51
|
Meini S, Cucchi P, Bellucci F, Catalani C, Faiella A, Rotondaro L, Quartara L, Giolitti A, Maggi CA. Site-directed mutagenesis at the human B2 receptor and molecular modelling to define the pharmacophore of non-peptide bradykinin receptor antagonists. Biochem Pharmacol 2004; 67:601-9. [PMID: 14757160 DOI: 10.1016/j.bcp.2003.09.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Combining site-directed mutagenesis with information obtained from molecular modelling of the bradykinin (BK) human B2 receptor (hB2R) as derived from the bovine rhodopsin crystal structure [Science 289 (2000) 739], we previously defined a putative binding mode for the non-peptide B2 receptor antagonists, FR173657 and LF16-0687 [Can J Physiol Pharmacol 80 (2002) 303]. The present work is aimed to define the specific role of the quinoline moiety in the pharmacophore of these non-peptide antagonists. The effect of the mutations I110A, L114A (TM, transmembrane 3), W256A (TM6), F292A, Y295A and Y295F (TM7) was evaluated. None of the mutations affected the binding interaction of peptide ligands: the agonist BK and the peptide antagonist MEN 11270. The affinities in competing for [3H]-BK binding and in blocking the BK-induced IP production by the non-peptide antagonists LF16-0687 and FR173657 at the wild type and mutant receptors were analysed. While the affinities of LF16-0687 and FR173657 were crucially decreased at the I110A, Y295A, and Y295F mutants, the W256A mutation affected the affinity of the LF16-0687 only. The important contribution of the quinoline moiety was shown by the inability of an analogue of LF16-0687, lacking this moiety, to affect BK binding at the wild type receptor. On the other hand, the benzamidine group did not interact with mutated residues, since LF16-0687 analogues without this group or with an oxidated benzamidine displayed pairwise loss of affinity on wild type and mutated receptors. Further differences between FR173657 and LF16-0687 were highlighted at the I110 and Y295 mutants when comparing binding (pK(i)) and functional antagonist (pKB) affinity. First, the I110A mutation similarly impaired their binding affinity (250-fold), but at a less extent the antagonist potency of FR173657 only. Second, both the hydroxyl and the phenyl moieties of the Y295 residue had a specific role in the LF16-0687 interaction with the receptor, as demonstrated at the Y295F and Y295A mutants, respectively, but not in that of FR173657. Present data identify a receptor binding pocket comprised among TM3, 6, and 7, which concerns the interaction of the non-peptide antagonists FR173657 and LF16-0687, but not that of the peptide agonist or antagonist. Results indicate the quinoline group as the involved pharmacophoric element, and that the studied residues are differently involved in the interaction. The analysis performed by means of the GRID software led us to propose different spatial orientations of the quinoline moieties and partially overlapping binding pockets for the two ligands: that of LF16-0687 is located in the lipophilic environment amongst I110 (TM3), W256 (TM6), and Y295 (TM7) residues, whereas that of FR173657 lies essentially between I110 and Y295.
Collapse
Affiliation(s)
- Stefania Meini
- Pharmacology Department, Menarini Ricerche S.p.A., Florence, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
|
53
|
Marceau F, Fortin JP, Morissette G, Dziadulewicz EK. A non-peptide antagonist unusually selective for the human form of the bradykinin B2 receptor. Int Immunopharmacol 2003; 3:1529-36. [PMID: 12946450 DOI: 10.1016/s1567-5769(03)00180-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Analgesic and anti-inflammatory applications for non-peptide bradykinin (BK) B2 receptor antagonists have been documented in rats. However, very large species differences in affinity were also noted within this class of drugs, making the preclinical development of relevant drugs difficult. Bradyzide is a potent antagonist at the rat B2 receptor, but a weak one at the human receptor; a series of analogues in which the diphenylmethyl moiety of this drug has been substituted with dibenzosuberane have been reported to gain potency at the human B2 receptor, with some loss of affinity at the rat receptor. The present experiments have been performed in order to verify that the novel series of dibenzosuberane B2 receptor antagonist optimized for affinity in the human species are effective in the isolated human umbilical vein contractility assay. Bradyzide, its analog compound (S)-14c and the dibenzosuberane compounds (S)-14d and 19c surmountably antagonized BK-induced contraction (pA2 values of 5.42, 6.48, 7.42 and 7.53, respectively). In the rabbit jugular vein contractility assay, the pA2 of compound 19c was smaller than 5. Potency at the recombinant rabbit B2 receptor was generally decreasing in the series of four drugs (Ki in a [3H]BK competition assay to recombinant receptors of 0.78, 0.77, 10.2 and 44.4 nM, respectively); these four compounds did not displace [3H]Lys-des-Arg(9)-BK binding from human B1 receptors expressed by smooth muscle cells. The dibenzosuberane compound 19c, verified to functionally antagonize the vascular B2 receptor, is an example of a drug unusually specific for the human form of the receptor.
Collapse
Affiliation(s)
- François Marceau
- Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, 11 Côte-du-Palais, Québec, Québec, Canada G1R 2J6.
| | | | | | | |
Collapse
|
54
|
Ding-Zhou L, Margaill I, Palmier B, Pruneau D, Plotkine M, Marchand-Verrecchia C. LF 16-0687 Ms, a bradykinin B2 receptor antagonist, reduces ischemic brain injury in a murine model of transient focal cerebral ischemia. Br J Pharmacol 2003; 139:1539-47. [PMID: 12922942 PMCID: PMC1573979 DOI: 10.1038/sj.bjp.0705385] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Bradykinin promotes neuronal damage and brain edema through the activation of the B(2) receptor. The neuroprotective effect of LF 16-0687 Ms, a B(2) receptor antagonist, has been described when given prior to induction of transient focal cerebral ischemia in rat, but there are no data regarding the consequence of a treatment when given after injury. Therefore, in a murine model of transient middle cerebral artery occlusion (MCAO), we evaluated the effect of LF 16-0687 Ms given prior to and/or after the onset of ischemia on neurological deficit, infarct volume and inflammatory responses including cerebral edema, blood-brain barrier (BBB) disruption and neutrophil accumulation. 2. LF 16-0687 Ms (1, 2 and 4 mg kg(-1)) administered 0.5 h before and, 1.25 and 6 h after MCAO, decreased the infarct volume by a maximum of 33% and significantly improved the neurological recovery. 3. When given at 0.25 and 6.25 h after MCAO, LF 16-0687 Ms (1.5, 3 and 6 mg kg(-1)) decreased the infarct volume by a maximum of 25% and improved the neurological score. 4. Post-treatment with LF 16-0687 Ms (1.5 mg kg(-1)) significantly decreased brain edema (-28%), BBB disruption (-60%) and neutrophil accumulation (-65%) induced by ischemia. Physiological parameters were not modified by LF 16-0687 Ms. 5. These data emphasize the role of bradykinin B(2) receptor in the development of infarct lesion, neurological deficit and inflammatory responses resulting from transient focal cerebral ischemia. Therefore, B(2) receptor antagonist might represent a new therapeutic approach in the pharmacological treatment of stroke.
Collapse
Affiliation(s)
- Li Ding-Zhou
- UPRES EA 2510, Laboratoire de Pharmacologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Isabelle Margaill
- UPRES EA 2510, Laboratoire de Pharmacologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Bruno Palmier
- UPRES EA 2510, Laboratoire de Pharmacologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Didier Pruneau
- Centre de Recherche, Laboratoires Fournier, Daix, France
| | - Michel Plotkine
- UPRES EA 2510, Laboratoire de Pharmacologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Catherine Marchand-Verrecchia
- UPRES EA 2510, Laboratoire de Pharmacologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
- Author for correspondence:
| |
Collapse
|
55
|
Kaplanski J, Asa I, Artru AA, Azez A, Ivashkova Y, Rudich Z, Pruneau D, Shapira Y. LF 16-0687 Ms, a new bradykinin B2 receptor antagonist, decreases ex vivo brain tissue prostaglandin E2 synthesis after closed head trauma in rats. Resuscitation 2003; 56:207-13. [PMID: 12589996 DOI: 10.1016/s0300-9572(02)00371-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Bradykinin (B) contributes to secondary brain injury. This injury is mediated in part by prostaglandin (PG). Antagonism of B(2) receptors improves neurological status after brain injury, but the effect of B(2) antagonism on brain tissue PG is unknown. This study examined the effect of LF 16-0687 Ms, a new B(2) receptor antagonist, on brain tissue PGE(2) after closed head trauma (CHT). METHODS Rats were anesthetized and received sham+saline, sham+LF 16-0687 Ms, CHT+saline, or CHT+LF 16-0687 Ms. Brain tissue samples were obtained at 24 h for determination of PGE(2) (after 2 h of ex vivo incubation) and water content. Neurological severity score (NSS) was assessed at 1 and 24 h. RESULTS In the group receiving CHT+LF 16-0687 Ms, brain tissue PGE(2) (77.7+/-65.9 pg/mg tissue, mean+/-SD) was less than in the group receiving CHT+saline (368.1+/-186.2 pg/mg tissue) and not different than sham+saline (78.7+/-30.7 pg/mg tissue). LF 16-0687 Ms also improved NSS and decreased brain water content by 51%. CONCLUSION We conclude that the beneficial effect of LF 16-0687 Ms on outcome after CHT is accompanied by blockade of PGE(2) increase in injured brain tissue.
Collapse
Affiliation(s)
- Jakob Kaplanski
- Department of Pharmacology, Faculty of Health Sciences, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Zausinger S, Lumenta DB, Pruneau D, Schmid-Elsaesser R, Plesnila N, Baethmann A. Therapeutical efficacy of a novel non-peptide bradykinin B2 receptor antagonist on brain edema formation and ischemic tissue damage in focal cerebral ischemia. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 86:205-7. [PMID: 14753436 DOI: 10.1007/978-3-7091-0651-8_44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
OBJECTIVE Bradykinin has been identified as a mediator of secondary brain damage in acute insults. We currently studied neuroprotective properties of a bradykinin B2 receptor antagonist (LF16-0687 Ms) in transitory focal cerebral ischemia to assess infarct formation and the development of brain edema. MATERIAL AND METHODS 55 Rats were subjected to 90 min of MCA-occlusion. The receptor antagonist was administered at two dose levels, given from 30 min prior to ischemia over two days after ischemia. Ischemic tissue damage was quantified at day 7 after MCA-occlusion together with assessment of brain edema in separate experiments. Neurological recovery was studied daily. RESULTS Animals receiving treatment (low dose) had a better functional recovery, particularly at days 3 and 4 (P < 0.05). Infarct formation was significantly attenuated in these animals in both total and cortical brain tissue by 50, or 80%, respectively. Postischemic brain swelling was significantly lowered, i.e. by 62%. CONCLUSIONS Our findings provide further support for a mediator role of bradykinin in ischemic brain damage including edema formation, obviously by ligand binding to the bradykinin B2 receptor. The availability of a receptor antagonist may afford opportunity for translation of this experimental treatment into stroke patients.
Collapse
Affiliation(s)
- S Zausinger
- Department of Neurosurgery, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
57
|
Zausinger S, Lumenta DB, Pruneau D, Schmid-Elsaesser R, Plesnila N, Baethmann A. Effects of LF 16-0687 Ms, a bradykinin B(2) receptor antagonist, on brain edema formation and tissue damage in a rat model of temporary focal cerebral ischemia. Brain Res 2002; 950:268-78. [PMID: 12231253 DOI: 10.1016/s0006-8993(02)03053-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bradykinin, an endogenous nonapeptide produced by activation of the kallikrein-kinin system, promotes neuronal tissue damage as well as disturbances in blood-brain barrier function through activation of B(2) receptors. LF 16-0687 Ms, a non-peptide competitive bradykinin B(2) receptor antagonist, was recently found to decrease brain swelling in various models of traumatic brain injury. We have investigated the influence of LF 16-0687 Ms on the edema formation, neurological outcome, and infarct size in temporary focal cerebral ischemia in rats. Sprague-Dawley rats were subjected to MCA occlusion for 90 min by an intraluminal filament. Local CBF was bilaterally recorded by laser Doppler flowmetry. Study I: animals were assigned to one of three treatment arms (n=11 each): (a) vehicle, (b) LF 16-0687 Ms (12.0 mg/kg per day), or (c) LF 16-0687 Ms (36.0 mg/kg per day) given repetitively s.c. over 3 days. The neurological recovery was examined daily. The infarct volume was assessed histologically 7 days after ischemia. Study II: brain swelling and bilateral hemispheric water content were determined at 48 h post ischemia in eight rats, subjected to the low dose regimen as described above, and in eight vehicle-treated control animals. All treated animals showed tendency to exhibit improved neurological recovery throughout the observation period as compared to the vehicle-treated controls, while this improvement was only significant within the low dose group from postischemic days 3 to 4. Low dose LF 16-0687 Ms significantly attenuated the total and cortical infarct volume by 50 and 80%, respectively. Furthermore, postischemic swelling (-62%) and increase in water content of the infarcted brain hemisphere (-60.5%) was significantly inhibited. The present findings provide strong evidence for an involvement of bradykinin-mediated secondary brain damage following from focal cerebral ischemia. Accordingly, specific inhibition of bradykinin B(2) receptors by LF 16-0687 Ms attenuated postischemic brain swelling, improved the functional neurological recovery, and limited ischemic tissue damage, raising its potential for clinical evaluation in patients with acute stroke.
Collapse
Affiliation(s)
- S Zausinger
- Department of Neurosurgery, Klinikum Grosshadern, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
58
|
Schumann C, Seyfarth L, Greiner G, Paegelow I, Reissmann S. Synthesis and biological activities of new side chain and backbone cyclic bradykinin analogues. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2002; 60:128-40. [PMID: 12102726 DOI: 10.1034/j.1399-3011.2002.02986.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of conformationally constrained cyclic analogues of the peptide hormone bradykinin (BK, Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) was synthesized to check different turned structures proposed for the bioactive conformation of BK agonists and antagonists. Cycles differing in the size and direction of the lactam bridge were performed at the C- and N-terminal sequences of the molecule. Glutamic acid and lysine were introduced into the native BK sequence at different positions for cyclization through their side chains. Backbone cyclic analogues were synthesized by incorporation of N-carboxy alkylated and N-amino alkylated amino acids into the peptide chain. Although the coupling of Fmoc-glycine to the N-alkylated phenylalanine derivatives was effected with DIC/HOAt in SPPS, the dipeptide building units with more bulky amino acids were pre-built in solution. For backbone cyclization at the C-terminus an alternative building unit with an acylated reduced peptide bond was preformed in solution. Both types of building units were handled in the SPPS in the same manner as amino acids. The agonistic and antagonistic activities of the cyclic BK analogues were determined in rat uterus (RUT) and guinea-pig ileum (GPI) assays. Additionally, the potentiation of the BK-induced effects was examined. Among the series of cyclic BK agonists only compound 3 with backbone cyclization between positions 2 and 5 shows a significant agonistic activity on RUT. To study the influence of intramolecular ring closure we used an antagonistic analogue with weak activity, [D-Phe7]-BK. Side chain as well as backbone cyclization in the N-terminus of [D-Phe7]-BK resulted in analogues with moderate antagonistic activity on RUT. Also, compound 18 in which a lactam bridge between positions 6 and 9 was achieved via an acylated reduced peptide bond has moderate antagonistic activity on RUT. These results support the hypothesis of turn structures in both parts of the molecule as a requirement for BK antagonism. Certain active and inactive agonists and antagonists are able to potentiate the bradykinin-induced contraction of guinea-pig ileum.
Collapse
Affiliation(s)
- C Schumann
- Institute of Biochemistry and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
59
|
Kaplanski J, Pruneau D, Asa I, Artru AA, Azez A, Ivashkova Y, Rudich Z, Shapira Y. LF 16-0687 Ms, a bradykinin B2 receptor antagonist, reduces brain edema and improves long-term neurological function recovery after closed head trauma in rats. J Neurotrauma 2002; 19:953-64. [PMID: 12225655 DOI: 10.1089/089771502320317104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bradykinin is an endogenous inflammatory agent that enhances vascular permeability and produces tissue edema. We investigated whether LF 16-0687 Ms, a potent nonpeptide antagonist of bradykinin type-2 (B(2)) receptor, was able to reduce brain swelling and to improve the recovery of neurological function following closed head trauma (CHT) in rats. In dose-effect studies, LF 16-0687 Ms doses of 0.75-4.5 mg/kg given 1 h after trauma significantly reduced the development of edema in the injured hemisphere by a maximum of 70%. It had no effect on the brain water content of sham-operated rats. LF 16-0687 Ms also significantly improved neurological recovery evaluated by a Neurological Severity Score (NSS) based on motor, reflex, and behavioral tests. In time-window studies LF 16-0687 Ms (2.25 mg/kg) was given 1, 2, 4, and 10 h after CHT. The extent of edema was significantly reduced when LF 16-0687 Ms was given 1 h (-45%), 2 h (-52%), and 4 h (-63%) but not 10 h (-24%) after CHT. Given at any time-point, LF 16-0687 Ms significantly improved the recovery of the NSS at 24 h. In duration of treatment studies, rats tended to recover normal neurological function over 14 days after CHT. However, time to recovery was longer in severely than in moderately injured animals, unless they were treated with LF 16-0687 Ms. This study provides further evidence that blockade of bradykinin B(2) receptors represents a potential effective approach to the treatment of focal cerebral contusions.
Collapse
Affiliation(s)
- Jakob Kaplanski
- Department of Pharmacology, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Dziadulewicz EK, Ritchie TJ, Hallett A, Snell CR, Davies JW, Wrigglesworth R, Dunstan AR, Bloomfield GC, Drake GS, McIntyre P, Brown MC, Burgess GM, Lee W, Davis C, Yaqoob M, Phagoo SB, Phillips E, Perkins MN, Campbell EA, Davis AJ, Rang HP. Nonpeptide bradykinin B2 receptor antagonists: conversion of rodent-selective bradyzide analogues into potent, orally-active human bradykinin B2 receptor antagonists. J Med Chem 2002; 45:2160-72. [PMID: 12014954 DOI: 10.1021/jm0111088] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 1-(2-nitrophenyl)thiosemicarbazide (TSC) derivative, (S)-1-[4-(4-benzhydrylthiosemicarbazido)-3-nitrobenzenesulfonyl]pyrrolidine-2-carboxylic acid [2-[(2-dimethylaminoethyl)methylamino]ethyl]amide (bradyzide; (S)-4), was recently disclosed as a novel, potent, orally active nonpeptide bradykinin (BK) B2 receptor antagonist. The compound inhibited the specific binding of [3H]BK to NG108-15 cell membrane preparations (rodent neuroblastoma-glioma) expressing B2 receptors with a K(i) of 0.5 +/- 0.2 nM. Compound (S)-4 also demonstrated oral efficacy against Freund's complete adjuvant (FCA)-induced mechanical hyperalgesia in rats with an ED50 value of 0.84 micromol/kg. After we optimized the terminal binding determinants projecting from the TSC framework, we found that it was possible to replace the potentially toxicophoric nitro and divalent sulfur moieties with only a 15-fold loss in binding affinity ((S)-14a). However, bradyzide and its congeners were found to have much lower affinities for cloned human B2 receptors, expressed in Cos-7 cells. The hitherto synthesized TSC series was screened against the human B2 receptor, and the dibenzosuberane (DBS) pharmacophore emerged as the key structural requirement for potency. Incorporation of this group resulted in a series of derivatives ((S)-14d,e and 19b-d) with K(i) ranges of 10.7-176 nM in NG108-15 cells (expressing the rodent B2 receptor) and 0.79-253 nM in Cos-7 cells (expressing the human B2 receptor). There was no evidence of agonist activity with any of the nonpeptides in any of the cell lines tested. In vivo, oral administration of compound 19c reversed FCA-induced and turpentine-induced mechanical hyperalgesia in rodents with ED50 values of 0.027 and 0.32 micromol/kg, respectively. The selectivity profiles of compounds (S)-14f and (S)-14g were also assessed to determine the conformational and/or steric preferences of the double-ring arrangement. The affinity of (S)-14 g for the human B2 receptor suggested that it may be a hydrophobic interaction with the ethane bridge of the DBS moiety that accounts for the increased potency of compounds (S)-14d,e and 19b,c at this receptor, by favoring a binding mode inaccessible to the unsubstituted diphenylmethyl derivative, (S)-4.
Collapse
|
61
|
Meini S, Cucchi P, Zappitelli S, Rotondaro L, Quartara L, Giolitti A, Maggi CA. Preliminary mutational analysis of the human kinin B2 receptor for nonpeptide antagonist ligands recognition. Can J Physiol Pharmacol 2002; 80:303-9. [PMID: 12025965 DOI: 10.1139/y02-027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FR173657, LF16,0335, and LF16,0687 are nonpeptide antagonists, endowed with high affinity and selectivity for the human kinin B2 receptor. The kinin B2 receptor belongs to the family of G-protein-coupled receptors with seven transmembrane (TM) helices. In the present study, we aimed, through computer-assisted modeling and mutagenesis, to identify residues in the human B2 receptor (hB2R) amino acid sequence that are involved in nonpeptide antagonist binding in order to build up experimental data as a first step towards a molecular model of nonpeptide ligands binding site. Fourteen amino acid residues within the TM segments were mutated to alanine. The wild type and mutant receptors were stably expressed in Chinese hamster ovary (dhfr-) cells and tested for their ability to bind agonist ([3H]bradykinin) and peptide antagonist ([3H]MENI 1270) radioligands. The affinity of nonpeptide ligands was determined by heterologous competition experiments using the above radioligands. We found that some mutations in TM2 (W86A) and TM7 (Y295A, N297A) impair the binding affinity of the three nonpeptide antagonists. On the other hand, some mutated residues in TM3 (S1 17A) and TM6 (W256A) reduce the affinity of LF16,0335 and LF16,0687 only. Results are discussed in order to build up a hypothesis for the likely different interactions of various nonpeptide ligands with the B2 receptor.
Collapse
Affiliation(s)
- Stefania Meini
- Department of Pharmacology, Menarini Ricerche, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
62
|
Camarda V, Rizzi A, Calo G, Wirth K, Regoli D. Pharmacological characterisation of novel kinin B2 receptor ligands. Can J Physiol Pharmacol 2002; 80:281-6. [PMID: 12025962 DOI: 10.1139/y02-037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide and nonpeptide compounds have been shown to interact specifically with B2 receptors of three different species, namely human, rabbit, and pig. Peptide agonists and nonpeptide antagonists show marked differences in potencies and suggest the existence of B2 receptor subtypes. This conclusion is based on data obtained with the modified agonist peptide LF 150943 whose potency (pEC50 9.4) is at least 100-fold higher in rabbit than in humans (7.4) and pig (6.7). The same conclusion can be drawn from data obtained with antagonists that are more potent in humans (LF 160687, pA2 9.2) than in rabbit (8.7) and pig (8.2) or with antagonists (S 1567) that show the opposite potency order, being much weaker in humans (pA2 6.9) than in rabbit (7.6) and pig (9.4). Two other compounds (FR 173657 and FR 172357) show similar pharmacological spectra as S 1567 and differ from LF 160687.
Collapse
Affiliation(s)
- V Camarda
- Department of Experimental and Clinical Medicine, University of Ferrara, Italy
| | | | | | | | | |
Collapse
|
63
|
Hirayama Y, Kayakiri H. [Bradykinin antagonist: current status and perspective]. Nihon Yakurigaku Zasshi 2002; 119:45-53. [PMID: 11862756 DOI: 10.1254/fpj.119.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The kallikrein-kinin system plays an important role in many physiological and pathophysiological conditions such as homeostasis of circulation, inflammation/allergy, pain, shock, etc. Two types of kinin receptor are known, bradykinin (BK) B1 receptor and BK B2 receptor. B2 receptors are constitutively expressed and mediate most physiological actions of kinins, whereas B1 receptors are highly inducible upon inflammatory stimulation or tissue injury, suggesting that they are involved in inflammation and/or nociception. Only three peptide type B2 antagonists, NPC 567, CP-0127 and HOE-140, have been evaluated in clinical studies so far, and some beneficial effects of B2 antagonists have been shown for rhinitis, asthma, systemic inflammatory response syndrome/sepsis and brain injury. However, the results were less convincing than expected. Now several potent and orally active nonpeptide B2-receptor antagonists have been found, which are expected to overcome the weak point of the peptide type antagonists and clarify the therapeutic potential of the B2-receptor antagonist for novel indications as well as those mentioned above. As for B1 receptors, no antagonist has been tested in a clinical trial. The important role of B1 receptors is just being elucidated by use of peptide type antagonists or B1 receptor gene knockout mice. The further development of newer B1 antagonists and clinical evaluation is desired.
Collapse
Affiliation(s)
- Yoshitaka Hirayama
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6, Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | | |
Collapse
|
64
|
Marie J, Richard E, Pruneau D, Paquet JL, Siatka C, Larguier R, Poncé C, Vassault P, Groblewski T, Maigret B, Bonnafous JC. Control of conformational equilibria in the human B2 bradykinin receptor. Modeling of nonpeptidic ligand action and comparison to the rhodopsin structure. J Biol Chem 2001; 276:41100-11. [PMID: 11495910 DOI: 10.1074/jbc.m104875200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A prototypic study of the molecular mechanisms of activation or inactivation of peptide hormone G protein-coupled receptors was carried out on the human B2 bradykinin receptor. A detailed pharmacological analysis of receptor mutants possessing either increased constitutive activity or impaired activation or ligand recognition allowed us to propose key residues participating in intramolecular interaction networks stabilizing receptor inactive or active conformations: Asn(113) and Tyr(115) (TM III), Trp(256) and Phe(259) (TM VI), Tyr(295) (TM VII) which are homologous of the rhodopsin residues Gly(120), Glu(122), Trp(265), Tyr(268), and Lys(296), respectively. An essential experimental finding was the spatial proximity between Asn(113), which is the cornerstone of inactive conformations, and Trp(256) which plays a subtle role in controlling the balance between active and inactive conformations. Molecular modeling and mutagenesis data showed that Trp(256) and Tyr(295) constitute, together with Gln(288), receptor contact points with original nonpeptidic ligands. It provided an explanation for the ligand inverse agonist behavior on the WT receptor, with underlying restricted motions of TMs III, VI, and VII, and its agonist behavior on the Ala(113) and Phe(256) constitutively activated mutants. These data on the B2 receptor emphasize that conformational equilibria are controlled in a coordinated fashion by key residues which are located at strategic positions for several G protein-coupled receptors. They are discussed in comparison with the recently determined rhodopsin crystallographic structure.
Collapse
Affiliation(s)
- J Marie
- INSERM U439, 70 rue de Navacelles 34090 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Plesnila N, Schulz J, Stoffel M, Eriskat J, Pruneau D, Baethmann A. Role of bradykinin B2 receptors in the formation of vasogenic brain edema in rats. J Neurotrauma 2001; 18:1049-58. [PMID: 11686492 DOI: 10.1089/08977150152693746] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bradykinin is a mediator of brain edema acting through B2 receptors. However, it is not known if bradykinin mediates the formation of cytotoxic or vasogenic brain swelling. To investigate this question we subjected rats to a cryogenic brain lesion over the left parietal cortex, a model well known to produce predominantly vasogenic brain edema. We inhibited bradykinin B2 receptors with the recently characterized nonpeptide B2 receptor antagonist, LF 16-0687. The animals were assigned to three groups (n = 10, each) receiving 10, or 100 microg/kg/min LF 16-0687 or vehicle (0.9% NaCl). Treatment started 15 min before trauma and was continued for 24 h. Another three groups of animals (n = 10, each) received 10 microg/kg/min LF 16-0687 starting 30 or 60 min after trauma or vehicle (0.9% NaCl) for 24 h. Animals were then sacrificed and swelling and water content of the brain were determined. In the vehicle treated group the traumatized hemisphere swelled by 9.3 +/- 1.1% as compared to the untraumatized contralateral side. Pretreatment with 10 microg/kg/min LF 16-0687 decreased brain swelling significantly to 6.4 +/- 1.3% (p < 0.05). Pre-treatment with 100 microg/kg/min was found to be less effective and did not result in a significant reduction of brain swelling (7.4 + 1.3%). Treatment with LF 16-0687 for 24 h (10 microg/kg/min) started 30 or 60 min after trauma did not reduce brain water content or hemispheric swelling. These results demonstrate that brain injury-mediated bradykinin production induces vasogenic brain edema by B2 receptor stimulation. Our findings further clarify the role of bradykinin in the pathophysiology of brain edema formation and confirm the therapeutic potency of bradykinin B2 receptor inhibition.
Collapse
Affiliation(s)
- N Plesnila
- Institute for Surgical Research, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
66
|
Marceau F, Houle S, Bouthillier J, Said NB, Garratt PJ, Dziadulewicz EK. Effects of two novel non-peptide antagonists at the rabbit bradykinin B2 receptor. Peptides 2001; 22:1397-402. [PMID: 11514020 DOI: 10.1016/s0196-9781(01)00481-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large species differences have been previously observed in the pharmacology of bradykinin (BK) B2 receptor antagonists. We investigated the effect of two novel non-peptide antagonists, compound 9 (a benzodiazepine peptidomimetic related to icatibant) and the thiosemicarbazide bradyzide on the rabbit B2 receptor (contractility of the jugular vein, competition of [3H]BK binding to a B2 receptor-green fluorescent protein (B2R-GFP) conjugate, subcellular distribution of B2R-GFP). While compound 9 is about 9000-fold less potent than icatibant, it shares with the latter peptide drug a selective, insurmountable and largely irreversible antagonist behavior against BK and the capacity to translocate B2R-GFP from the membrane into the cells. Bradyzide, reportedly very potent at rodent B2 receptors, was a competitive and reversible antagonist of moderate potency at the rabbit B2 receptor (contractility pA2 6.84, binding competition IC50 5 nM). The C-terminal region of icatibant, reproduced by compound 9, is likely to be important in the non-equilibrium behavior of icatibant. Bradyzide, a non-peptide antagonist developed on different structural grounds, is competitive at the rabbit B2 receptor.
Collapse
Affiliation(s)
- F Marceau
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, G1R 2J6, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
67
|
Stewart JM, Gera L, York EJ, Chan DC, Whalley EJ, Bunn PA, Vavrek RJ. Metabolism-resistant bradykinin antagonists: development and applications. Biol Chem 2001; 382:37-41. [PMID: 11258669 DOI: 10.1515/bc.2001.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bradykinin plays many roles in normal and pathological physiology, but rapid enzymatic degradation made elucidation of its functions extremely difficult. Development of effective degradation-resistant antagonists made it possible to delineate these roles and to open the way for development of new drugs to control pathology due to excess production of bradykinin. Presently available peptide bradykinin antagonists are extremely potent, are completely resistant to enzymatic degradation, and are orally available. Non-peptide bradykinin antagonists have also been discovered. Development of bradykinin antagonists as drugs for cancer, inflammation and trauma is anticipated.
Collapse
Affiliation(s)
- J M Stewart
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Larrivée JF, Gera L, Houle S, Bouthillier J, Bachvarov DR, Stewart JM, Marceau F. Non-competitive pharmacological antagonism at the rabbit B(1) receptor. Br J Pharmacol 2000; 131:885-92. [PMID: 11053207 PMCID: PMC1572413 DOI: 10.1038/sj.bjp.0703656] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2000] [Revised: 07/22/2000] [Accepted: 08/07/2000] [Indexed: 11/08/2022] Open
Abstract
The B(1) receptor for kinins, stimulated by kinin metabolites without the C-terminal Arg residue (e.g., des-Arg(9)-bradykinin (BK) and Lys-des-Arg(9)-BK), is an increasingly recognized molecular target for the development of analgesic and anti-inflammatory drugs. Recently developed antagonists of this receptor were compared to a conventional antagonist, Ac-Lys-[Leu(8)]-des-Arg(9)-BK, in pharmacological assays based on the rabbit B(1) receptor. B-9858 (Lys-Lys-[Hyp(3), Igl(5), D-Igl(7), Oic(8)]des-Arg(9)-BK) and three other analogues possessing the alpha-2-indanylglycine(5) (Igl(5)) residue (order of potency B-9858 approximately B-10146>B-10148>B-10050) were partially insurmountable antagonists of des-Arg(9)-BK in the contractility assay based on rabbit aortic rings. B-9858-induced depression of the maximal effect was more pronounced in tissues treated with the protein synthesis inhibitor cycloheximide to block the spontaneous increase of response attributed to the post-isolation formation of B(1) receptors, and only partly reversible on washing. By comparison, Ac-Lys-[Leu(8)]des-Arg(9)-BK was a surmountable antagonist (pA(2) 7. 5), even in cycloheximide-treated tissues. B-9958 (Lys-[Hyp(3), CpG(5), D-Tic(7), CpG(8)]des-Arg(9)-BK) was also surmountable (pA(2) 8.5). The binding of [(3)H]-Lys-des-Arg(9)-BK to recombinant rabbit B(1) receptors expressed in COS-1 cells was influenced by two of the antagonists: while Ac-Lys-[Leu(8)]des-Arg(9)-BK competed for the radioligand binding without affecting the B(max), B-9858 decreased the B(max) in a time-dependent and washout-resistant manner. B-9858 and analogues possessing Igl(5) are the first reported non-competitive, non-equilibrium antagonists of the kinin B(1) receptor.
Collapse
Affiliation(s)
- Jean-François Larrivée
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| | - Lajos Gera
- Department of Biochemistry, University of Colorado Health Sciences Center, Denver, Colorado, CO 80262, U.S.A
| | - Steeve Houle
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| | - Johanne Bouthillier
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| | - Dimcho R Bachvarov
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| | - John M Stewart
- Department of Biochemistry, University of Colorado Health Sciences Center, Denver, Colorado, CO 80262, U.S.A
| | - François Marceau
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Québec (Québec), Canada, G1R 2J6
| |
Collapse
|
69
|
Abstract
The pro-inflammatory, pain producing, and cardiovascular effects of bradykinin B2 receptor activation are well characterized. Bradykinin B1 receptors also produce inflammation and pain. Therefore, antagonists are expected to be anti-inflammatory/analgesic drugs. Other exploitable clinical opportunities may exist. The newly discovered non-peptide B2 receptor antagonists and the equivalent B1 receptor pharmacological agents, which are in the pipeline, are suitable preclinical tools to properly evaluate potential utilities.
Collapse
Affiliation(s)
- M G Bock
- Merck Research Laboratories, West Point, PA 19486, USA.
| | | |
Collapse
|
70
|
Houle S, Larrivée JF, Bachvarova M, Bouthillier J, Bachvarov DR, Marceau F. Antagonist-induced intracellular sequestration of rabbit bradykinin B(2) receptor. Hypertension 2000; 35:1319-25. [PMID: 10856284 DOI: 10.1161/01.hyp.35.6.1319] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In a contractility assay based on the rabbit jugular vein, the structurally related drugs NPC 17731 or icatibant (1 to 3 nmol/L) were insurmountable antagonists of bradykinin (BK) B(2) receptors (B(2)Rs). After ample washing (3 hours), the antagonism exerted by these peptides was not reversible. By contrast, the antagonist LF 16. 0687 (30 to 100 nmol/L) was competitive and reversible. A rabbit B(2)R-green fluorescent protein (B(2)R-GFP) conjugate was expressed in mammalian cells. In COS-1 cells, it exhibited an affinity for [3H]BK (K(D)=1.61 nmol/L) similar to that of the wild-type rabbit B(2)R. The stably expressed construction in HEK-293 cells was functionally active (phospholipase A(2) assay), and the antagonists mentioned above retained their respective surmountable or insurmountable behavior. Competition of [(3)H]BK binding to B(2)R-GFP by the antagonists or BK was largely reversible after a 3-hour washout period at 0 degrees C; at 37 degrees C, icatibant or NPC 17731 effects were not reversible. B(2)R-GFP was visualized in the plasma membranes of HEK-293 cells and rapidly internalized in response to BK. NPC 17731 or icatibant slowly translocated B(2)R-GFP into cells over 24 hours, whereas LF 16.0687 had no effect on the subcellular distribution of B(2)R-GFP. Cell extract immunoblotting with anti-GFP antibodies revealed a 101- to 105-kDa protein that was not significantly degraded on 24 hours of cell treatment with any of the ligands but was translocated in part to the 15 000-g pellet of the extract on treatment with BK or the noncompetitive antagonists. NPC 17731 and icatibant are noncompetitive, nonequilibrium antagonists that promote the cellular sequestration of rabbit B(2)R expressed in an heterologous system.
Collapse
Affiliation(s)
- S Houle
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Pavillon l'Hôtel-Dieu de Québec, Québec, Canada, G1R 2J6
| | | | | | | | | | | |
Collapse
|
71
|
Stover JF, Dohse NK, Unterberg AW. Significant reduction in brain swelling by administration of nonpeptide kinin B2 receptor antagonist LF 16-0687Ms after controlled cortical impact injury in rats. J Neurosurg 2000; 92:853-9. [PMID: 10794301 DOI: 10.3171/jns.2000.92.5.0853] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Identification of new therapeutic agents aimed at attenuating posttraumatic brain edema formation remains an unresolved challenge. Among others, activation of bradykinin B2 receptors is known to mediate the formation of brain edema. The purpose of this study was to investigate the protective effect of the novel nonpeptide B2 receptor antagonist, LF 16-0687Ms, in brain-injured rats. METHODS Focal contusion was produced by controlled cortical impact injury. Five minutes after trauma, the rats received a single dose of no, low- (3 mg/kg body weight), or high- (30 mg/kg) dose LF 16-0687Ms. After 24 hours, the amount of brain swelling and hemispheric water content were determined. Low and high doses of LF 16-0687Ms significantly reduced brain swelling by 25% and 27%, respectively (p < 0.03). Hemispheric water content tended to be increased in the nontraumatized hemisphere. In a subsequent series of 10 rats, cisternal cerebrospinal fluid (CSF) samples were collected to determine whether changes in substances associated with edema formation could clarify why LF 16-0687Ms increases water content. For this, the volume regulator amino acid taurine, the excitatory transmitter glutamate, and the adenosine triphosphate degradation products hypoxanthine and xanthine were measured. In CSF, the levels of taurine, hypoxanthine, and xanthine were significantly decreased following a single administration of LF 16-0687Ms (p < 0.005); the level of glutamate, however, was double that found in control animals (p < 0.05). CONCLUSIONS Using the present study design, a single administration of LF 16-0687Ms successfully reduced posttraumatic brain swelling. The decreased levels of taurine, hypoxanthine, and xanthine may reflect reduced posttraumatic brain edema, whereas the increased level of glutamate could account for the elevated water content observed in the nontraumatized hemisphere.
Collapse
Affiliation(s)
- J F Stover
- Department of Neurosurgery, Charité--Virchow Medical Center, Berlin, Germany.
| | | | | |
Collapse
|
72
|
Bélichard P, Landry M, Faye P, Bachvarov DR, Bouthillier J, Pruneau D, Marceau F. Inflammatory hyperalgesia induced by zymosan in the plantar tissue of the rat: effect of kinin receptor antagonists. IMMUNOPHARMACOLOGY 2000; 46:139-47. [PMID: 10647872 DOI: 10.1016/s0162-3109(99)00165-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Randall-Selitto paradigm (maximal tolerated pressure externally applied by a mechanical device) was used to develop a rat model of localized inflammatory hyperalgesia in order to compare the analgesic effects of bradykinin (BK) B1 and B2 receptor antagonists and of a non-steroidal anti-inflammatory drug (NSAID). Intra-plantar injection of zymosan (12.5 mg per paw) induced a considerable inflammation as evidenced from gross and histological evaluation and a mechanical hyperalgesia at 6 h. The contra-lateral paw of zymosan-treated animals or saline vehicle-injected paws did not exhibit a decreased pressure tolerance, relative to pre-injection measurements. Since the B1 receptor may be induced under inflammatory situations, we examined the amount of corresponding mRNA using quantitative RT-PCR. We found a significant increase of B1 receptor mRNA in the zymosan--but not the saline-injected paw at 6 h. Drugs were given subcutaneously 2 h before the 6 h readings to test their analgesic potential. The kinin B1 receptor antagonists [Leu8]des-Arg9-BK (3-30 nmol/kg) and R-715 (100 nmol/kg), the B2 receptor antagonists Hoe 140 (15 nmol/kg) and LF 16.0687 (3 and 10 mg/kg), as well as the NSAID diclofenac sodium (1 and 3 mg/kg) significantly reversed zymosan-induced hyperalgesia. We conclude that zymosan-induced hyperalgesia is a model suitable for the rapid evaluation of analgesic drugs with a peripheral site of action interfering either with kinin receptors or with prostanoid formation. In this regard, results of the present study confirm that blocking kinin B1 receptors is a novel approach for treatment of inflammatory pain.
Collapse
Affiliation(s)
- P Bélichard
- Centre Hospitalier Unitersitaire de Quebec, Centre de Recherche, Pavillon l'Hôtel-Dieu de Quebec, Quebec City, Canada
| | | | | | | | | | | | | |
Collapse
|