51
|
Bahia D, Avelar L, Mortara RA, Khayath N, Yan Y, Noël C, Capron M, Dissous C, Pierce RJ, Oliveira G. SmPKC1, a new protein kinase C identified in the platyhelminth parasite Schistosoma mansoni. Biochem Biophys Res Commun 2006; 345:1138-48. [PMID: 16713993 DOI: 10.1016/j.bbrc.2006.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/04/2006] [Indexed: 12/17/2022]
Abstract
Schistosoma mansoni signal transduction pathways are promising sources of target molecules for the development of novel control strategies against this platyhelminth parasite of humans. Members of the protein kinase C (PKC) family play key roles in such pathways activated by both receptor tyrosine kinases and other receptors, controlling a variety of physiological processes. Here, we report the cloning and molecular characterization of the first PKC identified in S. mansoni. Structural analysis indicated that SmPKC1 exhibits all the features typical of the conventional PKC subfamily. The gene structure was determined in silico and found to comprise a total of 15 exons and 14 introns. This structure is highly conserved; all intron positions are also present in the human PKCbeta gene and most of the exon sizes are identical. Using PCR on genomic DNA we were able to show that putative orthologues of SmPKC1 are present in 9 Schistosoma species. SmPKC1 expression is developmentally regulated with the highest level of transcripts in miracidia, whereas SmPKC1 protein expression is higher in the sporocyst. The localization of SmPKC1 on the sporocyst ridge cyton and in schistosomula acetabular glands suggests that the enzyme plays a role in signal transduction pathways associated with larval transformation.
Collapse
Affiliation(s)
- Diana Bahia
- Centro de Pesquisas René Rachou, FIOCRUZ, Av. Augusto de Lima 1715, Belo Horizonte, MG 30190-002, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ribeiro-dos-Santos G, Verjovski-Almeida S, Leite LCC. Schistosomiasis--a century searching for chemotherapeutic drugs. Parasitol Res 2006; 99:505-21. [PMID: 16636847 DOI: 10.1007/s00436-006-0175-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 02/23/2006] [Indexed: 12/22/2022]
Abstract
Schistosomiasis affects 200 million individuals in underdeveloped and developing regions and is a growing concern for travelers worldwide. There has been evidence of resistance to the praziquantel-based therapy and reports of acute-disease manifestation; therefore, other drugs affecting different stages of the schistosome parasites life cycle and alternative therapeutic regimens should be developed and become accessible. The present review results from a comprehensive search in the scientific literature for substances and compounds tested in the past centennial for schistosomiasis therapy. We gathered over 40 drugs providing information on therapeutic action in humans or animal model, toxicity, susceptible Schistosoma stages, species, etc. The drugs were grouped according to their known metabolic effects on the parasite, whether they are on membrane structure and function, carbohydrate metabolism, protein synthesis and function, or on nucleic acid metabolism. We discuss the current knowledge of drug-target interactions, their mechanism of action and possible therapy combinations. Furthermore, based in the literature and in our own experience with large-scale Schistosoma mansoni genome and transcriptome analyses, we put forward several recently described gene products that are promising target candidates for existing or new drugs.
Collapse
|
53
|
Vermeire JJ, Humphries JE, Yoshino TP. Signal transduction in larval trematodes: putative systems associated with regulating larval motility and behaviour. Parasitology 2006; 131 Suppl:S57-70. [PMID: 16569293 DOI: 10.1017/s0031182005008358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The multi-host lifestyle of parasitic trematodes necessitates their ability to communicate with their external environment in order to invade and navigate within their hosts' internal environment. Through recent EST and genome sequencing efforts, it has become clear that members of the Trematoda possess many of the elaborate signal transduction systems that have been delineated in other invertebrate model systems like Drosophila melanogaster and Caenorhabditis elegans. Gene homologues representing several well-described signal receptor families including receptor tyrosine kinases, receptor serine tyrosine kinases, G protein-coupled receptors and elements of their downstream signalling systems have been identified in larval trematodes. A majority of this work has focused on the blood flukes, Schistosoma spp. and therefore represents a narrow sampling of the diverse digenean helminth taxon. Despite this fact and given the substantial evidence supporting the existence of such signalling systems, the question then becomes, how are these systems employed by larval trematodes to aid them in interpreting signals received from their immediate environment to initiate appropriate responses in cells and tissues comprising the developing parasite stages? High-throughput, genome-wide analysis tools now allow us to begin to functionally characterize genes differentially expressed throughout the development of trematode larvae. Investigation of the systems used by these parasites to receive and transduce external signals may facilitate the creation of technologies for achieving control of intramolluscan schistosome infections and also continue to yield valuable insights into the basic mechanisms regulating motility and behaviour in this important group of helminths.
Collapse
Affiliation(s)
- J J Vermeire
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2115 Observatory Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
54
|
Dissous C, Khayath N, Vicogne J, Capron M. Growth factor receptors in helminth parasites: Signalling and host-parasite relationships. FEBS Lett 2006; 580:2968-75. [PMID: 16579990 DOI: 10.1016/j.febslet.2006.03.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/12/2006] [Indexed: 11/29/2022]
Abstract
Parasitic helminths remain major pathogens of both humans and animals throughout the world. The success of helminth infections depends on the capacity of the parasite to counteract host immune responses but also to exploit host-derived signal molecules for its development. Recent progress has been made in the characterization of growth factor receptors of various nematode and flatworm parasites with the demonstration that transforming growth factor beta (TGF-beta), epidermal growth factor (EGF) and insulin receptor signalling pathways are conserved in helminth parasites and potentially implicated in the host-parasite molecular dialogue and parasite development.
Collapse
Affiliation(s)
- Colette Dissous
- Unité Inserm 547, Institut Pasteur de Lille, 1 Rue du Pr. Calmette, 59019 Lille Cedex, France.
| | | | | | | |
Collapse
|
55
|
Grassot J, Gouy M, Perrière G, Mouchiroud G. Origin and Molecular Evolution of Receptor Tyrosine Kinases with Immunoglobulin-Like Domains. Mol Biol Evol 2006; 23:1232-41. [PMID: 16551648 DOI: 10.1093/molbev/msk007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are involved in the control of fundamental cellular processes in metazoans. In vertebrates, RTK could be grouped in distinct classes based on the nature of their cognate ligand and modular composition of their extracellular domain. RTK with immunoglobulin-like domains (IG-like RTK) encompass several RTK classes and have been found in early metazoans, including sponges. Evolution of IG-like RTK is characterized by extended molecular and functional diversification, which prompted us to study their evolutionary history. For that purpose, a nonredundant data set including annotated protein sequences of IG-like RTK (n = 85) was built, representing 19 species ranging from sponges to humans. Phylogenetic trees were generated from alignment of conserved regions using maximum likelihood approach. Molecular phylogeny strongly suggests that IG-like RTK diversification occurred according to a complex scenario. In particular, we propose that specific cis duplications of a common ancestor to both platelet-derived growth factor receptor (class III) and vascular endothelial growth factor receptor (class V) families preceded two trans duplications. In contrast, other IG-like RTK genes, like Musk and PTK7, apparently did not evolve by duplications, whereas fibroblast growth factor receptors (class IV) evolved through two rounds of trans duplications. The proposed model of IG-like RTK evolution is supported by high bootstrap values and by the clustering of genes encoding class III and class V RTKs at specific chromosomal locations in mouse and human genomes.
Collapse
Affiliation(s)
- Julien Grassot
- Centre de Génétique Moléculaire et Cellulaire, UMR Centre National de la Recherche Scientifique 5534, Université Claude Bernard-Lyon 1, Villeurbanne, France
| | | | | | | |
Collapse
|
56
|
Khayath N, Mithieux G, Zitoun C, Coustau C, Vicogne J, Tielens AG, Dissous C. Glyceroneogenesis: an unexpected metabolic pathway for glutamine in Schistosoma mansoni sporocysts. Mol Biochem Parasitol 2006; 147:145-53. [PMID: 16522333 DOI: 10.1016/j.molbiopara.2006.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 01/30/2006] [Accepted: 02/01/2006] [Indexed: 10/25/2022]
Abstract
To date, glyceroneogenesis has only been described in mammals but we demonstrate in this paper that it could exist in the invertebrate Schistosoma mansoni, the parasitic helminth transmitted by fresh water molluscs and responsible for the major human endemic disease, schistosomiasis. Glyceroneogenesis is a phosphoenolpyruvate carboxykinase (PEPCK)-dependent process by which glycerol can be produced from precursors like glutamine and therefore represents a truncated gluconeogenic pathway. We have previously demonstrated the possible central role of glutamine in mollusc-schistosome interactions. In this work, we show that glutamine effectively promotes in vitro survival and protein synthesis in sporocysts, the intramolluscan larval stages of S. mansoni, possibly through its role as an energy source. However, the demonstration that PEPCK is massively expressed in these larval forms as compared to adult parasites, together with the observation that 3-mercaptopicolinate, a specific inhibitor of PEPCK, significantly reduces the effect of glutamine on sporocyst growth, suggest that glutamine could also be used for glucose or glycerol production. Results of [14C] glutamine incorporation confirmed that neosynthesis of glucose and mainly of glycerol occurred in sporocysts and was dependent on PEPCK activity. Therefore, our results strongly indicate that glyceroneogenesis could exist in schistosomes. Several hypotheses can be proposed concerning the importance of glycerol for the adaptation of this helminth to its host osmotic and energetic environment.
Collapse
Affiliation(s)
- Naji Khayath
- U547 INSERM, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
57
|
Escobedo G, Roberts CW, Carrero JC, Morales-Montor J. Parasite regulation by host hormones: an old mechanism of host exploitation? Trends Parasitol 2005; 21:588-93. [PMID: 16236553 DOI: 10.1016/j.pt.2005.09.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 08/10/2005] [Accepted: 09/29/2005] [Indexed: 11/29/2022]
Abstract
Recent experimental evidence suggests that parasites can not only evade immune responses actively but also exploit the hormonal microenvironment within the host to favor their establishment, growth and reproduction. The benefit for parasites of hormonal exploitation is so great that they have evolved structures similar to the steroid and protein hormone receptors expressed in upper vertebrates that can bind to the hormonal metabolites synthesized by the host. This strategy is exemplified by two parasites that respond to adrenal steroids and sexual steroids, respectively: Schistosoma mansoni and Taenia crassiceps. Understanding how the host endocrine system can, under certain circumstances, favor the establishment of a parasite, and characterizing the parasite hormone receptors that are involved might aid the design of hormonal analogs and drugs that affect the parasite exclusively.
Collapse
Affiliation(s)
- Galileo Escobedo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP 70228, Mexico City 04510, México
| | | | | | | |
Collapse
|
58
|
Kapp K, Knobloch J, Schüssler P, Sroka S, Lammers R, Kunz W, Grevelding CG. The Schistosoma mansoni Src kinase TK3 is expressed in the gonads and likely involved in cytoskeletal organization. Mol Biochem Parasitol 2005; 138:171-82. [PMID: 15555729 DOI: 10.1016/j.molbiopara.2004.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 07/23/2004] [Accepted: 07/31/2004] [Indexed: 10/26/2022]
Abstract
Cytoplasmic protein tyrosine kinases of the Src family play a pivotal role in the regulation of cellular processes including proliferation and differentiation. Among other functions, Src kinases are involved in regulating the cell architecture. In an approach to identify protein tyrosine kinases from the medically important parasite Schistosoma mansoni, we isolated the TK3 gene by degenerate primer PCR and cDNA library screening. Sequencing of the complete cDNA and data-base analyses indicated that TK3 is a Src family kinase. Its predicted size of 71 kDa was confirmed by Western blot analysis. Southern blot analysis showed that TK3 is a single-copy gene, and Northern blot and RT-PCR experiments indicated its expression in both sexes and throughout development. Localization studies by in situ hybridization and immunolocalization revealed that TK3 is predominantly expressed in the reproductive organs such as the testes of the male and the ovary as well as the vitellarium of the female. Its enzymatic activity was confirmed by functional analyses. In transient transfection experiments with HEK293 cells, TK3 phosphorylated the well-known Src-kinase substrate p130 Cas, an intracellular scaffolding protein. Yeast two-hybrid screenings in a heterologous invertebrate system identified dAbi, vinculin and tubulin as binding partners, representing molecules that fulfill functions in the cell architecture of many organisms. These findings suggest that TK3 may play a role in signal transduction pathways organizing the cytoskeleton in the gonads of schistosomes.
Collapse
Affiliation(s)
- Katja Kapp
- Institut für Genetik, Genetische Parasitologie und Biologisch-Medizinisches-Forschungszentrum, Universitätsstr. 1, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
59
|
Knobloch J, Rossi A, Osman A, LoVerde PT, Klinkert MQ, Grevelding CG. Cytological and biochemical evidence for a gonad-preferential interplay of SmFKBP12 and SmTβR-I in Schistosoma mansoni. Mol Biochem Parasitol 2004; 138:227-36. [PMID: 15555734 DOI: 10.1016/j.molbiopara.2004.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/20/2004] [Accepted: 09/30/2004] [Indexed: 11/19/2022]
Abstract
In eukaryotes, FK506-binding proteins with a molecular weight of 12 kDa (FKBP12s) influence a variety of signal transduction pathways that regulate cell division, differentiation, and ion homeostasis. Amongst these, TGFbeta signaling and calcineurin (CN) phosphatase activity is modulated by FKBP12 via binding to TGFbeta-family type I receptors (TbetaR-Is) or to the CN subunit A, respectively. In this work, we demonstrate the tissue-specific expression of the Schistosoma mansoni FKBP12 homologue (SmFKBP12) in the gonads of female parasites as well as in the tegument of both genders. Components of the TGFbeta pathway have been characterized in schistosomes and their roles in mediating host-parasite or male-female interactions proposed. We show that a schistosome TGFbeta-family type I receptor (SmTbetaR-I, SmRK-1) is expressed in the female gonads, suggesting that SmFKBP12 may regulate its activity in this tissue. This hypothesis is supported by yeast two-hybrid analyses showing a direct binding of SmFKBP12 and SmTbetaR-I, which was specifically inhibited by the drug FK506. Our data provide the first evidence for the activity of a transmembrane receptor in the vitellarium of schistosome females and indicate that FKBP12-meditated regulation of the TGFbeta pathway is evolutionarily conserved in a primitive metazoan such as Schistosoma. Furthermore, we show that the schistosome CN (SmCN) is not expressed in the female gonads, but co-localizes with SmFKBP12 only in the tegument. From these data we conclude an SmFKBP12/SmTbetaR-I, but not an SmCN/SmFKBP12 interplay in the female gonads.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Institut für Genetik, Genetische Parasitologie und Biologisch-Medizinisches-Forschungszentrum, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
60
|
Vicogne J, Cailliau K, Tulasne D, Browaeys E, Yan YT, Fafeur V, Vilain JP, Legrand D, Trolet J, Dissous C. Conservation of epidermal growth factor receptor function in the human parasitic helminth Schistosoma mansoni. J Biol Chem 2004; 279:37407-14. [PMID: 15231836 DOI: 10.1074/jbc.m313738200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGF-R) plays an important role in development and cell differentiation, and homologues of EGF-R have been identified in a broad range of vertebrate and invertebrate organisms. This work concerns the functional characterization of SER, the EGF-R-like molecule previously identified in the helminth parasite Schistosoma mansoni. Transactivation assays performed in epithelial Madin-Darby canine kidney cells co-transfected with SER and a Ras-responsive reporter vector indicated that SER was able to trigger a Ras/ERK pathway in response to human epidermal growth factor (EGF). These results were confirmed in Xenopus oocytes showing that human EGF induced meiosis reinitiation characterized by germinal vesicle breakdown in SER-expressing oocytes. Germinal vesicle breakdown induced by EGF was dependent on receptor kinase activity and shown to be associated with phosphorylation of SER and of downstream ERK proteins. (125)I-EGF binding experiments performed on SER-expressing oocytes revealed high affinity (2.9 x 10(-9) M) of the schistosome receptor for human EGF. Phosphorylation of the native SER protein present in S. mansoni membranes was also shown to occur upon binding of human EGF. These data demonstrate the ability of the SER schistosome receptor to be activated by vertebrate EGF ligands as well as to activate the classical ERK pathway downstream, indicating the conservation of EGF-R function in S. mansoni. Moreover, human EGF was shown to increase protein and DNA synthesis as well as protein phosphorylation in parasites, supporting the hypothesis that host EGF could regulate schistosome development. The possible role of SER as a receptor for host EGF peptides and its implication in host-parasite signaling and parasite development are discussed.
Collapse
Affiliation(s)
- Jerome Vicogne
- Unité 547 INSERM, Institut Pasteur de Lille, 59019 Lille Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Affiliation(s)
- Raymond J Pierce
- Inserm U.547, Institut Pasteur de Lille, 1, rue du Professeur A. Calmette, 59019 Lille, France
| | | | | |
Collapse
|
62
|
Kniazeff J, Saintot PP, Goudet C, Liu J, Charnet A, Guillon G, Pin JP. Locking the dimeric GABA(B) G-protein-coupled receptor in its active state. J Neurosci 2004; 24:370-7. [PMID: 14724235 PMCID: PMC6729975 DOI: 10.1523/jneurosci.3141-03.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) play a major role in cell-cell communication in the CNS. These proteins oscillate between various inactive and active conformations, the latter being stabilized by agonists. Although mutations can lead to constitutive activity, most of these destabilize inactive conformations, and none lock the receptor in an active state. Moreover, GPCRs are known to form dimers, but the role of each protomer in the activation process remains unclear. Here, we show that the heterodimeric GPCR for the main inhibitory neurotransmitter, the GABA(B) receptor, can be locked in its active state by introducing two cysteines expected to form a disulphide bridge to maintain the binding domain of the GABA(B1) subunit in a closed form. This constitutively active receptor cannot be inhibited by antagonists, but its normal functioning, activation by agonists, and inhibition by antagonists can be restored after reduction with dithiothreitol. These data show that the closed state of the binding domain of GABA(B1) is sufficient to turn ON this heterodimeric receptor and illustrate for the first time that a GPCR can be locked in an active conformation.
Collapse
Affiliation(s)
- Julie Kniazeff
- Laboratory for Functional Genomic, Department of Molecular Pharmacology, Centre National de la Recherche Scientifique Unité Propre de Recherche-2580, Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Schistosome parasites are muticellular eucaryotic organisms with a complex life cycle that involves mammalian and snail hosts. Unlike other trematode parasites, schistosomes (along with the Didymozoidae) have evolved separate sexes or dioecy. Sex is determined by a chromosomal mechanism. The dioecious state created an opportunity for the sexes to play a role in schistosome evolution that has resulted in an interesting interplay between the sexes. The classical observation, made more than 50 years ago, is that female schistosomes do not develop unless a male worm is present. Studies up through the 1990s focused on dissecting the role of the sexes in mate attraction, mate choice, mating behavior, female growth, female reproductive development, egg production, and other sex-evolved functions. In the mid-1980s, studies began to address the molecular events of male–female interactions. The classic morphological observation that female schistosomes do not complete reproductive development unless a male worm is present has been redefined in molecular terms. The male by an unknown mechanism transduces a signal that regulates female gene expression in a stage-, tissue-, and temporal-specific manner. A number of female-specific genes have been identified, along with signaling pathways and nuclear receptors, that play a role in female reproductive development. In addition, a number of host factors such as cytokines have also been demonstrated to affect adult male and female development and egg production. This review focuses on the biological interactions of the male and female schistosome and the role of parasite and host factors in these interactions as they contribute to the life cycle of Schistosoma mansoni.
Collapse
|
64
|
Marcilla A, Rubia JEDL, Espert A, Carpena I, Esteban JG, Toledo R. Specific tyrosine phosphorylation in response to bile in Fasciola hepatica and Echinostoma friedi. Exp Parasitol 2004; 106:56-8. [PMID: 15013790 DOI: 10.1016/j.exppara.2004.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 01/20/2004] [Accepted: 01/23/2004] [Indexed: 11/17/2022]
Abstract
Protein tyrosine phosphorylation (PY) is a well-known signalling mechanism which is also involved in host-parasite interactions. Despite its transcendence, PY has been poorly studied in parasitic helminths. The aim of this study is to examine the effect of bile salts on the PY pattern in parasitic trematodes. Two distinct adult models were analysed: Echinostoma friedi, of intestinal habitat, and Fasciola hepatica, naturally inhabitant of host biliary channels. Our results show that bile salts induce specific and distinct protein PY in both trematode species, indicating that this signalling process seems to be also involved in host-trematode relationships.
Collapse
Affiliation(s)
- Antonio Marcilla
- Departamento de Parasitología y Biología Celular, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
65
|
Osman A, Niles EG, LoVerde PT. Expression of functional Schistosoma mansoni Smad4: role in Erk-mediated transforming growth factor beta (TGF-beta) down-regulation. J Biol Chem 2003; 279:6474-86. [PMID: 14630909 DOI: 10.1074/jbc.m310949200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the transforming growth factor (TGF)-beta superfamily play pivotal roles in cell migration, differentiation, adhesion, pattern formation, and apoptosis. The family of Smad proteins acts as intracellular signal transducers of TGF-beta and related peptides. Smad4, a common mediator Smad (co-Smad), performs a central role in transmitting signals from TGF-beta, BMP, and activins. Schistosoma mansoni receptor-regulated Smad1 and SmSmad2 were previously identified and shown to act in TGF-beta signaling. Herein, we report the identification and characterization of a Smad4 homologue from S. mansoni and provide details about its role in mediation and down-regulation of TGF-beta signaling in schistosomes. In order to identify the schistosome co-Smad, we designed degenerate primers based on the sequence of the conserved MH1/MH2 domains of Smad4 proteins, which were used in PCR to amplify a 137-bp PCR product. A S. mansoni adult worm pair cDNA library was screened resulting in the isolation of a cDNA clone that encodes a 738 amino acid protein (SmSmad4). SmSmad4 was shown to interact with schistosome R-Smads (SmSmad1 and SmSmad2) in vivo and in vitro. The interaction with SmSmad2 was dependent on the receptor-mediated phosphorylation of SmSmad2. In addition, several potential phosphorylation sites for Erk1/2 kinases were identified in the SmSmad4 linker region and shown to be phosphorylated in vitro by an active mutant of mammalian Erk2. Furthermore, Erk-mediated phosphorylation of SmSmad4 decreased its interaction with the receptor-activated form of SmSmad2, in vitro. SmSmad4 was shown to complement a human Smad4 deficiency through the restoration of TGF-beta-responsiveness in MDA-MB-468 breast cancer cells.
Collapse
Affiliation(s)
- Ahmed Osman
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, School of Medicine, State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|