revealing biomarkers, present an implicit role of endothelium in some toxicological mechanistic studies, and survey the role of reactive oxygen species (ROS) in modulation of endothelial status.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | - Alexander D. Nadeev
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
- Institute of Cell Biophysics RAS, Pushchino, Russia
| | - Richard O. Jenkins
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | | |
Collapse
|
85
|
Li Y, Luo Z, Wu X, Zhu J, Yu K, Jin Y, Zhang Z, Zhao S, Zhou L. Proteomic Analyses of Cysteine Redox in High-Fat-Fed and Fasted Mouse Livers: Implications for Liver Metabolic Homeostasis. J Proteome Res 2017; 17:129-140. [PMID: 29098862 DOI: 10.1021/acs.jproteome.7b00431] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intensive oxidative stress occurs during high-fat-diet-induced hepatic fat deposition, suggesting a critical role for redox signaling in liver metabolism. Intriguingly, evidence shows that fasting could also result in redox-profile changes largely through reduced oxidant or increased antioxidant levels. However, a comprehensive landscape of redox-modified hepatic substrates is lacking, thereby hindering our understanding of liver metabolic homeostasis. We employed a proteomic approach combining iodoacetyl tandem mass tag and nanoliquid chromatography tandem mass spectrometry to quantitatively probe the effects of high-fat feeding and fasting on in vivo redox-based cysteine modifications. Compared with control groups, ∼60% of cysteine residues exhibited downregulated oxidation ratios by fasting, whereas ∼94% of these ratios were upregulated by high-fat feeding. Importantly, in fasted livers, proteins exhibiting diminished cysteine oxidation were annotated in pathways associated with fatty acid metabolism, carbohydrate metabolism, insulin, peroxisome proliferator-activated receptors, and oxidative respiratory chain signaling, suggesting that fasting-induced redox changes targeted major metabolic pathways and consequently resulted in hepatic lipid accumulation.
Collapse
Affiliation(s)
- Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| | - Zupeng Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| | - Xilong Wu
- Jingjie PTM Biolab Co. Ltd. , Hangzhou Economic and Technological Development Area, Hangzhou 310018, P.R. China
| | - Jun Zhu
- Jingjie PTM Biolab Co. Ltd. , Hangzhou Economic and Technological Development Area, Hangzhou 310018, P.R. China
| | - Kai Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| | - Yi Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University , Wuhan, P.R. China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| |
Collapse
|
86
|
Cortese-Krott MM, Koning A, Kuhnle GG, Nagy P, Bianco CL, Pasch A, Wink DA, Fukuto JM, Jackson AA, van Goor H, Olson KR, Feelisch M. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid Redox Signal 2017; 27:684-712. [PMID: 28398072 PMCID: PMC5576088 DOI: 10.1089/ars.2017.7083] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. CRITICAL ISSUES To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. FUTURE DIRECTIONS Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Miriam M. Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anne Koning
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gunter G.C. Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Peter Nagy
- Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | | | - Andreas Pasch
- Department of Clinical Chemistry, University of Bern and Calciscon AG, Bern, Switzerland
| | - David A. Wink
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jon M. Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, California
| | - Alan A. Jackson
- NIHR Southampton Biomedical Research Center, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kenneth R. Olson
- Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Martin Feelisch
- NIHR Southampton Biomedical Research Center, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
87
|
Xiao M, Zhong H, Xia L, Tao Y, Yin H. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med 2017; 111:316-327. [PMID: 28456642 DOI: 10.1016/j.freeradbiomed.2017.04.363] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
Mitochondrial lipids are essential for maintaining the integrity of mitochondrial membranes and the proper functions of mitochondria. As the "powerhouse" of a cell, mitochondria are also the major cellular source of reactive oxygen species (ROS). Oxidative stress occurs when the antioxidant system is overwhelmed by overproduction of ROS. Polyunsaturated fatty acids in mitochondrial membranes are primary targets for ROS attack, which may lead to lipid peroxidation (LPO) and generation of reactive lipids, such as 4-hydroxynonenal. When mitochondrial lipids are oxidized, the integrity and function of mitochondria may be compromised and this may eventually lead to mitochondrial dysfunction, which has been associated with many human diseases including cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. How mitochondrial lipids are oxidized and the underlying molecular mechanisms and pathophysiological consequences associated with mitochondrial LPO remain poorly defined. Oxidation of the mitochondria-specific phospholipid cardiolipin and generation of bioactive lipids through mitochondrial LPO has been increasingly recognized as an important event orchestrating apoptosis, metabolic reprogramming of energy production, mitophagy, and immune responses. In this review, we focus on the current understanding of how mitochondrial LPO and generation of bioactive lipid mediators in mitochondria are involved in the modulation of mitochondrial functions in the context of relevant human diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Mengqing Xiao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huiqin Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Lin Xia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Yongzhen Tao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.
| |
Collapse
|
88
|
|
89
|
Wu J, Luo X, Thangthaeng N, Sumien N, Chen Z, Rutledge MA, Jing S, Forster MJ, Yan LJ. Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes. Biochem Biophys Rep 2017; 11:119-129. [PMID: 28868496 PMCID: PMC5580358 DOI: 10.1016/j.bbrep.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022] Open
Abstract
It is well established that NADH/NAD+ redox balance is heavily perturbed in diabetes, and the NADH/NAD+ redox imbalance is a major source of oxidative stress in diabetic tissues. In mitochondria, complex I is the only site for NADH oxidation and NAD+ regeneration and is also a major site for production of mitochondrial reactive oxygen species (ROS). Yet how complex I responds to the NADH/NAD+ redox imbalance and any potential consequences of such response in diabetic pancreas have not been investigated. We report here that pancreatic mitochondrial complex I showed aberrant hyperactivity in either type 1 or type 2 diabetes. Further studies focusing on streptozotocin (STZ)-induced diabetes indicate that complex I hyperactivity could be attenuated by metformin. Moreover, complex I hyperactivity was accompanied by increased activities of complexes II to IV, but not complex V, suggesting that overflow of NADH via complex I in diabetes could be diverted to ROS production. Indeed in diabetic pancreas, ROS production and oxidative stress increased and mitochondrial ATP production decreased, which can be attributed to impaired pancreatic mitochondrial membrane potential that is responsible for increased cell death. Additionally, cellular defense systems such as glucose 6-phosphate dehydrogenase, sirtuin 3, and NQO1 were found to be compromised in diabetic pancreas. Our findings point to the direction that complex I aberrant hyperactivity in pancreas could be a major source of oxidative stress and β cell failure in diabetes. Therefore, inhibiting pancreatic complex I hyperactivity and attenuating its ROS production by various means in diabetes might serve as a promising approach for anti-diabetic therapies.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Xiaoting Luo
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Nopporn Thangthaeng
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Nathalie Sumien
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Zhenglan Chen
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Margaret A. Rutledge
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Siqun Jing
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Michael J. Forster
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| |
Collapse
|
90
|
Nishida M, Nishimura A, Matsunaga T, Motohashi H, Kasamatsu S, Akaike T. Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells. Free Radic Biol Med 2017; 109:132-140. [PMID: 28109891 DOI: 10.1016/j.freeradbiomed.2017.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/14/2017] [Accepted: 01/15/2017] [Indexed: 12/30/2022]
Abstract
Maintaining a redox balance by means of precisely controlled systems that regulate production, and elimination, and metabolism of electrophilic substances (electrophiles) is essential for normal cardiovascular function. Electrophilic signaling is mainly regulated by endogenous electrophiles that are generated from reactive oxygen species, nitric oxide, and the derivative reactive species of nitric oxide during stress responses, as well as by exogenous electrophiles including compounds in foods and environmental pollutants. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive persulfide species such as cysteine persulfides and polysulfides that are endogenously produced in cells are likely to be involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cardiovascular physiology and pathophysiology. In our review, we focus on the redox-dependent regulation of electrophilic signaling via reduction and metabolism of electrophiles by reactive persulfides in cardiac cells, and we include suggestions for a new therapeutic strategy for cardiovascular disease.
Collapse
Affiliation(s)
- Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan; Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Shingo Kasamatsu
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
91
|
Brinkmann C, Bloch W, Brixius K. Exercise during short-term exposure to hypoxia or hyperoxia - novel treatment strategies for type 2 diabetic patients?! Scand J Med Sci Sports 2017. [PMID: 28649714 DOI: 10.1111/sms.12937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Both hypoxia (decreased oxygen availability) and hyperoxia (increased oxygen availability) have been shown to alter exercise adaptations in healthy subjects. This review aims to clarify the possible benefits of exercise during short-term exposure to hypoxia or hyperoxia for patients with type 2 diabetes mellitus (T2DM). There is evidence that exercise during short-term exposure to hypoxia can acutely increase skeletal muscle glucose uptake more than exercise in normoxia, and that post-exercise insulin sensitivity in T2DM patients is more increased when exercise is performed under hypoxic conditions. Furthermore, interventional studies show that glycemic control can be improved through regular physical exercise in short-term hypoxia at a lower workload than in normoxia, and that exercise training in short-term hypoxia can contribute to increased weight loss in overweight/obese (insulin-resistant) subjects. While numerous studies involving healthy subjects report that regular exercise in hypoxia can increase vascular health (skeletal muscle capillarization and vascular dilator function) to a higher extent than exercise training in normoxia, there is no convincing evidence yet that hypoxia has such additive effects in T2DM patients in the long term. Some studies indicate that the use of hyperoxia during exercise can decrease lactate concentrations and subjective ratings of perceived exertion. Thus, there are interesting starting points for future studies to further evaluate possible beneficial effects of exercise in short-term hypoxia or hyperoxia at different oxygen concentrations and exposure durations. In general, exposure to hypoxia/hyperoxia should be considered with caution. Possible health risks-especially for T2DM patients-are also analyzed in this review.
Collapse
Affiliation(s)
- C Brinkmann
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.,Institute of Cardiovascular Research and Sport Medicine, Department of Preventive and Rehabilitative Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - W Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - K Brixius
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
92
|
Simko F, Pechanova O, Repova K, Aziriova S, Krajcirovicova K, Celec P, Tothova L, Vrankova S, Balazova L, Zorad S, Adamcova M. Lactacystin-Induced Model of Hypertension in Rats: Effects of Melatonin and Captopril. Int J Mol Sci 2017; 18:E1612. [PMID: 28757582 PMCID: PMC5578004 DOI: 10.3390/ijms18081612] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022] Open
Abstract
Lactacystin is a proteasome inhibitor that interferes with several factors involved in heart remodelling. The aim of this study was to investigate whether the chronic administration of lactacystin induces hypertension and heart remodelling and whether these changes can be modified by captopril or melatonin. In addition, the lactacystin-model was compared with NG-nitro-l-arginine-methyl ester (L-NAME)- and continuous light-induced hypertension. Six groups of three-month-old male Wistar rats (11 per group) were treated for six weeks as follows: control (vehicle), L-NAME (40 mg/kg/day), continuous light (24 h/day), lactacystin (5 mg/kg/day) alone, and lactacystin with captopril (100 mg/kg/day), or melatonin (10 mg/kg/day). Lactacystin treatment increased systolic blood pressure (SBP) and induced fibrosis of the left ventricle (LV), as observed in L-NAME-hypertension and continuous light-hypertension. LV weight and the cross-sectional area of the aorta were increased only in L-NAME-induced hypertension. The level of oxidative load was preserved or reduced in all three models of hypertension. Nitric oxide synthase (NOS) activity in the LV and kidney was unchanged in the lactacystin group. Nuclear factor-kappa B (NF-κB) protein expression in the LV was increased in all treated groups in the cytoplasm, however, in neither group in the nucleus. Although melatonin had no effect on SBP, only this indolamine (but not captopril) reduced the concentration of insoluble and total collagen in the LV and stimulated the NO-pathway in the lactacystin group. We conclude that chronic administration of lactacystin represents a novel model of hypertension with collagenous rebuilding of the LV, convenient for testing antihypertensive drugs or agents exerting a cardiovascular benefit beyond blood pressure reduction.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
- 3rd Clinic of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia.
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Olga Pechanova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 81371 Bratislava, Slovakia.
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Peter Celec
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia.
| | - Lubomira Tothova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia.
| | - Stanislava Vrankova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 81371 Bratislava, Slovakia.
| | - Lucia Balazova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic.
| |
Collapse
|
93
|
McDonagh B. Detection of ROS Induced Proteomic Signatures by Mass Spectrometry. Front Physiol 2017; 8:470. [PMID: 28736529 PMCID: PMC5500628 DOI: 10.3389/fphys.2017.00470] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
Reversible and irreversible post-translational modifications (PTMs) induced by endogenously generated reactive oxygen species (ROS) in regulatory enzymes and proteins plays an essential role in cellular signaling. Almost all cellular processes including metabolism, transcription, translation and degradation have been identified as containing redox regulated proteins. Specific redox modifications of key amino acids generated by ROS offers a dynamic and versatile means to rapidly alter the activity or functional structure of proteins in response to biochemical, environmental, genetic and pathological perturbations. How the proteome responds to these stimuli is of critical importance in oxidant physiology, as it can regulate the cell stress response by reversible and irreversible PTMs, affecting protein activity and protein-protein interactions. Due to the highly labile nature of many ROS species, applying redox proteomics can provide a signature footprint of the ROS species generated. Ideally redox proteomic approaches would allow; (1) the identification of the specific PTM, (2) identification of the amino acid residue that is modified and (3) the percentage of the protein containing the PTM. New developments in MS offer the opportunity of a more sensitive targeted proteomic approach and retrospective data analysis. Subsequent bioinformatics analysis can provide an insight into the biochemical and physiological pathways or cell signaling cascades that are affected by ROS generation. This mini-review will detail current redox proteomic approaches to identify and quantify ROS induced PTMs and the subsequent effects on cellular signaling.
Collapse
Affiliation(s)
- Brian McDonagh
- Department of Physiology, School of Medicine, NUI Galway, Galway, Ireland
| |
Collapse
|
94
|
Felder TK, Ring-Dimitriou S, Auer S, Soyal SM, Kedenko L, Rinnerthaler M, Cadamuro J, Haschke-Becher E, Aigner E, Paulweber B, Patsch W. Specific circulating phospholipids, acylcarnitines, amino acids and biogenic amines are aerobic exercise markers. J Sci Med Sport 2017; 20:700-705. [DOI: 10.1016/j.jsams.2016.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 08/27/2016] [Accepted: 11/14/2016] [Indexed: 01/17/2023]
|
95
|
Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed Pharmacother 2017; 91:31-42. [DOI: 10.1016/j.biopha.2017.04.057] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 01/19/2023] Open
|
96
|
Shen JZ, Ge WH, Fang Y, Liu H. A novel polymorphism in protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2) is associated with type 2 diabetes in the Han Chinese population. J Diabetes 2017; 9:606-612. [PMID: 27427333 DOI: 10.1111/1753-0407.12449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND It has been proposed that the energy-sensing enzyme AMP-activated protein kinase (AMPK) is a key agent in the pathophysiology of type 2 diabetes mellitus (T2DM). The gene encoding protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2) is located at one of the Asian T2DM loci (1p32). Therefore, the aim of the present study was to test for the association of common variants in PRKAA2 with T2DM in the Han Chinese population. METHODS We genotyped 221 T2DM patients and 111 controls to assess possible associations of two tagging single nucleotide polymorphisms (tSNPs) in the PRKAA2 gene with T2DM. RESULTS The clinical characteristics of T2DM cases compared with controls differed significantly. No significant association was observed with the rs2143754 polymorphism whereas the rs2746342 polymorphism exhibited a highly significant association with T2DM. Fasting plasma glucose (FPG) of subjects carrying the G/G genotype of the rs2746342 polymorphism was higher than that of subjects carrying the T allele (P = 0.0049). These associations were magnified in the presence of the G/G genotype of the rs2143754 polymorphism. CONCLUSIONS The rs2746342 polymorphism is significantly associated with susceptibility to T2DM and seems to interact with the rs2143754 polymorphism in the modulation of FPG in the Han Chinese population.
Collapse
Affiliation(s)
- Ji-Zhong Shen
- Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wei-Hong Ge
- Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Yun Fang
- Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Hang Liu
- Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
97
|
Targeting Select Cellular Stress Pathways to Prevent Hyperglycemia-Related Complications: Shifting the Paradigm. Drugs 2017; 76:1081-91. [PMID: 27364752 DOI: 10.1007/s40265-016-0609-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the advances made in preventing complications of diabetes, there is still substantial residual risk. Hence the need for developing new therapeutic agents that target the various facets of the pathogenesis of complications in people with diabetes. Traditionally four general biochemical pathways had been recognized as major contributors to glucotoxicity. These include the polyol pathway, the protein kinase C (PKC) pathway, glycosylation pathway, and oxidative stress. The latter has been proposed as a common impetus of the other pathways of glucotoxicity. More recently, the cross talk between oxidative stress and other recognized cellular stresses such as endoplasmic reticulum (ER), inflammatory, and mitochondrial stresses has emerged as an important additional mechanism of glucotoxicity. The observation that targeting oxidative stress with antioxidants has been associated with unfavorable clinical outcomes and the recognition that in cell cultures antioxidants may aggravate ER stress, suggests that selective targeting of individual cellular stresses may not be sufficient for preventing glucotoxicity. Future efforts should focus on developing therapeutic agents that can ameliorate cellular stress globally by simultaneously targeting the oxidative, ER, mitochondrial, and inflammatory stresses.
Collapse
|
98
|
Abstract
Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H2O2) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H2O2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University, Düsseldorf, University, D-40225, Düsseldorf, Germany; .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich Heine University, D-40225, Düsseldorf, Germany;
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia 30322;
| |
Collapse
|
99
|
Boyatzis AE, Bringans SD, Piggott MJ, Duong MN, Lipscombe RJ, Arthur PG. Limiting the Hydrolysis and Oxidation of Maleimide–Peptide Adducts Improves Detection of Protein Thiol Oxidation. J Proteome Res 2017; 16:2004-2015. [DOI: 10.1021/acs.jproteome.6b01060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Amber E. Boyatzis
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | - Matthew J. Piggott
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Marisa N. Duong
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | - Peter G. Arthur
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
100
|
Styshova ON, Popov AM, Artyukov AA, Klimovich AA. Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp Ther Med 2017; 13:1651-1659. [PMID: 28565749 DOI: 10.3892/etm.2017.4217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
The present review analyzed the recent experimental studies of the alleviating activity of main constituents of the polyphenol complex from seagrasses of the genus Zostera, namely rosmarinic acid, luteolin and its sulfated derivatives, on carbohydrate and lipid metabolism disorders. A number of studies by our group and others, in which various experimental models of diabetes and hyperlipidemia were used, show a therapeutic action of the polyphenol complex and the abovementioned phenolic constituents, when applied separately and in combination. Based on the analysis of the results of these studies, the probable mechanisms of the therapeutic action of these compounds in diabetes and hyperlipidemia were proposed.
Collapse
Affiliation(s)
- Olga Nikolaevna Styshova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Alexander Michailovich Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.,School of Natural Sciences, Far Eastern Federal University, Vladivostok 690000, Russia
| | - Alexander Alekseevish Artyukov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Anna Anatolievna Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|