51
|
Miszkiel J, Jastrzębska J, Filip M, Przegaliński E. Amphetamine Self-Administration and Its Extinction Alter the 5-HT 1B Receptor Protein Levels in Designated Structures of the Rat Brain. Neurotox Res 2018; 35:217-229. [PMID: 30168018 PMCID: PMC6313351 DOI: 10.1007/s12640-018-9950-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Manipulation of the serotonin (5-HT)1B receptors can modify the behavioral effects of amphetamine including its reinforcing properties. Focus of this study was to examine changes in 5-HT1B receptor protein expression in several brain structures linked to substance drug disorder in different stages of amphetamine addiction—single session of amphetamine self-administration, 20 consecutive days of amphetamine self-administration, and 3 and 14 days of extinction from chronic drug intake. “Yoked” procedure was employed to set apart pharmacological and motivational effects of amphetamine intoxication. Immunohistofluorescence was performed on brain slices containing the following regions: nucleus accumbens (NAc) shell and core, globus pallidum (GP) lateral and ventral, hippocampus (HIP), substantia nigra (SN), and ventral tegmental area (VTA). Single amphetamine session decreased the amount of 5-HT1B receptors in SN, VTA, and HIP in active and yoked rats. On the contrary, 20 days of chronic amphetamine exposure triggered elevation of 5-HT1B receptors exclusively in animals that voluntarily administered the drug in NAc core, GP ventral, and HIP. Furthermore, 14-day (but not 3-day) extinction from amphetamine increased the 5-HT1B receptor expression in ventral and lateral GP, HIP, and SN. This study is the first to demonstrate that exposure to amphetamine and its extinction alter the expression of 5-HT1B receptors in various rat brain regions, and those changes seem to be transient and region specific. Importantly, since increased expression of 5-HT1B receptor after chronic amphetamine self-administration was limited only to active group of animals, we suggest that 5-HT1B receptor is linked to motivational aspect of addiction.
Collapse
Affiliation(s)
- Joanna Miszkiel
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Edmund Przegaliński
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
52
|
Lovinger DM, Abrahao KP. Synaptic plasticity mechanisms common to learning and alcohol use disorder. ACTA ACUST UNITED AC 2018; 25:425-434. [PMID: 30115764 PMCID: PMC6097767 DOI: 10.1101/lm.046722.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/21/2018] [Indexed: 11/24/2022]
Abstract
Alcohol use disorders include drinking problems that span a range from binge drinking to alcohol abuse and dependence. Plastic changes in synaptic efficacy, such as long-term depression and long-term potentiation are widely recognized as mechanisms involved in learning and memory, responses to drugs of abuse, and addiction. In this review, we focus on the effects of chronic ethanol (EtOH) exposure on the induction of synaptic plasticity in different brain regions. We also review findings indicating that synaptic plasticity occurs in vivo during EtOH exposure, with a focus on ex vivo electrophysiological indices of plasticity. Evidence for effects of EtOH-induced or altered synaptic plasticity on learning and memory and EtOH-related behaviors is also reviewed. As this review indicates, there is much work needed to provide more information about the molecular, cellular, circuit, and behavioral consequences of EtOH interactions with synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA
| | - Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA
| |
Collapse
|
53
|
Wille-Bille A, Miranda-Morales RS, Pucci M, Bellia F, D'Addario C, Pautassi RM. Prenatal ethanol induces an anxiety phenotype and alters expression of dynorphin & nociceptin/orphanin FQ genes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:77-88. [PMID: 29678771 DOI: 10.1016/j.pnpbp.2018.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 11/16/2022]
Abstract
Animal models have suggested that prenatal ethanol exposure (PEE) alters the κ opioid receptor system. The present study investigated the brain expression of dynorphin and nociceptin/orphanin FQ related genes and assessed anxiety-like behavior in the light-dark box (LDB), shelter-seeking and risk-taking behaviors in the concentric square field (CSF) test, and ethanol-induced locomotion in the open field (OF), in infant or adolescent Wistar rats that were exposed to PEE (0.0 or 2.0 g/kg, intragastrically, gestational days 17-20). We measured brain mRNA levels of prodynorphin (PDYN), κ opioid receptors (KOR), the nociceptin/orphanin FQ opioid peptide precursor prepronociceptin (ppN/OFQ) and nociceptine/orphanin FQ receptors (NOR). Prenatal ethanol exposure upregulated PDYN and KOR mRNA levels in the ventral tegmental area (VTA) in infant and adolescent rats and KOR mRNA levels in the prefrontal cortex in infant rats. The changes in gene expression in the VTA were accompanied by a reduction of DNA methylation at the PDYN gene promoter, and by a reduction of DNA methylation at the KOR gene promoter. The PEE-induced upregulation of PDYN/KOR in the VTA was accompanied by lower NOR gene expression in the VTA, and lower PDYN gene expression in the nucleus accumbens. PEE rats exhibited hypolocomotion in the OF, greater avoidance of the white and brightly lit areas in the LDB and CSF, and greater preference for the sheltered area in the CSF test. These results suggest that PEE upregulates the dynorphin system, resulting in an anxiety-prone phenotype and triggering compensatory responses in the nociceptin/orphanin FQ system. These findings may help elucidate the mechanisms that underlie the effects of PEE and suggest that the dynorphin and nociceptin/orphanin FQ systems may be possible targets for the prevention and treatment of PEE-induced alterations.
Collapse
Affiliation(s)
- Aranza Wille-Bille
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba C.P. 5000, Argentina
| | - Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | - Claudio D'Addario
- Università degli Studi di Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
54
|
EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Mol Psychiatry 2018; 23:1303-1319. [PMID: 28397836 PMCID: PMC5984092 DOI: 10.1038/mp.2017.63] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
In many societies, the majority of adults regularly consume alcohol. However, only a small proportion develops alcohol addiction. Individuals at risk often show a high sensation-seeking/low-anxiety behavioural phenotype. Here we asked which role EF hand domain containing 2 (EFhd2; Swiprosin-1) plays in the control of alcohol addiction-associated behaviours. EFhd2 knockout (KO) mice drink more alcohol than controls and spontaneously escalate their consumption. This coincided with a sensation-seeking and low-anxiety phenotype. A reversal of the behavioural phenotype with β-carboline, an anxiogenic inverse benzodiazepine receptor agonist, normalized alcohol preference in EFhd2 KO mice, demonstrating an EFhd2-driven relationship between personality traits and alcohol preference. These findings were confirmed in a human sample where we observed a positive association of the EFhd2 single-nucleotide polymorphism rs112146896 with lifetime drinking and a negative association with anxiety in healthy adolescents. The lack of EFhd2 reduced extracellular dopamine levels in the brain, but enhanced responses to alcohol. In confirmation, gene expression analysis revealed reduced tyrosine hydroxylase expression and the regulation of genes involved in cortex development, Eomes and Pax6, in EFhd2 KO cortices. These findings were corroborated in Xenopus tadpoles by EFhd2 knockdown. Magnetic resonance imaging (MRI) in mice showed that a lack of EFhd2 reduces cortical volume in adults. Moreover, human MRI confirmed the negative association between lifetime alcohol drinking and superior frontal gyrus volume. We propose that EFhd2 is a conserved resilience factor against alcohol consumption and its escalation, working through Pax6/Eomes. Reduced EFhd2 function induces high-risk personality traits of sensation-seeking/low anxiety associated with enhanced alcohol consumption, which may be related to cortex function.
Collapse
|
55
|
Huber SE, Zoicas I, Reichel M, Mühle C, Büttner C, Ekici AB, Eulenburg V, Lenz B, Kornhuber J, Müller CP. Prenatal androgen receptor activation determines adult alcohol and water drinking in a sex-specific way. Addict Biol 2018; 23:904-920. [PMID: 28776866 DOI: 10.1111/adb.12540] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/16/2023]
Abstract
Alcohol use disorders are major psychiatric disorders. Correlational studies in humans suggested organizational hormonal effects during embryonic development as a risk factor for adult alcohol dependence. Permanent changes can be induced by the activity of sex hormones, like testosterone. Here, we demonstrate a relationship between prenatal androgen receptor (AR)-activation and adult alcohol as well as water drinking in mice in a sex-dependent fashion. Prenatal AR inhibition using the antagonist flutamide decreased adult male alcohol consumption. In contrast, prenatal AR activation by dihydrotestosterone (DHT) led to an increase in adult alcohol consumption in females. These effects were different in adult water drinking, flutamide increased water consumption in females and DHT increased water consumption in males. Prenatal flutamide reduced locomotion and anxiety in adult males but was ineffective in females. We found that prenatal AR activation controls adult levels of monoaminergic modulatory transmitters in the brain and blood hormone levels in a sex-specific way. RNA-Seq analysis confirmed a prenatal AR mediated control of adult expression of alcohol drinking-related genes like Bdnf and Per2. These findings demonstrate that prenatal androgen activity is a risk factor for the establishment of alcohol consumption in adults by its organizational effects.
Collapse
Affiliation(s)
- Sabine E. Huber
- Department of Psychiatry and Psychotherapy; University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy; University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy; University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg; Germany
- Department of Nephrology and Hypertension; Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy; University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Christian Büttner
- Institute of Human Genetics; Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Arif B. Ekici
- Institute of Human Genetics; Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Volker Eulenburg
- Institute of Biochemistry; Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy; University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy; University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Christian P. Müller
- Department of Psychiatry and Psychotherapy; University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| |
Collapse
|
56
|
Richard JM, Stout N, Acs D, Janak PH. Ventral pallidal encoding of reward-seeking behavior depends on the underlying associative structure. eLife 2018; 7:33107. [PMID: 29565248 PMCID: PMC5864276 DOI: 10.7554/elife.33107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Despite its being historically conceptualized as a motor expression site, emerging evidence suggests the ventral pallidum (VP) plays a more active role in integrating information to generate motivation. Here, we investigated whether rat VP cue responses would encode and contribute similarly to the vigor of reward-seeking behaviors trained under Pavlovian versus instrumental contingencies, when these behavioral responses consist of superficially similar locomotor response patterns but may reflect distinct underlying decision-making processes. We find that cue-elicited activity in many VP neurons predicts the latency of instrumental reward seeking, but not of Pavlovian response latency. Further, disruption of VP signaling increases the latency of instrumental but not Pavlovian reward seeking. This suggests that VP encoding of and contributions to response vigor are specific to the ability of incentive cues to invigorate reward-seeking behaviors upon which reward delivery is contingent. Sounds or other cues associated with receiving a reward can have a powerful effect on an individual’s behavior or emotions. For example, the sound of an ice cream truck might cause salivation and motivate an individual to stand in a long line. Cues may prompt specific actions necessary to receive a reward, for example, approaching the ice cream truck and paying to get an ice cream. This is called instrumental conditioning. Some cues predict reward delivery, without requiring a specific action. This is called Pavlovian conditioning. Pavlovian cues can still prompt actions, such as approaching the truck, even though the action is not required. But exactly what happens in the brain to generate these actions during the two types of learning, is unclear. Learning more about these reward-driven brain mechanisms might help scientists to develop better treatments for people with addiction or other conditions that involve compulsive reward-seeking behavior. Currently, scientists do not know enough about how the brain triggers this kind of behavior or how these processes lead to relapse in individuals who have been abstinent. Basic studies on the brain mechanisms that trigger reward-seeking behavior are needed. Now, Richard et al. show that a greater activity in neurons, or brain cells, in a part of the brain called the ventral pallidum predicts a faster response to a reward cue. In the experiments, some rats were trained to approach a certain location when they heard a particular sound in order to receive sugar water, a form of instrumental conditioning. Another group of rats underwent Pavlovian training and learned to expect sugar water every time they heard sound even if they did nothing. Both groups learned to approach the sugar water location when they heard the cue, despite the different training requirements. Richard et al. measured the activity of neurons in the ventral pallidum when the rats in the two groups heard the reward-associated sound. The experiments showed that the amount of activity in the brain cells in this area predicted whether a rat would approach the sugar-water delivery area and how quickly they would approach the reward after hearing the cue. The predictions were most reliable for rats that had to do something to get the sugar water. When Richard et al. reduced the activity in these cells they found the rats took longer to approach the reward source, but only when this action was required to receive sugar water. The experiments show that the ventral pallidum may provide the motivation to undertake reward-seeking behavior.
Collapse
Affiliation(s)
- Jocelyn M Richard
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Nakura Stout
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Deanna Acs
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States.,Solomon H Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
57
|
Muda R, Kicia M, Michalak-Wojnowska M, Ginszt M, Filip A, Gawda P, Majcher P. The Dopamine Receptor D4 Gene ( DRD4) and Financial Risk-Taking: Stimulating and Instrumental Risk-Taking Propensity and Motivation to Engage in Investment Activity. Front Behav Neurosci 2018; 12:34. [PMID: 29551965 PMCID: PMC5840237 DOI: 10.3389/fnbeh.2018.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/14/2018] [Indexed: 01/04/2023] Open
Abstract
The Dopamine receptor D4 gene (DRD4) has been previously linked to financial risk-taking propensity. Past works demonstrated that individuals with a specific variant of the DRD4 gene (7R+) are more risk-seeking than people without it (7R−). The most prominent explanation for this effect is the fact that 7R+ individuals are less sensitive to dopamine and thus seek more stimulation to generate “normal” dopaminergic activity and feel pleasure. However, results about this relationship have not been conclusive, and some revealed a lack of the relationship. In the current work, we tested if those unclear results might be explained by the motivation that underlies the risk-taking activity; i.e., if people take risks to feel excitement or if they take risk to obtain a specific goal. In our study we tested the differences in risk-taking between 7R+ and 7R− among people who are experienced in financial risk-taking (113 investors) and non-experienced financial decision makers (104 non-investors). We measured risk-taking propensity with the Holt-Laury test and the Stimulating-Instrumental Risk Inventory. Moreover, we asked investors about their motivations for engaging in investment activity. Our study is the next one to report a lack of differences in risk-taking between 7R+ and 7R− individuals. As well, our results did not indicate any differences between the 7R+ and 7R− investors in motivation to engage in investment activity. We only observed that risk-taking propensity was higher among investors than non-investors and this was noticed for all measures. More research is needed to better understand the genetic foundations of risk-taking, which could answer the question about the substantial variation in the domain of risky financial decisions.
Collapse
Affiliation(s)
- Rafał Muda
- Faculty of Economics, Maria Curie-Sklodowska University, Lublin, Poland
| | - Mariusz Kicia
- Faculty of Economics, Maria Curie-Sklodowska University, Lublin, Poland
| | | | - Michał Ginszt
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Lublin, Poland
| | - Piotr Gawda
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Lublin, Poland
| | - Piotr Majcher
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
58
|
Fujita M, Ide S, Ikeda K. Opioid and nondopamine reward circuitry and state-dependent mechanisms. Ann N Y Acad Sci 2018. [PMID: 29512887 DOI: 10.1111/nyas.13605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A common notion is that essentially all addictive drugs, including opioids, activate dopaminergic pathways in the brain reward system, and the inappropriate use of such drugs induces drug dependence. However, an opioid reward response is reportedly still observed in several models of dopamine depletion, including in animals that are treated with dopamine blockers, animals that are subjected to dopaminergic neuron lesions, and dopamine-deficient mice. The intracranial self-stimulation response is enhanced by stimulants but reduced by morphine. These findings suggest that dopaminergic neurotransmission may not always be required for opioid reward responses. Previous findings also indicate the possibility that dopamine-independent opioid reward may be observed in opioid-naive states but not in opioid-dependent states. Therefore, a history of opioid use should be considered when evaluating the dopamine dependency of opioid reward.
Collapse
Affiliation(s)
- Masayo Fujita
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
59
|
Kingsbury MA, Wilson LC. The Role of VIP in Social Behavior: Neural Hotspots for the Modulation of Affiliation, Aggression, and Parental Care. Integr Comp Biol 2018; 56:1238-1249. [PMID: 27940615 DOI: 10.1093/icb/icw122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although the modulation of social behaviors by most major neurochemical systems has been explored, there are still standouts, including the study of vasoactive intestinal polypeptide (VIP). VIP is a modulator of circadian, reproductive, and seasonal rhythms and is well known for its role in reproductive behavior, as it is the main vertebrate prolactin-releasing hormone. Originally isolated as a gut peptide, VIP and its cognate receptors are present in virtually every brain area that is important for social behavior, including all nodes of the core "social behavior network" (SBN). Furthermore, VIP cells show increased transcriptional activity throughout the SBN in response to social stimuli. Using a combination of comparative and mechanistic approaches in socially diverse species of estrildid finches and emberizid sparrows, we have identified neural "hotspots" in the SBN that relate to avian affiliative behavior, as well as neural "hotspots" that may represent critical nodes underlying a trade-off between aggression and parental care. Specifically, we have found that: (1) VIP fiber densities and VIP receptor binding in specific brain sites, such as the lateral septum, medial extended amygdala, arcopallium, and medial nidopallium, correlate with species and/or seasonal differences in flocking behavior, and (2) VIP cells and fibers within the anterior hypothalamus-caudocentral septal circuit relate positively to aggression and negatively to parental care while VIP elements in the mediobasal hypothalamus relate negatively to aggression and positively to parental care. Thus, while a given behavior or social context likely activates VIP circuitry throughout the SBN and beyond, key brain sites emerge as potential "hotspots" for the modulation of affiliation, aggression, and parental care.
Collapse
Affiliation(s)
- Marcy A Kingsbury
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Leah C Wilson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
60
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
61
|
Frontal cortex dysfunction as a target for remediation in opiate use disorder: Role in cognitive dysfunction and disordered reward systems. PROGRESS IN BRAIN RESEARCH 2018; 239:179-227. [DOI: 10.1016/bs.pbr.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
62
|
Sustkova-Fiserova M, Charalambous C, Havlickova T, Lapka M, Jerabek P, Puskina N, Syslova K. Alterations in Rat Accumbens Endocannabinoid and GABA Content during Fentanyl Treatment: The Role of Ghrelin. Int J Mol Sci 2017; 18:E2486. [PMID: 29165386 PMCID: PMC5713452 DOI: 10.3390/ijms18112486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022] Open
Abstract
The opioid-induced rise of extracellular dopamine, endocannabinoid anandamide and γ-aminobutyric acid (GABA) concentrations triggered by opioids in the nucleus accumbens shell (NACSh) most likely participate in opioid reward. We have previously demonstrated that systemic administration of ghrelin antagonist (JMV2959) significantly decreased morphine-induced dopamine and anandamide (N-arachidonoylethanolamine, AEA) increase in the NACSh. Fentanyl is considered as a µ-receptor-selective agonist. The aim of this study was to test whether JMV2959, a growth hormone secretagogue receptor (GHS-R1A) antagonist, can influence the fentanyl-induced effects on anandamide, 2-arachidonoylglycerol (2-AG) and GABA in the NACSh and specify the involvement of GHS-R1A located in the ventral tegmental area (VTA) and nucleus accumbens (NAC). Using in vivo microdialysis in rats, we have found that pre-treatment with JMV2959 reversed dose dependently fentanyl-induced anandamide increases in the NACSh, resulting in a significant AEA decrease and intensified fentanyl-induced decreases in accumbens 2-AG levels, with both JMV2959 effects more expressed when administered into the NACSh in comparison to the VTA. JMV2959 pre-treatment significantly decreased the fentanyl-evoked accumbens GABA efflux and reduced concurrently monitored fentanyl-induced behavioural stimulation. Our current data encourage further investigation to assess if substances affecting GABA or endocannabinoid concentrations and action, such as GHS-R1A antagonists, can be used to prevent opioid-seeking behaviour.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Tereza Havlickova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Pavel Jerabek
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (C.C.); (T.H.); (M.L.); (P.J.)
| | - Nina Puskina
- Department of Addictology, First Faculty of Medicine, Charles University, Apolinarska 4, 128 00 Prague 2, Czech Republic;
| | - Kamila Syslova
- Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT, Technicka 5, 166 28 Prague 6, Czech Republic;
| |
Collapse
|
63
|
CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana. J Neurosci 2017; 37:10943-10954. [PMID: 29038246 DOI: 10.1523/jneurosci.0190-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 01/13/2023] Open
Abstract
The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ9-tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ9-tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ9-tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes.SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ9-tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ9-tetrahydrocannabinol use.
Collapse
|
64
|
Distinctive Modulation of Dopamine Release in the Nucleus Accumbens Shell Mediated by Dopamine and Acetylcholine Receptors. J Neurosci 2017; 37:11166-11180. [PMID: 29030431 DOI: 10.1523/jneurosci.0596-17.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023] Open
Abstract
Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivoSIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is also minimal in the shell in part due to elevated acetylcholinesterase activity. This distinctive modulation of DA transmission in the shell may have functional implications in the acquisition of reward-motivated behaviors and reward seeking.
Collapse
|
65
|
Spool JA, Riters LV. Associations Between Environmental Resources and the "Wanting" and "Liking" of Male Song in Female Songbirds. Integr Comp Biol 2017; 57:835-845. [PMID: 28985327 PMCID: PMC5886317 DOI: 10.1093/icb/icx117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reproductive success requires animals to adjust social and sexual behaviors in response to changes in environmental resources. In many species, males produce courtship signals to attract females; however, not all females are attracted by these signals. One possible explanation for this is that environmental resources alter neural mechanisms underlying motivation and reward in females so that male courtship is attractive when conditions are most favorable for an individual to breed. Here, we first introduce resource-dependent breeding behaviors of female songbirds. We then review studies that show associations between neural systems underlying motivation and reward, female responses to male courtship stimuli, and environmental resources necessary for breeding success (e.g., in female starlings, a nest cavity). Overall, we review evidence supporting the working hypotheses that (1) dopamine underlies sexually-motivated female responses to male courtship stimuli (i.e., song), (2) opioids underlie reward induced in females by hearing male courtship song, and (3) these systems are possibly modified by resources such that male courtship song is only attractive and rewarding to females with access to limited environmental resources essential for breeding success.
Collapse
Affiliation(s)
- Jeremy A. Spool
- Department of Integrative Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
| |
Collapse
|
66
|
Cho YK, Kim S, Jung HH, Chang JW, Kim YJ, Shin HC, Jun SB. Neuromodulation methods for animal locomotion control. Biomed Eng Lett 2017. [DOI: 10.1007/s13534-016-0234-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
67
|
Beauchaine TP, Zisner A. Motivation, emotion regulation, and the latent structure of psychopathology: An integrative and convergent historical perspective. Int J Psychophysiol 2017; 119:108-118. [DOI: 10.1016/j.ijpsycho.2016.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022]
|
68
|
Lehner M, Gryz M, Wisłowska-Stanek A, Turzyńska D, Sobolewska A, Skórzewska A, Płaźnik A. The amphetamine-associated context exerts a stronger motivational effect in low-anxiety rats than in high-anxiety rats. Behav Brain Res 2017; 330:97-107. [PMID: 28479265 DOI: 10.1016/j.bbr.2017.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/28/2022]
Abstract
This study used the conditioned place preference test to explore the effects of subchronic amphetamine administration on drug-associated cues in rats with different emotional reactivity. We also examined the changes in markers of dopaminergic activity in brain regions in response to the amphetamine-paired context, after a withdrawal period preceded by subchronic amphetamine treatment. We used low-anxiety (LR) and high-anxiety (HR) rats, which are known to exhibit distinct levels of susceptibility to amphetamine. Compared to HR rats, LR rats spent significantly more time in the amphetamine-paired compartment after the withdrawal period preceded by subchronic amphetamine treatment. Compared to HR control rats, LR control rats showed higher expression of the D1 receptor in the nucleus accumbens core (NAC core) and basolateral amygdala and higher expression of the D2 receptor in the NAC core. After the amphetamine treatment and withdrawal period, the LR rats showed higher D1 receptor expression in the NAC core, an increased level of homovanilic acid (HVA) in the prefrontal cortex, the NAC and the central amygdala than HR rats, as well as lower D2 receptor expression in the NAC core and the amygdala than LR control rats. These results indicate that the differences in the activity of the dopaminergic mesolimbic system in the HR and LR rats are maintained and even enhanced after a multi-day break in the use of the drug, indicating the occurrence of sensitisation. These findings show that the innate reactivity of the limbic dopaminergic innervations, dependent on the level of emotional reactivity, may significantly and chronically modify the development and maintenance of sensitisation to amphetamine.
Collapse
Affiliation(s)
- Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CEPT, 1B Banacha Streeet, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CEPT, 1B Banacha Streeet, 02-097 Warsaw, Poland
| |
Collapse
|
69
|
Fang Q, Wang J. Place preferences associated with pups or cocaine change the expression of D2R, V1aR and OTR in the NAcc and MeA and the levels of plasma AVP, OT, T and E2 in mandarin vole fathers. Psychoneuroendocrinology 2017; 80:147-154. [PMID: 28371737 DOI: 10.1016/j.psyneuen.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/28/2023]
Abstract
Drug abuse often has negative impacts on parenting behavior. The dopamine (DA), arginine vasopressin (AVP) and oxytocin (OT) systems are involved in paternal behavior and drug-induced behaviors. Mandarin voles (Microtus mandarinus) are socially monogamous rodents with high levels of paternal behavior. The aims of this study were to examine the protein expression levels of the DA 2-type receptor (D2R), AVP receptor 1A(V1aR) and OT receptor (OTR) in the nucleus accumbens (NAcc) and medial amygdala (MeA) as well as the plasma hormone responses after mandarin vole fathers were conditioned with their pups or cocaine. Our experimental models are based on the conditioned place preference (CPP) paradigm. We observed CPP in response to either pup- or cocaine-associated cues in the mandarin vole fathers. Fathers that were conditioned to either pups or cocaine had a lower expression of D2R and V1aR in the NAcc than did controls. Fathers that were conditioned to pups had higher levels of OTR expression in the MeA and higher plasma levels of AVP, OT, estradiol (E2), and lower plasma levels of testosterone (T) than did controls. Fathers that were conditioned to cocaine exhibited lower levels of plasma AVP and T. These results indicate that the reward effects of pup and cocaine are both mediated by D2R, V1aR and OTR in the NAcc and MeA and that there are subtle differences between the pup and cocaine reward mechanisms that are associated with altered plasma AVP, OT, T and E2.
Collapse
Affiliation(s)
- Qianqian Fang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Jianli Wang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
70
|
Ferré S. Hormones and Neuropeptide Receptor Heteromers in the Ventral Tegmental Area. Targets for the Treatment of Loss of Control of Food Intake and Substance Use Disorders. ACTA ACUST UNITED AC 2017; 4:167-183. [PMID: 28580231 PMCID: PMC5432584 DOI: 10.1007/s40501-017-0109-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hormones and neuropeptides represent biological correlates of internal homeostatic signals detected and integrated in the hypothalamus, which establishes a robust functional connection with the ventral tegmental area (VTA). The hypothalamus-VTA connection determines the ability of these signals to influence central dopaminergic neurotransmission and, therefore, their ability to increase responsiveness to their reward-associated stimuli and to establish appropriate associative learning. The hypothalamus also provides the main source of the multiple neuropeptides that are released in the VTA. With volume transmission of neuropeptides and hormones, extrasynaptic receptors within the VTA provide a fine-tune mechanism, which depends on the ability of molecularly different G protein-coupled receptors (GPCRs) to form heteromers. GPCR heteromer is defined as a macromolecular complex composed of at least two different receptor units (protomers) with biochemical properties that are demonstrably different from those of its individual components. GPCR heteromers can provide unique allosteric properties to specific ligands, which provides new avenues for drug development. We have identified specific GPCR heteromers in the VTA that integrate orexin and CRF neurotransmission and opioid and galanin neurotransmission, which play a very significant role in the modulation of dopaminergic neuronal activity and which can constitute targets for the treatment of loss of control of food intake and substance use disorders.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD 21224 USA
| |
Collapse
|
71
|
Monosodium glutamate-associated alterations in open field, anxiety-related and conditioned place preference behaviours in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:677-689. [DOI: 10.1007/s00210-017-1371-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
72
|
Shelkar GP, Kumar S, Singru PS, Subhedar NK, Kokare DM. Noradrenergic inputs from locus coeruleus to posterior ventral tegmental area are essential to support ethanol reinforcement. Addict Biol 2017; 22:291-302. [PMID: 26549324 DOI: 10.1111/adb.12321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Although dysregulation of the dopaminergic mesolimbic system is generally considered central to addiction, the involvement of other circuits is increasingly being appreciated. An interaction between locus coeruleus (LC) noradrenergic neurons and the posterior ventral tegmental area (pVTA) dopaminergic system, in the processing of drug-triggered reward, has been suggested, but not demonstrated in behaving animals. Herein, we try to tease out the precise role of noradrenergic neurons in the LC-VTA circuit in mediating reward and reinforcement behavior associated with ethanol. In the standard two-lever (active/inactive) operant paradigm, the rats were trained to self-administer ethanol in pVTA and subjected to pharmacological intervention. Intra-pVTA administration of phenylephrine (alpha-1 adrenoceptor agonist) increased ethanol self-administration, while prazosin and disulfiram (agents that reduce noradrenergic tone) produced opposite effects. While degeneration [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, DSP-4, intraperitoneal route] or silencing (lidocaine or muscimol, both via intra-LC route) of the LC noradrenergic neurons decreased, phenylephrine via the intra-LC route reinstated ethanol self-administration. Furthermore, lidocaine reduced ethanol self-administration, but the effect was fully attenuated by noradrenaline given directly in the pVTA. This suggests that the feedback signals from LC to pVTA are necessary to sustain the ethanol self-infusion activity. Ethanol self-administration significantly increased tyrosine hydroxylase immunoreactivity in pVTA and LC; the response was blocked by DSP-4 pre-treatment. While dopamine D1 , but not D2 , receptors were localized on noradrenergic LC neurons, pre-treatment with SCH-23390 (intra-LC) dampened the lever press activity. We suggest that two-way communications between VTA and LC regions is essential for ethanol-triggered reinforcement behavior.
Collapse
Affiliation(s)
- Gajanan P. Shelkar
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; India
| | - Santosh Kumar
- School of Biological Sciences; National Institute of Science Education and Research (NISER); Institute of Physics Campus; Sachivalaya Marg, PO Sainik School, Bhubaneswar; India
| | - Praful S. Singru
- School of Biological Sciences; National Institute of Science Education and Research (NISER); Institute of Physics Campus; Sachivalaya Marg, PO Sainik School, Bhubaneswar; India
| | | | - Dadasaheb M. Kokare
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; India
| |
Collapse
|
73
|
Attenuation of the anxiogenic effects of cocaine by 5-HT 1B autoreceptor stimulation in the bed nucleus of the stria terminalis of rats. Psychopharmacology (Berl) 2017; 234:485-495. [PMID: 27888284 PMCID: PMC5226880 DOI: 10.1007/s00213-016-4479-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
RATIONALE Cocaine produces significant aversive/anxiogenic actions whose underlying neurobiology remains unclear. A possible substrate contributing to these actions is the serotonergic (5-HT) pathway projecting from the dorsal raphé (DRN) to regions of the extended amygdala, including the bed nucleus of the stria terminalis (BNST) which have been implicated in the production of anxiogenic states. OBJECTIVES The present study examined the contribution of 5-HT signaling within the BNST to the anxiogenic effects of cocaine as measured in a runway model of drug self-administration. METHODS Male Sprague-Dawley rats were fitted with bilateral infusion cannula aimed at the BNST and then trained to traverse a straight alley once a day for a single 1 mg/kg i.v. cocaine infusion delivered upon goal-box entry on each of 16 consecutive days/trials. Intracranial infusions of CP 94,253 (0, 0.25, 0.5, or 1.0 μg/side) were administered to inhibit local 5-HT release via activation of 5-HT1B autoreceptors. To confirm receptor specificity, the effects of this treatment were then challenged by co-administration of the selective 5-HT1B antagonist NAS-181. RESULTS Intra-BNST infusions of the 5-HT1B autoreceptor agonist attenuated the anxiogenic effects of cocaine as reflected by a decrease in runway approach-avoidance conflict behavior. This effect was reversed by the 5-HT1B antagonist. Neither start latencies (a measure of the subject's motivation to seek cocaine) nor spontaneous locomotor activity (an index of motoric capacity) were altered by either treatment. CONCLUSIONS Inhibition of 5-HT1B signaling within the BNST selectively attenuated the anxiogenic effects of cocaine, while leaving unaffected the positive incentive properties of the drug.
Collapse
|
74
|
Hasirci AS, Maldonado-Devincci AM, Beattie MC, O'Buckley TK, Morrow AL. Cellular GABAergic Neuroactive Steroid (3α,5α)-3-Hydroxy-Pregnan-20-One (3α,5α-THP) Immunostaining Levels Are Increased in the Ventral Tegmental Area of Human Alcohol Use Disorder Patients: A Postmortem Study. Alcohol Clin Exp Res 2017; 41:299-311. [PMID: 28068457 DOI: 10.1111/acer.13300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/26/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP; allopregnanolone) enhances GABAergic activity and produces subjective effects similar to ethanol (EtOH). The effect of chronic alcohol exposure on 3α,5α-THP concentrations has been studied in mouse, rat, and monkey limbic brain areas. Chronic EtOH exposure produced divergent brain region and cell-specific changes in 3α,5α-THP concentrations in animal studies. However, 3α,5α-THP levels in similar human brain regions have never been examined in individuals diagnosed with alcohol use disorder (AUD). Therefore, we used immunohistochemistry (IHC) to examine 3α,5α-THP levels in the ventral tegmental area (VTA), substantia nigra pars medialis (SNM), and amygdala of human postmortem brains of patients diagnosed with AUD compared with social drinkers. The effects of sex and liver disease on 3α,5α-THP concentrations were examined in the aforementioned brain regions. METHODS Human postmortem brains of AUD patients and age-matched controls were obtained from the New South Wales Brain Tissue Resource Center. IHC was performed using anti-3α,5α-THP antibody on formalin-fixed paraffin-embedded brain sections to detect cellular 3α,5α-THP levels. Immunoreactivity was analyzed by pixel density/mm2 for the comparison between AUD patients and controls. RESULTS 3α,5α-THP immunoreactivity was increased by 23.2 ± 9% in the VTA of AUD patients compared with age-matched controls (p = 0.014). Moreover, a 29.6 ± 10% increase in 3α,5α-THP immunoreactivity was observed in the SNM of male AUD patients compared with male controls (p < 0.01), but not in female subjects. 3α,5α-THP immunoreactivity in the VTA and SNM regions did not differ between noncirrhotic and cirrhotic AUD patients. A sex difference in 3α,5α-THP immunoreactivity (female 51 ± 18% greater than male) was observed among control subjects in the SNM, but no other brain region. 3α,5α-THP immunoreactivity in the basolateral amygdala and lateral amygdala was negatively correlated with the length of the tissue fixation time as well as the age of the subjects, precluding assessment of the effect of AUD. CONCLUSIONS Cellular 3α,5α-THP levels in VTA are increased in human AUD patients, an effect that is likely independent of sex and liver disease. The differences between animal models and human studies should be factored into the interpretation of the physiological significance of elevated 3α,5α-THP levels in humans.
Collapse
Affiliation(s)
- Ahmet Sait Hasirci
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Matthew C Beattie
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
75
|
Somalwar AR, Shelkar GP, Subhedar NK, Kokare DM. The role of neuropeptide CART in the lateral hypothalamic-ventral tegmental area (LH-VTA) circuit in motivation. Behav Brain Res 2017; 317:340-349. [DOI: 10.1016/j.bbr.2016.09.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 12/20/2022]
|
76
|
McCue DL, Kasper JM, Hommel JD. Regulation of motivation for food by neuromedin U in the paraventricular nucleus and the dorsal raphe nucleus. Int J Obes (Lond) 2017; 41:120-128. [PMID: 27748746 PMCID: PMC5209284 DOI: 10.1038/ijo.2016.178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND Motivation for high-fat food is thought to contribute to excess caloric intake in obese individuals. A novel regulator of motivation for food may be neuromedin U (NMU), a highly-conserved neuropeptide that influences food intake. Although these effects of NMU have primarily been attributed to signaling in the paraventricular nucleus of the hypothalamus (PVN), NMU has also been found in other brain regions involved in both feeding behavior and motivation. We investigate the effects of NMU on motivation for food and food intake, and identify the brain regions mediating these effects. METHODS The motivational state for a particular reinforcer (e.g., high-fat food) can be assessed using a progressive-ratio schedule of reinforcement under which an increasing number of lever presses are required to obtain subsequent reinforcers. Here, we have used a progressive-ratio operant responding paradigm in combination with an assessment of cumulative food intake to evaluate the effects of NMU administration in rats, and identify the brain regions mediating these effects. RESULTS We found that peripheral administration of NMU decreases operant responding for high-fat food in rats. Evaluation of Fos-like immunoreactivity in response to peripheral NMU indicated the PVN and dorsal raphe nucleus (DRN) as sites of action for NMU. NMU infusion into either region mimics the effects of peripheral NMU on food intake and operant responding for food. NMU-containing projections from the lateral hypothalamus (LH) to the PVN and DRN were identified as an endogenous source of NMU. CONCLUSIONS These results identify the DRN as a site of action for NMU, demonstrate that the LH provides endogenous NMU to the PVN and DRN and implicate NMU signaling in the PVN and DRN as a novel regulator of motivation for high-fat foods.
Collapse
Affiliation(s)
- David L. McCue
- Department of Neuroscience, University of Texas Medical Branch, Galveston, TX 77555-0615
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
| | - James M. Kasper
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-0615
| | - Jonathan D. Hommel
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-0615
| |
Collapse
|
77
|
Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area. J Neurosci 2016; 37:1176-1186. [PMID: 28007761 DOI: 10.1523/jneurosci.2442-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. SIGNIFICANCE STATEMENT The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form functional heteromers with the galanin receptor subtype Gal1 (Gal1R), which modulate the activity of the VTA dopaminergic neurons. The MOR-Gal1R heteromer can explain previous results showing antagonistic galanin-opioid interactions and offers a new therapeutic target for the treatment of opioid use disorder.
Collapse
|
78
|
Tabbaa M, Paedae B, Liu Y, Wang Z. Neuropeptide Regulation of Social Attachment: The Prairie Vole Model. Compr Physiol 2016; 7:81-104. [PMID: 28135000 DOI: 10.1002/cphy.c150055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Social attachments are ubiquitous among humans and integral to human health. Although great efforts have been made to elucidate the neural underpinnings regulating social attachments, we still know relatively little about the neuronal and neurochemical regulation of social attachments. As a laboratory animal research model, the socially monogamous prairie vole (Microtus ochrogaster) displays behaviors paralleling human social attachments and thus has provided unique insights into the neural regulation of social behaviors. Research in prairie voles has particularly highlighted the significance of neuropeptidergic regulation of social behaviors, especially of the roles of oxytocin (OT) and vasopressin (AVP). This article aims to review these findings. We begin by discussing the role of the OT and AVP systems in regulating social behaviors relevant to social attachments, and thereafter restrict our discussion to studies in prairie voles. Specifically, we discuss the role of OT and AVP in adult mate attachments, biparental care, social isolation, and social buffering as informed by studies utilizing the prairie vole model. Not only do these studies offer insight into social attachments in humans, but they also point to dysregulated mechanisms in several mental disorders. We conclude by discussing these implications for human health. © 2017 American Physiological Society. Compr Physiol 7:81-104, 2017.
Collapse
Affiliation(s)
- Manal Tabbaa
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Brennan Paedae
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
79
|
Doremus-Fitzwater TL, Spear LP. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals. Neurosci Biobehav Rev 2016; 70:121-134. [PMID: 27524639 PMCID: PMC5612441 DOI: 10.1016/j.neubiorev.2016.08.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a "reward-centric" phenotype-an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a "reward deficiency" syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater "pleasure" from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA.
| | - Linda P Spear
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA
| |
Collapse
|
80
|
Gerth AI, Alhadeff AL, Grill HJ, Roitman MF. Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem. Brain Res 2016; 1655:252-260. [PMID: 27789280 DOI: 10.1016/j.brainres.2016.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/30/2022]
Abstract
Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional contributions of cocaine to dopamine signaling, we administered cocaine to the lateral or fourth ventricles and compared the effects on dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area to that of systemically-delivered cocaine. Stimulation trains caused a sharp rise in dopamine followed by a slower return to baseline. The magnitude of dopamine release ([DA]max) as well as the latency to decay to fifty percent of the maximum (t(1/2); index of DAT activity) by each stimulation train were recorded. All routes of cocaine delivery caused an increase in [DA]max; only systemic cocaine caused an increase in t(1/2). Importantly, these data are the first to show that hindbrain (fourth ventricle)-delivered cocaine modulates phasic dopamine signaling. Fourth ventricular cocaine robustly increased cFos immunoreactivity in the nucleus of the solitary tract (NTS), suggesting a neural substrate for hindbrain cocaine-mediated effects on [DA]max. Together, the data demonstrate that cocaine-induced effects on phasic dopamine signaling are mediated via actions throughout the brain including the hindbrain.
Collapse
Affiliation(s)
- Ashlynn I Gerth
- Department of Psychology, University of Illinois at Chicago, 1007 W Harrison St, Chicago, IL 60607, USA
| | - Amber L Alhadeff
- Department of Psychology, University of Pennsylvania, 3720 Walnut St, Philadelphia, PA 19104, USA
| | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, 3720 Walnut St, Philadelphia, PA 19104, USA
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, 1007 W Harrison St, Chicago, IL 60607, USA.
| |
Collapse
|
81
|
Liu C, Wang J, Zhan B, Cheng G. Neuronal activity and the expression of hypothalamic oxytocin and vasopressin in social versus cocaine conditioning. Behav Brain Res 2016; 310:84-92. [DOI: 10.1016/j.bbr.2016.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
|
82
|
Youdim M, Zamir N, Yehuda S. The Involvement of Enkephalin System in Analgesia Induced by Brain Iron Deficiency. Nutr Neurosci 2016; 3:357-65. [DOI: 10.1080/1028415x.2000.11747333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
83
|
Borkar CD, Upadhya MA, Shelkar GP, Subhedar NK, Kokare DM. Neuropeptide Y system in accumbens shell mediates ethanol self-administration in posterior ventral tegmental area. Addict Biol 2016; 21:766-75. [PMID: 25929272 DOI: 10.1111/adb.12254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although modulatory effects of neuropeptide Y (NPY) on ethanol consumption are well established, its role in ethanol reward, in the framework of mesolimbic dopaminergic system, has not been studied. We investigated the influence of nucleus accumbens shell (AcbSh) NPYergic system on ethanol self-administration in posterior ventral tegmental area (p-VTA) using intracranial self-administration paradigm. Rats were stereotaxically implanted with cannulae targeted unilaterally at the right p-VTA and trained to self-administer ethanol (200 mg%) in standard two-lever (active/inactive) operant chamber, an animal model with high predictive validity to test the rewarding mechanisms. Over a period of 7 days, these rats showed a significant increase in the number of lever presses for ethanol self-administration suggesting reinforcement. While intra-AcbSh NPY (1 or 2 ng/rat) or [Leu(31) , Pro(34) ]-NPY (0.5 or 1 ng/rat) dose-dependently increased ethanol self-administration, BIBP3226 (0.4 or 0.8 ng/rat) produced opposite effect. The rats conditioned to self-administer ethanol showed significant increase in the population of NPY-immunoreactive cells and fibres in the AcbSh, central nucleus of amygdala (CeA), hypothalamic arcuate nucleus (ARC) and lateral part of bed nucleus of stria terminalis as compared with that in the naïve rats. Neuronal tracing studies showed that NPY innervations in the AcbSh may derive from the neurons of ARC and CeA. As NPY and dopamine systems in reward areas are known to interact, we suggest that NPY inputs from ARC and CeA may play an important role in modulation of the dopaminergic system in the AcbSh and consequently influence the ethanol induced reward and addiction.
Collapse
Affiliation(s)
- Chandrashekhar D. Borkar
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| | - Manoj A. Upadhya
- Pharmacology Department; Shrimati Kishoritai Bhoyar College of Pharmacy; New Kamptee, Nagpur Maharashtra India
| | - Gajanan P. Shelkar
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| | - Nishikant K. Subhedar
- Biology Department; Indian Institute of Science Education and Research (IISER); Pune Maharashtra India
| | - Dadasaheb M. Kokare
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| |
Collapse
|
84
|
Marcinkiewcz CA, Lowery-Gionta EG, Kash TL. Serotonin's Complex Role in Alcoholism: Implications for Treatment and Future Research. Alcohol Clin Exp Res 2016; 40:1192-201. [PMID: 27161942 DOI: 10.1111/acer.13076] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/11/2016] [Indexed: 11/28/2022]
Abstract
Current pharmacological treatments for alcohol dependence have focused on reducing alcohol consumption, but to date there are few treatments that also address the negative affective symptoms during acute and protracted alcohol withdrawal which are often exacerbated in people with comorbid anxiety and depression. Selective serotonin reuptake inhibitors (SSRIs) are sometimes prescribed to ameliorate these symptoms but can exacerbate anxiety and cravings in a select group of patients. In this critical review, we discuss recent literature describing an association between alcohol dependence, the SERT linked polymorphic region (5-HTTLPR), and pharmacological response to SSRIs. Given the heterogeneity in responsiveness to serotonergic drugs across the spectrum of alcoholic subtypes, we assess the contribution of specific 5-HT circuits to discrete endophenotypes of alcohol dependence. 5-HT circuits play a distinctive role in reward, stress, and executive function which may account for the variation in response to serotonergic drugs. New optogenetic and chemogenetic methods for dissecting 5-HT circuits in alcohol dependence may provide clues leading to more effective pharmacotherapies. Although our current understanding of the role of 5-HT systems in alcohol dependence is incomplete, there is some evidence to suggest that 5-HT3 receptor antagonists are effective in people with the L/L genotype of the 5-HTTLPR polymorphism while SSRIs may be more beneficial to people with the S/L or S/S genotype. Studies that assess the impact of serotonin transporter polymorphisms on 5-HT circuit function and the subsequent development of alcohol use disorders will be an important step forward in treating alcohol dependence.
Collapse
Affiliation(s)
- Catherine A Marcinkiewcz
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily G Lowery-Gionta
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
85
|
Abstract
Most people who are regular consumers of psychoactive drugs are not drug addicts, nor will they ever become addicts. In neurobiological theories, non-addictive drug consumption is acknowledged only as a "necessary" prerequisite for addiction, but not as a stable and widespread behavior in its own right. This target article proposes a new neurobiological framework theory for non-addictive psychoactive drug consumption, introducing the concept of "drug instrumentalization." Psychoactive drugs are consumed for their effects on mental states. Humans are able to learn that mental states can be changed on purpose by drugs, in order to facilitate other, non-drug-related behaviors. We discuss specific "instrumentalization goals" and outline neurobiological mechanisms of how major classes of psychoactive drugs change mental states and serve non-drug-related behaviors. We argue that drug instrumentalization behavior may provide a functional adaptation to modern environments based on a historical selection for learning mechanisms that allow the dynamic modification of consummatory behavior. It is assumed that in order to effectively instrumentalize psychoactive drugs, the establishment of and retrieval from a drug memory is required. Here, we propose a new classification of different drug memory subtypes and discuss how they interact during drug instrumentalization learning and retrieval. Understanding the everyday utility and the learning mechanisms of non-addictive psychotropic drug use may help to prevent abuse and the transition to drug addiction in the future.
Collapse
|
86
|
Morais-Silva G, Ferreira-Santos M, Marin MT. Conessine, an H3 receptor antagonist, alters behavioral and neurochemical effects of ethanol in mice. Behav Brain Res 2016; 305:100-7. [DOI: 10.1016/j.bbr.2016.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/09/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
|
87
|
Combined approaches for the relief of spinal cord injury-induced neuropathic pain. Complement Ther Med 2016; 25:27-33. [DOI: 10.1016/j.ctim.2015.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 02/06/2023] Open
|
88
|
Jiao DL, Liu Y, Long JD, Du J, Ju YY, Zan GY, Liu JG, Zhao M. Involvement of dorsal striatal α1-containing GABAA receptors in methamphetamine-associated rewarding memories. Neuroscience 2016; 320:230-8. [PMID: 26868969 DOI: 10.1016/j.neuroscience.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 02/01/2023]
Abstract
Rewarding memories induced by addictive drugs may contribute to persistent drug-seeking behaviors, which is an important contributing factor to drug addiction. However, the biological mechanisms underlying drug-associated rewarding memories have not yet been fully understood, especially the new synthetic drugs, such as amphetamine-type stimulants (ATS). In this study, using the rat-conditioned place preference (CPP) model, a classic animal model for the reward-associated effects of addictive drugs, we found that the expression level of GABAA α1 subunits was significantly decreased in the dorsal striatum (Dstr) after conditioned methamphetamine (METH) pairing, and no significant differences were observed in the other four rewarding memory-associated areas (medial prefrontal cortex (mPFC), nucleus accumbens (NAc), amygdala (Amy), and dorsal hippocampus (DH)). Intra-Dstr injection of either the GABAA receptor agonist muscimol or the specific α1GABAA receptor-preferring benzodiazepine (BDZ) agonist zolpidem significantly abolished METH CPP formation. Thus, this study extends previous findings by showing that GABAA receptors, particularly the α1-containing GABAA receptors, may be strongly implicated in METH-associated rewarding memories. This work provides us with a new perspective on the goal of treating ATS addiction.
Collapse
Affiliation(s)
- D-L Jiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Y Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - J-D Long
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai 201203, China
| | - J Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Y-Y Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - G-Y Zan
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai 201203, China
| | - J-G Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai 201203, China.
| | - M Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
89
|
Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30:112-27. [PMID: 26755548 DOI: 10.1177/0269881115622240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Tiozzo Fasiolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Malgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
90
|
Oliva I, Wanat MJ. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors. Front Psychiatry 2016; 7:30. [PMID: 27014097 PMCID: PMC4780106 DOI: 10.3389/fpsyt.2016.00030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/23/2016] [Indexed: 01/10/2023] Open
Abstract
Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders.
Collapse
Affiliation(s)
- Idaira Oliva
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio , San Antonio, TX , USA
| | - Matthew J Wanat
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio , San Antonio, TX , USA
| |
Collapse
|
91
|
Yusoff NHM, Suhaimi FW, Vadivelu RK, Hassan Z, Rümler A, Rotter A, Amato D, Dringenberg HC, Mansor SM, Navaratnam V, Müller CP. Abuse potential and adverse cognitive effects of mitragynine (kratom). Addict Biol 2016; 21:98-110. [PMID: 25262913 DOI: 10.1111/adb.12185] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitragynine is the major psychoactive alkaloid of the plant kratom/ketum. Kratom is widely used in Southeast Asia as a recreational drug, and increasingly appears as a pure compound or a component of 'herbal high' preparations in the Western world. While mitragynine/kratom may have analgesic, muscle relaxant and anti-inflammatory effects, its addictive properties and effects on cognitive performance are unknown. We isolated mitragynine from the plant and performed a thorough investigation of its behavioural effects in rats and mice. Here we describe an addictive profile and cognitive impairments of acute and chronic mitragynine administration, which closely resembles that of morphine. Acute mitragynine has complex effects on locomotor activity. Repeated administration induces locomotor sensitization, anxiolysis and conditioned place preference, enhances expression of dopamine transporter- and dopamine receptor-regulating factor mRNA in the mesencephalon. While there was no increase in spontaneous locomotor activity during withdrawal, animals showed hypersensitivity towards small challenging doses for up to 14 days. Severe somatic withdrawal signs developed after 12 hours, and increased level of anxiety became evident after 24 hours of withdrawal. Acute mitragynine independently impaired passive avoidance learning, memory consolidation and retrieval, possibly mediated by a disruption of cortical oscillatory activity, including the suppression of low-frequency rhythms (delta and theta) in the electrocorticogram. Chronic mitragynine administration led to impaired passive avoidance and object recognition learning. Altogether, these findings provide evidence for an addiction potential with cognitive impairments for mitragynine, which suggest its classification as a harmful drug.
Collapse
Affiliation(s)
| | | | - Raja K. Vadivelu
- Centre for Drug Research; Universiti Sains Malaysia; Malaysia
- Eskitis Institute for Drug Discovery; Griffith University; Australia
| | - Zurina Hassan
- Centre for Drug Research; Universiti Sains Malaysia; Malaysia
| | - Anne Rümler
- Department of Psychiatry and Psychotherapy; University Clinic; Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Andrea Rotter
- Department of Psychiatry and Psychotherapy; University Clinic; Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Davide Amato
- Department of Psychiatry and Psychotherapy; University Clinic; Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| | - Hans C. Dringenberg
- Department of Psychology and Centre for Neuroscience Studies; Queen's University; Canada
| | | | | | - Christian P. Müller
- Department of Psychiatry and Psychotherapy; University Clinic; Friedrich-Alexander-University Erlangen-Nuremberg; Germany
| |
Collapse
|
92
|
Nasehi M, Sharaf-Dolgari E, Ebrahimi-Ghiri M, Zarrindast MR. The hippocampal NMDA receptors may be involved in acquisition, but not expression of ACPA-induced place preference. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:83-90. [PMID: 26072736 DOI: 10.1016/j.pnpbp.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/23/2015] [Accepted: 06/04/2015] [Indexed: 11/30/2022]
Abstract
Numerous studies have investigated the functional interactions between the endocannabinoid and glutamate systems in the hippocampus. The present study was made to test whether N-methyl-D-aspartate (NMDA) receptors of the CA1 region of the dorsal hippocampus (CA1) are implicated in ACPA (a selective cannabinoid CB1 receptor agonist)-induced place preference. Using a 3-day schedule of conditioning, it was found that intraperitoneal (i.p.) administration of ACPA (0.02mg/kg) caused a significant conditioned place preference (CPP) in male albino NMRI mice. Intra-CA1 microinjection of the NMDA or D-[1]-2-amino-7-Phosphonoheptanoic acid (D-AP7, NMDA receptor antagonist), failed to induce CPP or CPA (condition place aversion), while NMDA (0.5μg/mouse) potentiated the ACPA (0.01mg/kg)-induced CPP; and D-AP7 (a specific NMDA receptor antagonist; 0.5 and 1μg/mouse) reversed the ACPA (0.02mg/kg)-induced CPP. Moreover, microinjection of different doses of glutamatergic agents on the testing day did not alter the expression of ACPA-induced place preference. None of the treatments, with the exception of ACPA (0.04mg/kg), had an effect on locomotor activity. In conclusion, these observations provide evidence that glutamate NMDA receptors of the CA1 may be involved in the potentiation of ACPA rewarding properties in the acquisition, but not expression, of CPP in mice.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Neuroscience and Cognitive Research Center (NCRC), Medical Genomics Research Center and School of Advanced Sciences in Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran.
| | - Elmira Sharaf-Dolgari
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Northern branch, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Neuroscience and Cognitive Research Center (NCRC), Medical Genomics Research Center and School of Advanced Sciences in Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
93
|
Hipólito L, Wilson-Poe A, Campos-Jurado Y, Zhong E, Gonzalez-Romero J, Virag L, Whittington R, Comer SD, Carlton SM, Walker BM, Bruchas MR, Morón JA. Inflammatory Pain Promotes Increased Opioid Self-Administration: Role of Dysregulated Ventral Tegmental Area μ Opioid Receptors. J Neurosci 2015; 35:12217-31. [PMID: 26338332 PMCID: PMC4556787 DOI: 10.1523/jneurosci.1053-15.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023] Open
Abstract
Pain management in opioid abusers engenders ethical and practical difficulties for clinicians, often resulting in pain mismanagement. Although chronic opioid administration may alter pain states, the presence of pain itself may alter the propensity to self-administer opioids, and previous history of drug abuse comorbid with chronic pain promotes higher rates of opioid misuse. Here, we tested the hypothesis that inflammatory pain leads to increased heroin self-administration resulting from altered mu opioid receptor (MOR) regulation of mesolimbic dopamine (DA) transmission. To this end, the complete Freund's adjuvant (CFA) model of inflammation was used to assess the neurochemical and functional changes induced by inflammatory pain on MOR-mediated mesolimbic DA transmission and on rat intravenous heroin self-administration under fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. In the presence of inflammatory pain, heroin intake under an FR schedule was increased for high, but attenuated for low, heroin doses with concomitant alterations in mesolimbic MOR function suggested by DA microdialysis. Consistent with the reduction in low dose FR heroin self-administration, inflammatory pain reduced motivation for a low dose of heroin, as measured by responding under a PR schedule of reinforcement, an effect dissociable from high heroin dose PR responding. Together, these results identify a connection between inflammatory pain and loss of MOR function in the mesolimbic dopaminergic pathway that increases intake of high doses of heroin. These findings suggest that pain-induced loss of MOR function in the mesolimbic pathway may promote opioid dose escalation and contribute to opioid abuse-associated phenotypes. SIGNIFICANCE STATEMENT This study provides critical new insights that show that inflammatory pain alters heroin intake through a desensitization of MORs located within the VTA. These findings expand our knowledge of the interactions between inflammatory pain and opioid abuse liability, and should help to facilitate the development of novel and safer opioid-based strategies for treating chronic pain.
Collapse
Affiliation(s)
- Lucia Hipólito
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | | | - Yolanda Campos-Jurado
- Departament de Farmàcia i Tecnología Farmacèutica, Facultat de Farmàcia, Universitat de Farmàcia, 46100 Burjassot, València, Spain
| | - Elaine Zhong
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | | | - Laszlo Virag
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | - Robert Whittington
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | - Sandra D Comer
- Department of Psychiatry, Division on Substance Abuse, New York State Psychiatric Institute, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Susan M Carlton
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch Galveston, Galveston, Texas 77555
| | - Brendan M Walker
- Department of Psychology and Graduate Program in Neuroscience, Washington State University, Pullman, Washington 99164, and
| | - Michael R Bruchas
- Department of Anesthesiology and Department of Anatomy and Neurobiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jose A Morón
- Department of Anesthesiology, Columbia University, New York, New York 10032,
| |
Collapse
|
94
|
Fabio M, Vivas L, Pautassi R. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain. Neuroscience 2015; 301:221-34. [DOI: 10.1016/j.neuroscience.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/14/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
|
95
|
Dopaminergic Regulation of Striatal Interneurons in Reward and Addiction: Focus on Alcohol. Neural Plast 2015; 2015:814567. [PMID: 26246915 PMCID: PMC4515529 DOI: 10.1155/2015/814567] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Corticobasal ganglia networks coursing through the striatum are key structures for reward-guided behaviors. The ventral striatum (nucleus accumbens (nAc)) and its reciprocal connection with the ventral tegmental area (VTA) represent a primary component of the reward system, but reward-guided learning also involves the dorsal striatum and dopaminergic inputs from the substantia nigra. The majority of neurons in the striatum (>90%) are GABAergic medium spiny neurons (MSNs), but both the input to and the output from these neurons are dynamically controlled by striatal interneurons. Dopamine is a key neurotransmitter in reward and reward-guided learning, and the physiological activity of GABAergic and cholinergic interneurons is regulated by dopaminergic transmission in a complex manner. Here we review the role of striatal interneurons in modulating striatal output during drug reward, with special emphasis on alcohol.
Collapse
|
96
|
Abstract
OBJECTIVE Palatable foods are frequently high in energy density. Chronic consumption of high-energy density foods can contribute to the development of cardiometabolic pathology including obesity, diabetes, and cardiovascular disease. This article reviews the contributions of extrinsic and intrinsic factors that influence the reward components of food intake. METHODS A narrative review was conducted to determine the behavioral and central nervous system (CNS) related processes involved in the reward components of high-energy density food intake. RESULTS The rewarding aspects of food, particularly palatable and preferred foods, are regulated by CNS circuitry. Overlaying this regulation is modulation by intrinsic endocrine systems and metabolic hormones relating to energy homeostasis, developmental stage, or gender. It is now recognized that extrinsic or environmental factors, including ambient diet composition and the provocation of stress or anxiety, also contribute substantially to the expression of food reward behaviors such as motivation for, and seeking of, preferred foods. CONCLUSIONS High-energy density food intake is influenced by both physiological and pathophysiological processes. Contextual, behavioral, and psychological factors and CNS-related processes represent potential targets for multiple types of therapeutic intervention.
Collapse
Affiliation(s)
- Dianne P Figlewicz
- From the BSR&D Program, VA Puget Sound Health Care System, Seattle, Washington; and the Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
97
|
Yap JJ, Chartoff EH, Holly EN, Potter DN, Carlezon WA, Miczek KA. Social defeat stress-induced sensitization and escalated cocaine self-administration: the role of ERK signaling in the rat ventral tegmental area. Psychopharmacology (Berl) 2015; 232:1555-69. [PMID: 25373870 PMCID: PMC4397167 DOI: 10.1007/s00213-014-3796-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/21/2014] [Indexed: 01/20/2023]
Abstract
RATIONALE Intermittent social defeat stress can induce neuroadaptations that promote compulsive drug taking. Within the mesocorticolimbic circuit, repeated cocaine administration activates extracellular signal-regulated kinase (ERK). OBJECTIVE The present experiments examine whether changes in ERK phosphorylation are necessary for the behavioral and neural adaptations that occur as a consequence of intermittent defeat stress. MATERIALS AND METHODS Rats were exposed to four brief intermittent defeats over the course of 10 days. Ten days after the last defeat, rats were challenged with cocaine (10 mg/kg, i.p.) or saline, and ERK activity was examined in mesocorticolimbic regions. To determine the role of ERK in defeat stress-induced behavioral sensitization, we bilaterally microinjected the MAPK/ERK kinase inhibitor U0126 (1 μg/side) or vehicle (20 % DMSO) into the ventral tegmental area (VTA) prior to each of four defeats. Ten days following the last defeat, locomotor activity was assessed for the expression of behavioral cross-sensitization to cocaine (10 mg/kg, i.p.). Thereafter, rats self-administered cocaine under fixed and progressive ratio schedules of reinforcement, including a 24-h continuous access "binge" (0.3 mg/kg/infusion). RESULTS We found that repeated defeat stress increased ERK phosphorylation in the VTA. Inhibition of VTA ERK prior to each social defeat attenuated the development of stress-induced sensitization and prevented stress-induced enhancement of cocaine self-administration during a continuous access binge. CONCLUSIONS These results suggest that enhanced activation of ERK in the VTA due to brief defeats is critical in the induction of sensitization and escalated cocaine taking.
Collapse
Affiliation(s)
- Jasmine J Yap
- Department of Psychology, Tufts University, Medford, MA, 02155, USA,
| | | | | | | | | | | |
Collapse
|
98
|
Hidi S. Revisiting the Role of Rewards in Motivation and Learning: Implications of Neuroscientific Research. EDUCATIONAL PSYCHOLOGY REVIEW 2015. [DOI: 10.1007/s10648-015-9307-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
99
|
A subpopulation of neurochemically-identified ventral tegmental area dopamine neurons is excited by intravenous cocaine. J Neurosci 2015; 35:1965-78. [PMID: 25653355 DOI: 10.1523/jneurosci.3422-13.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Systemic administration of cocaine is thought to decrease the firing rates of ventral tegmental area (VTA) dopamine (DA) neurons. However, this view is based on categorizations of recorded neurons as DA neurons using preselected electrophysiological characteristics lacking neurochemical confirmation. Without applying cellular preselection, we recorded the impulse activity of VTA neurons in response to cocaine administration in anesthetized adult rats. The phenotype of recorded neurons was determined by their juxtacellular labeling and immunohistochemical detection of tyrosine hydroxylase (TH), a DA marker. We found that intravenous cocaine altered firing rates in the majority of recorded VTA neurons. Within the cocaine-responsive neurons, half of the population was excited and the other half was inhibited. Both populations had similar discharge rates and firing regularities, and most neurons did not exhibit changes in burst firing. Inhibited neurons were more abundant in the posterior VTA, whereas excited neurons were distributed evenly throughout the VTA. Cocaine-excited neurons were more likely to be excited by footshock. Within the subpopulation of TH-positive neurons, 36% were excited by cocaine and 64% were inhibited. Within the subpopulation of TH-negative neurons, 44% were excited and 28% were inhibited. Contrary to the prevailing view that all DA neurons are inhibited by cocaine, we found a subset of confirmed VTA DA neurons that is excited by systemic administration of cocaine. We provide evidence indicating that DA neurons are heterogeneous in their response to cocaine and that VTA non-DA neurons play an active role in processing systemic cocaine.
Collapse
|
100
|
Taylor SR, Badurek S, Dileone RJ, Nashmi R, Minichiello L, Picciotto MR. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol 2015; 522:3308-34. [PMID: 24715505 DOI: 10.1002/cne.23603] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
The role of dopaminergic (DA) projections from the ventral tegmental area (VTA) in appetitive and rewarding behavior has been widely studied, but the VTA also has documented DA-independent functions. Several drugs of abuse, act on VTA GABAergic neurons, and most studies have focused on local inhibitory connections. Relatively little is known about VTA GABA projection neurons and their connections to brain sites outside the VTA. This study employed viral-vector-mediated cell-type-specific anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize VTA GABA efferents throughout the brain. We found that VTA GABA neurons project widely to forebrain and brainstem targets, including the ventral pallidum, lateral and magnocellular preoptic nuclei, lateral hypothalamus, and lateral habenula. Minor projections also go to central amygdala, mediodorsal thalamus, dorsal raphe, and deep mesencephalic nuclei, and sparse projections go to prefrontal cortical regions and to nucleus accumbens shell and core. These projections differ from the major VTA DA target regions. Retrograde tracing studies confirmed results from the anterograde experiments and differences in projections from VTA subnuclei. Retrogradely labeled GABA neurons were not numerous, and most non-tyrosine hydroxylase/retrogradely labeled cells lacked GABAergic markers. Many non-TH/retrogradely labeled cells projecting to several areas expressed VGluT2. VTA GABA and glutamate neurons project throughout the brain, most prominently to regions with reciprocal connections to the VTA. These data indicate that VTA GABA and glutamate neurons may have more DA-independent functions than previously recognized.
Collapse
Affiliation(s)
- Seth R Taylor
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06519
| | | | | | | | | | | |
Collapse
|