51
|
Ho SY, Chien YH, Tsai LK, Muramatsu SI, Hwu WL, Liou HH, Lee NC. Electrical Abnormalities in Dopaminergic Neurons of the Substantia Nigra in Mice With an Aromatic L-Amino Acid Decarboxylase Deficiency. Front Cell Neurosci 2019; 13:9. [PMID: 30766478 PMCID: PMC6365702 DOI: 10.3389/fncel.2019.00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
Aromatic L-acid decarboxylase (AADC) deficiency causes severe motor disturbances in affected children. A putamen-targeted gene therapy improves the motor function of patients. The present study investigated the electrical properties of dopaminergic (DA) neurons in the substantia nigra compacta (SNc) of mice with an AADC deficiency (DdcKI). The basal firing of DA neurons, which determines DA release in the putamen, was abnormal in the DdcKI mice, including a low frequency and irregular firing pattern, because of a decrease in the after-hyperpolarization (AHP) amplitude of action potentials (APs). The frequency of spontaneous excitatory postsynaptic currents (sEPSCs) increased and that of spontaneous inhibitory PSCs (sIPSCs) decreased in the SNc DA neurons from the DdcKI mice, suggesting an elevation in glutamatergic excitatory stimuli and a reduction in GABAergic inhibitory stimuli, respectively. Altered expression patterns of genes encoding receptors and channels were also observed in the DdcKI mice. Administration of a widespread neuron-specific gene therapy to the brains of the DdcKI mice partially corrected these electric abnormalities. The overexcitability of SNc DA neurons in the presence of generalized dopamine deficiency likely underlies the occurrence of motor disturbances.
Collapse
Affiliation(s)
- Shih-Yin Ho
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan.,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
52
|
Eltoprazine prevents levodopa-induced dyskinesias by reducing causal interactions for theta oscillations in the dorsolateral striatum and substantia nigra pars reticulate. Neuropharmacology 2019; 148:1-10. [PMID: 30612008 DOI: 10.1016/j.neuropharm.2018.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022]
Abstract
Oscillatory activities within basal ganglia (BG) circuitry in L-DOPA induced dyskinesia (LID), a condition that occurs in patients with Parkinson disease (PD), are not well understood. The aims of this study were firstly to investigate oscillations in main BG input and output structures-the dorsolateral striatum (dStr) and substantia nigra pars reticulata (SNr), respectively- including the direction of oscillation information flow, and secondly to investigate the effects of 5-HT1A/B receptor agonism with eltoprazine on oscillatory activities and abnormal involuntary movements (AIMs) characteristic. To this end, we conducted local field potential (LFP) electrophysiology in the dStr and SNr of LID rats simultaneous with AIM scoring. The LFP data were submitted to power spectral density, coherence, and partial Granger causality analyses. AIM data were analyzed relative to simultaneous oscillatory activities, with and without eltoprazine. We obtained four major findings. 1) Theta band (5-8 Hz) oscillations were enhanced in the dStr and SNr of LID rats. 2) Theta power correlated with AIM scores in the 180-min period after the last LID-inducing L-DOPA injection, but not with daily summed AIM scores during LID development. 3) Oscillatory information flowed from the dStr to the SNr. 4) Chronic eltoprazine reduced BG theta activity in LID rats and normalized information flow directionality, relative to that in LID rats not given eltoprazine. These results indicate that dStr activity plays a determinative role in the causal interactions of theta oscillations and that serotonergic inhibition may suppress dyskinesia by reducing dStr-SNr theta activity and restoring theta network information flow.
Collapse
|
53
|
Suryanarayana SM, Hellgren Kotaleski J, Grillner S, Gurney KN. Roles for globus pallidus externa revealed in a computational model of action selection in the basal ganglia. Neural Netw 2018; 109:113-136. [PMID: 30414556 DOI: 10.1016/j.neunet.2018.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/28/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
Abstract
The basal ganglia are considered vital to action selection - a hypothesis supported by several biologically plausible computational models. Of the several subnuclei of the basal ganglia, the globus pallidus externa (GPe) has been thought of largely as a relay nucleus, and its intrinsic connectivity has not been incorporated in significant detail, in any model thus far. Here, we incorporate newly revealed subgroups of neurons within the GPe into an existing computational model of the basal ganglia, and investigate their role in action selection. Three main results ensued. First, using previously used metrics for selection, the new extended connectivity improved the action selection performance of the model. Second, low frequency theta oscillations were observed in the subpopulation of the GPe (the TA or 'arkypallidal' neurons) which project exclusively to the striatum. These oscillations were suppressed by increased dopamine activity - revealing a possible link with symptoms of Parkinson's disease. Third, a new phenomenon was observed in which the usual monotonic relationship between input to the basal ganglia and its output within an action 'channel' was, under some circumstances, reversed. Thus, at high levels of input, further increase of this input to the channel could cause an increase of the corresponding output rather than the more usually observed decrease. Moreover, this phenomenon was associated with the prevention of multiple channel selection, thereby assisting in optimal action selection. Examination of the mechanistic origin of our results showed the so-called 'prototypical' GPe neurons to be the principal subpopulation influencing action selection. They control the striatum via the arkypallidal neurons and are also able to regulate the output nuclei directly. Taken together, our results highlight the role of the GPe as a major control hub of the basal ganglia, and provide a mechanistic account for its control function.
Collapse
Affiliation(s)
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Kevin N Gurney
- Department of Psychology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
54
|
Serrano Sánchez T, González Fraguela ME, Blanco Lezcano L, Alberti Amador E, Caballero Fernández B, Robinson Agramonte MDLÁ, Lorigados Pedre L, Bergado Rosado JA. Rotating and Neurochemical Activity of Rats Lesioned with Quinolinic Acid and Transplanted with Bone Marrow Mononuclear Cells. Behav Sci (Basel) 2018; 8:bs8100087. [PMID: 30241338 PMCID: PMC6210262 DOI: 10.3390/bs8100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 11/23/2022] Open
Abstract
Huntington’s disease (HD) is an inherited, neurodegenerative disorder that results from the degeneration of striatal neurons, mainly GABAergic neurons. The study of neurochemical activity has provided reliable markers to explain motor disorders. To treat neurodegenerative diseases, stem cell transplants with bone marrow (BM) have been performed for several decades. In this work we determine the effect of mononuclear bone marrow cell (mBMC) transplantation on the rotational behavior and neurochemical activity in a model of Huntington’s disease in rats. Four experimental groups were organized: Group I: Control animals (n = 5); Group II: Lesion with quinolinic acid (QA) in the striatum (n = 5); Group III: Lesion with QA and transplant with mBMC (n = 5); Group IV: Lesion with QA and transplant with culture medium (Dulbecco’s modified Eagle’s medium (DMEM) injection) (n = 5). The rotational activity induced by D-amphetamine was evaluated and the concentration of the neurotransmitter amino acids (glutamate and GABA) was studied. The striatal cell transplantation decreases the rotations induced by D-amphetamine (p < 0.04, Wilcoxon matched pairs test) and improves the changes produced in the levels of neurotransmitters studied. This work suggests that the loss of GABAergic neurons in the brain of rats lesioned with AQ produces behavioral and neurochemical alterations that can be reversed with the use of bone marrow mononuclear cell transplants.
Collapse
Affiliation(s)
- Teresa Serrano Sánchez
- Immunochemical Department, International Center for Neurological Restoration, 25th Ave, Playa, 15805, Havana PC 11300, Cuba.
| | - María Elena González Fraguela
- Immunochemical Department, International Center for Neurological Restoration, 25th Ave, Playa, 15805, Havana PC 11300, Cuba.
| | - Lisette Blanco Lezcano
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
| | - Esteban Alberti Amador
- Molecular biology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
| | | | | | - Lourdes Lorigados Pedre
- Immunochemical Department, International Center for Neurological Restoration, 25th Ave, Playa, 15805, Havana PC 11300, Cuba.
| | - Jorge A Bergado Rosado
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
| |
Collapse
|
55
|
Deffains M, Iskhakova L, Katabi S, Israel Z, Bergman H. Longer β oscillatory episodes reliably identify pathological subthalamic activity in Parkinsonism. Mov Disord 2018; 33:1609-1618. [PMID: 30145811 DOI: 10.1002/mds.27418] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The efficacy of deep brain stimulation (DBS) - primarily of the subthalamic nucleus (STN) - for advanced Parkinson's disease (PD) is commonly attributed to the suppression of pathological synchronous β oscillations along the cortico-thalamo-basal ganglia network. Conventional continuous high-frequency DBS indiscriminately influences pathological and normal neural activity. The DBS protocol would therefore be more effective if stimulation was only applied when necessary (closed-loop adaptive DBS). OBJECTIVES AND METHODS Our study aimed to identify a reliable biomarker of the pathological neuronal activity in parkinsonism that could be used as a trigger for adaptive DBS. To this end, we examined the oscillatory features of paired spiking activities recorded in three distinct nodes of the basal ganglia network of 2 African green monkeys before and after induction of parkinsonism (by MPTP intoxication). RESULTS Parkinsonism-related basal ganglia β oscillations consisted of synchronized time-limited episodes, rather than a continuous stretch, of β oscillatory activity. Episodic basal ganglia β oscillatory activity, although prolonged in parkinsonism, was not necessarily pathological given that short β episodes could also be detected in the healthy state. Importantly, prolongation of the basal ganglia β episodes was more pronounced than their intensification in the parkinsonian state-especially in the STN. Hence, deletion of longer β episodes was more effective than deletion of stronger β episodes in reducing parkinsonian STN synchronized oscillatory activity. CONCLUSIONS Prolonged STN β episodes are pathological in parkinsonism and can be used as optimal trigger for future adaptive DBS applications. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marc Deffains
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Liliya Iskhakova
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shiran Katabi
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel.,Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
56
|
Wu CC, Cao B, Dali V, Gagliardi C, Barthelemy OJ, Salazar RD, Pomplun M, Cronin-Golomb A, Yazdanbakhsh A. Eye movement control during visual pursuit in Parkinson's disease. PeerJ 2018; 6:e5442. [PMID: 30155357 PMCID: PMC6109371 DOI: 10.7717/peerj.5442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prior studies of oculomotor function in Parkinson's disease (PD) have either focused on saccades without considering smooth pursuit, or tested smooth pursuit while excluding saccades. The present study investigated the control of saccadic eye movements during pursuit tasksand assessed the quality of binocular coordinationas potential sensitive markers of PD. METHODS Observers fixated on a central cross while a target moved toward it. Once the target reached the fixation cross, observers began to pursue the moving target. To further investigate binocular coordination, the moving target was presented on both eyes (binocular condition), or on one eye only (dichoptic condition). RESULTS The PD group made more saccades than age-matched normal control adults (NC) both during fixation and pursuit. The difference between left and right gaze positions increased over time during the pursuit period for PD but not for NC. The findings were not related to age, as NC and young-adult control group (YC) performed similarly on most of the eye movement measures, and were not correlated with classical measures of PD severity (e.g., Unified Parkinson's Disease Rating Scale (UPDRS) score). DISCUSSION Our results suggest that PD may be associated with impairment not only in saccade inhibition, but also in binocular coordination during pursuit, and these aspects of dysfunction may be useful in PD diagnosis or tracking of disease course.
Collapse
Affiliation(s)
- Chia-Chien Wu
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, USA
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Veena Dali
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, USA
| | - Celia Gagliardi
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, USA
| | | | - Robert D. Salazar
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Marc Pomplun
- Department of Computer Science, University of Massachusetts at Boston, Boston, MA, USA
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Arash Yazdanbakhsh
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
57
|
Oscillatory local field potentials of the nucleus accumbens and the anterior limb of the internal capsule in heroin addicts. Clin Neurophysiol 2018; 129:1242-1253. [DOI: 10.1016/j.clinph.2018.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022]
|
58
|
Müller EJ, Robinson PA. Quantitative theory of deep brain stimulation of the subthalamic nucleus for the suppression of pathological rhythms in Parkinson's disease. PLoS Comput Biol 2018; 14:e1006217. [PMID: 29813060 PMCID: PMC5993558 DOI: 10.1371/journal.pcbi.1006217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/08/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is modeled to explore the mechanisms of this effective, but poorly understood, treatment for motor symptoms of drug-refractory Parkinson's disease and dystonia. First, a neural field model of the corticothalamic-basal ganglia (CTBG) system is developed that reproduces key clinical features of Parkinson's disease, including its characteristic 4-8 Hz and 13-30 Hz electrophysiological signatures. Deep brain stimulation of the STN is then modeled and shown to suppress the pathological 13-30 Hz (beta) activity for physiologically realistic and optimized stimulus parameters. This supports the idea that suppression of abnormally coherent activity in the CTBG system is a major factor in DBS therapy for Parkinson's disease, by permitting normal dynamics to resume. At high stimulus intensities, nonlinear effects in the target population mediate wave-wave interactions between resonant beta activity and the stimulus pulse train, leading to complex spectral structure that shows remarkable similarity to that seen in steady-state evoked potential experiments.
Collapse
Affiliation(s)
- Eli J. Müller
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A. Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
59
|
Cignetti F, Fontan A, Menant J, Nazarian B, Anton JL, Vaugoyeau M, Assaiante C. Protracted Development of the Proprioceptive Brain Network During and Beyond Adolescence. Cereb Cortex 2018; 27:1285-1296. [PMID: 26733535 DOI: 10.1093/cercor/bhv323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proprioceptive processing is important for appropriate motor control, providing error-feedback and internal representation of movement for adjusting the motor command. Although proprioceptive functioning improves during childhood and adolescence, we still have few clues about how the proprioceptive brain network develops. Here, we investigated developmental changes in the functional organization of this network in early adolescents (n = 18, 12 ± 1 years), late adolescents (n = 18, 15 ± 1), and young adults (n = 18, 32 ± 4), by examining task-evoked univariate activity and patterns of functional connectivity (FC) associated with seeds placed in cortical (supramarginal gyrus) and subcortical (dorsal rostral putamen) regions. We found that although the network is already well established in early adolescence both in terms of topology and functioning principles (e.g., long-distance communication and economy in wiring cost), it is still undergoing refinement during adolescence, including a shift from diffuse to focal FC and a decreased FC strength. This developmental effect was particularly pronounced for fronto-striatal connections. Furthermore, changes in FC features continued beyond adolescence, although to a much lower extent. Altogether, these findings point to a protracted developmental time course for the proprioceptive network, which breaks with the relatively early functional maturation often associated with sensorimotor networks.
Collapse
Affiliation(s)
| | | | - Jasmine Menant
- Neuroscience Research Australia and University of New South Wales, Sydney, New South Wales, Australia
| | - Bruno Nazarian
- INT UMR 7289, Centre IRM Fonctionnelle Cérébrale, Aix-Marseille Université, CNRS, Marseille, France
| | - Jean-Luc Anton
- INT UMR 7289, Centre IRM Fonctionnelle Cérébrale, Aix-Marseille Université, CNRS, Marseille, France
| | | | | |
Collapse
|
60
|
The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS One 2017; 12:e0189109. [PMID: 29236724 PMCID: PMC5728518 DOI: 10.1371/journal.pone.0189109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8–12Hz) and beta (13–30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus—globus pallidus loop. In contrast, gamma (30–90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.
Collapse
|
61
|
Stankevich N, Mosekilde E. Coexistence between silent and bursting states in a biophysical Hodgkin-Huxley-type of model. CHAOS (WOODBURY, N.Y.) 2017; 27:123101. [PMID: 29289049 DOI: 10.1063/1.4986401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Classification of the dynamical mechanisms that support bistability between bursting oscillations and silence has not yet been clarified in detail. The purpose of this paper is to demonstrate that the coexistence of a stable equilibrium point with a state of continuous bursting can occur in a slightly modified, biophysical model that describe the dynamics of pancreatic beta-cells. To realize this form of coexistence, we have introduced an additional voltage-dependent potassium current that is activated in the region around the original, unstable equilibrium point. It is interesting to note that this modification also leads the model to display a blue-sky catastrophe in the transition region between chaotic and bursting states.
Collapse
Affiliation(s)
- Nataliya Stankevich
- Department of Radio-Electronics and Telecommunications, Yuri Gagarin State Technical University of Saratov, 77, Politechnicheskaya, Saratov 410054, Russian Federation
| | - Erik Mosekilde
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
62
|
Blunted mGluR Activation Disinhibits Striatopallidal Transmission in Parkinsonian Mice. Cell Rep 2017; 17:2431-2444. [PMID: 27880915 PMCID: PMC5489133 DOI: 10.1016/j.celrep.2016.10.087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/07/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023] Open
Abstract
The prevailing circuit model predicts that hyperactivity of the striatopallidal pathway and subsequently increased inhibition of external globus pallidus (GPe) neurons lead to the hypokinetic symptoms of Parkinson's disease (PD). It is believed that hyperactivity of the striatopallidal pathway is due to inactivity of dopamine receptors on the somatodendritic membrane of striatopallidal neurons, but the exact cellular underpinnings remain unclear. In this study, we show that mouse GPe astrocytes critically control ambient glutamate level, which in turn gates striatopallidal transmission via the activation of presynaptic metabotropic glutamate receptors. This presynaptic inhibition of striatopallidal transmission is diminished after the chronic loss of dopamine. Elevation of intracellular glutamate content in astrocytes restores the proper regulation of the striatopallidal input in PD models. These findings argue that astrocytes are key regulators of the striatopallidal synapse. Targeting this cell class may serve as an alternative therapeutic strategy for PD.
Collapse
|
63
|
Nieuwhof F, Helmich RC. Entangled cerebral networks in Parkinson’s disease. Brain 2017; 140:2767-2769. [DOI: 10.1093/brain/awx267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
64
|
Gunduz A, Foote KD, Okun MS. Reengineering deep brain stimulation for movement disorders: Emerging technologies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:97-105. [PMID: 29450404 DOI: 10.1016/j.cobme.2017.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Deep brain stimulation (DBS) is a neurosurgical technique, which consists of continuous delivery of an electrical pulse through chronically implanted electrodes connected to a neurostimulator, programmable in amplitude, pulse width, frequency, and stimulation channel. DBS is a promising treatment option for addressing severe and drug-resistant movement disorders. The success of DBS therapy is a combination of surgical implantation techniques, device technology, and clinical programming strategies. Changes in device settings require highly trained and experienced clinicians to achieve maximal therapeutic benefit for each targeted symptom, and optimization of stimulation parameters can take many visits. Thus, the development of innovative DBS technologies that can optimize the clinical implementation of DBS will lead to wider scale utilization. This review aims to present engineering approaches that have the potential to improve clinical outcomes of DBS, focusing on the development novel temporal patterns, innovative electrode designs, computational models to guide stimulation, closed-loop DBS, and remote programming.
Collapse
Affiliation(s)
- Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA.,Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
65
|
Singh J, Singh P, Malik V. Sensitivity analysis of discharge patterns of subthalamic nucleus in the model of basal ganglia in Parkinson disease. J Integr Neurosci 2017; 16:441-452. [PMID: 28891523 DOI: 10.3233/jin-170027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Parkinson disease alters the information patterns in movement related pathways in brain. Experimental results performed on rats show that the activity patterns changes from single spike activity to mixed burst mode in Parkinson disease. However the cause of this change in activity pattern is not yet completely understood. Subthalamic nucleus is one of the main nuclei involved in the origin of motor dysfunction in Parkinson disease. In this paper, a single compartment conductance based model is considered which focuses on subthalamic nucleus and synaptic input from globus pallidus (external). This model shows highly nonlinear behavior with respect to various intrinsic parameters. Behavior of model has been presented with the help of activity patterns generated in healthy and Parkinson condition. These patterns have been compared by calculating their correlation coefficient for different values of intrinsic parameters. Results display that the activity patterns are very sensitive to various intrinsic parameters and calcium shows some promising results which provide insights into the motor dysfunction.
Collapse
Affiliation(s)
- Jyotsna Singh
- Department of Computer Science & Engineering and Information Technology, The NorthCap University, Gurgaon, Haryana, India. E-mail:
| | - Phool Singh
- Department of Applied Sciences, The NorthCap University, Gurgaon, Haryana, India. E-mail:
| | - Vikas Malik
- Department of Physics, JIIT Noida, Uttar Pradesh, India. E-mail:
| |
Collapse
|
66
|
Baladron J, Nambu A, Hamker FH. The subthalamic nucleus‐external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro‐computational study. Eur J Neurosci 2017; 49:754-767. [DOI: 10.1111/ejn.13666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Javier Baladron
- Computer Science Chemnitz University of Technology Straße der Nationen 62 Chemnitz Germany
| | - Atsushi Nambu
- Division of System Neurophysiology National Institute for Physiological Sciences Okazaki Japan
- Department of Physiological Sciences SOKENDAI (The Graduate University for Advanced Studies) Okazaki Japan
| | - Fred H. Hamker
- Computer Science Chemnitz University of Technology Straße der Nationen 62 Chemnitz Germany
| |
Collapse
|
67
|
Hyperbolic Modeling of Subthalamic Nucleus Cells to Investigate the Effect of Dopamine Depletion. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2017; 2017:5472752. [PMID: 29056964 PMCID: PMC5606146 DOI: 10.1155/2017/5472752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/26/2017] [Accepted: 07/12/2017] [Indexed: 11/17/2022]
Abstract
To investigate how different types of neurons can produce well-known spiking patterns, a new computationally efficient model is proposed in this paper. This model can help realize the neuronal interconnection issues. The model can demonstrate various neuronal behaviors observed in vivo through simple parameter modification. The behaviors include tonic and phasic spiking, tonic and phasic bursting, class 1 and class 2 excitability, rebound spike, rebound burst, subthreshold oscillation, and accommodated spiking along with inhibition neuron responses. Here, we investigate the neuronal spiking patterns in Parkinson's disease through our proposed model. Abnormal pattern of subthalamic nucleus in Parkinson's disease can be studied through variations in the shape and frequency of firing patterns. Our proposed model introduces mathematical equations, where these patterns can be derived and clearly differentiated from one another. The irregular and arrhythmic behaviors of subthalamic nucleus firing pattern under normal conditions can easily be transformed to those caused by Parkinson's disease through simple parameter modifications in the proposed model. This model can explicitly show the change of neuronal activity patterns in Parkinson's disease, which may eventually lead to effective treatment with deep brain stimulation devices.
Collapse
|
68
|
Akram H, Sotiropoulos SN, Jbabdi S, Georgiev D, Mahlknecht P, Hyam J, Foltynie T, Limousin P, De Vita E, Jahanshahi M, Hariz M, Ashburner J, Behrens T, Zrinzo L. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease. Neuroimage 2017; 158:332-345. [PMID: 28711737 DOI: 10.1016/j.neuroimage.2017.07.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Firstly, to identify subthalamic region stimulation clusters that predict maximum improvement in rigidity, bradykinesia and tremor, or emergence of side-effects; and secondly, to map-out the cortical fingerprint, mediated by the hyperdirect pathways which predict maximum efficacy. METHODS High angular resolution diffusion imaging in twenty patients with advanced Parkinson's disease was acquired prior to bilateral subthalamic nucleus deep brain stimulation. All contacts were screened one-year from surgery for efficacy and side-effects at different amplitudes. Voxel-based statistical analysis of volumes of tissue activated models was used to identify significant treatment clusters. Probabilistic tractography was employed to identify cortical connectivity patterns associated with treatment efficacy. RESULTS All patients responded well to treatment (46% mean improvement off medication UPDRS-III [p < 0.0001]) without significant adverse events. Cluster corresponding to maximum improvement in tremor was in the posterior, superior and lateral portion of the nucleus. Clusters corresponding to improvement in bradykinesia and rigidity were nearer the superior border in a further medial and posterior location. The rigidity cluster extended beyond the superior border to the area of the zona incerta and Forel-H2 field. When the clusters where averaged, the coordinates of the area with maximum overall efficacy was X = -10(-9.5), Y = -13(-1) and Z = -7(-3) in MNI(AC-PC) space. Cortical connectivity to primary motor area was predictive of higher improvement in tremor; whilst that to supplementary motor area was predictive of improvement in bradykinesia and rigidity; and connectivity to prefrontal cortex was predictive of improvement in rigidity. INTERPRETATION These findings support the presence of overlapping stimulation sites within the subthalamic nucleus and its superior border, with different cortical connectivity patterns, associated with maximum improvement in tremor, rigidity and bradykinesia.
Collapse
Affiliation(s)
- Harith Akram
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| | - Stamatios N Sotiropoulos
- Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK
| | - Saad Jbabdi
- Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Dejan Georgiev
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Philipp Mahlknecht
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathan Hyam
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Enrico De Vita
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Marjan Jahanshahi
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Tim Behrens
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
69
|
Npas1+ Pallidal Neurons Target Striatal Projection Neurons. J Neurosci 2017; 36:5472-88. [PMID: 27194328 DOI: 10.1523/jneurosci.1720-15.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.
Collapse
|
70
|
The Cerebral Network of Parkinson's Tremor: An Effective Connectivity fMRI Study. J Neurosci 2017; 36:5362-72. [PMID: 27170132 DOI: 10.1523/jneurosci.3634-15.2016] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/07/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Parkinson's resting tremor has been linked to pathophysiological changes both in the basal ganglia and in a cerebello-thalamo-cortical motor loop, but the role of those circuits in initiating and maintaining tremor remains unclear. Here, we test whether and how the cerebello-thalamo-cortical loop is driven into a tremor-related state by virtue of its connectivity with the basal ganglia. An internal replication design on two independent cohorts of tremor-dominant Parkinson patients sampled brain activity and tremor with concurrent EMG-fMRI. Using dynamic causal modeling, we tested: (1) whether activity at the onset of tremor episodes drives tremulous network activity through the basal ganglia or the cerebello-thalamo-cortical loop and (2) whether the basal ganglia influence the cerebello-thalamo-cortical loop through connectivity with the cerebellum or motor cortex. We compared five physiologically plausible circuits, model families in which transient activity at the onset of tremor episodes (assessed using EMG) drove network activity through the internal globus pallidus (GPi), external globus pallidus, motor cortex, thalamus, or cerebellum. In each family, we compared two models in which the basal ganglia and cerebello-thalamo-cortical loop were connected through the cerebellum or motor cortex. In both cohorts, cerebral activity associated with changes in tremor amplitude (using peripheral EMG measures as a proxy for tremor-related neuronal activity) drove network activity through the GPi, which effectively influenced the cerebello-thalamo-cortical loop through the motor cortex. We conclude that cerebral activity related to Parkinson's tremor first arises in the GPi and is then propagated to the cerebello-thalamo-cortical circuit. SIGNIFICANCE STATEMENT Parkinson's resting tremor has been linked to pathophysiological changes both in the basal ganglia and in a cerebello-thalamo-cortical motor loop, but the role of those circuits in initiating and maintaining tremor remains unclear. Using dynamic causal modeling of concurrently collected EMG-fMRI data in two cohorts of Parkinson's patients, we showed that cerebral activity associated with changes in tremor amplitude drives network activity through the basal ganglia. Furthermore, the basal ganglia effectively influenced the cerebello-thalamo-cortical circuit through the motor cortex (but not the cerebellum). Out findings suggest that Parkinson's tremor-related activity first arises in the basal ganglia and is then propagated to the cerebello-thalamo-cortical circuit.
Collapse
|
71
|
Pallidostriatal Projections Promote β Oscillations in a Dopamine-Depleted Biophysical Network Model. J Neurosci 2017; 36:5556-71. [PMID: 27194335 DOI: 10.1523/jneurosci.0339-16.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In the basal ganglia, focused rhythmicity is an important feature of network activity at certain stages of motor processing. In disease, however, the basal ganglia develop amplified rhythmicity. Here, we demonstrate how the cellular architecture and network dynamics of an inhibitory loop in the basal ganglia yield exaggerated synchrony and locking to β oscillations, specifically in the dopamine-depleted state. A key component of this loop is the pallidostriatal pathway, a well-characterized anatomical projection whose function has long remained obscure. We present a synaptic characterization of this pathway in mice and incorporate these data into a computational model that we use to investigate its influence over striatal activity under simulated healthy and dopamine-depleted conditions. Our model predicts that the pallidostriatal pathway influences striatal output preferentially during periods of synchronized activity within GPe. We show that, under dopamine-depleted conditions, this effect becomes a key component of a positive feedback loop between the GPe and striatum that promotes synchronization and rhythmicity. Our results generate novel predictions about the role of the pallidostriatal pathway in shaping basal ganglia activity in health and disease. SIGNIFICANCE STATEMENT This work demonstrates that functional connections from the globus pallidus externa (GPe) to striatum are substantially stronger onto fast-spiking interneurons (FSIs) than onto medium spiny neurons. Our circuit model suggests that when GPe spikes are synchronous, this pallidostriatal pathway causes synchronous FSI activity pauses, which allow a transient window of disinhibition for medium spiny neurons. In simulated dopamine-depletion, this GPe-FSI activity is necessary for the emergence of strong synchronization and the amplification and propagation of β oscillations, which are a hallmark of parkinsonian circuit dysfunction. These results suggest that GPe may play a central role in propagating abnormal circuit activity to striatum, which in turn projects to downstream basal ganglia structures. These findings warrant further exploration of GPe as a target for interventions for Parkinson's disease.
Collapse
|
72
|
Dopaminergic Modulation of Synaptic Integration and Firing Patterns in the Rat Entopeduncular Nucleus. J Neurosci 2017; 37:7177-7187. [PMID: 28652413 DOI: 10.1523/jneurosci.0639-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022] Open
Abstract
Dopamine is known to differentially modulate the impact of cortical input to the striatum between the direct and indirect pathways of the basal ganglia (BG). However, the role of extrastriatal dopamine receptors (DRs) in BG information processing is less clear. To investigate the role of extrastriatal DRs, we studied their distribution and function in one of the output nuclei of the BG of the rodent, the entopeduncular nucleus (EP). qRT-PCR indicated that all DR subtypes were expressed by EP neurons, suggesting that both D1-like receptors (D1LRs) and D2-like receptors (D2LRs) were likely to affect information processing in the EP. Whole-cell recordings revealed that striatal inputs to the EP were potentiated by D1LRs whereas pallidal inputs to the EP were depressed by D2LRs. Changes to the paired-pulse ratio of inputs to the EP suggested that dopaminergic modulation of striatal inputs is mediated by postsynaptic receptors, and that of globus pallidus-evoked inputs is mediated by presynaptic receptors. We show that these changes in synaptic efficacy changed the information content of EP neuron firing. Overall, the findings suggest that the dopaminergic system affects the passage of feedforward information through the BG by modulating input divergence in the striatum and output convergence in the EP.SIGNIFICANCE STATEMENT The entopeduncular nucleus (EP), one of the basal ganglia (BG) output nuclei, is an important station in information processing in BG. However, it remains unclear how EP neurons encode information and how dopamine affects this process. This contrasts with the well established role of dopamine in the striatum, which is known to redistribute cortical input between the direct and indirect pathways. Here we show that, in symmetry with the striatum, dopamine controls the rebalancing of information flow between the two pathways in the EP. Specifically, we demonstrate that dopamine regulates EP activity by differentially modulating striatal and pallidal GABAergic inputs. These results call for a reassessment of current perspectives on BG information processing by highlighting the functional role of extrastriatal dopamine receptors.
Collapse
|
73
|
Dodla R, Wilson CJ. Effect of Phase Response Curve Shape and Synaptic Driving Force on Synchronization of Coupled Neuronal Oscillators. Neural Comput 2017; 29:1769-1814. [PMID: 28562223 DOI: 10.1162/neco_a_00978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The role of the phase response curve (PRC) shape on the synchrony of synaptically coupled oscillating neurons is examined. If the PRC is independent of the phase, because of the synaptic form of the coupling, synchrony is found to be stable for both excitatory and inhibitory coupling at all rates, whereas the antisynchrony becomes stable at low rates. A faster synaptic rise helps extend the stability of antisynchrony to higher rates. If the PRC is not constant but has a profile like that of a leaky integrate-and-fire model, then, in contrast to the earlier reports that did not include the voltage effects, mutual excitation could lead to stable synchrony provided the synaptic reversal potential is below the voltage level the neuron would have reached in the absence of the interaction and threshold reset. This level is controlled by the applied current and the leakage parameters. Such synchrony is contingent on significant phase response (that would result, for example, by a sharp PRC jump) occurring during the synaptic rising phase. The rising phase, however, does not contribute significantly if it occurs before the voltage spike reaches its peak. Then a stable near-synchronous state can still exist between type 1 PRC neurons if the PRC shows a left skewness in its shape. These results are examined comprehensively using perfect integrate-and-fire, leaky integrate-and-fire, and skewed PRC shapes under the assumption of the weakly coupled oscillator theory applied to synaptically coupled neuron models.
Collapse
Affiliation(s)
- Ramana Dodla
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A.
| | - Charles J Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A.
| |
Collapse
|
74
|
Mastro KJ, Zitelli KT, Willard AM, Leblanc KH, Kravitz AV, Gittis AH. Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine-depleted mice. Nat Neurosci 2017; 20:815-823. [PMID: 28481350 PMCID: PMC5546121 DOI: 10.1038/nn.4559] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022]
Abstract
The identification of distinct cell types in the basal ganglia has been critical to our understanding of basal ganglia function and the treatment of neurological disorders. The external globus pallidus (GPe) is a key contributor to motor suppressing pathways in the basal ganglia, yet its neuronal heterogeneity has remained an untapped resource for therapeutic interventions. Here we demonstrate that optogenetic interventions that dissociate the activity of two neuronal populations in the GPe, elevating the activity of parvalbumin (PV)-expressing GPe neurons over that of Lim homeobox 6 (Lhx6)-expressing GPe neurons, restores movement in dopamine-depleted mice and attenuates pathological activity of basal ganglia output neurons for hours beyond stimulation. These results establish the utility of cell-specific interventions in the GPe to target functionally distinct pathways, with the potential to induce long-lasting recovery of movement despite the continued absence of dopamine.
Collapse
Affiliation(s)
- Kevin J Mastro
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin T Zitelli
- Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Amanda M Willard
- Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kimberly H Leblanc
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexxai V Kravitz
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aryn H Gittis
- Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
75
|
Akram H, Wu C, Hyam J, Foltynie T, Limousin P, De Vita E, Yousry T, Jahanshahi M, Hariz M, Behrens T, Ashburner J, Zrinzo L. l-Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson's disease. Mov Disord 2017; 32:874-883. [PMID: 28597560 DOI: 10.1002/mds.27017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Neuronal loss and dopamine depletion alter motor signal processing between cortical motor areas, basal ganglia, and the thalamus, resulting in the motor manifestations of Parkinson's disease. Dopamine replacement therapy can reverse these manifestations with varying degrees of improvement. METHODS To evaluate functional connectivity in patients with advanced Parkinson's disease and changes in functional connectivity in relation to the degree of response to l-dopa, 19 patients with advanced Parkinson's disease underwent resting-state functional magnetic resonance imaging in the on-medication state. Scans were obtained on a 3-Tesla scanner in 3 × 3 × 2.5 mm3 voxels. Seed-based bivariate regression analyses were carried out with atlas-defined basal ganglia regions as seeds, to explore relationships between functional connectivity and improvement in the motor section of the UPDRS-III following an l-dopa challenge. False discovery rate-corrected P was set at < 0.05 for a 2-tailed t test. RESULTS A greater improvement in UPDRS-III scores following l-dopa administration was characterized by higher resting-state functional connectivity between the prefrontal cortex and the striatum (P = 0.001) and lower resting-state functional connectivity between the pallidum (P = 0.001), subthalamic nucleus (P = 0.003), and the paracentral lobule (supplementary motor area, mesial primary motor, and primary sensory areas). CONCLUSIONS Our findings show characteristic basal ganglia resting-state functional connectivity patterns associated with different degrees of l-dopa responsiveness in patients with advanced Parkinson's disease. l-Dopa exerts a graduated influence on remapping connectivity in distinct motor control networks, potentially explaining some of the variance in treatment response. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Harith Akram
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Chengyuan Wu
- Department of Neurosurgery, Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Jonathan Hyam
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Enrico De Vita
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Tarek Yousry
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Marjan Jahanshahi
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK.,Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Timothy Behrens
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK.,Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, UK
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
76
|
Bell PT, Gilat M, Shine JM. Striatal dysfunction during dual-task performance in Parkinson's disease. Brain 2017; 140:1174-1177. [PMID: 29050368 DOI: 10.1093/brain/awx063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peter T Bell
- University of Queensland Centre for Clinical Research, QLD, Australia
| | - Moran Gilat
- Brain and Mind Centre, The University of Sydney, NSW, Australia
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, NSW, Australia
| |
Collapse
|
77
|
Tahmasian M, Eickhoff SB, Giehl K, Schwartz F, Herz DM, Drzezga A, van Eimeren T, Laird AR, Fox PT, Khazaie H, Zarei M, Eggers C, Eickhoff CR. Resting-state functional reorganization in Parkinson's disease: An activation likelihood estimation meta-analysis. Cortex 2017; 92:119-138. [PMID: 28467917 DOI: 10.1016/j.cortex.2017.03.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/15/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder. Studies using resting-state functional magnetic resonance imaging (fMRI) to investigate underlying pathophysiology of motor and non-motor symptoms in PD yielded largely inconsistent results. This quantitative neuroimaging meta-analysis aims to identify consistent abnormal intrinsic functional patterns in PD across studies. We used PubMed to retrieve suitable resting-state studies and stereotactic data were extracted from 28 individual between-group comparisons. Convergence across their findings was tested using the activation likelihood estimation (ALE) approach. We found convergent evidence for intrinsic functional disturbances in bilateral inferior parietal lobule (IPL) and the supramarginal gyrus in PD patients compared to healthy subjects. In follow-up task-based and task-independent functional connectivity (FC) analyses using two independent healthy subject data sets, we found that the regions showing convergent aberrations in PD formed an interconnected network mainly with the default mode network (DMN). Behavioral characterization of these regions using the BrainMap database suggested associated dysfunction of perception and executive processes. Taken together, our findings highlight the role of parietal cortex in the pathophysiology of PD.
Collapse
Affiliation(s)
- Masoud Tahmasian
- Department of Neurology, University Hospital Cologne, Germany; Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany; Institute of Medical Sciences and Technology, Shahid Beheshti University, Tehran, Iran; Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran.
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience & Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1, INM-7), Research Center Jülich, Jülich, Germany
| | - Kathrin Giehl
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Frank Schwartz
- Department of Neurology, University Hospital Cologne, Germany
| | - Damian M Herz
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Thilo van Eimeren
- Department of Neurology, University Hospital Cologne, Germany; Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mojtaba Zarei
- Institute of Medical Sciences and Technology, Shahid Beheshti University, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Carsten Eggers
- Department of Neurology, University Hospital Cologne, Germany; Department of Neurology, Phillips University Marburg, Germany
| | - Claudia R Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
78
|
Orexin Directly Enhances the Excitability of Globus Pallidus Internus Neurons in Rat by Co-activating OX1 and OX2 Receptors. Neurosci Bull 2017; 33:365-372. [PMID: 28389870 DOI: 10.1007/s12264-017-0127-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022] Open
Abstract
Orexin, released from the hypothalamus, has been implicated in various basic non-somatic functions including feeding, the sleep-wakefulness cycle, emotion, and cognition. However, the role of orexin in somatic motor control is still little known. Here, using whole-cell patch clamp recording and immunostaining, we investigated the effect and the underlying receptor mechanism of orexin-A on neurons in the globus pallidus internus (GPi), a critical structure in the basal ganglia and an effective target for deep brain stimulation therapy. Our results showed that orexin-A induced direct postsynaptic excitation of GPi neurons in a concentration-dependent manner. The orexin-A-induced excitation was mediated via co-activation of both OX1 and OX2 receptors. Furthermore, the immunostaining results showed that OX1 and OX2 receptors were co-localized in the same GPi neurons. These results suggest that the central orexinergic system actively modulates the motor functions of the basal ganglia via direct innervation on GPi neurons and presumably participates in somatic-non-somatic integration.
Collapse
|
79
|
Belić JJ, Kumar A, Hellgren Kotaleski J. Interplay between periodic stimulation and GABAergic inhibition in striatal network oscillations. PLoS One 2017; 12:e0175135. [PMID: 28384268 PMCID: PMC5383243 DOI: 10.1371/journal.pone.0175135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Network oscillations are ubiquitous across many brain regions. In the basal ganglia, oscillations are also present at many levels and a wide range of characteristic frequencies have been reported to occur during both health and disease. The striatum, the main input nucleus of the basal ganglia, receives massive glutamatergic inputs from the cortex and is highly susceptible to external oscillations. However, there is limited knowledge about the exact nature of this routing process and therefore, it is of key importance to understand how time-dependent, external stimuli propagate through the striatal circuitry. Using a network model of the striatum and corticostriatal projections, we try to elucidate the importance of specific GABAergic neurons and their interactions in shaping striatal oscillatory activity. Here, we propose that fast-spiking interneurons can perform an important role in transferring cortical oscillations to the striatum especially to those medium spiny neurons that are not directly driven by the cortical oscillations. We show how the activity levels of different populations, the strengths of different inhibitory synapses, degree of outgoing projections of striatal cells, ongoing activity and synchronicity of inputs can influence network activity. These results suggest that the propagation of oscillatory inputs into the medium spiny neuron population is most efficient, if conveyed via the fast-spiking interneurons. Therefore, pharmaceuticals that target fast-spiking interneurons may provide a novel treatment for regaining the spectral characteristics of striatal activity that correspond to the healthy state.
Collapse
Affiliation(s)
- Jovana J. Belić
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Arvind Kumar
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
80
|
Nieuwhof F, Bloem BR, Reelick MF, Aarts E, Maidan I, Mirelman A, Hausdorff JM, Toni I, Helmich RC. Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain 2017; 140:1384-1398. [DOI: 10.1093/brain/awx042] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/14/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Freek Nieuwhof
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Miriam F Reelick
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Inbal Maidan
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Center for the study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Radboud university medical center, Departments of Geriatric Medicine, Neurology and Parkinson’s disease Center Nijmegen (ParC), Nijmegen, The Netherlands
| |
Collapse
|
81
|
Hikosaka O, Ghazizadeh A, Griggs W, Amita H. Parallel basal ganglia circuits for decision making. J Neural Transm (Vienna) 2017; 125:515-529. [PMID: 28155134 DOI: 10.1007/s00702-017-1691-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The basal ganglia control body movements, mainly, based on their values. Critical for this mechanism is dopamine neurons, which sends unpredicted value signals, mainly, to the striatum. This mechanism enables animals to change their behaviors flexibly, eventually choosing a valuable behavior. However, this may not be the best behavior, because the flexible choice is focused on recent, and, therefore, limited, experiences (i.e., short-term memories). Our old and recent studies suggest that the basal ganglia contain separate circuits that process value signals in a completely different manner. They are insensitive to recent changes in value, yet gradually accumulate the value of each behavior (i.e., movement or object choice). These stable circuits eventually encode values of many behaviors and then retain the value signals for a long time (i.e., long-term memories). They are innervated by a separate group of dopamine neurons that retain value signals, even when no reward is predicted. Importantly, the stable circuits can control motor behaviors (e.g., hand or eye) quickly and precisely, which allows animals to automatically acquire valuable outcomes based on historical life experiences. These behaviors would be called 'skills', which are crucial for survival. The stable circuits are localized in the posterior part of the basal ganglia, separately from the flexible circuits located in the anterior part. To summarize, the flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.
Collapse
Affiliation(s)
- Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA. .,National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| | - Ali Ghazizadeh
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Whitney Griggs
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
82
|
Terao Y, Fukuda H, Tokushige SI, Inomata-Terada S, Ugawa Y. How Saccade Intrusions Affect Subsequent Motor and Oculomotor Actions. Front Neurosci 2017; 10:608. [PMID: 28127274 PMCID: PMC5226964 DOI: 10.3389/fnins.2016.00608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/21/2016] [Indexed: 11/25/2022] Open
Abstract
In daily activities, there is a close spatial and temporal coupling between eye and hand movements that enables human beings to perform actions smoothly and accurately. If this coupling is disrupted by inadvertent saccade intrusions, subsequent motor actions suffer from delays, and lack of coordination. To examine how saccade intrusions affect subsequent voluntary actions, we used two tasks that require subjects to make motor/oculomotor actions in response to a visual cue. One was the memory guided saccade (MGS) task, and the other the hand reaction time (RT) task. The MGS task required subjects to initiate a voluntary saccade to a memorized target location, which is indicated shortly before by a briefly presented cue. The RT task required subjects to release a button on detection of a visual target, while foveating on a central fixation point. In normal subjects of various ages, inadvertent saccade intrusions delayed subsequent voluntary motor, and oculomotor actions. We also studied patients with Parkinson's disease (PD), who are impaired not only in initiating voluntary saccades but also in suppressing unwanted reflexive saccades. Saccade intrusions also delayed hand RT in PD patients. However, MGS was affected by the saccade intrusion differently. Saccade intrusion did not delay MGS latency in PD patients who could perform MGS with a relatively normal latency. In contrast, in PD patients who were unable to initiate MGS within the normal time range, we observed slightly decreased MGS latency after saccade intrusions. What explains this paradoxical phenomenon? It is known that motor actions slow down when switching between controlled and automatic behavior. We discuss how the effect of saccade intrusions on subsequent voluntary motor/oculomotor actions may reflect a similar switching cost between automatic and controlled behavior and a cost for switching between different motor effectors. In contrast, PD patients were unable to initiate internally guided MGS in the absence of visual target and could perform only automatic visually guided saccades, and did not have to switch between automatic and controlled behavior. This lack of switching may explain the shortening of MGS latency by the saccade intrusion in PD patients.
Collapse
Affiliation(s)
- Yasuo Terao
- Department of Neurology, University of TokyoTokyo, Japan; Department of Cell Physiology, Kyorin UniversityTokyo, Japan
| | - Hideki Fukuda
- Segawa Neurological Clinic for Children Tokyo, Japan
| | | | | | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical UniversityFukushima, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical UniversityFukushima, Japan
| |
Collapse
|
83
|
Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model. eNeuro 2017; 3:eN-NWR-0156-16. [PMID: 28101525 PMCID: PMC5228592 DOI: 10.1523/eneuro.0156-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 12/30/2022] Open
Abstract
The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson's disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion-induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN-MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion-induced changes to CTX-MSN D1, CTX-MSN D2, TA-MSN, and MSN-MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function.
Collapse
|
84
|
Yousif N, Mace M, Pavese N, Borisyuk R, Nandi D, Bain P. A Network Model of Local Field Potential Activity in Essential Tremor and the Impact of Deep Brain Stimulation. PLoS Comput Biol 2017; 13:e1005326. [PMID: 28068428 PMCID: PMC5261813 DOI: 10.1371/journal.pcbi.1005326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/24/2017] [Accepted: 12/20/2016] [Indexed: 11/27/2022] Open
Abstract
Essential tremor (ET), a movement disorder characterised by an uncontrollable shaking of the affected body part, is often professed to be the most common movement disorder, affecting up to one percent of adults over 40 years of age. The precise cause of ET is unknown, however pathological oscillations of a network of a number of brain regions are implicated in leading to the disorder. Deep brain stimulation (DBS) is a clinical therapy used to alleviate the symptoms of a number of movement disorders. DBS involves the surgical implantation of electrodes into specific nuclei in the brain. For ET the targeted region is the ventralis intermedius (Vim) nucleus of the thalamus. Though DBS is effective for treating ET, the mechanism through which the therapeutic effect is obtained is not understood. To elucidate the mechanism underlying the pathological network activity and the effect of DBS on such activity, we take a computational modelling approach combined with electrophysiological data. The pathological brain activity was recorded intra-operatively via implanted DBS electrodes, whilst simultaneously recording muscle activity of the affected limbs. We modelled the network hypothesised to underlie ET using the Wilson-Cowan approach. The modelled network exhibited oscillatory behaviour within the tremor frequency range, as did our electrophysiological data. By applying a DBS-like input we suppressed these oscillations. This study shows that the dynamics of the ET network support oscillations at the tremor frequency and the application of a DBS-like input disrupts this activity, which could be one mechanism underlying the therapeutic benefit. Essential tremor (ET) is acknowledged to be the most common movement disorder affecting 1% of the population. Although the underlying mechanisms remain elusive, the thalamus, cortex and cerebellum are implicated in the underlying pathology. More recently, it has been shown that ET can be successfully treated by deep brain stimulation (DBS). This clinical treatment involves the surgical implantation of electrodes into the brain, through which current is applied. However, the mechanisms of how DBS achieves clinical benefit continue to be debated. A key question is whether ET can be modeled as a pathological network behavior as has been suggested previously. If so, we can then ask how DBS would modulate this brain activity. Our study combines: (i) simultaneous electrophysiological recordings from the brain and muscle; (ii) computational modelling; (iii) mathematical analysis. We found that the network supports oscillations in the tremor range, and the application of high frequency DBS switches this to low amplitude, high-frequency activity. We propose that our model can be used to predict DBS parameter settings that suppress pathological network activity and consequently tremor. In summary, we provide the first population level model of essential tremor including the effect of DBS on network behaviour.
Collapse
Affiliation(s)
- Nada Yousif
- Division of Brain Sciences, Imperial College London, London, United Kingdom
- School of Engineering and Technology, University of Hertfordshire, Hatfield, United Kingdom
- * E-mail:
| | - Michael Mace
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Nicola Pavese
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Roman Borisyuk
- School of Computing and Mathematics, University of Plymouth, Plymouth, United Kingdom
- Institute of Mathematical Problems of Biology of RAS, The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
| | - Dipankar Nandi
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Peter Bain
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
85
|
Abstract
Corticostriatal connections play a central role in developing appropriate goal-directed behaviors, including the motivation and cognition to develop appropriate actions to obtain a specific outcome. The cortex projects to the striatum topographically. Thus, different regions of the striatum have been associated with these different functions: the ventral striatum with reward; the caudate nucleus with cognition; and the putamen with motor control. However, corticostriatal connections are more complex, and interactions between functional territories are extensive. These interactions occur in specific regions in which convergence of terminal fields from different functional cortical regions are found. This article provides an overview of the connections of the cortex to the striatum and their role in integrating information across reward, cognitive, and motor functions. Emphasis is placed on the interface between functional domains within the striatum.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, Department of Neurobiology and Anatomy, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
86
|
Gu Q, Cao H, Xuan M, Luo W, Guan X, Xu J, Huang P, Zhang M, Xu X. Increased thalamic centrality and putamen-thalamic connectivity in patients with parkinsonian resting tremor. Brain Behav 2017; 7:e00601. [PMID: 28127519 PMCID: PMC5256184 DOI: 10.1002/brb3.601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Evidence has indicated a strong association between hyperactivity in the cerebello-thalamo-motor cortical loop and resting tremor in Parkinson's disease (PD). Within this loop, the thalamus serves as a central hub based on its structural centrality in the generation of resting tremor. To study whether this thalamic abnormality leads to an alteration at the whole-brain level, our study investigated the role of the thalamus in patients with parkinsonian resting tremor in a large-scale brain network context. METHODS Forty-one patients with PD (22 with resting tremor, TP and 19 without resting tremor, NTP) and 45 healthy controls (HC) were included in this resting-state functional MRI study. Graph theory-based network analysis was performed to examine the centrality measures of bilateral thalami across the three groups. To further provide evidence to the central role of the thalamus in parkinsonian resting tremor, the seed-based functional connectivity analysis was then used to quantify the functional interactions between the basal ganglia and the thalamus. RESULTS Compared with the HC group, patients with the TP group exhibited increased degree centrality (p < .04), betweenness centrality (p < .01), and participation coefficient (p < .01) in the bilateral thalami. Two of these alterations (degree centrality and participation coefficient) were significantly correlated with tremor severity, especially in the left hemisphere (p < .02). The modular analysis showed that the TP group had more intermodular connections between the thalamus and the regions within the cerebello-thalamo-motor cortical loop. Furthermore, the data revealed significantly enhanced functional connectivity between the putamen and the thalamus in the TP group (p = .027 corrected for family-wise error). CONCLUSIONS These findings suggest increased thalamic centrality as a potential tremor-specific imaging measure for PD, and provide evidence for the altered putamen-thalamic interaction in patients with resting tremor.
Collapse
Affiliation(s)
- Quanquan Gu
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hengyi Cao
- Department of Psychiatry and PsychotherapyCentral Institute of Mental HealthUniversity of Heidelberg Medical Faculty MannheimMannheimGermany
| | - Min Xuan
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Luo
- Department of NeurologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Xu
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
87
|
Oh YM, Karube F, Takahashi S, Kobayashi K, Takada M, Uchigashima M, Watanabe M, Nishizawa K, Kobayashi K, Fujiyama F. Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. Brain Struct Funct 2016; 222:2359-2378. [PMID: 27995326 DOI: 10.1007/s00429-016-1346-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
In the present study, we generated a novel parvalbumin (PV)-Cre rat model and conducted detailed morphological and electrophysiological investigations of axons from PV neurons in globus pallidus (GP). The GP is considered as a relay nucleus in the indirect pathway of the basal ganglia (BG). Previous studies have used molecular profiling and projection patterns to demonstrate cellular heterogeneity in the GP; for example, PV-expressing neurons are known to comprise approximately 50% of GP neurons and represent majority of prototypic neurons that project to the subthalamic nucleus and/or output nuclei of BG, entopeduncular nucleus and substantia nigra (SN). The present study aimed to identify the characteristic projection patterns of PV neurons in the GP (PV-GP neurons) and determine whether these neurons target dopaminergic or GABAergic neurons in SN pars compacta (SNc) or reticulata (SNr), respectively. We initially found that (1) 57% of PV neurons co-expressed Lim-homeobox 6, (2) the PV-GP terminals were preferentially distributed in the ventral part of dorsal tier of SNc, (3) PV-GP neurons formed basket-like appositions with the somata of tyrosine hydroxylase, PV, calretinin and cholecystokinin immunoreactive neurons in the SN, and (4) in vitro whole-cell recording during optogenetic photo-stimulation of PV-GP terminals in SNc demonstrated that PV-GP neurons strongly inhibited dopamine neurons via GABAA receptors. These results suggest that dopamine neurons receive direct focal inputs from PV-GP prototypic neurons. The identification of high-contrast inhibitory systems on dopamine neurons might represent a key step toward understanding the BG function.
Collapse
Affiliation(s)
- Yoon-Mi Oh
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Susumu Takahashi
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, 484-8506, Japan
| | - Motokazu Uchigashima
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
88
|
The effects of unilateral versus bilateral subthalamic nucleus deep brain stimulation on prosaccades and antisaccades in Parkinson's disease. Exp Brain Res 2016; 235:615-626. [PMID: 27844097 DOI: 10.1007/s00221-016-4830-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
Unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease improves skeletomotor function assessed clinically, and bilateral STN DBS improves motor function to a significantly greater extent. It is unknown whether unilateral STN DBS improves oculomotor function and whether bilateral STN DBS improves it to a greater extent. Further, it has also been shown that bilateral, but not unilateral, STN DBS is associated with some impaired cognitive-motor functions. The current study compared the effect of unilateral and bilateral STN DBS on sensorimotor and cognitive aspects of oculomotor control. Patients performed prosaccade and antisaccade tasks during no stimulation, unilateral stimulation, and bilateral stimulation. There were three sets of findings. First, for the prosaccade task, unilateral STN DBS had no effect on prosaccade latency and it reduced prosaccade gain; bilateral STN DBS reduced prosaccade latency and increased prosaccade gain. Second, for the antisaccade task, neither unilateral nor bilateral stimulation had an effect on antisaccade latency, unilateral STN DBS increased antisaccade gain, and bilateral STN DBS increased antisaccade gain to a greater extent. Third, bilateral STN DBS induced an increase in prosaccade errors in the antisaccade task. These findings suggest that while bilateral STN DBS benefits spatiotemporal aspects of oculomotor control, it may not be as beneficial for more complex cognitive aspects of oculomotor control. Our findings are discussed considering the strategic role the STN plays in modulating information in the basal ganglia oculomotor circuit.
Collapse
|
89
|
Shreve LA, Velisar A, Malekmohammadi M, Koop MM, Trager M, Quinn EJ, Hill BC, Blumenfeld Z, Kilbane C, Mantovani A, Henderson JM, Brontë-Stewart H. Subthalamic oscillations and phase amplitude coupling are greater in the more affected hemisphere in Parkinson's disease. Clin Neurophysiol 2016; 128:128-137. [PMID: 27889627 DOI: 10.1016/j.clinph.2016.10.095] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Determine the incidence of resting state oscillations in alpha/beta, high frequency (HFO) bands, and their phase amplitude coupling (PAC) in a large cohort in Parkinson's disease (PD). METHODS Intra-operative local field potentials (LFPs) from subthalamic nucleus (STN) were recorded from 100 PD subjects, data from 74 subjects were included in the analysis. RESULTS Alpha/beta oscillations were evident in >99%, HFO in 87% and PAC in 98% of cases. Alpha/beta oscillations (P<0.01) and PAC were stronger in the more affected (MA) hemisphere (P=0.03). Alpha/beta oscillations were primarily found in 13-20Hz (low beta). Beta and HFO frequencies with the greatest coupling, were positively correlated (P=0.001). Tremor attenuated alpha (P=0.002) and beta band oscillations (P<0.001). CONCLUSIONS STN alpha/beta band oscillations and PAC were evident in ⩾98% cases and were greater in MA hemisphere. Resting tremor attenuated underlying alpha/beta band oscillations. SIGNIFICANCE Beta band LFP power may be used to drive adaptive deep brain stimulation (aDBS), augmented by a kinematic classifier in tremor dominant PD.
Collapse
Affiliation(s)
- Lauren A Shreve
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anca Velisar
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Mahsa Malekmohammadi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Mandy Miller Koop
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Megan Trager
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Emma J Quinn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Bruce C Hill
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Zack Blumenfeld
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Camilla Kilbane
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Jaimie M Henderson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Helen Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
90
|
Mandali A, Chakravarthy VS. Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia. Front Hum Neurosci 2016; 10:450. [PMID: 27672363 PMCID: PMC5019076 DOI: 10.3389/fnhum.2016.00450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Everyday, we encounter situations where available choices are nearly equally rewarding (high conflict) calling for some tough decision making. Experimental recordings showed that the activity of Sub Thalamic Nucleus (STN) increases during such situations providing the extra time needed to make the right decision, teasing apart the most rewarding choice from the runner up closely trailing behind. This prolonged deliberation necessary for decision making under high conflict was absent in Parkinson's disease (PD) patients who underwent Deep Brain Stimulation (DBS) surgery of STN. In an attempt to understand the underlying cause of such adverse response, we built a 2D spiking network model (50 × 50 lattice) of Basal ganglia incorporating the key nuclei. Using the model we studied the Probabilistic learning task (PLT) in untreated, treated (L-Dopa and Dopamine Agonist) and STN-DBS PD conditions. Based on the experimental observation that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights. The results show that healthy and untreated conditions of PD model were able to more or less equally select (avoid) the rewarding (punitive) choice, a behavior that was absent in treated PD condition. The time taken to select a choice in high conflict trials was high in normal condition, which is in agreement with experimental results. The treated PD (Dopamine Agonist) patients made impulsive decisions (small reaction time) which in turn led to poor performance. The underlying cause of the observed impulsivity in DBS patients was studied in the model by (1) varying the electrode position within STN, (2) causing antidromic activation of GPe neurons. The effect of electrode position on reaction time was analyzed by studying the activity of STN neurons where, a decrease in STN neural activity was observed for certain electrode positions. We also observed that a higher antidromic activation of GPe neurons does not impact the learning ability but decreases reaction time as reported in DBS patients. These results suggest a probable role of electrode and antidromic activation in modulating the STN activity and eventually affecting the patient's performance on PLT.
Collapse
Affiliation(s)
- Alekhya Mandali
- Computational Neuroscience Lab, Department of Biotechnology, Indian Institute of Technology Madras Chennai, India
| | - V Srinivasa Chakravarthy
- Computational Neuroscience Lab, Department of Biotechnology, Indian Institute of Technology Madras Chennai, India
| |
Collapse
|
91
|
Deffains M, Iskhakova L, Katabi S, Haber SN, Israel Z, Bergman H. Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys. eLife 2016; 5. [PMID: 27552049 PMCID: PMC5030093 DOI: 10.7554/elife.16443] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/22/2016] [Indexed: 02/02/2023] Open
Abstract
The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders. DOI:http://dx.doi.org/10.7554/eLife.16443.001 The symptoms of Parkinson’s disease include tremor and slow movement, as well as loss of balance, depression and problems with sleep and memory. The death of neurons in a region of the brain called the substantia nigra pars compacta is one of the major hallmarks of Parkinson’s disease. These neurons produce a chemical called dopamine, and their death reduces dopamine levels in another area of the brain called the striatum. This structure is one of five brain regions known collectively as the basal ganglia, which form a circuit that helps to control movement. The most effective treatment currently available for advanced Parkinson’s disease entails lowering electrodes deep into the brain in order to shut down the activity of part of the basal ganglia. However, the target is not the striatum; instead it is a structure called the subthalamic nucleus. The striatum and the subthalamic nucleus are the two input regions of the basal ganglia: each sends signals to the other three structures downstream. So why does targeting the subthalamic nucleus, but not the striatum, reduce the symptoms of Parkinson’s disease? To shed some light on this issue, Deffains et al. recorded the activity of neurons in the basal ganglia before and after injecting two monkeys with a drug called MPTP. Related to heroin, MPTP produces symptoms in animals that resemble those of Parkinson’s disease. Before the injections, spontaneous fluctuations in the activity of the subthalamic nucleus produced matching changes in the activity of the three downstream basal ganglia structures. Fluctuations in the activity of the striatum, by contrast, had no such effect. Moreover, injecting the monkeys with MPTP caused the basal ganglia to fire in an abnormal highly synchronized rhythm, similar to that seen in Parkinson’s disease. Crucially, the subthalamic nucleus contributed to this abnormal rhythm, whereas the striatum did not. The results presented by Deffains et al. provide a concrete explanation for why inactivating the subthalamic nucleus, but not the striatum, reduces the symptoms of Parkinson’s disease. Further research is now needed to explore how the striatum controls the activity of downstream regions of the basal ganglia, both in healthy people and in those with Parkinson's disease. DOI:http://dx.doi.org/10.7554/eLife.16443.002
Collapse
Affiliation(s)
- Marc Deffains
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Liliya Iskhakova
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shiran Katabi
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, United States
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
92
|
Subthalamic beta oscillations are attenuated after withdrawal of chronic high frequency neurostimulation in Parkinson's disease. Neurobiol Dis 2016; 96:22-30. [PMID: 27553876 DOI: 10.1016/j.nbd.2016.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022] Open
Abstract
Subthalamic nucleus (STN) local field potential (LFP) recordings demonstrate beta (13-30Hz) band oscillations in Parkinson's disease (PD) defined as elevations of spectral power. The amount of attenuation of beta band power on therapeutic levels of high frequency (HF) deep brain stimulation (DBS) and/or dopaminergic medication has been correlated with the degree of improvement in bradykinesia and rigidity from the therapy, which has led to the suggestion that elevated beta band power is a marker of PD motor disability. A fundamental question has not been answered: whether there is a prolonged attenuation of beta band power after withdrawal of chronic HF DBS and whether this is related to a lack of progression or even improvement in the underlying motor disability. Until now, in human PD subjects, STN LFP recordings were only attainable in the peri-operative period and after short periods of stimulation. For the first time, using an investigational, implanted sensing neurostimulator (Activa® PC+S, Medtronic, Inc.), STN LFPs and motor disability were recorded/assessed after withdrawal of chronic (6 and 12month) HF DBS in freely moving PD subjects. Beta band power was similar within 14s and 60min after stimulation was withdrawn, suggesting that "off therapy" experiments can be conducted almost immediately after stimulation is turned off. After withdrawal of 6 and 12months of STN DBS, beta band power was significantly lower (P<0.05 at 6 and 12months) and off therapy UPDRS scores were better (P<0.05 at 12months) compared to before DBS was started. The attenuation in beta band power was correlated with improvement in motor disability scores (P<0.05). These findings were supported by evidence of a gradual increase in beta band power in two unstimulated STNs after 24months and could not be explained by changes in lead impedance. This suggests that chronic HF DBS exerts long-term plasticity in the sensorimotor network, which may contribute to a lack of progression in underlying motor disability in PD.
Collapse
|
93
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
94
|
Belić JJ, Halje P, Richter U, Petersson P, Hellgren Kotaleski J. Untangling Cortico-Striatal Connectivity and Cross-Frequency Coupling in L-DOPA-Induced Dyskinesia. Front Syst Neurosci 2016; 10:26. [PMID: 27065818 PMCID: PMC4812105 DOI: 10.3389/fnsys.2016.00026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
We simultaneously recorded local field potentials (LFPs) in the primary motor cortex and sensorimotor striatum in awake, freely behaving, 6-OHDA lesioned hemi-parkinsonian rats in order to study the features directly related to pathological states such as parkinsonian state and levodopa-induced dyskinesia. We analyzed the spectral characteristics of the obtained signals and observed that during dyskinesia the most prominent feature was a relative power increase in the high gamma frequency range at around 80 Hz, while for the parkinsonian state it was in the beta frequency range. Here we show that during both pathological states effective connectivity in terms of Granger causality is bidirectional with an accent on the striatal influence on the cortex. In the case of dyskinesia, we also found a high increase in effective connectivity at 80 Hz. In order to further understand the 80-Hz phenomenon, we performed cross-frequency analysis and observed characteristic patterns in the case of dyskinesia but not in the case of the parkinsonian state or the control state. We noted a large decrease in the modulation of the amplitude at 80 Hz by the phase of low frequency oscillations (up to ~10 Hz) across both structures in the case of dyskinesia. This may suggest a lack of coupling between the low frequency activity of the recorded network and the group of neurons active at ~80 Hz.
Collapse
Affiliation(s)
- Jovana J Belić
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden; Bernstein Center Freiburg, University of FreiburgFreiburg, Germany
| | - Pär Halje
- Department of Experimental Medical Science, Integrative Neurophysiology and Neurotechnology, Neuronano Research Center, Lund University Lund, Sweden
| | - Ulrike Richter
- Department of Experimental Medical Science, Integrative Neurophysiology and Neurotechnology, Neuronano Research Center, Lund University Lund, Sweden
| | - Per Petersson
- Department of Experimental Medical Science, Integrative Neurophysiology and Neurotechnology, Neuronano Research Center, Lund University Lund, Sweden
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden; Department of Neuroscience, Karolinska InstituteStockholm, Sweden
| |
Collapse
|
95
|
Manza P, Zhang S, Li CR, Leung H. Resting-state functional connectivity of the striatum in early-stage Parkinson's disease: Cognitive decline and motor symptomatology. Hum Brain Mapp 2016; 37:648-62. [PMID: 26566885 PMCID: PMC4843498 DOI: 10.1002/hbm.23056] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by changes to dopaminergic function in the striatum and a range of cognitive and motor deficits. Neuroimaging studies have repeatedly shown differences in activation and functional connectivity patterns of the striatum between symptomatic individuals with Parkinson's disease and healthy controls. However, the presence and severity of cognitive and motor symptoms seem to differ dramatically among individuals with Parkinson's disease at the early-stages. To investigate the neural basis of such heterogeneity, we examined the resting state functional connectivity patterns of caudate and putamen subdivisions in relation to cognitive and motor impairments among 62 early-stage individuals with Parkinson's disease (21 females, 23 drug naive, ages 39-77 years, average UPDRS motor scores off medication = 18.56, average H&Y stage = 1.66). We also explored how changes in striatal connectivity relate to changes in symptomatology over a year. There are two main findings. First, higher motor deficit rating was associated with weaker coupling between anterior putamen and midbrain including substantia nigra. Intriguingly, steeper declines in functional connectivity between these regions were associated with greater declines in motor function over the course of 1 year. Second, decline in cognitive function, particularly in the memory and visuospatial domains, was associated with stronger coupling between the dorsal caudate and the rostral anterior cingulate cortex. These findings remained significant after controlling for age, medication, gender, and education. In sum, our findings suggest that cognitive decline and motor deficit are each associated with a differentiable pattern of functional connectivity of striatal subregions. Hum Brain Mapp 37:648-662, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter Manza
- Department of PsychologyIntegrative Neuroscience Program, Stony Brook UniversityStony BrookNew York
| | - Sheng Zhang
- Department of PsychiatryYale UniversityNew HavenConnecticut
| | - Chiang‐Shan R. Li
- Department of PsychiatryYale UniversityNew HavenConnecticut
- Department of NeurobiologyYale UniversityNew HavenConnecticut
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenConnecticut
| | - Hoi‐Chung Leung
- Department of PsychologyIntegrative Neuroscience Program, Stony Brook UniversityStony BrookNew York
| |
Collapse
|
96
|
Lin HC, Pan HC, Lin SH, Lo YC, Shen ETH, Liao LD, Liao PH, Chien YW, Liao KD, Jaw FS, Chu KW, Lai HY, Chen YY. Central Thalamic Deep-Brain Stimulation Alters Striatal-Thalamic Connectivity in Cognitive Neural Behavior. Front Neural Circuits 2016; 9:87. [PMID: 26793069 PMCID: PMC4710746 DOI: 10.3389/fncir.2015.00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/18/2015] [Indexed: 02/03/2023] Open
Abstract
Central thalamic deep brain stimulation (CT-DBS) has been proposed as an experimental therapeutic approach to produce consistent sustained regulation of forebrain arousal for several neurological diseases. We investigated local field potentials (LFPs) induced by CT-DBS from the thalamic central lateral nuclei (CL) and the striatum as potential biomarkers for the enhancement of lever-pressing skill learning. LFPs were simultaneously recorded from multiple sites in the CL, ventral striatum (Vstr), and dorsal striatum (Dstr). LFP oscillation power and functional connectivity were assessed and compared between the CT-DBS and sham control groups. The theta and alpha LFP oscillations were significantly increased in the CL and striatum in the CT-DBS group. Furthermore, interhemispheric coherences between bilateral CL and striatum were increased in the theta band. Additionally, enhancement of c-Fos activity, dopamine D2 receptor (Drd2), and α4-nicotinic acetylcholine receptor (α4-nAChR) occurred after CT-DBS treatment in the striatum and hippocampus. CT-DBS strengthened thalamic-striatal functional connectivity, which demonstrates that the inter-regional connectivity enhancement might contribute to synaptic plasticity in the striatum. Altered dopaminergic and cholinergic receptors resulted in modulation of striatal synaptic plasticity's ability to regulate downstream signaling cascades for higher brain functions of lever-pressing skill learning.
Collapse
Affiliation(s)
- Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming UniversityTaipei, Taiwan; Brain Research Center, National Yang Ming UniversityTaipei, Taiwan
| | - Han-Chi Pan
- Institute of Neuroscience, National Yang Ming University Taipei, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Tzu Chi General Hospital, Tzu Chi UniversityHualien, Taiwan; Institute of Biomedical Engineering, National Taiwan UniversityTaipei, Taiwan
| | - Yu-Chun Lo
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine Taipei, Taiwan
| | | | - Lun-De Liao
- Centre for Life Sciences, Singapore Institute for Neurotechnology, National University of SingaporeSingapore, Singapore; Institute of Biomedical Engineering and Nanomedicine, National Health Research InstitutesMiaoli, Taiwan
| | - Pei-Han Liao
- Department of Biomedical Engineering, National Yang Ming University Taipei, Taiwan
| | - Yi-Wei Chien
- Department of Biomedical Engineering, National Yang Ming University Taipei, Taiwan
| | - Kuei-Da Liao
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University Taipei, Taiwan
| | - Fu-Shan Jaw
- Institute of Biomedical Engineering, National Taiwan University Taipei, Taiwan
| | - Kai-Wen Chu
- Department and Institute of Physiology, School of Medicine, National Yang Ming University Taipei, Taiwan
| | - Hsin-Yi Lai
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University Hangzhou, China
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University Taipei, Taiwan
| |
Collapse
|
97
|
Pasquereau B, DeLong MR, Turner RS. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement. Brain 2016; 139:127-43. [PMID: 26490335 PMCID: PMC4794619 DOI: 10.1093/brain/awv312] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/21/2015] [Accepted: 09/08/2015] [Indexed: 01/15/2023] Open
Abstract
Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson's disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (-22%), speed (-40%), acceleration (-49%) and hand position (-33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (-50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes beginning in the 150-ms period that immediately preceded movement. Overall, the results are consistent with proposals that under-activation and abnormal timing of movement-related activity in M1 contribute to parkinsonian motor signs but are not consistent with the idea that a loss of functional specificity plays an important role. Given that pyramidal tract-type neurons form the primary efferent pathway that conveys motor commands to the spinal cord, the dysfunction of movement-related activity in pyramidal tract-type neurons is likely to be a central factor in the pathophysiology of parkinsonian motor signs.
Collapse
Affiliation(s)
- Benjamin Pasquereau
- 1 Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Mahlon R DeLong
- 2 Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Robert S Turner
- 1 Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
98
|
Blumenfeld Z, Brontë-Stewart H. High Frequency Deep Brain Stimulation and Neural Rhythms in Parkinson's Disease. Neuropsychol Rev 2015; 25:384-97. [PMID: 26608605 DOI: 10.1007/s11065-015-9308-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
Abstract
High frequency (HF) deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease (PD). It effectively treats the cardinal motor signs of PD, including tremor, bradykinesia, and rigidity. The most common neural target is the subthalamic nucleus, located within the basal ganglia, the region most acutely affected by PD pathology. Using chronically-implanted DBS electrodes, researchers have been able to record underlying neural rhythms from several nodes in the PD network as well as perturb it using DBS to measure the ensuing neural and behavioral effects, both acutely and over time. In this review, we provide an overview of the PD neural network, focusing on the pathophysiological signals that have been recorded from PD patients as well as the mechanisms underlying the therapeutic benefits of HF DBS. We then discuss evidence for the relationship between specific neural oscillations and symptoms of PD, including the aberrant relationships potentially underlying functional connectivity in PD as well as the use of different frequencies of stimulation to more specifically target certain symptoms. Finally, we briefly describe several current areas of investigation and how the ability to record neural data in ecologically-valid settings may allow researchers to explore the relationship between brain and behavior in an unprecedented manner, culminating in the future automation of neurostimulation therapy for the treatment of a variety of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Zack Blumenfeld
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Helen Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
- Stanford University School of Medicine, Rm A343, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
99
|
Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus. J Neurosci 2015; 35:11830-47. [PMID: 26311767 DOI: 10.1523/jneurosci.4672-14.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the markers parvalbumin and Npas1. Our study provides evidence that parvalbumin and Npas1 neurons have different topologies within the basal ganglia.
Collapse
|
100
|
Chiken S, Sato A, Ohta C, Kurokawa M, Arai S, Maeshima J, Sunayama-Morita T, Sasaoka T, Nambu A. Dopamine D1 Receptor-Mediated Transmission Maintains Information Flow Through the Cortico-Striato-Entopeduncular Direct Pathway to Release Movements. Cereb Cortex 2015; 25:4885-97. [PMID: 26443442 PMCID: PMC4635926 DOI: 10.1093/cercor/bhv209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the basal ganglia (BG), dopamine plays a pivotal role in motor control, and dopamine deficiency results in severe motor dysfunctions as seen in Parkinson's disease. According to the well-accepted model of the BG, dopamine activates striatal direct pathway neurons that directly project to the output nuclei of the BG through D1 receptors (D1Rs), whereas dopamine inhibits striatal indirect pathway neurons that project to the external pallidum (GPe) through D2 receptors. To clarify the exact role of dopaminergic transmission via D1Rs in vivo, we developed novel D1R knockdown mice in which D1Rs can be conditionally and reversibly regulated. Suppression of D1R expression by doxycycline treatment decreased spontaneous motor activity and impaired motor ability in the mice. Neuronal activity in the entopeduncular nucleus (EPN), one of the output nuclei of the rodent BG, was recorded in awake conditions to examine the mechanism of motor deficits. Cortically evoked inhibition in the EPN mediated by the cortico-striato-EPN direct pathway was mostly lost during suppression of D1R expression, whereas spontaneous firing rates and patterns remained unchanged. On the other hand, GPe activity changed little. These results suggest that D1R-mediated dopaminergic transmission maintains the information flow through the direct pathway to appropriately release motor actions.
Collapse
Affiliation(s)
- Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Asako Sato
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara 252-0374, Japan National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Chikara Ohta
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Makoto Kurokawa
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Satoshi Arai
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Jun Maeshima
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Tomoko Sunayama-Morita
- National Institute for Basic Biology, Okazaki 444-8585, Japan Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan
| | - Toshikuni Sasaoka
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara 252-0374, Japan National Institute for Basic Biology, Okazaki 444-8585, Japan Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| |
Collapse
|