51
|
Dharmani M, Mustafa MR, Achike FI, Sim MK. Involvement of AT(1) angiotensin receptors in the vasomodulatory effect of des-aspartate-angiotensin I in the rat renal vasculature. Peptides 2008; 29:1773-80. [PMID: 18603328 DOI: 10.1016/j.peptides.2008.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/13/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
Abstract
Angiotensin II is known to act primarily on the angiotensin AT(1) receptors to mediate its physiological and pathological actions. Des-aspartate-angiotensin I (DAA-I) is a bioactive angiotensin peptide and have been shown to have contrasting vascular actions to angiotensin II. Previous work in this laboratory has demonstrated an overwhelming vasodepressor modulation on angiotensin II-induced vasoconstriction by DAA-I. The present study investigated the involvement of the AT(1) receptor in the actions of DAA-I on angiotensin II-induced vascular actions in the renal vasculature of normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR) and streptozotocin (STZ)-induced diabetic rats. The findings revealed that the angiotensin receptor in rat kidney homogenate was mainly of the AT(1) subtype. The AT(1) receptor density was significantly higher in the kidney of the SHR. The increase in AT(1) receptor density was also confirmed by RT-PCR and Western blot analysis. In contrast, AT(1) receptor density was significantly reduced in the kidney of the streptozotocin-induced diabetic rat. Perfusion with 10(-9)M DAA-I reduced the AT(1) receptor density in the kidneys of WKY and SHR rats suggesting that the previously observed vasodepressor modulation of the nonapeptide could be due to down-regulation or internalization of AT(1) receptors. RT-PCR and Western blot analysis showed no significant changes in the content of AT(1) receptor mRNA and protein. This supports the suggestion that DAA-I causes internalization of AT(1) receptors. In the streptozotocin-induced diabetic rat, no significant changes in renal AT(1) receptor density and expression were seen when its kidneys were similarly perfused with DAA-I.
Collapse
Affiliation(s)
- M Dharmani
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
52
|
Bagi Z, Erdei N, Koller A. High intraluminal pressure via H2O2 upregulates arteriolar constrictions to angiotensin II by increasing the functional availability of AT1 receptors. Am J Physiol Heart Circ Physiol 2008; 295:H835-41. [PMID: 18567710 DOI: 10.1152/ajpheart.00205.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previously, we found that high intraluminal pressure leads to production of reactive oxygen species (ROS) and also upregulates several components of the renin-angiotensin system in the wall of small arteries. We hypothesized that acute exposure of arterioles to high intraluminal pressure in vitro via increasing ROS production enhances the functional availability of type 1 angiotensin II (Ang II) receptors (AT1 receptors), resulting in sustained constrictions. In arterioles ( approximately 180 mum) isolated from rat skeletal muscle, Ang II elicited dose-dependent constrictions, which decreased significantly by the second application [maximum (max.): from 59% +/- 4% to 26% +/- 5% at 10(-8) M; P < 0.05] in the presence of 80 mmHg of intraluminal pressure. In contrast, if the arterioles were exposed to high intraluminal pressure (160 mmHg for 30 min), Ang II-induced constrictions remained substantial on the second application (max.: 51% +/- 3% at 10(-8) M). In the presence of Tiron and polyethylene glycol (PEG)-catalase, known to reduce the level of superoxide anion and hydrogen peroxide (H(2)O(2)), second applications of Ang II evoked similarly reduced constrictions, even after high-pressure exposure (29% +/- 4% at 10(-8) M). Furthermore, when arterioles were exposed to H(2)O(2) (for 30 min, 10(-7) M, at normal 80 mmHg pressure), Ang II-induced constrictions remained substantial on second applications (59% +/- 5% at 10(-8) M). These findings suggest that high pressure, likely via inducing H(2)O(2) production, increases the functional availability of AT1 receptors and thus enhances Ang II-induced arteriolar constrictions. We propose that in hypertension-regardless of etiology-high intraluminal pressure, via oxidative stress, enhances the functional availability of AT1 receptors augmenting Ang II-induced constrictions.
Collapse
Affiliation(s)
- Zsolt Bagi
- Dept. of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
53
|
Choi H, Leto TL, Hunyady L, Catt KJ, Bae YS, Rhee SG. Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase. J Biol Chem 2007; 283:255-267. [PMID: 17981802 DOI: 10.1074/jbc.m708000200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of angiotensin II (Ang II)-induced superoxide production was investigated with HEK293 or Chinese hamster ovary cells reconstituted with the angiotensin type 1 receptor (AT(1)R) and NADPH oxidase (either Nox1 or Nox2) along with a pair of adaptor subunits (either NOXO1 with NOXA1 or p47(phox) with p67(phox)). Ang II enhanced the activity of both Nox1 and Nox2 supported by either adaptor pair, with more effective activation of Nox1 in the presence of NOXO1 and NOXA1 and of Nox2 in the presence of p47(phox) and p67(phox). Expression of several AT(1)R mutants showed that interaction of the receptor with G proteins but not that with beta-arrestin or with other proteins (Jak2, phospholipase C-gamma1, SH2 domain-containing phosphatase 2) that bind to the COOH-terminal region of AT(1)R, was necessary for Ang II-induced superoxide production. The effects of constitutively active alpha subunits of G proteins and of various pharmacological agents implicated signaling by a pathway comprising AT(1)R, Galpha(q/11), phospholipase C-beta, and protein kinase C as largely, but not exclusively, responsible for Ang II-induced activation of Nox1 and Nox2 in the reconstituted cells. A contribution of Galpha(12/13), phospholipase D, and phosphatidyl-inositol 3-kinase to Ang II-induced superoxide generation was also suggested, whereas Src and the epidermal growth factor receptor did not appear to participate in this effect of Ang II. In reconstituted cells stimulated with Ang II, Nox2 exhibited a more sensitive response than Nox1 to the perturbation of protein kinase C, phosphatidylinositol 3-kinase, or the small GTPase Rac1.
Collapse
Affiliation(s)
- Hyun Choi
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Thomas L Leto
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - László Hunyady
- Department of Physiology, Semmelweis University, H-1088 Budapest, Hungary
| | - Kevin J Catt
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun Soo Bae
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea.
| | - Sue Goo Rhee
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
54
|
Linder AE, Thakali KM, Thompson JM, Watts SW, Webb RC, Leite R. Methyl-β-cyclodextrin Prevents Angiotensin II-Induced Tachyphylactic Contractile Responses in Rat Aorta. J Pharmacol Exp Ther 2007; 323:78-84. [PMID: 17636007 DOI: 10.1124/jpet.107.123463] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tachyphylaxis or desensitization is frequently observed following angiotensin II type I (AT1) receptor activation by angiotensin II. One of the possible mechanisms contributing to receptor desensitization involves receptor internalization. In addition to clathrin-coated pits/vesicles, caveolae, small invaginations in the plasma membrane rich in cholesterol, may also be involved in receptor internalization. After activation, AT1 receptor partially redistributes to lipid-enriched domains. We hypothesize that AT1 receptor internalization via caveolae contributes to the tachyphylactic response observed to angiotensin II. Endothelium-denuded rat aortic rings were exposed to increasing concentrations of angiotensin II or phenylephrine, generating two cumulative concentration-effect curves (CCEC) with a 90-min interval separating each curve (CCEC-I and CCEC-II). CCEC-II was performed in the presence of either vehicle or methyl-beta-cyclodextrin (CD), a drug that depletes cholesterol from the membrane and disassembles caveolae. CCEC-II to angiotensin II, but not to phenylephrine, was blunted in aortic rings treated with vehicle. In the presence of CD, CCEC-II did not differ significantly from CCEC-I for both agonists. CCEC-I to angiotensin II was abolished when in the presence of the AT1 receptor antagonist. The presence of AT1 receptors at the aortic smooth muscle cells' membrane treated with angiotensin II was observed by immunofluorescence only in the presence of CD. In addition, caveolin-1 coimmunoprecipitated with AT1 receptor after agonist stimulation, and this interaction was inhibited by CD. Our data suggest that caveolae are involved in the tachyphylactic contractile response induced by angiotensin II in rat aorta, and this effect is related to receptor internalization.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiology
- Caveolin 1/metabolism
- Immunohistochemistry
- Immunoprecipitation
- In Vitro Techniques
- Male
- Microscopy, Electron, Transmission
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/metabolism
- Tachyphylaxis/physiology
- beta-Cyclodextrins/pharmacology
Collapse
Affiliation(s)
- A Elizabeth Linder
- Department of Pharmacology and Toxicology, Michigan State University, B-445 Life Sciences Building, East Lansing, MI 48824-1317, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Santos EL, Reis RI, Silva RG, Shimuta SI, Pecher C, Bascands JL, Schanstra JP, Oliveira L, Bader M, Paiva ACM, Costa-Neto CM, Pesquero JB. Functional rescue of a defective angiotensin II AT1 receptor mutant by the Mas protooncogene. ACTA ACUST UNITED AC 2007; 141:159-67. [PMID: 17320985 DOI: 10.1016/j.regpep.2006.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 12/23/2006] [Accepted: 12/23/2006] [Indexed: 11/19/2022]
Abstract
Earlier studies with Mas protooncogene, a member of the G-protein-coupled receptor family, have proposed this gene to code for a functional AngII receptor, however further results did not confirm this assumption. In this work we investigated the hypothesis that a heterodimeration AT(1)/Mas could result in a functional interaction between both receptors. For this purpose, CHO or COS-7 cells were transfected with the wild-type AT(1) receptor, a non-functional AT(1) receptor double mutant (C18F-K20A) and Mas or with WT/Mas and C18F-K20A/Mas. Cells single-expressing Mas or C18F/K20A did not show any binding for AngII. The co-expression of the wild-type AT(1) receptor and Mas showed a binding profile similar to that observed for the wild-type AT(1) expressed alone. Surprisingly, the co-expression of the double mutant C18F/K20A and Mas evoked a total recovery of the binding affinity for AngII to a level similar to that obtained for the wild-type AT(1). Functional measurements using inositol phosphate and extracellular acidification rate assays also showed a clear recovery of activity for AngII on cells co-expressing the mutant C18F/K20A and Mas. In addition, immunofluorescence analysis localized the AT(1) receptor mainly at the plasma membrane and the mutant C18F-K20A exclusively inside the cells. However, the co-expression of C18F-K20A mutant with the Mas changed the distribution pattern of the mutant, with intense signals at the plasma membrane, comparable to those observed in cells expressing the wild-type AT(1) receptor. These results support the hypothesis that Mas is able to rescue binding and functionality of the defective C18F-K20A mutant by dimerization.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin II/metabolism
- Animals
- CHO Cells
- COS Cells
- Cell Membrane/metabolism
- Chlorocebus aethiops
- Cricetinae
- Cricetulus
- Fluoresceins
- Fluorescent Antibody Technique, Direct
- Fluorescent Dyes
- Indoles
- Inhibitory Concentration 50
- Inositol Phosphates/analysis
- Inositol Phosphates/metabolism
- Models, Chemical
- Molecular Sequence Data
- Mutation
- Polymerase Chain Reaction
- Proto-Oncogenes/genetics
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Transfection
Collapse
Affiliation(s)
- Edson L Santos
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, 04023-062 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Oliveira L, Costa-Neto CM, Nakaie CR, Schreier S, Shimuta SI, Paiva ACM. The Angiotensin II AT1 Receptor Structure-Activity Correlations in the Light of Rhodopsin Structure. Physiol Rev 2007; 87:565-92. [PMID: 17429042 DOI: 10.1152/physrev.00040.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The most prevalent physiological effects of ANG II, the main product of the renin-angiotensin system, are mediated by the AT1 receptor, a rhodopsin-like AGPCR. Numerous studies of the cardiovascular effects of synthetic peptide analogs allowed a detailed mapping of ANG II's structural requirements for receptor binding and activation, which were complemented by site-directed mutagenesis studies on the AT1 receptor to investigate the role of its structure in ligand binding, signal transduction, phosphorylation, binding to arrestins, internalization, desensitization, tachyphylaxis, and other properties. The knowledge of the high-resolution structure of rhodopsin allowed homology modeling of the AT1 receptor. The models thus built and mutagenesis data indicate that physiological (agonist binding) or constitutive (mutated receptor) activation may involve different degrees of expansion of the receptor's central cavity. Residues in ANG II structure seem to control these conformational changes and to dictate the type of cytosolic event elicited during the activation. 1) Agonist aromatic residues (Phe8 and Tyr4) favor the coupling to G protein, and 2) absence of these residues can favor a mechanism leading directly to receptor internalization via phosphorylation by specific kinases of the receptor's COOH-terminal Ser and Thr residues, arrestin binding, and clathrin-dependent coated-pit vesicles. On the other hand, the NH2-terminal residues of the agonists ANG II and [Sar1]-ANG II were found to bind by two distinct modes to the AT1 receptor extracellular site flanked by the COOH-terminal segments of the EC-3 loop and the NH2-terminal domain. Since the [Sar1]-ligand is the most potent molecule to trigger tachyphylaxis in AT1 receptors, it was suggested that its corresponding binding mode might be associated with this special condition of receptors.
Collapse
Affiliation(s)
- Laerte Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
57
|
Hatae N, Aksentijevich N, Zemkova HW, Kretschmannova K, Tomic M, Stojilkovic SS. Cloning and functional identification of novel endothelin receptor type A isoforms in pituitary. Mol Endocrinol 2007; 21:1192-204. [PMID: 17312275 DOI: 10.1210/me.2006-0343] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian endothelin (ET) receptors, termed ET(A)R and ET(B)R, are derived from two intron-containing genes and the functional splice variants of ET(B)R but not ET(A)R have been identified. Here, we report about the isolation of cDNAs of ET(A)R transcripts from rat anterior pituitary, which are generated by alternative RNA splicing. Deletion of exon 2 and insertion of fragments from intron 1 and 2 accounted for formation of three misplaced proteins, whereas the insertion of a fragment from intron 6 resulted in generation of a functional plasma membrane receptor, termed ET(A)R-C13. In this splice variant, the C-terminal 382S-426N sequence of ET(A)R was substituted with a shorter 382A-399L sequence, resulting in alteration of the putative domains responsible for coupling to G(q/11) and G(s) proteins and the endocytotic recycling, as well as in deletion of the predicted protein kinase C/casein kinase 2 phosphorylation sites. The mRNA transcripts for ET(A)R-C13 were identified in normal and immortalized pituitary cells and several other tissues. The pharmacological profiles of recombinant ET(A)R and ET(A)R-C13 were highly comparable, but the coupling of ET(A)R-C13 to the calcium-mobilizing signaling pathway was attenuated, causing a rightward shift in the potency for agonist. Furthermore, the efficacy of ET(A)R-C13 to stimulate adenylyl cyclase signaling pathway and to internalize was significantly reduced. These results indicate for the first time the presence of a novel ET(A) splice receptor, which could contribute to the functional heterogeneity among secretory pituitary cell types.
Collapse
Affiliation(s)
- Noriyuki Hatae
- Section on Cellular Signaling, National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | |
Collapse
|
58
|
Oro C, Qian H, Thomas WG. Type 1 angiotensin receptor pharmacology: signaling beyond G proteins. Pharmacol Ther 2006; 113:210-26. [PMID: 17125841 PMCID: PMC7112676 DOI: 10.1016/j.pharmthera.2006.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 10/03/2006] [Indexed: 02/07/2023]
Abstract
Drugs that inhibit the production of angiotensin II (AngII) or its access to the type 1 angiotensin receptor (AT1R) are prescribed to alleviate high blood pressure and its cardiovascular complications. Accordingly, much research has focused on the molecular pharmacology of AT1R activation and signaling. An emerging theme is that the AT1R generates G protein dependent as well as independent signals and that these transduction systems separately contribute to AT1R biology in health and disease. Regulatory molecules termed arrestins are central to this process as is the capacity of AT1R to crosstalk with other receptor systems, such as the widely studied transactivation of growth factor receptors. AT1R function can also be modulated by polymorphisms in the AGTR gene, which may significantly alter receptor expression and function; a capacity of the receptor to dimerize/oligomerize with altered pharmacology; and by the cellular environment in which the receptor resides. Together, these aspects of the AT1R “flavour” the response to angiotensin; they may also contribute to disease, determine the efficacy of current drugs and offer a unique opportunity to develop new therapeutics that antagonize only selective facets of AT1R function.
Collapse
Affiliation(s)
- Cristina Oro
- Baker Heart Research Institute, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Hongwei Qian
- Baker Heart Research Institute, Melbourne, Australia
| | - Walter G. Thomas
- Baker Heart Research Institute, Melbourne, Australia
- Corresponding author. Molecular Endocrinology Laboratory, Baker Heart Research Institute, P.O. Box 6492, St. Kilda Road Central, Melbourne 8008, Australia. Tel.: +61 3 8532 1224; fax: +61 3 8532 1100.
| |
Collapse
|
59
|
Abstract
Atherosclerosis is an insidious and complex disease of large- and medium-sized arteries. The primum movens of the disease is characterized by co-localization of lipids, inflammatory cells, and fibrous elements within the intima of vessels. Starting as a "fatty streak," the disease evolves over decades into complex lesions that can progress toward a stable or a vulnerable plaque. During the past decade, we have become familiar with the features of the vulnerable plaque; however, the mechanisms that cause a stable plaque to change into a vulnerable lesion with its dramatic clinical outcome still remain largely unknown. There is good evidence from epidemiologic, experimental, and clinical studies that the renin-angiotensin system, via its active peptide angiotensin II, may contribute to atherosclerosis development and progression, not only by increasing blood pressure but also through multiple direct effects. Moreover, recent studies have shown a potential role for angiotensin II as a mediator of plaque vulnerability.
Collapse
Affiliation(s)
- Lucia Mazzolai
- Service of Vascular Medicien, Department of Internal Medicine, CHUV (Hôpital Nestlé), Av. Pierre Decker 5, 1011 Lausanne, Switzerland.
| | | |
Collapse
|
60
|
Gonzalez-Villalobos R, Klassen RB, Allen PL, Johanson K, Baker CB, Kobori H, Navar LG, Hammond TG. Megalin binds and internalizes angiotensin-(1-7). Am J Physiol Renal Physiol 2005; 290:F1270-5. [PMID: 16380466 PMCID: PMC2040263 DOI: 10.1152/ajprenal.00164.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Megalin is a multiligand receptor heavily involved in protein endocytosis. We recently demonstrated that megalin binds and mediates internalization of ANG II. Although there is a strong structural resemblance between ANG II and ANG-(1-7), their physiological actions and their affinity for the angiotensin type 1 receptor (AT(1)R) are dissimilar. Therefore, the hypothesis of the present work was to test whether megalin binds and internalizes ANG-(1-7). The uptake of ANG-(1-7) was determined by exposure of confluent monolayers of BN/MSV cells (a model representative of the yolk sac epithelium) to fluorescently labeled ANG-(1-7) (100 nM) and measurement of the amount of cell-associated fluorescence after 4 h by flow cytometry. Anti-megalin antisera and an AT(1)R blocker (olmesartan) were used to interfere with uptake via megalin and the AT(1)R, respectively. ANG-(1-7) uptake was prevented by anti-megalin antisera (63%) to a higher degree than olmesartan (13%) (P < 0.001). In analysis by flow cytometry of binding experiments performed in brush-border membrane vesicles isolated from kidneys of CD-1 mice, anti-megalin antisera interfered with ANG-(1-7) binding more strongly than olmesartan (P < 0.05 against positive control). Interactions of megalin with ANG-(1-7) at a molecular level were studied by surface plasmon resonance, demonstrating that ANG-(1-7) binds megalin dose and time dependently and with an affinity similar to ANG II. These results show that the scavenger receptor megalin binds and internalizes ANG-(1-7).
Collapse
Affiliation(s)
- Romer Gonzalez-Villalobos
- Dept. of Medicine/Section of Nephrology SL-45, Tulane Univ. Health Sciences Ctr., 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Lee S, Wu Z, Sandberg K, Yoo SE, Maric C. Posttranscriptional mechanisms contribute to osmotic regulation of ANG type 1 receptors in cultured rat renomedullary interstitial cells. Am J Physiol Regul Integr Comp Physiol 2005; 290:R44-9. [PMID: 16099820 DOI: 10.1152/ajpregu.00476.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we showed that ANG II receptors in cultured rat renomedullary interstitial cells (RMICs) are osmotically regulated (19). The current study examined the mechanisms underlying this osmotic regulation in RMICs cultured in isoosmotic (300 mosmol/kgH2O) and hyperosmotic (600 mosmol/kgH2O) conditions. Radioligand competition analysis coupled with RNase protection assays (RPA) and ligand-mediated receptor internalization studies revealed that RMICs primarily express the type 1a angiotensin receptor (AT(1a)R). When cultured under hyperosmotic conditions, the density (B(max)) of AT1R in RMIC membranes decreased by 31% [B(max) (pmol/mg protein): 300 mosmol/kgH2O, 6.44 +/- 0.46 vs. 600 mosmol/kgH2O, 4.42 +/- 0.37, n = 8, P < 0.01], under conditions in which no detectable changes in AT(1a)R mRNA expression or in the kinetics of ligand-mediated AT1R internalization were observed. RNA electromobility shift assays showed that RNA protein complex (RPC) formation between RMIC cytosolic RNA binding proteins and the 5' leader sequence (5'LS) of the AT(1a)R was increased 1.5-fold under hyperosmotic conditions [5'LS RPC (arbitrary units): 300 mosmol/kgH2O, 0.79 +/- 0.08 vs. 600 mosmol/kgH2O, 1.17 +/- 0.07, n = 4, P < 0.01]. These results suggest that the downregulation of AT(1a)R expression in RMICs cultured under hyperosmotic conditions is regulated at the posttranscriptional level by RNA binding proteins that interact within the 5'LS of the AT(1a)R mRNA. The downregulation of AT(1a)R expression under hyperosmotic conditions may be an important mechanism by which the activity of ANG II is regulated in the hyperosmotic renal medulla.
Collapse
Affiliation(s)
- Sunghou Lee
- Department of Medicine, 394 Bldg. D, 4000 Reservoir Rd., NW, Washington, DC 20057, USA.
| | | | | | | | | |
Collapse
|
62
|
Filipeanu CM, Zhou F, Claycomb WC, Wu G. Regulation of the Cell Surface Expression and Function of Angiotensin II Type 1 Receptor by Rab1-mediated Endoplasmic Reticulum-to-Golgi Transport in Cardiac Myocytes. J Biol Chem 2004; 279:41077-84. [PMID: 15252015 DOI: 10.1074/jbc.m405988200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab1 GTPase coordinates vesicle-mediated protein transport specifically from the endoplasmic reticulum (ER) to the Golgi apparatus. We recently demonstrated that Rab1 is involved in the export of angiotensin II (Ang II) type 1 receptor (AT1R) to the cell surface in HEK293 cells and that transgenic mice overexpressing Rab1 in the myocardium develop cardiac hypertrophy. To expand these studies, we determined in this report whether the modification of Rab1-mediated ER-to-Golgi transport can alter the cell surface expression and function of endogenous AT1R and AT1R-mediated hypertrophic growth in primary cultures of neonatal rat ventricular myocytes. Adenovirus-mediated gene transfer of wild-type Rab1 (Rab1WT) significantly increased cell surface expression of endogenous AT1R in neonatal cardiomyocytes, whereas the dominant-negative mutant Rab1N124I had the opposite effect. Brefeldin A treatment blocked the Rab1WT-induced increase in AT1R cell surface expression. Fluorescence analysis of the subcellular localization of AT1R revealed that Rab1 regulated AT1R transport specifically from the ER to the Golgi in HL-1 cardiomyocytes. Consistent with their effects on AT1R export, Rab1WT and Rab1N124I differentially modified the AT1R-mediated activation of ERK1/2 and its upstream kinase MEK1. More importantly, adenovirus-mediated expression of Rab1N124I markedly attenuated the Ang II-stimulated hypertrophic growth as measured by protein synthesis, cell size, and sarcomeric organization in neonatal cardiomyocytes. In contrast, Rab1WT expression augmented the Ang II-mediated hypertrophic response. These data strongly indicate that AT1R function in cardiomyocytes can be modulated through manipulating AT1R traffic from the ER to the Golgi and provide the first evidence implicating the ER-to-Golgi transport as a regulatory site for control of cardiomyocyte growth.
Collapse
Affiliation(s)
- Catalin M Filipeanu
- Department of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
63
|
Spät A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 2004; 84:489-539. [PMID: 15044681 DOI: 10.1152/physrev.00030.2003] [Citation(s) in RCA: 333] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aldosterone secretion by glomerulosa cells is stimulated by angiotensin II (ANG II), extracellular K(+), corticotrophin, and several paracrine factors. Electrophysiological, fluorimetric, and molecular biological techniques have significantly clarified the molecular action of these stimuli. The steroidogenic effect of corticotrophin is mediated by adenylyl cyclase, whereas potassium activates voltage-operated Ca(2+) channels. ANG II, bound to AT(1) receptors, acts through the inositol 1,4,5-trisphosphate (IP(3))-Ca(2+)/calmodulin system. All three types of IP(3) receptors are coexpressed, rendering a complex control of Ca(2+) release possible. Ca(2+) release is followed by both capacitative and voltage-activated Ca(2+) influx. ANG II inhibits the background K(+) channel TASK and Na(+)-K(+)-ATPase, and the ensuing depolarization activates T-type (Ca(v)3.2) Ca(2+) channels. Activation of protein kinase C by diacylglycerol (DAG) inhibits aldosterone production, whereas the arachidonate released from DAG in ANG II-stimulated cells is converted by lipoxygenase to 12-hydroxyeicosatetraenoic acid, which may also induce Ca(2+) signaling. Feedback effects and cross-talk of signal-transducing pathways sensitize glomerulosa cells to low-intensity stimuli, such as physiological elevations of [K(+)] (< or =1 mM), ANG II, and ACTH. Ca(2+) signaling is also modified by cell swelling, as well as receptor desensitization, resensitization, and downregulation. Long-term regulation of glomerulosa cells involves cell growth and proliferation and induction of steroidogenic enzymes. Ca(2+), receptor, and nonreceptor tyrosine kinases and mitogen-activated kinases participate in these processes. Ca(2+)- and cAMP-dependent phosphorylation induce the transfer of the steroid precursor cholesterol from the cytoplasm to the inner mitochondrial membrane. Ca(2+) signaling, transferred into the mitochondria, stimulates the reduction of pyridine nucleotides.
Collapse
Affiliation(s)
- András Spät
- Dept. of Physiology, Semmelweis University, Faculty of Medicine, PO Box 259, H-1444 Budapest, Hungary.
| | | |
Collapse
|
64
|
Hunyady L, Gáborik Z, Shah BH, Jagadeesh G, Clark AJL, Catt KJ. Structural determinants of agonist-induced signaling and regulation of the angiotensin AT1 receptor. Mol Cell Endocrinol 2004; 217:89-100. [PMID: 15134806 DOI: 10.1016/j.mce.2003.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Angiotensin II (Ang II) regulates aldosterone secretion by stimulating inositol phosphate production and Ca(2+) signaling in adrenal glomerulosa cells via the G(q)-coupled AT(1) receptor, which is rapidly internalized upon agonist binding. Ang II also binds to the heptahelical AT(2) receptor, which neither activates inositol phosphate signaling nor undergoes receptor internalization. The differential behaviors of the AT(1) and AT(2) receptors were analyzed in chimeric angiotensin receptors created by swapping the second (IL2), the third (IL3) intracellular loops and/or the cytoplasmic tail (CT) between these receptors. When transiently expressed in COS-7 cells, the chimeric receptors showed only minor alterations in their ligand binding properties. Measurements of the internalization kinetics and inositol phosphate responses of chimeric AT(1A) receptors indicated that the CT is required for normal receptor internalization, and IL2 is a determinant of G protein activation. In addition, the amino-terminal portion of IL3 is required for both receptor functions. However, only substitution of IL2 impaired Ang II-induced ERK activation, suggesting that alternative mechanisms are responsible for ERK activation in signaling-deficient mutant AT(1) receptors. Substitution of IL2, IL3, or CT of the AT(1A) receptor into the AT(2) receptor sequence did not endow the latter with the ability to internalize or to mediate inositol phosphate signaling responses. These data suggest that the lack of receptor internalization and inositol phosphate signal generation by the AT(2) receptor is a consequence of its different activation mechanism, rather than the inability of its cytoplasmic domains to couple to intracellular effectors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- COS Cells
- Calcium Signaling/genetics
- Cricetinae
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Inositol Phosphates/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Mutagenesis, Site-Directed
- Phosphorylation
- Protein Binding/genetics
- Protein Structure, Tertiary/genetics
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/metabolism
- Receptors, Interleukin-3/genetics
- Receptors, Interleukin-3/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- László Hunyady
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1088 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
65
|
Chen WS, Sim MK. Effects of des-aspartate-angiotensin I on the expression of angiotensin AT1 and AT2 receptors in ventricles of hypertrophic rat hearts. ACTA ACUST UNITED AC 2004; 117:207-12. [PMID: 14749041 DOI: 10.1016/j.regpep.2003.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of des-aspartate-angiotensin I (DAA-I) on the expression of angiotensin AT1 and AT2 receptor in hearts of aortic coarcted rats were studied. The protocols used included competitive reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and receptor-ligand binding assays. mRNA of the AT1 and AT2 receptors increased significantly after 4 days of aortic coarctation (7- and 4-folds of sham-operated, respectively). However, the protein of the AT1 receptor was not altered, and only increase in protein of the AT2 receptor was detected. There was an increase in [125I]Sar1-Ile8-angiotensin II binding sites in the ventricular membranes of hypertrophic hearts, which was attributed to an upregulation of the AT2 receptor. Treatment with i.p. DAA-I resulted in a significant reduction of cardiac hypertrophy, the maximum effect was achieved with a dose of 200 nmol/kg/day. The anti-cardiac hypertrophy effect appeared to be U-shape, and at a higher dose of 800 mol/kg/day, there was a loss of effect. DAA-I had no effect on the receptor protein in ventricles of hypertrophic hearts. However, DAA-I dose-dependently decreased the binding of [125I]Sar1-Ile8-angiotensin II to ventricular membranes. The decrease was due to a likely desensitization by internalization of the AT1 receptor, and this probably contributed to the loss of hypertrophic effects at 800 nmol/kg/day. Treatment of DAA-I also resulted in a remarkable increase in AT2 receptor mRNA (24-fold increase over the sham-operated), which was not coupled to translation. The present findings provide new information regarding the relationship between cardiac hypertrophy and the angiotensin receptors, and the anti-cardiac hypertrophic actions of DAA-I via the AT1 receptors.
Collapse
MESH Headings
- Angiotensin I/pharmacology
- Angiotensin I/physiology
- Angiotensin III/pharmacology
- Angiotensin III/physiology
- Animals
- Aortic Coarctation/pathology
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Heart Ventricles/chemistry
- Heart Ventricles/metabolism
- Male
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
Collapse
Affiliation(s)
- W S Chen
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, 117597
| | | |
Collapse
|
66
|
Helliwell RJA, Berry EBE, O'Carroll SJ, Mitchell MD. Nuclear prostaglandin receptors: role in pregnancy and parturition? Prostaglandins Leukot Essent Fatty Acids 2004; 70:149-65. [PMID: 14683690 DOI: 10.1016/j.plefa.2003.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The key regulatory role of prostanoids [prostaglandins (PGs) and thromboxanes (TXs)] in the maintenance of pregnancy and initiation of parturition has been established. However, our understanding of how these events are fine-tuned by the recruitment of specific signaling pathways remains unclear. Whereas, initial thoughts were that PGs were lipophilic and would easily cross cell membranes without specific receptors or transport processes, it has since been realized that PG signaling occurs via specific cell surface G-protein coupled receptors (GPCRs) coupled to classical adenylate cyclase or inositol phosphate signaling pathways. Furthermore, specific PG transporters have been identified and cloned adding a further level of complexity to the regulation of paracrine action of these potent bioactive molecules. It is now apparent that PGs also activate nuclear receptors, opening the possibility of novel intracrine signaling mechanisms. The existence of intracrine signaling pathways is further supported by accumulating evidence linking the perinuclear localization of PG synthesizing enzymes with intracellular PG synthesis. This review will focus on the evidence for a role of nuclear actions of PGs in the regulation of pregnancy and parturition.
Collapse
Affiliation(s)
- Rachel J A Helliwell
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
67
|
Becker BN, Cheng HF, Hammond TG, Harris RC. The Type 1 Angiotensin II Receptor Tail Affects Receptor Targeting, Internalization, and Membrane Fusion Properties. Mol Pharmacol 2004; 65:362-9. [PMID: 14742678 DOI: 10.1124/mol.65.2.362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endocytosis modulates cell responses by removing and recycling receptors from the cell surface. Type I angiotensin II receptors (AT1R) are somewhat unique in that they are expressed at apical (AP) and basolateral (BL) membranes in proximal tubule cells and both receptor sites undergo endocytosis. We analyzed AT1R cytoplasmic (-COOH) tail deletion mutants to determine whether classic AT1R endocytosis motifs functioned similarly in polarized cells and simultaneously altered receptor properties. Serially truncating the AT1R tail had little effect on AP/BL AT1R distribution as determined by 125I-angiotensin II binding in LLCPK(Cl4) cells transfected with an AT1R transcript. AP AT1R expression required the proximal 12 amino acids in the AT1R-COOH tail. Deleting all but the proximal 12 aa of the AT1R-COOH tail (T316L mutant) decreased AP AT1R internalization at 20 min (17 +/- 6%; p < 0.05 versus full-length; n = 5) and inhibited AP AT1R-stimulated arachidonic acid release (counts released per milligram of protein at 20 min: full-length, 18,762 +/- 4018; T316L, 2430 +/- 1711; n = 4; p < 0.02). Endosomal fusion assays were performed using peptide sequences of regions in the AT1R tail involved in endocytosis (YFLQLLKYIPP [LL] and LSTKMSTLSY [STL]). Peptide STL significantly inhibited endosomal fusion (22 +/- 10% of control; n = 5; p < 0.05 versus positive control). Peptide LL had no significant inhibitory effect. AT(1)R in polarized cells contain dominant endocytosis signals but these motifs do not correlate with AP or BL AT1R expression. Moreover, peptide sequences within the AT1R-COOH tail necessary for endocytosis also modulate endosomal fusion properties.
Collapse
Affiliation(s)
- Bryan N Becker
- Department of Medicine, University of Wisconsin-Madison, USA
| | | | | | | |
Collapse
|
68
|
Lopez-Ilasaca M, Liu X, Tamura K, Dzau VJ. The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Mol Biol Cell 2003; 14:5038-50. [PMID: 12960423 PMCID: PMC284805 DOI: 10.1091/mbc.e03-06-0383] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Our group identified angiotensin II type 1 (AT1) receptor-associated protein (ATRAP) in a yeast two-hybrid screen for proteins that bind to the carboxyl-terminal cytoplasmic domain of the AT1. In this work, we characterize ATRAP as a transmembrane protein localized in intracellular trafficking vesicles and plasma membrane that functions as a modulator of angiotensin II-induced signal transduction. ATRAP contains three hydrophobic domains at the amino-terminal end of the protein, encompassing the amino acid residues 14-36, 55-77, and 88-108 and a hydrophilic cytoplasmic carboxyl-terminal tail from residues 109-161. Endogenous and transfected ATRAP cDNA shows a particulate distribution; electron microscopy reveals the presence of ATRAP in prominent perinuclear vesicular membranes; and colocalization analysis by immunofluorescence shows that ATRAP colocalizes in an intracellular vesicular compartment corresponding to endoplasmic reticulum, Golgi, and endocytic vesicles. Real-time tracking of ATRAP vesicles shows constitutive translocation toward the plasma membrane. Using epitope-tagged forms of ATRAP at either the amino or carboxyl end of the molecule, we determined the orientation of the amino end as being outside the cell. Mutant forms of ATRAP lacking the carboxyl end are unable to bind to the AT1 receptor, leading to the formation of prominent perinuclear vesicle clusters. Functional analysis of the effects of ATRAP on angiotensin II-induced AT1 receptor signaling reveals a moderate decrease in the generation of inositol lipids, a marked decrease in the angiotensin II-stimulated transcriptional activity of the c-fos promoter luciferase reporter gene, and a decrease in cell proliferation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Angiotensin II/metabolism
- Carrier Proteins/metabolism
- Cell Compartmentation/physiology
- Cell Division/physiology
- Cell Membrane/metabolism
- Cells, Cultured
- Cloning, Molecular
- Endoplasmic Reticulum/metabolism
- Golgi Apparatus/metabolism
- Humans
- Lipids/biosynthesis
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Models, Structural
- Protein Binding
- Protein Structure, Tertiary/physiology
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Angiotensin/metabolism
- Signal Transduction/physiology
- Transcription, Genetic/physiology
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Marco Lopez-Ilasaca
- Cardiovascular Research Laboratories, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
69
|
D'Amelio N, Gaggelli E, Gaggelli N, Lozzi L, Neri P, Valensin D, Valensin G. Interaction of angiotensin II with the C-terminal 300-320 fragment of the rat angiotensin II receptor AT1a monitored by NMR. Biopolymers 2003; 70:134-44. [PMID: 14517903 DOI: 10.1002/bip.10426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interaction between angiotensin II (Ang II) and the fragment peptide 300-320 (fCT300-320) of the rat angiotensin II receptor AT1a was demonstrated by relaxation measurements, NOE effects, chemical shift variations, and CD measurements. The correlation times modulating dipolar interactions for the bound and free forms of Ang II were estimated by the ratio of the nonselective and single-selective longitudinal relaxation rates. The intermolecular NOEs observed in NOESY spectra between HN protons of 9Lys(fCT) and 6His(ang), 10Phe(fCT) and 8Phe(ang), HN proton of 3Tyr(fCT) and Halpha of 4Tyr(ang), 5Phe(fCT)Hdelta and Halpha of 4Tyr(ang) indicated that Ang II aromatic residues are directly involved in the interaction, as also verified by relaxation data. Some fCT300-320 backbone features were inferred by the CSI method and CD experiments revealing that the presence of Ang II enhances the existential probability of helical conformations in the fCT fragment. Restrained molecular dynamics using the simulated annealing protocol was performed with intermolecular NOEs as constraints, imposing an alpha-helix backbone structure to fCT300-320 fragment. In the built model, one strongly preferred interaction was found that allows intermolecular stacking between aromatic rings and forces the peptide to wrap around the 6Leu side chain of the receptor fragment.
Collapse
Affiliation(s)
- Nicola D'Amelio
- Department of Chemistry and the NMR Centre, University of Siena, Via A. Moro, Siena 53100, Italy
| | | | | | | | | | | | | |
Collapse
|
70
|
Mihalik B, Gáborik Z, Várnai P, Clark AJL, Catt KJ, Hunyady L. Endocytosis of the AT1A angiotensin receptor is independent of ubiquitylation of its cytoplasmic serine/threonine-rich region. Int J Biochem Cell Biol 2003; 35:992-1002. [PMID: 12676183 DOI: 10.1016/s1357-2725(02)00277-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Agonist-induced internalisation of the rat type 1A (AT(1A)) angiotensin II receptor is associated with phosphorylation of a serine/threonine-rich region in its cytoplasmic tail. In yeast, hyperphosphorylation of the alpha-factor pheromone receptor regulates endocytosis of the receptor by facilitating the monoubiquitylation of its cytoplasmic tail on lysine residues. The role of receptor ubiquitylation in AT(1A) receptor internalisation was evaluated by deletion or replacement of lysine residues in its agonist-sensitive serine/threonine-rich region. Expression of such receptor mutants in CHO cells showed that these modifications had no detectable effect on the angiotensin II-induced endocytosis of the AT(1A) receptor. Furthermore, fusion of ubiquitin in-frame to an internalisation-deficient AT(1A) receptor mutant with a truncated carboxyl-terminal tail did not restore the endocytosis of the resulting chimeric receptor. No impairment of receptor internalisation was observed after substitution of all lysine residues in the serine/threonine-rich region at saturating angiotensin II concentrations, where endocytosis occurs by a beta-arrestin and dynamin independent mechanism. Taken together, these data demonstrate that ubiquitylation of the cytoplasmic serine/threonine-rich region of the AT(1A) receptor on lysine residues is not required for its agonist-induced internalisation, and suggest that endocytosis of mammalian G protein-coupled receptors (GPCRs) occurs by a different mechanism than that of yeast GPCRs.
Collapse
Affiliation(s)
- Balázs Mihalik
- Department of Physiology, Faculty of Medicine, Semmelweis University, P.O. Box 259, H-1444 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
71
|
Gáborik Z, Jagadeesh G, Zhang M, Spät A, Catt KJ, Hunyady L. The role of a conserved region of the second intracellular loop in AT1 angiotensin receptor activation and signaling. Endocrinology 2003; 144:2220-8. [PMID: 12746278 DOI: 10.1210/en.2002-0135] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pleiotropic actions of angiotensin II are mediated by the primarily G(q) protein-coupled type 1 angiotensin (AT(1)) receptor. In this study a mutational analysis of the function of the conserved DRYXXV/IXXPL domain in the second intracellular loop of the rat AT(1A) receptor was performed in COS7 cells. Alanine substitution studies showed that single replacement of the highly conserved Asp(125) and Arg(126), but not Tyr(127), moderately impaired angiotensin II-induced inositol phosphate signaling. However, concomitant substitution of both Asp(125) and Arg(126) caused marked reduction of both inositol phosphate signaling and receptor internalization. Alanine scanning of the adjacent residues showed that substitution of Ile(130), His(132), and Pro(133) reduced agonist-induced inositol phosphate signal generation, whereas mutations of Met(134) also impaired receptor internalization. Expression of the D125A mutant AT(1A) receptor in COS7 cells endowed the receptor with moderate constitutive activity, as indicated by its enhanced basal Elk1 promoter activity and inositol phosphate response to partial agonists. Angiotensin II-induced stimulation of the Elk1 promoter showed parallel impairment with inositol phosphate signal generation in receptors containing mutations in this region of the AT(1A) receptor. These data confirm that Ca(2+) signal generation is required for the nuclear effects of angiotensin II-induced ERK activation. They are also consistent with the role of the conserved DRY sequence of the AT(1A) receptor in receptor activation, and of Asp(125) in constraining the receptor in its inactive conformation. Furthermore, in the cytoplasmic helical extension of the third helix, an apolar surface that includes Ile(130) and Met(134) appears to have a direct role in G protein coupling.
Collapse
Affiliation(s)
- Zsuzsanna Gáborik
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1088 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
72
|
Neef M, Biecker E, Heller J, Schepke M, Nischalke HD, Wolff M, Spengler U, Reichen J, Sauerbruch T. Portal hypertension is associated with increased mRNA levels of vasopressor G-protein-coupled receptors in human hepatic arteries. Eur J Clin Invest 2003; 33:249-55. [PMID: 12641544 DOI: 10.1046/j.1365-2362.2003.01131.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The contractile response of human splanchnic vessels to different vasoconstrictors is attenuated in cirrhosis. Functional studies indicate a cellular signalling defect upstream of the G-protein level. The aim of the present study was to analyze expression and mRNA levels of the following most relevant vasopressor receptors in the smooth musculature of human hepatic arteries: alpha1 adrenoceptor (AR) subtypes a, b and d, angiotensin II type 1 receptor (AT1), arginine vasopressin receptor type 1a (V1a), endothelin receptor type A (ETA) and B (ETB). MATERIALS AND METHODS Hepatic arteries were collected from 10 donors (noncirrhotic) and 14 recipients (cirrhotic) at liver transplantations. Real-time-PCR was performed to quantify steady-state levels of receptor mRNAs. RESULTS alpha 1aAR mRNA levels showed no significant difference between the cirrhotic arteries and the controls while the mRNA levels of the other vasoactive receptors were significantly higher in the cirrhotic hepatic arteries (alpha 1bAR: 4-fold, P = 0.013; AT1: 16-fold, P = 0.024; V1a: 23-fold, P = 0.001; ETA: 4-fold, P = 0.02; ETB: 8-fold, P = 0.008). No mRNA for the alpha 1dAR was detected either in the donor or recipient hepatic arteries. CONCLUSION We conclude that vascular hyporeactivity to the most relevant endogenous vasoconstrictors of cirrhotic hepatic arteries is not caused by a receptor down-regulation at mRNA levels. In contrast they were up-regulated.
Collapse
MESH Headings
- Adult
- Female
- Hepatic Artery/metabolism
- Humans
- Hypertension, Portal/metabolism
- Male
- Middle Aged
- Polymerase Chain Reaction/methods
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Angiotensin/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Endothelin/metabolism
- Receptors, Vasopressin/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- M Neef
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW Transmission of external signals from the cell surface to the internal cellular environment occurs via tightly controlled complex transduction pathways. Alterations in these highly regulated signalling cascades in vascular smooth cells may play a fundamental role in the structural, mechanical and functional abnormalities that underlie vascular pathological processes in hypertension. The present review focuses on recent developments relating to two novel signalling pathways: angiotensin II signalling through tyrosine kinases; and oxidative stress and redox-dependent signal transduction. These pathways are emerging as critical mediators of hypertensive vascular disease because they influence multiple cellular responses that are involved in structural remodelling, vascular inflammation and altered tone. RECENT FINDINGS A recent advance in the field of angiotensin II signalling was the demonstration that, in addition to its vasoconstrictor properties, angiotensin II has potent mitogenic-like and proinflammatory-like characteristics. These actions are mediated through phosphorylation of both nonreceptor tyrosine kinases and receptor tyrosine kinases. It is also becoming increasingly apparent that many signalling events that underlie abnormal vascular function in hypertension are influenced by changes in intracellular redox status. In particular, increased bioavailability of reactive oxygen species (oxidative stress) stimulates growth-signalling pathways, induces expression of proinflammatory genes, alters contraction-excitation coupling and impairs endothelial function. SUMMARY A better understanding of the molecular pathways that regulate vascular smooth muscle cell function will provide further insights into the pathophysiological mechanisms that contribute to vascular changes and end-organ damage associated with high blood pressure, and could permit identification of potential novel therapeutic targets in the prevention and management of hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Canadian Institute of Health Research Multidisciplinary Research Group on Hypertension, Quebec, Canada.
| |
Collapse
|
74
|
Yu J, Prado GN, Taylor L, Pal-Ghosh R, Polgar P. Hybrid formation between the intracellular faces of the bradykinin B2 and angiotensin II AT1 receptors and signal transduction. Int Immunopharmacol 2002; 2:1807-22. [PMID: 12489795 DOI: 10.1016/s1567-5769(02)00177-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most frequently, the physiologic functions of the angiotensin II (Ang II) type 1 receptor (AT1R) and bradykinin B2 receptor (BKB2R) are antagonistic, particularly with respect to the regulation of vascular tone. Despite major differences in their physiologic actions, the receptors share sequence similarities. Both link to Galpha(i) and Galpha(q) and transduce very similar signal paths, not only those relating to the traditional G-protein associated second messengers, but also those involved in transactivation mechanisms involving receptor tyrosine kinases. With respect to these paths, some differences in signaling may be accounted for by cell type specificity. However, alternative signal cascades for these two receptors are becoming increasingly evident. One such is the recruitment of signaling molecules upon receptor translocation and internalization. The AT1R translocates into clathrin-coated pits and internalizes upon recruitment of beta-arrestin 2 which then recruits ASK1 and JNK3. The BKB2R translocates and internalizes mainly via caveolae. Another signaling divergence may be due to the direct activation of small G-proteins by both receptors. AT1R activates the RhoA, Rac1, Cdc42 while BKB2R couples only with Rac1 and Cdc42. Both receptors may serve as docking stations for intracellular proteins. One such example is the YIPP motif within the C-terminus of the ATIR which associates with the JAK/STAT pathway. Another potential alternative is the activation of tyrosine/serine kinase phosphatases by BK. This mechanism may directly oppose some of the protein tyrosine/ serine kinase paths activated by AT1R. These alternative mechanisms in sum are potentially responsible for the diversion in signal transduction between these two receptors. Regardless of the route of action, our results suggest that in Rat-1 fibroblasts stably transfected with BKB2R, BK slightly decreases connective tissue growth factor (CTGF) mRNA level while in ATIR transfected cells Ang II increases CTGF mRNA markedly. To determine whether mutant hybrids can be formed between these two receptors which encompass some of the function of the donor receptor but bind the ligand of the recipient receptor, a series of hybrids were formed with BKB2R the recipient and AT1R the donor receptor. Some of these hybrids show resistance to exchanges with the AT1R and form receptors which either do not bind (IC1 exchanges) or demonstrate poor function but normal internalization (proximal C-terminus exchanges). However, other hybrids have proven very functional. For example, the IC2, IC3 and distal C-terminus of the BKB2R IC face can be replaced simultaneously with the AT1R resulting in an hybrid which binds BK, continues to signal, is internalized and resensitized. Formation of this and other less extensive hybrids is discussed. Some of these hybrids possess the capacity to function as the AT1R as exemplified by their ability to upregulate CTGF expression as wild-type (WT) AT1R.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cells, Cultured
- Humans
- Molecular Sequence Data
- Mutation
- Receptor, Angiotensin, Type 1
- Receptor, Bradykinin B2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Receptors, Angiotensin/physiology
- Receptors, Bradykinin/genetics
- Receptors, Bradykinin/metabolism
- Receptors, Bradykinin/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Jun Yu
- Department of Biochemistry, Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
75
|
Baig AH, Swords FM, Szaszák M, King PJ, Hunyady L, Clark AJL. Agonist activated adrenocorticotropin receptor internalizes via a clathrin-mediated G protein receptor kinase dependent mechanism. Endocr Res 2002; 28:281-9. [PMID: 12530627 DOI: 10.1081/erc-120016798] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The physiological effects of the pituitary hormone, adrenocorticotropic hormone (ACTH) on the adrenal are mediated by the melanocortin 2 receptor (MC2R), a G protein coupled receptor (GPCR) that signals via adenylate cyclase to elevate intracellular cyclic AMP (cAMP) levels. The function and expression of the receptor is likely to be a major determinant of the response to ACTH. Following repeated stimulation, the cAMP signal is diminished or desensitized. Prolonged desensitization may involve internalization of the receptor. Internalization may occur by at least two mechanisms--receptor mediated endocytosis via clathrin-coated pits and by caveolae mediated internalization. The mode of internalization for the endogenous MC2R in Y1 cells was determined using radiolabelled ACTH. Treatment of Y1 cells with hypertonic sucrose or with concanavalin A, which inhibit clathrin-mediated endocytosis, blocked internalization. Filipin and nystatin, which inhibit caveolae formation, did not influence internalization. A dominant negative GRK2 inhibited internalization whilst the protein kinase A (PKA) consensus site mutant MC2R (S208A) internalized normally. However, dominant negative V53D beta-arrestin-1 did not inhibit ACTH internalization in Y1 cells. In conclusion, it appears that the MC2R in Y1 cells internalizes by a G protein coupled receptor kinase (GRK) dependent clathrin-coated pit mechanism.
Collapse
Affiliation(s)
- A H Baig
- Dept. of Endocrinology, Barts & the London, Queen Mary, University of London, EC1A 7BE, UK
| | | | | | | | | | | |
Collapse
|
76
|
Hunyady L, Baukal AJ, Gaborik Z, Olivares-Reyes JA, Bor M, Szaszak M, Lodge R, Catt KJ, Balla T. Differential PI 3-kinase dependence of early and late phases of recycling of the internalized AT1 angiotensin receptor. J Cell Biol 2002; 157:1211-22. [PMID: 12070129 PMCID: PMC2173556 DOI: 10.1083/jcb.200111013] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Agonist-induced endocytosis and processing of the G protein-coupled AT1 angiotensin II (Ang II) receptor (AT1R) was studied in HEK 293 cells expressing green fluorescent protein (GFP)- or hemagglutinin epitope-tagged forms of the receptor. After stimulation with Ang II, the receptor and its ligand colocalized with Rab5-GFP and Rab4-GFP in early endosomes, and subsequently with Rab11-GFP in pericentriolar recycling endosomes. Inhibition of phosphatidylinositol (PI) 3-kinase by wortmannin (WT) or LY294002 caused the formation of large endosomal vesicles of heterogeneous Rab composition, containing the ligand-receptor complex in their limiting membranes and in small associated vesicular structures. In contrast to Alexa(R)-transferrin, which was mainly found in small vesicles associated with the outside of large vesicles in WT-treated cells, rhodamine-Ang II was also segregated into small internal vesicles. In cells labeled with 125I-Ang II, WT treatment did not impair the rate of receptor endocytosis, but significantly reduced the initial phase of receptor recycling without affecting its slow component. Similarly, WT inhibited the early, but not the slow, component of the recovery of AT1R at the cell surface after termination of Ang II stimulation. These data indicate that internalized AT1 receptors are processed via vesicles that resemble multivesicular bodies, and recycle to the cell surface by a rapid PI 3-kinase-dependent recycling route, as well as by a slower pathway that is less sensitive to PI 3-kinase inhibitors.
Collapse
Affiliation(s)
- Laszlo Hunyady
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Szaszák M, Gáborik Z, Turu G, McPherson PS, Clark AJL, Catt KJ, Hunyady L. Role of the proline-rich domain of dynamin-2 and its interactions with Src homology 3 domains during endocytosis of the AT1 angiotensin receptor. J Biol Chem 2002; 277:21650-6. [PMID: 11925437 DOI: 10.1074/jbc.m200778200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In nonneural tissues, the dynamin-2 isoform participates in the formation of clathrin-coated vesicles during receptor endocytosis. In this study, the mechanism of dynamin-2 action was explored during endocytosis of the G protein-coupled AT1A angiotensin receptor expressed in Chinese hamster ovary cells. Dynamin-2 molecules with mutant pleckstrin homology domains or deleted proline-rich domains (PRD) exerted dominant negative inhibition on the endocytosis of radiolabeled angiotensin II. However, only the PRD mutation interfered with the localization of the dynamin-2 molecule to clathrin-coated pits and reduced the inhibitory effect of the GTPase-deficient K44A mutant dynamin-2. Green fluorescent protein-tagged Src homology 3 (SH3) domains of endophilin I and amphiphysin II, two major binding partners of dynamins, also inhibited AT1A receptor-mediated endocytosis of angiotensin II. These effects were partially or fully, respectively, restored by the overexpression of dynamin-2. Transient overexpression of these SH3 domains also reduced the localization of dynamin-2 to clathrin-coated pits. These data indicate that, similar to the recruitment of dynamin-1 during the recycling of synaptic vesicles, interaction of the dynamin-2 PRD with SH3 domains of proteins such as the amphiphysins and endophilins is essential for AT1A receptor endocytosis. This mechanism could be of general importance in dynamin-dependent endocytosis of other G protein-coupled receptors in nonneural tissues.
Collapse
MESH Headings
- Animals
- Blotting, Western
- CHO Cells
- Cells, Cultured
- Cricetinae
- DNA, Complementary/metabolism
- Dynamin I
- Dynamins
- Endocytosis
- GTP Phosphohydrolases/chemistry
- GTP Phosphohydrolases/physiology
- Gene Deletion
- Genes, Dominant
- Green Fluorescent Proteins
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mutagenesis, Site-Directed
- Mutation
- Plasmids/metabolism
- Proline/chemistry
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- Rats
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/chemistry
- Receptors, Angiotensin/metabolism
- Time Factors
- Transfection
- src Homology Domains
Collapse
Affiliation(s)
- Márta Szaszák
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1088 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
78
|
Hu L, Zhu DN, Yu Z, Wang JQ, Sun ZJ, Yao T. Expression of angiotensin II type 1 (AT(1)) receptor in the rostral ventrolateral medulla in rats. J Appl Physiol (1985) 2002; 92:2153-61. [PMID: 11960969 DOI: 10.1152/japplphysiol.00261.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, the changes of amino acids release in the spinal cord after the application of angiotensin II (ANG II) in the rostral ventrolateral medulla (RVLM) and the distribution of ANG receptors on neurons of the RVLM were investigated. A microdialysis experiment showed that microinjection of angiotensin II into the RVLM significantly (P < 0.01) increased the release of aspartate and glutamate in the intermediolateral column of the spinal cord. Immunofluorescence technique combined with confocal microscopy demonstrated that most of the glutamatergic and GABAergic neurons in the RVLM of both Wistar and spontaneously hypertensive rats (SHR) were double labeled with ANG type 1 (AT1) receptor. Immunocytochemical studies demonstrated that the mean optic density of AT1 receptor of the cell surface as well as the whole cell was higher (P < 0.05) in SHR than that in Wistar rats, indicating that the higher expression of AT1 receptors in the RVLM may contribute to the higher responsiveness of SHR to ANG II stimulation. Immunogold staining and electronmicroscopic study demonstrated that AT1 receptor in the RVLM was distributed on the rough endoplasmic reticulum, cell membrane, and nerve processes. The results suggest that effects evoked by ANG II in the RVLM are closely related to glutamatergic and GABAergic pathways. These results indirectly support the hypothesis that ANG II in the RVLM may activate vasomotor sympathetic glutamatergic neurons, leading to an increase in sympathetic nerve activity and arterial blood pressure.
Collapse
Affiliation(s)
- Lian Hu
- Department of Physiology, Medical Center of Fudan University (Former Shanghai Medical University), Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
79
|
Fierens FLP, Vanderheyden PML, Roggeman C, Vande Gucht P, De Backer JP, Vauquelin G. Distinct binding properties of the AT(1) receptor antagonist [(3)H]candesartan to intact cells and membrane preparations. Biochem Pharmacol 2002; 63:1273-9. [PMID: 11960603 DOI: 10.1016/s0006-2952(02)00859-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
[(3)H]-2-Ethoxy-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl]-1H-benzimidazoline-7-carboxylic acid ([(3)H]candesartan), a non-peptide angiotensin II type 1 receptor (AT(1) receptor) antagonist bound with high affinity and specificity to intact adherent human AT(1) receptor transfected Chinese hamster ovary cells. The binding characteristics were preserved when cells were suspended, but the dissociation was 3-4-fold faster and the affinity 2-fold lower, while examining [(3)H]candesartan binding to cell membranes. These data suggested the role of the intracellular organisation of living CHO-hAT(1) cells in antagonist-AT(1) receptor interactions. Yet, a specific role of microtubule or actin filaments of the cytoskeleton, receptor phosphorylation by Protein Kinase C, membrane polarity, cytoplasmic components like ATP and the need of an intact cell membrane could be excluded. The potential effect of protease degradation or receptor oxidation during the membrane preparation was also unlikely. The dissociation rate and the equilibrium dissociation constant of [(3)H]candesartan increased with the temperature for both intact cells and membranes. Thermodynamic studies suggested that the bonds between candesartan and the hAT(1) receptor may be of different nature in intact CHO-hAT(1) cells and membranes thereof. Whereas the binding was almost completely enthalpy-driven on intact cells, there was a mixed contribution of both enthalpy and entropy on membranes.
Collapse
Affiliation(s)
- Frederik L P Fierens
- Department of Molecular and Biochemical Pharmacology, Free University of Brussels (VUB), 65 Paardenstraat, B-1640 Sint-Genesius Rode, Belgium.
| | | | | | | | | | | |
Collapse
|
80
|
Holloway AC, Qian H, Pipolo L, Ziogas J, Miura SI, Karnik S, Southwell BR, Lew MJ, Thomas WG. Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 2002; 61:768-77. [PMID: 11901215 DOI: 10.1124/mol.61.4.768] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of the peptide hormone angiotensin II (AngII) to the type 1 (AT(1A)) receptor and the subsequent activation of phospholipase C-mediated signaling, involves specific determinants within the AngII peptide sequence. In contrast, the contribution of such determinants to AT(1A) receptor internalization, phosphorylation and activation of mitogen-activated protein kinase (MAPK) signaling is not known. In this study, the internalization of an enhanced green fluorescent protein-tagged AT(1A) receptor (AT(1A)-EGFP), in response to AngII and a series of substituted analogs, was visualized and quantified using confocal microscopy. AngII-stimulation resulted in a rapid, concentration-dependent internalization of the chimeric receptor, which was prevented by pretreatment with the nonpeptide AT(1) receptor antagonist EXP3174. Remarkably, AT(1A) receptor internalization was unaffected by substitution of AngII side chains, including single and double substitutions of Tyr(4) and Phe(8) that abolish phospholipase C signaling through the receptor. AngII-induced receptor phosphorylation was significantly inhibited by several substitutions at Phe(8) as well as alanine replacement of Asp(1). The activation of MAPK was only significantly inhibited by substitutions at position eight in the peptide and specific substitutions did not equally inhibit inositol phosphate production, receptor phosphorylation and MAPK activation. These results indicate that separate, yet overlapping, contacts made between the AngII peptide and the AT(1A) receptor select/induce distinct receptor conformations that preferentially affect particular receptor outcomes. The requirements for AT(1A) receptor internalization seem to be less stringent than receptor activation and signaling, suggesting an inherent bias toward receptor deactivation.
Collapse
Affiliation(s)
- Alice C Holloway
- Molecular Endocrinology Laboratory, Baker Medical Research Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Shah BH, Alberto Olivares-Reyes J, Yesilkaya A, Catt KJ. Independence of angiotensin II-induced MAP kinase activation from angiotensin type 1 receptor internalization in clone 9 hepatocytes. Mol Endocrinol 2002; 16:610-20. [PMID: 11875120 DOI: 10.1210/mend.16.3.0781] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The agonist-induced internalization of several G protein-coupled receptors is an obligatory requirement for their activation of MAPKs. Studies on the relationship between endocytosis of the angiotensin II (Ang II) type 1 receptor (AT1-R) and Ang II-induced ERK1/2 activation were performed in clone 9 (C9) rat hepatic cells treated with inhibitors of endocytosis [sucrose, phenylarsine oxide (PAO), and concanavalin A]. Although Ang II-induced endocytosis of the AT1-R was prevented by sucrose and PAO, and was partially inhibited by concanavalin A, there was no impairment of Ang II-induced ERK activation. However, the specific epidermal growth factor receptor (EGF-R) kinase inhibitor, AG1478, abolished Ang II-induced activation of ERK1/2. Sucrose and PAO also inhibited EGFinduced internalization of the EGF-R in C9 cells, and the inability of these agents to impair EGF-induced ERK activation suggested that the latter is also independent of receptor endocytosis. In COS-7 cells transiently expressing the rat AT1A-R, Ang II also caused ERK activation through EGF-R transactivation. Furthermore, a mutant AT1A-R with truncated carboxyl terminus and impaired internalization retained full ability to activate ERK1/2 in response to Ang II stimulation. These findings demonstrate that Ang II-induced ERK1/2 activation in C9 hepatocytes is independent of both AT1-R and EGF-R endocytosis and is mediated by transactivation of the EGF-R.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
82
|
Morimoto S, Cassell MD, Sigmund CD. The brain renin-angiotensin system in transgenic mice carrying a highly regulated human renin transgene. Circ Res 2002; 90:80-6. [PMID: 11786522 DOI: 10.1161/hh0102.102272] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported the generation of 2 novel transgenic mouse models containing the human renin (hREN) gene encoded on P1 artificial chromosomes (PAC) containing large amounts of 5'-flanking DNA. These mice exhibit a very narrow tissue-specific expression profile and exhibit tightly regulated expression in kidney in response to physiological cues. In brain, transcription of hREN occurs from an alternative upstream promoter, causing translation to initiate within exon-II and potentially generating an intracellular form of active renin. Double transgenic mice containing a PAC transgene and the human angiotensinogen (hAGT) gene (P+/A+) are moderately hypertensive. We tested whether increased RAS activity in the brain contributes to the mechanism of hypertension in P+/A+ double transgenic mice. Expression of hREN mRNA in brain was confirmed in 4 independent PAC transgenic lines and utilization of the alternative transcription start site in brain was confirmed in each line. Human REN immunostaining was observed in the dorsal cochlear nucleus, hypothalamus, and cortex. P+/A+ mice exhibited a greater fall in mean arterial pressure after intracerebroventricular injection of losartan than controls. P+/A+ mice exhibited a greater drop in arterial pressure after intravenous injection of a vasopressin V(1) receptor antagonist, and an equivalent drop in arterial pressure after intravenous injection of a ganglion blocker compared with controls. These results support the hypothesis that renin is endogenously expressed in the brain and suggest that increased brain RAS activity may contribute to the maintenance of moderate hypertension in P+/A+ transgenic mice at least in part by a vasopressin-dependent mechanism.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Department of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
83
|
Olivares-Reyes JA, Smith RD, Hunyady L, Shah BH, Catt KJ. Agonist-induced signaling, desensitization, and internalization of a phosphorylation-deficient AT1A angiotensin receptor. J Biol Chem 2001; 276:37761-8. [PMID: 11495923 DOI: 10.1074/jbc.m106368200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An analysis of the functional role of a diacidic motif (Asp236-Asp237) in the third intracellular loop of the AT1A angiotensin II (Ang II) receptor (AT1-R) revealed that substitution of both amino acids with alanine (DD-AA) or asparagine (DD-NN) residues diminished Ang II-induced receptor phosphorylation in COS-7 cells. However, Ang II-stimulated inositol phosphate production, mitogen-activated protein kinase, and AT1 receptor desensitization and internalization were not significantly impaired. Overexpression of dominant negative G protein-coupled receptor kinase 2 (GRK2)K220M decreased agonist-induced receptor phosphorylation by approximately 40%, but did not further reduce the impaired phosphorylation of DD-AA and DD-NN receptors. Inhibition of protein kinase C by bisindolylmaleimide reduced the phosphorylation of both the wild-type and the DD mutant receptors by approximately 30%. The inhibitory effects of GRK2K220M expression and protein kinase C inhibition by bisindolylmaleimide on agonist-induced phosphorylation were additive for the wild-type AT1-R, but not for the DD mutant receptor. Agonist-induced internalization of the wild-type and DD mutant receptors was similar and was unaltered by coexpression of GRK2K220M. These findings demonstrate that an acidic motif at position 236/237 in the third intracellular loop of the AT1-R is required for optimal Ang II-induced phosphorylation of its carboxyl-terminal tail by GRKs. Furthermore, the properties of the DD mutant receptor suggest that not only Ang II-induced signaling, but also receptor desensitization and internalization, are independent of agonist-induced GRK-mediated phosphorylation of the AT1 receptor.
Collapse
Affiliation(s)
- J A Olivares-Reyes
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
84
|
Merjan AJ, Kanashiro CA, Krieger JE, Han SW, Paiva AC. Ligand-induced endocytosis and nuclear localization of angiotensin II receptors expressed in CHO cells. Braz J Med Biol Res 2001; 34:1175-83. [PMID: 11514842 DOI: 10.1590/s0100-879x2001000900011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A construct (AT1R-NF) containing a "Flag" sequence added to the N-terminus of the rat AT1 receptor was stably expressed in Chinese hamster ovary cells and quantified in the cell membrane by confocal microscopy after reaction with a fluorescein-labeled anti-Flag monoclonal antibody. Angiotensin II bound to AT1R-NF and induced endocytosis with a half-time of 2 min. After 60-90 min, fluorescence accumulated around the cell nucleus, suggesting migration of the ligand-receptor complex to the nuclear membrane. Angiotensin antagonists also induced endocytosis, suggesting that a common step in the transduction signal mechanism occurring after ligand binding may be responsible for the ligand-receptor complex internalization.
Collapse
Affiliation(s)
- A J Merjan
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | |
Collapse
|
85
|
Gáborik Z, Szaszák M, Szidonya L, Balla B, Paku S, Catt KJ, Clark AJ, Hunyady L. Beta-arrestin- and dynamin-dependent endocytosis of the AT1 angiotensin receptor. Mol Pharmacol 2001; 59:239-47. [PMID: 11160859 DOI: 10.1124/mol.59.2.239] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The major mechanism of agonist-induced internalization of G protein-coupled receptors (GPCRs) is beta-arrestin- and dynamin-dependent endocytosis via clathrin-coated vesicles. However, recent reports have suggested that some GPCRs, exemplified by the AT1 angiotensin receptor expressed in human embryonic kidney (HEK) 293 cells, are internalized by a beta-arrestin- and dynamin-independent mechanism, and possibly via a clathrin-independent pathway. In this study, agonist-induced endocytosis of the rat AT1A receptor expressed in Chinese hamster ovary (CHO) cells was abolished by clathrin depletion during treatment with hyperosmotic sucrose and was unaffected by inhibition of endocytosis via caveolae with filipin. In addition, internalized fluorescein-conjugated angiotensin II appeared in endosomes, as demonstrated by colocalization with transferrin. Overexpression of beta-arrestin1(V53D) and beta-arrestin1(1-349) exerted dominant negative inhibitory effects on the endocytosis of radioiodinated angiotensin II in CHO cells. GTPase-deficient (K44A) mutant forms of dynamin-1 and dynamin-2, and a pleckstrin homology domain-mutant (K535A) dynamin-2 with impaired phosphoinositide binding, also inhibited the endocytosis of AT(1) receptors in CHO cells. Similar results were obtained in COS-7 and HEK 293 cells. Confocal microscopy using fluorescein-conjugated angiotensin II showed that overexpression of dynamin-1(K44A) and dynamin-2(K44A) isoforms likewise inhibited agonist-induced AT1 receptor endocytosis in CHO cells. Studies on the angiotensin II concentration-dependence of AT1 receptor endocytosis showed that at higher agonist concentrations its rate constant was reduced and the inhibitory effects of dominant negative dynamin constructs were abolished. These data demonstrate the importance of beta-arrestin- and dynamin-dependent endocytosis of the AT1 receptor via clathrin-coated vesicles at physiological angiotensin II concentrations.
Collapse
Affiliation(s)
- Z Gáborik
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|