51
|
Faezi S, Bahrmand AR, Mahdavi M, Siadat SD, Sardari S, Nikokar I, Khanaki K, Mirzajani E, Goudarzi G. Preparation of Pseudomonas aeruginosa alginate-flagellin immunoconjugate. Biologicals 2017; 47:11-17. [DOI: 10.1016/j.biologicals.2017.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022] Open
|
52
|
Lazo Vázquez L, Gil González L, Marcos López E, Pérez Fuentes Y, Cervetto de Armas L, Brown Richards E, Valdés Prado I, Suzarte Portal E, Cobas Acosta K, Yaugel Novoa M, Romero Fernández Y, Guillén Nieto G, Hermida Cruz L. Evaluation in Mice of the Immunogenicity of a Tetravalent Subunit Vaccine Candidate Against Dengue Virus Using Mucosal and Parenteral Immunization Routes. Viral Immunol 2017; 30:350-358. [PMID: 28418786 DOI: 10.1089/vim.2016.0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our group has developed a subunit vaccine candidate against Dengue virus (DENV) based on two different viral regions, the domain III of the envelope protein and the capsid protein. The chimeric proteins for each serotype (DIIIC1-4), aggregated with the oligodeoxynucleotide 39 M, form the tetravalent formulation named Tetra DIIIC. Tetra DIIIC induces a protective immune response in mice when it is inoculated by intraperitoneal route. However, if children are the main targets for a DENV vaccine, then a needle-free route of administration should be attractive and advantageous. In this study, we evaluated for the first time, in vivo, a vaccine candidate against DENV based on recombinant proteins using the intranasal route. After three doses of Tetra DIIIC in mice, we measured the humoral immune response against the four DENV serotypes and the corresponding recombinant proteins. Moreover, the functionality of these antibodies was evaluated through a plaque reduction neutralization test. Finally, to assess the cellular immune response induced, we measured the IFN-γ-levels secreted by spleen cells after in vitro stimulation with DENV. The results presented in this study indicate that the intranasal immunization with Tetra DIIIC favors the generation of DENV-specific cell-mediated immunity. On the other hand, the immunization using intraperitoneal and intranasal routes, simultaneously, generate functional antibodies (anti-DIIIC and anti-DENV) and an in vitro response of IFN-γ secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iris Valdés Prado
- Center for Genetic Engineering and Biotechnology (CIGB) , Havana, Cuba
| | | | | | | | | | | | | |
Collapse
|
53
|
Liao SH, Li Y, Lai YN, Liu N, Zhang FX, Xu PP. Ribavirin attenuates the respiratory immune responses to influenza viral infection in mice. Arch Virol 2017; 162:1661-1669. [PMID: 28243801 DOI: 10.1007/s00705-017-3291-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/31/2017] [Indexed: 01/11/2023]
Abstract
Ribavirin is a broad-spectrum antiviral agent that is used against RNA and DNA viruses and has been reported to inhibit infection by influenza A and B virus in vitro and in vivo. Studies have shown that ribavirin can lower convalescent antibody titers in young children hospitalized with influenza. Here, we report that ribavirin administration in juvenile mice significantly attenuated respiratory immune responses, production of total IgA and hemagglutinin (HA)-specific secretory IgA responses on the mucosal surface. In contrast, systemic IgG and IgA responses were not affected. Ribavirin significantly suppressed toll-like receptor 2 and 4 expression in the lung and decreased the level of IL-1β, IL-6, TNF-α, and IFN-γ in lung tissues of mice infected with influenza virus. Our findings suggest ribavirin appears to be able to inhibit viral replication and, as a result, TLR and cytokine expression are not up-regulated, attenuating inflammation as well as the respiratory tract's immune response.
Collapse
Affiliation(s)
- Shang-Hui Liao
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, 510405, Guangdong, People's Republic of China
| | - Yun Li
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, 510405, Guangdong, People's Republic of China
| | - Yan-Ni Lai
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, 510405, Guangdong, People's Republic of China
| | - Ni Liu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, 510405, Guangdong, People's Republic of China
| | - Feng-Xue Zhang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, 510405, Guangdong, People's Republic of China
| | - Pei-Ping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, 510405, Guangdong, People's Republic of China.
| |
Collapse
|
54
|
Kumar S, Sunagar R, Pham G, Gosselin EJ, Nalin D. Ex vivo antigen-pulsed PBMCs generate potent and long lasting immunity to infection when administered as a vaccine. Vaccine 2017; 35:1080-1086. [PMID: 28069362 DOI: 10.1016/j.vaccine.2016.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022]
Abstract
Numerous studies have demonstrated that administration of antigen (Ag)-pulsed dendritic cells (DCs) is an effective strategy for enhancing immunity to tumors and infectious disease organisms. However, the generation and/or isolation of DCs can require substantial time and expense. Therefore, using inactivated F. tularensis (iFt) Ag as a model immunogen, we first sought to determine if DCs could be replaced with peripheral blood mononuclear cells (PBMCs) during the ex-vivo pulse phase and still provide protection against Ft infection. Follow up studies were then conducted using the S. pneumoniae (Sp) vaccine Prevnar ®13 as the Ag in the pulse phase followed by immunization and Sp challenge. In both cases, we demonstrate that PBMCs can be used in place of DCs when pulsing with iFt and/or Prevnar ®13 ex vivo and re-administering the Ag-pulsed PBMCs as a vaccine. In addition, utilization of the i.n. route for Ag-pulsed PBMC administration is superior to use of the i.v. route in the case of Sp immunization, as well as when compared to direct injection of Prevnar ®13 vaccine i.m. or i.n. Furthermore, this PBMC-based vaccine strategy provides a more marked and enduring protective immune response and is also capable of serving as a multi-organism vaccine platform. The potential for this ex-vivo vaccine strategy to provide a simpler, less time consuming, and less expensive approach to DC-based vaccines and vaccination in general is also discussed.
Collapse
Affiliation(s)
- Sudeep Kumar
- Department of Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States
| | - Raju Sunagar
- Department of Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States
| | - Giang Pham
- Department of Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States
| | - Edmund J Gosselin
- Department of Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States.
| | - David Nalin
- Department of Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States
| |
Collapse
|
55
|
Zhang M, Dong C, Xiong S. Vesicular Stomatitis Virus-Vectored Multi-Antigen Tuberculosis Vaccine Limits Bacterial Proliferation in Mice following a Single Intranasal Dose. Front Cell Infect Microbiol 2017; 7:34. [PMID: 28224119 PMCID: PMC5293745 DOI: 10.3389/fcimb.2017.00034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/24/2017] [Indexed: 01/04/2023] Open
Abstract
Tuberculosis (TB) remains a serious health problem worldwide, and an urgent need exists to improve or replace the available vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG). Most vaccination protocols adapt two or three doses to induce long-term lasting immunity. Our previous study showed that the naked DNA encoding the triple-antigen fusion TFP846 (Rv3615c-Mtb10.4-Rv2660c) induced robust T cellular immune responses accompanying four inoculations against mycobacteria infection. However, a number of compliance issues exist in some areas lacking the appropriate medical infrastructure with multiple administrations. In this study, a novel vesicular stomatitis virus expressing TFP846 (VSV-846) was developed and the immune responses elicited by VSV-846 were evaluated. We observed that intranasal delivery of VSV-846 induced a potent antigen-specific T cell response following a single dose and VSV-846 efficiently controlled bacterial growth to levels ~10-fold lower than that observed in the mock group 6 weeks post-infection in BCG-infected mice. Importantly, mice immunized with VSV-846 provided long-term protection against mycobacteria infection compared with those receiving p846 or BCG immunization. Increased memory T cells were also observed in the spleens of VSV-846-vaccinated mice, which could be a potential mechanism associated with long-term protective immune response. These findings supported the use of VSV as an antigen delivery vector with the potential for TB vaccine development.
Collapse
Affiliation(s)
- Ming Zhang
- Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences, Soochow University Suzhou, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences, Soochow University Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences, Soochow University Suzhou, China
| |
Collapse
|
56
|
Abstract
Immunity to targeted infectious diseases may be conferred or enhanced by vaccines, which are manufactured from recombinant forms as well as inactivated or attenuated organisms. These vaccines have to meet requirements for safety, quality, and efficacy. In addition to antigenic components, various adjuvants may be included in vaccines to evoke an effective immune response. To ensure the safety of new vaccines, preclinical toxicology studies are conducted prior to the initiation of, and concurrently with, clinical studies. There are five different types of preclinical toxicology study in the evaluation of vaccine safety: single and/or repeat dose, reproductive and developmental, mutagenicity, carcinogenicity, and safety pharmacology. If any adverse effects are observed in the course of these studies, they should be fully evaluated and a final safety decision made accordingly. Successful preclinical toxicology studies depend on multiple factors including using the appropriate study designs, using the right animal model, and evoking an effective immune response. Additional in vivo and in vitro assays that establish the identity, purity, safety, and potency of the vaccine play a significant role in assessing critical characteristics of vaccine safety.
Collapse
|
57
|
Liu Z, Yin L, Li Y, Yuan F, Zhang X, Ma J, Liu H, Wang Y, Zheng K, Cao J. Intranasal immunization with recombinant Toxoplasma gondii actin depolymerizing factor confers protective efficacy against toxoplasmosis in mice. BMC Immunol 2016; 17:37. [PMID: 27716047 PMCID: PMC5053087 DOI: 10.1186/s12865-016-0173-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022] Open
Abstract
Background Toxoplasma gondii is an opportunistic protozoan closely associated with AIDS and vertical transmission. T. gondii actin depolymerizing factor (TgADF) plays an important role in actin cytoskeleton remodeling, and it is required to invade host cells. TgADF was a promising vaccine candidate. To observe the immunological changes and protective efficacy of recombinant TgADF protein (rTgADF) against T. gondii infection, we optimized the intranasal immunization dose of rTgADF and analyzed the survival rate and tachyzoite loads in mouse tissues after oral challenge with T. gondii tachyzoites. Results rTgADF was prepared, purified, and combined with mouse anti-His antibody and rabbit anti-T. gondii serum. After intranasal immunization with 10 μg, 20 μg, 30 μg, or 40 μg of rTgADF, the 30-μg group elicited high levels of secretory IgA (sIgA) in nasal, intestinal, and vesical washes, raised IgG titres in the sera, strong proliferation of splenocytes, and increased secretion of IL-2 and IFN-γ when compared with the control group. When the mice were orally challenged with T. gondii, an increase in the survival rate (36.36 %) and a decrease in the tachyzoite loads in the liver (67.77 %) and brain (51.01 %) were observed. Conclusions Our findings demonstrate that intranasal immunization with rTgADF can simultaneously trigger mucosal and systemic immune responses and protect the mice against T. gondii infection.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Litian Yin
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yaqing Li
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Fei Yuan
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xiaofan Zhang
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510000, People's Republic of China
| | - Jiazhi Ma
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510000, People's Republic of China
| | - Hongmei Liu
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510000, People's Republic of China
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, China; National Center for International Research on Tropical Diseases, China; WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Kuiyang Zheng
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, China; National Center for International Research on Tropical Diseases, China; WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
58
|
Lobaina Mato Y, Aguilar Rubido J, Guillén Nieto G. ABX203, a novel therapeutic vaccine for chronic hepatitis B patients. ACTA ACUST UNITED AC 2016. [DOI: 10.18786/2072-0505-2016-44-6-713-718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
59
|
Effect of Experimental Parameters on Alginate/Chitosan Microparticles for BCG Encapsulation. Mar Drugs 2016; 14:md14050090. [PMID: 27187418 PMCID: PMC4882564 DOI: 10.3390/md14050090] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 01/04/2023] Open
Abstract
The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route.
Collapse
|
60
|
Fusion protein His-Hsp65-6IA2P2 prevents type 1 diabetes through nasal immunization in NOD Mice. Int Immunopharmacol 2016; 35:235-242. [PMID: 27082999 DOI: 10.1016/j.intimp.2016.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
Human heat shock protein 60 (Hsp60), is an endogenous β-cells autoantigen, it could postpone the onset of insulitis and sooner type 1 diabetes mellitus. P277 is one of Hsp65 determinants at position 437-469 of amino acids cascaded. Meanwhile, it's already well-known that there were several better anti-diabetic B epitopes, such as insulinoma antigen-2 (IA-2). Currently, fusion protein IA2P2 has constructed in order to enhance its pharmacological efficacy. In addition, added homologous bacterial-derived Hsp65 and His tag were beneficial to protein immunogenicity and purification separately. So, finally we examined a fusion protein His-Hsp65-6IA2P2 could regulate Th2 immune response and reduce natural diabetic incidence in NOD mice. We constructed two express vector pET28a-His-Hsp65-6P277 and pET28a-His-Hsp65-6IA2P2. After purification, we observed that triple intranasal administration of these two fusion protein in 4-week-old NOD mice maintained normal blood glucose and weight, with a lower diabetic or insulitis incidence. Consistent with induced splenic T cells proliferation and tolerance, His-Hsp65-6IA2P2-treated mice performed reduced IFN-γ and increased IL-10 level. In conclusion, we suggested that fusion protein His-Hsp65-6IA2P2 could be reconstructed and purified successively. Furthermore, nasal administration of this fusion protein could rebalance T cells population and prevent T1DM.
Collapse
|
61
|
Mizuno D, Kimoto T, Sakai S, Takahashi E, Kim H, Kido H. Induction of systemic and mucosal immunity and maintenance of its memory against influenza A virus by nasal vaccination using a new mucosal adjuvant SF-10 derived from pulmonary surfactant in young cynomolgus monkeys. Vaccine 2016; 34:1881-8. [PMID: 26954466 DOI: 10.1016/j.vaccine.2016.02.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/22/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
Abstract
Induction of systemic and mucosal immunity and maintenance of its memory was investigated in 12 young male cynomolgus monkeys after intranasal instillation of flu vaccine using a new mucosal adjuvant SF-10 derived from pulmonary surfactant constituents. Split-product of influenza virus A/California/7/2009(H1N1)pdm hemagglutinin vaccine (HAv) at 15 μg with or without SF-10 and the adjuvant alone were instilled intranasally three times every 2 weeks. SF-10-adjuvanted HAv (SF-10-HAv) elicited significantly higher HAv-specific IgG and hemagglutinin inhibition (HI) titers in serum and HAv-specific secretory IgA and its neutralizing activities in nasal washes compared with HAv antigen and SF-10 alone. Significant cross-neutralizing activities of nasal washes after the third vaccination to several other H1N1 and H3N2 strains were observed. HI titers in serum and neutralizing activities in nasal washes reached peak levels at 6 weeks after initial vaccination, then gradually decreased after 10 weeks and returned to the baseline levels at 36 weeks. A single intranasal revaccination of SF-10-HAv at 36 weeks rapidly and significantly increased both immunity in serum and nasal washes compared with naïve monkeys. Revaccination by one or two doses achieved almost maximal immunity at 2 or 4 weeks after instillation. Statistically significant adverse effects (e.g., body weight loss, elevated body temperature, nasal discharge, change in peripheral blood leukocyte and platelet counts) were not observed for 2 weeks after vaccination of SF-10-HAv, HAv or SF-10 and also during the experimental period. These results in young monkey model suggest the potential of clinical use SF-10 for intranasal flu vaccine.
Collapse
Affiliation(s)
- Dai Mizuno
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan
| | - Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan
| | - Satoko Sakai
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan
| | - Hyejin Kim
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan.
| |
Collapse
|
62
|
Hosseini M, Dobakhti F, Pakzad SR, Ajdary S. Immunization with Single Oral Dose of Alginate-Encapsulated BCG Elicits Effective and Long-Lasting Mucosal Immune Responses. Scand J Immunol 2016; 82:489-97. [PMID: 26286252 DOI: 10.1111/sji.12351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/10/2015] [Indexed: 12/30/2022]
Abstract
Effective vaccination against pathogens, which enter the body through mucosal surfaces, requires the induction of both mucosal and systemic immune responses. Here, mucosal as well as systemic immune responses in the lung and spleen of BALB/c mice which were orally vaccinated with a single dose of alginate-encapsulated bacille Calmette-Guerin (BCG) were evaluated. Twenty weeks after immunization, the vaccinated mice were challenged intranasally with BCG. Twelve weeks after immunization and 5 weeks after challenge, the immune responses were evaluated. Moreover, immune responses were compared with those of mice that were vaccinated with free BCG by subcutaneous (sc) and oral routes. Twelve weeks after the immunization, serum IgG level was higher in the sc-immunized mice, while serum IgA level was higher in the orally immunized mice with encapsulated BCG. Significant productions of both IgG and IgA were only detected in lungs of mice orally immunized with encapsulated BCG. Proliferative and delayed-type hypersensitivity responses and IFN-γ production were significantly higher in mice immunized orally with encapsulated BCG, compared to mice immunized orally with free BCG. After challenge, the levels of IFN-γ were comparable between sc-immunized mice with free BCG and orally immunized with encapsulated BCG; however, significantly less IL-4 was detected in mice which had received encapsulated BCG via oral route. Moreover, significant control of the bacilli growth in the lung of the immunized mice after intranasal challenge with BCG was documented in mice vaccinated with encapsulated BCG. These results suggest that oral immunization with alginate-encapsulated BCG is an effective mean of inducing mucosal and systemic specific immune responses.
Collapse
Affiliation(s)
- M Hosseini
- Immunology Department, Pasteur Institute of Iran, Tehran, IR, Iran
| | - F Dobakhti
- Mazandaran University of Medical Sciences, Mazandaran, IR, Iran
| | - S R Pakzad
- Vaccine Potency and Standardization Section, Food and Drugs Control Laboratory Research Center, Ministry of Health and Medical Education, Tehran, IR, Iran
| | - S Ajdary
- Immunology Department, Pasteur Institute of Iran, Tehran, IR, Iran
| |
Collapse
|
63
|
Partial protective immunity against toxoplasmosis in mice elicited by recombinant Toxoplasma gondii malate dehydrogenase. Vaccine 2016; 34:989-94. [DOI: 10.1016/j.vaccine.2015.10.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/28/2015] [Accepted: 10/09/2015] [Indexed: 11/22/2022]
|
64
|
Nasal vaccination stimulates CD8(+) T cells for potent protection against mucosal Brucella melitensis challenge. Immunol Cell Biol 2016; 94:496-508. [PMID: 26752510 PMCID: PMC4879022 DOI: 10.1038/icb.2016.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
Brucellosis remains a significant zoonotic threat worldwide. Humans and animals acquire infection via their oropharynx and upper respiratory tract following oral or aerosol exposure. After mucosal infection, brucellosis develops into a systemic disease. Mucosal vaccination could offer a viable alternative to conventional injection practices to deter disease. Using a nasal vaccination approach, the ΔznuA B. melitensis was found to confer potent protection against pulmonary Brucella challenge, and reduce colonization of spleens and lungs by more than 2500-fold, with more than 50% of vaccinated mice showing no detectable brucellae. Furthermore, tenfold more brucellae-specific, IFN-γ-producing CD8+ T cells than CD4+ T cells were induced in the spleen and respiratory lymph nodes. Evaluation of pulmonary and splenic CD8+ T cells from mice vaccinated with ΔznuA B. melitensis revealed that these expressed an activated effector memory (CD44hiCD62LloCCR7lo) T cells producing elevated levels of IFN-γ, TNF-α, perforin, and granzyme B. To assess the relative importance of these increased numbers of CD8+ T cells, CD8−/− mice were challenged with virulent B. melitensis, and they showed markedly increased bacterial loads in organs in contrast to similarly challenged CD4−/− mice. Only ΔznuA B. melitensis- and Rev-1-vaccinated CD4−/− and wild-type mice, not CD8−/− mice, were completely protected against Brucella challenge. Determination of cytokines responsible for conferring protection showed the relative importance of IFN-γ, but not IL-17. Unlike wild-type mice, IL-17 was greatly induced in IFN-γ−/− mice, but IL-17 could not substitute for IFN-γ’s protection, although an increase in brucellae dissemination was observed upon in vivo IL-17 neutralization. These results show that nasal ΔznuA B. melitensis vaccination represents an attractive means to stimulate systemic and mucosal immune protection via CD8+ T cell engagement.
Collapse
|
65
|
Lee JJ, Shim A, Lee SY, Kwon BE, Kim SR, Ko HJ, Cho HJ. Ready-to-use colloidal adjuvant systems for intranasal immunization. J Colloid Interface Sci 2016; 467:121-128. [PMID: 26775242 DOI: 10.1016/j.jcis.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022]
Abstract
Adjuvant systems based on oil-in-water (o/w) microemulsions (MEs) for vaccination via intranasal administration were prepared and evaluated. A ready-to-use blank ME system composed of mineral oil (oil), Labrasol (surfactant), Tween 80 (cosurfactant), and water was prepared and blended with antigen (Ag) solution prior to use. The o/w ME system developed exhibited nano-size droplets within the tested range of Ag concentrations and dilution factors. The maintenance of primary, secondary, and tertiary structural stability of ovalbumin (OVA) in ME, compared with OVA in solution, was demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), and fluorescence intensity measurements, respectively. The uptake efficiency in RAW 264.7 cells, evaluated by flow cytometry, of OVA in the ME group was significantly higher than that of the OVA solution group (p<0.05). In an intranasal immunization study with OVA ME in mice, elevated adjuvant effects in terms of mucosal immunization and Th1-dominant cell-mediated immune responses were identified. Given the convenience of use (simply mixing with Ag solution prior to use) and the adjuvant effects after intranasal immunization, the new o/w ME may be a practical and efficient adjuvant system for intranasal vaccination.
Collapse
Affiliation(s)
- Jeong-Jun Lee
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Aeri Shim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Seong Ryeol Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea.
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
66
|
Doavi T, Mousavi SL, Kamali M, Amani J, Fasihi Ramandi M. Chitosan-Based Intranasal Vaccine against Escherichia coli O157:H7. IRANIAN BIOMEDICAL JOURNAL 2016; 20:97-108. [PMID: 26724233 PMCID: PMC4726890 DOI: 10.7508/ibj.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: EnterohemorrhagicEscherichia coli (EHEC) O157:H7 is an infectious zoonotic pathogen causing human infections. These infections, in some cases, can lead to hemolytic uremic syndrome and its life-threatening complications and even death worldwide. The first intimate bacterial adhesion, intimin (I), with its own receptor translocated intimin receptor (Tir) and E. coli secreted protein A, acting as Tir conduit, are highly immunogenic proteins for vaccine development against E. coli O157:H7. Methods: A chimeric trivalent recombinant protein was previously found to be a suitable strategy for developing vaccines against E. coli O157:H7. In this study, the recombinant EIT (rEIT) was used to design a protective EHEC nasal nanovaccine. Chitosan and its water-soluble derivative, trimethylated chitosan (TMC), as muco-adhesive biopolymers, are good candidates for preparation of nanovaccines. Using the electrospraying technique, as a novel method, we could obtain particles of rEIT loaded with chitosan and TMC on a nanometer scale. Mice were immunized with intranasal administration or intrapretoneal injection of rEIT. Results: The rEIT-specific immune responses (IgG and IgA) were measured by indirect ELISA. Only nasal administration of chitosan electrospray and TMC formulation produced significant secretion IgA. Intranasal administration of nanovaccine reduced the duration of bacterial fecal shedding on mice challenged with E. coli O157:H7. Conclusion: Since development of mucosal vaccines for the prevention of infectious diseases requires efficient antigen delivery; therefore, this research could be a new strategy for developing vaccine against E. coli O157:H7.
Collapse
Affiliation(s)
- Tahere Doavi
- Dept. of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Seyed Latif Mousavi
- Dept. of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Mehdi Kamali
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Mahdi Fasihi Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| |
Collapse
|
67
|
Preventive Activity against Influenza (H1N1) Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice. Viruses 2015; 7:5133-44. [PMID: 26402693 PMCID: PMC4584307 DOI: 10.3390/v7092863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 01/22/2023] Open
Abstract
The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1) was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day) for five days prior to infection demonstrated an antiviral activity (70% survival) against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.
Collapse
|
68
|
Cevher E, Salomon SK, Makrakis A, Li XW, Brocchini S, Alpar HO. Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: optimisation and cellular studies. J Microencapsul 2015; 32:755-68. [DOI: 10.3109/02652048.2015.1073392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
69
|
Cevher E, Salomon SK, Somavarapu S, Brocchini S, Alpar HO. Development of chitosan-pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies. J Microencapsul 2015; 32:769-83. [PMID: 26480962 DOI: 10.3109/02652048.2015.1073393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Here, we aimed at developing chitosan/pullulan composite nanoparticles and testing their potential as novel systems for the nasal delivery of diphtheria toxoid (DT). All the chitosan derivatives [N-trimethyl (TMC), chloride and glutamate] and carboxymethyl pullulan (CMP) were synthesised and antigen-loaded composites were prepared by polyion complexation of chitosan and pullulan derivatives (particle size: 239-405 nm; surface charge: +18 and +27 mV). Their immunological effects after intranasal administration to mice were compared to intramuscular route. Composite nanoparticles induced higher levels of IgG responses than particles formed with chitosan derivative and antigen. Nasally administered TMC-pullulan composites showed higher DT serum IgG titre when compared with the other composites. Co-encapsulation of CpG ODN within TMC-CMP-DT nanoparticles resulted in a balanced Th1/Th2 response. TMC/pullulan composite nanoparticles also induced highest cytokine levels compared to those of chitosan salts. These findings demonstrated that TMC-CMP-DT composite nanoparticles are promising delivery system for nasal vaccination.
Collapse
Affiliation(s)
- Erdal Cevher
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Istanbul University , Istanbul , Turkey
| | - Stefan K Salomon
- b Department of Pharmaceutics , The UCL School of Pharmacy, University of London , London , United Kingdom .,c GlaxoSmithKline , London , United Kingdom , and
| | - Satyanarayana Somavarapu
- b Department of Pharmaceutics , The UCL School of Pharmacy, University of London , London , United Kingdom
| | - Steve Brocchini
- b Department of Pharmaceutics , The UCL School of Pharmacy, University of London , London , United Kingdom
| | - H Oya Alpar
- b Department of Pharmaceutics , The UCL School of Pharmacy, University of London , London , United Kingdom .,d Department of Pharmaceutics, Faculty of Pharmacy , Kemerburgaz University , Istanbul , Turkey
| |
Collapse
|
70
|
Woo SJ, Kang SS, Park SM, Yang JS, Song MK, Yun CH, Han SH. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response. Mol Immunol 2015; 67:492-500. [PMID: 26278659 DOI: 10.1016/j.molimm.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/16/2023]
Abstract
Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity.
Collapse
Affiliation(s)
- Sun-Je Woo
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Seok-Seong Kang
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Sung-Moo Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jae Seung Yang
- Laboratory Sciences Division, International Vaccine Institute, Seoul 151-742, Republic of Korea
| | - Man Ki Song
- Laboratory Sciences Division, International Vaccine Institute, Seoul 151-742, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|
71
|
Shin JH, Park JK, Lee DH, Quan FS, Song CS, Kim YC. Microneedle Vaccination Elicits Superior Protection and Antibody Response over Intranasal Vaccination against Swine-Origin Influenza A (H1N1) in Mice. PLoS One 2015; 10:e0130684. [PMID: 26086590 PMCID: PMC4472750 DOI: 10.1371/journal.pone.0130684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 05/24/2015] [Indexed: 12/26/2022] Open
Abstract
Influenza is one of the critical infectious diseases globally and vaccination has been considered as the best way to prevent. In this study, immunogenicity and protection efficacy between intranasal (IN) and microneedle (MN) vaccination was compared using inactivated swine-origin influenza A/H1N1 virus vaccine. Mice were vaccinated by MN or IN administration with 1 μg of inactivated H1N1 virus vaccine. Antigen-specific antibody responses and hemagglutination-inhibition (HI) titers were measured in all immunized sera after immunization. Five weeks after an immunization, a lethal challenge was performed to evaluate the protective efficacy. Furthermore, mice were vaccinated by IN administration with higher dosages (> 1 μg), analyzed in the same manner, and compared with 1 μg-vaccine-coated MN. Significantly higher antigen-specific antibody responses and HI titer were measured in sera in MN group than those in IN group. While 100% protection, slight weight loss, and reduced viral replication were observed in MN group, 0% survival rate were observed in IN group. As vaccine dose for IN vaccination increased, MN-immunized sera showed much higher antigen-specific antibody responses and HI titer than other IN groups. In addition, protective immunity of 1 μg-MN group was similar to those of 20- and 40 μg-IN groups. We conclude that MN vaccination showed more potential immune response and protection than IN vaccination at the same vaccine dosage.
Collapse
Affiliation(s)
- Ju-Hyung Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jae-Keun Park
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Dong-Hun Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
- * E-mail: (CSS); (YCK)
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- * E-mail: (CSS); (YCK)
| |
Collapse
|
72
|
Lai CH, Tang N, Jan JT, Huang MH, Lu CY, Chiang BL, Huang LM, Wu SC. Use of recombinant flagellin in oil-in-water emulsions enhances hemagglutinin-specific mucosal IgA production and IL-17 secreting T cells against H5N1 avian influenza virus infection. Vaccine 2015; 33:4321-9. [PMID: 25858857 DOI: 10.1016/j.vaccine.2015.03.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 01/09/2023]
Abstract
Researchers are currently involved in a strong effort to find a safe and effective vaccine against highly pathogenic avian influenza H5N1 viruses. Toward that goal, we obtained soluble recombinant flagellin (FliC) of Salmonella typhimurium to be used as a mucosal adjuvant for H5HA subunit vaccine development. Intranasal immunization of H5HA antigen with recombinant FliC protein in an oil-in-water emulsion increased H5HA-specific IgG and IgA titers in sera, bronchoalveolar lavage fluids (BALFs), and nasal washes. Use of FliC adjuvant for intranasal immunization further augmented B-cell responses in mucosal environments via increased IgA titers in BALFs and nasal washes. Increases in IgA and IgG titers through the use of FliC adjuvant in intranasal immunization correlated with higher neutralizing antibody titers in sera and BALFs and higher numbers of IgG- and IgA-secreting B cells in spleen and cervical lymph nodes. High levels of IL-17A cytokine production were also found in stimulated T cells of spleen and cervical lymph node cells, only by intranasal immunization particularly with the use of FliC adjuvant in oil-in-water emulsions. These findings may provide useful information toward the development of H5HA mucosal influenza vaccines.
Collapse
Affiliation(s)
- Chih-Hsuan Lai
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Neos Tang
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Yi Lu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
73
|
Scherließ R, Mönckedieck M, Young K, Trows S, Buske S, Hook S. First in vivo evaluation of particulate nasal dry powder vaccine formulations containing ovalbumin in mice. Int J Pharm 2015; 479:408-15. [PMID: 25595389 DOI: 10.1016/j.ijpharm.2015.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 01/16/2023]
Abstract
In this study three different dry powder vaccine formulations containing the model antigen ovalbumin were evaluated for their immune effects after nasal administration to C57Bl/6 mice in an adoptive cell transfer model. The formulations were chitosan nanoparticles in a mannitol matrix, chitosan microparticles and agarose nanoparticles in a mannitol matrix. Dry powder administration to mice was well tolerated and did not result in any adverse reactions. No translocation of the dry powder formulations to the lung could be detected. The local cellular immune response in the cervical lymph nodes was modest and only for the chitosan microparticles and the agarose nanoparticles was there a significant difference compared to s.c. injection of ovalbumin in alum. No humoral response could be measured after nasal administration. The results provide some evidence that nasal administration of dry powder formulations can stimulate an immune response, but the response was modest. This is probably due to a low antigen dose and low immunogenicity of the formulations. Further studies will aim at enhancing the antigen load and improving adjuvant activity.
Collapse
Affiliation(s)
- Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany.
| | - Mathias Mönckedieck
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Katherine Young
- School of Pharmacy, University of Otago, 18, Frederick Street, Dunedin, New Zealand
| | - Sabrina Trows
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Simon Buske
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Sarah Hook
- School of Pharmacy, University of Otago, 18, Frederick Street, Dunedin, New Zealand
| |
Collapse
|
74
|
Gupta PN. Mucosal Vaccine Delivery and M Cell Targeting. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
75
|
Coué G, Engbersen JFJ. Cationic Polymers for Intracellular Delivery of Proteins. CATIONIC POLYMERS IN REGENERATIVE MEDICINE 2014. [DOI: 10.1039/9781782620105-00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many therapeutic proteins exert their pharmaceutical action inside the cytoplasm or onto individual organelles inside the cell. Intracellular protein delivery is considered to be the most direct, fastest and safest approach for curing gene-deficiency diseases, enhancing vaccination and triggering cell transdifferentiation processes, within other curative applications. However, several hurdles have to be overcome. For this purpose the use of polymers, with their ease of modification in physical and chemical properties, is attractive in protein drug carriers. They can protect their therapeutic protein cargo from degradation and enhance their bioavailability at targeted sites. In this chapter, potential and currently used polymers for fabrication of protein delivery systems and their applications for intracellular administration are discussed. Special attention is given to the use of cationic polymers for their ability to promote the cellular uptake of therapeutic proteins.
Collapse
Affiliation(s)
- Grégory Coué
- MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| | - Johan F. J. Engbersen
- MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| |
Collapse
|
76
|
Ozbılgın ND, Saka OM, Bozkır A. Preparation and in vitro/in vivo evaluation of mucosal adjuvant in situ forming gels with diphtheria toxoid. Drug Deliv 2014; 21:140-7. [PMID: 24559517 DOI: 10.3109/10717544.2013.834754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies on preparation of in situ gel formulations containing diphtheria toxoid as the model active substance and their intranasal administration have been conducted in this study. The objective of mucosal vaccination is to stimulate both systemic and mucosal immune responses. In situ gel formulations were prepared by using, in different ratios, mixtures of Poloxamer 407 and Poloxamer 188 polymers, which gelate in a temperature-dependent manner, and mucoadhesive polymers carbopol 934, hydroxypropyl methyl cellulose, hydroxypropyl cellulose or chitosan. Following pre-formulation studies, F1, F2, F3, F4, F5, F6 and F7 formulations, which gelate at intervals and temperatures in accordance with nasal temperatures, were subjected to more comprehensive studies. For this purpose, organoleptic characteristics of the formulations were identified, their pH and mucoadhesive potencies were measured and rheological behaviors were characterized. Calculated amounts of diphtheria toxoid were added to formulations after optimization of formulations was achieved, and assay and in vitro release studies were carried out. Formulations coded F3 and F7 were considered to be superior to other formulations given the in vitro test results. Therefore, these formulations were tested in guinea pigs to determine immune responses, which they would produce following intranasal and subcutaneous administration. Absorbance values of ELISA tests and antibody neutralization test showed that formulations coded F3 and F7 were unable to stimulate adequate systemic immune response when either of the formulations was administered alone intranasally, whereas F7 resulted in significantly increased neutralizing antibody titers with intranasal administration as a booster dose following subcutaneous administration.
Collapse
Affiliation(s)
- Nalan Deniz Ozbılgın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University , Ankara , Turkey
| | | | | |
Collapse
|
77
|
Diogo GR, Reljic R. Development of a new tuberculosis vaccine: is there value in the mucosal approach? Immunotherapy 2014; 6:1001-13. [DOI: 10.2217/imt.14.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
TB is a global health problem, killing 1.5 million people every year. The only currently available vaccine, Mycobacterium bovis BCG, is effective against severe childhood forms, but it demonstrates a variable efficacy against the pulmonary form of TB in adults. Many of these adult TB cases result from the reactivation of an initially controlled, latent Mycobacterium tuberculosis infection. Effective prophylactic vaccination remains the key long-term strategy for combating TB. Continued belief in reaching this goal requires unrelenting innovation in the formulation and delivery of candidate vaccines. It is also based on the assumption, that the failure of recent human vaccine trials could have been due to a suboptimal vaccine design and delivery, and therefore should not erode the key principle that a TB vaccine is an attainable target. This report gives a brief overview of the mucosal immune system in the context of M. tuberculosis infection, and focuses on the most recent advances in the field of mucosal TB vaccine development, with a specific emphasis on subunit TB vaccines.
Collapse
Affiliation(s)
- Gil Reynolds Diogo
- St George's Hospital, Institute of Infection & Immunity, St George's University of London, London, SW17 0RE, UK
| | - Rajko Reljic
- St George's Hospital, Institute of Infection & Immunity, St George's University of London, London, SW17 0RE, UK
| |
Collapse
|
78
|
Rudraraju R, Sealy RE, Surman SL, Thomas PG, Dayton BH, Hurwitz JL. Non-random lymphocyte distribution among virus-infected cells of the respiratory tract. Viral Immunol 2014; 26:378-84. [PMID: 24328934 DOI: 10.1089/vim.2013.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rules of T cell positioning within virus-infected respiratory tract tissues are poorly understood. We therefore marked cervical lymph node or spleen cells from Sendai virus (SeV) primed mice and transferred lymphocytes to animals infected with SeV expressing an enhanced green fluorescent protein (SeV-eGFP). Confocal imaging showed that when T cells entered a field of infected respiratory tract epithelium, they assumed a spatial distribution that maximized distances between each donor cell and its nearest neighbor. We therefore hypothesized that lymphocytes repelled one another by altering their chemokine/cytokine microenvironment. Subsequent in vitro tests confirmed that when SeV-primed lymphocytes were co-cultured with infected respiratory tract stroma, there was a profound upregulation of chemokines including RANTES, CXCL9, CXCL10, and CCL2. Based on these data, we propose that newly resident lymphocytes within virus-infected respiratory tract tissues may create halos of chemokines/cytokines to mark their territories; lymphocyte cross-talk may then inhibit cell overlap and redundancy to expedite virus clearance.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | | | | | | | | | |
Collapse
|
79
|
Pham GH, Iglesias BV, Gosselin EJ. Fc receptor-targeting of immunogen as a strategy for enhanced antigen loading, vaccination, and protection using intranasally administered antigen-pulsed dendritic cells. Vaccine 2014; 32:5212-20. [PMID: 25068496 DOI: 10.1016/j.vaccine.2014.07.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/14/2014] [Accepted: 07/15/2014] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) play a critical role in the generation of adaptive immunity via the efficient capture, processing, and presentation of antigen (Ag) to naïve T cells. Administration of Ag-pulsed DCs is also an effective strategy for enhancing immunity to tumors and infectious disease organisms. Studies have also demonstrated that targeting Ags to Fcγ receptors (FcγR) on Ag presenting cells can enhance humoral and cellular immunity in vitro and in vivo. Specifically, our studies using a Francisella tularensis (Ft) infectious disease vaccine model have demonstrated that targeting immunogens to FcγR via intranasal (i.n.) administration of monoclonal antibody (mAb)-inactivated Ft (iFt) immune complexes (ICs) enhances protection against Ft challenge. Ft is the causative agent of tularemia, a debilitating disease of humans and other mammals and a category A biothreat agent for which there is no approved vaccine. Therefore, using iFt Ag as a model immunogen, we sought to determine if ex vivo targeting of iFt to FcγR on DCs would enhance the potency of i.n. administered iFt-pulsed DCs. In this study, bone marrow-derived DCs (BMDCs) were pulsed ex vivo with iFt or mAb-iFt ICs. Intranasal administration of mAb-iFt-pulsed BMDCs enhanced humoral and cellular immune responses, as well as protection against Ft live vaccine strain (LVS) challenge. Increased protection correlated with increased iFt loading on the BMDC surface as a consequence of FcγR-targeting. However, the inhibitory FcγRIIB had no impact on this enhancement. In conclusion, targeting Ag ex vivo to FcγR on DCs provides a method for enhanced Ag loading of DCs ex vivo, thereby reducing the amount of Ag required, while also avoiding the inhibitory impact of FcγRIIB. Thus, this represents a simple and less invasive strategy for increasing the potency of ex vivo-pulsed DC vaccines against chronic infectious diseases and cancer.
Collapse
Affiliation(s)
- Giang H Pham
- Center for Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States
| | - Bibiana V Iglesias
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Edmund J Gosselin
- Center for Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
80
|
Desai SN, Kamat D. Closing the global immunization gap: delivery of lifesaving vaccines through innovation and technology. Pediatr Rev 2014; 35:e32-40. [PMID: 24986933 DOI: 10.1542/pir.35-7-e32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
One of every 5 children does not receive basic vaccines because of concerns related to storage and delivery in resource limited countries. Transporting vaccines over long distances in extreme temperatures is a common challenge. Issues that involve production and formulation, delivery technologies, cold chain logistics, and safety factors need to be addressed to properly adapt vaccines to resource constrained settings. Current successful field interventions include United Nation Children's Fund cold boxes, which are used to store and distribute vaccine in disaster struck areas, and vaccine vial monitors, which allow health workers to gauge whether vaccine is still usable in areas with unreliable electricity and refrigeration. This review aims to provide a general overview of innovative approaches and technologies that positively affect vaccine coverage and save more lives.
Collapse
Affiliation(s)
| | - Deepak Kamat
- Department of Pediatrics, Wayne State University, and Children's Hospital of Michigan, Detroit, MI
| |
Collapse
|
81
|
Liu Q, Zheng X, Zhang C, Shao X, Zhang X, Zhang Q, Jiang X. Antigen-conjugated N-trimethylaminoethylmethacrylate chitosan nanoparticles induce strong immune responses after nasal administration. Pharm Res 2014; 32:22-36. [PMID: 24970313 PMCID: PMC7089071 DOI: 10.1007/s11095-014-1441-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/10/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE Antigens were conjugated on the surface of N-trimethylaminoethylmethacrylate chitosan (TMC) nanoparticles to induce systemic and mucosal immune responses after nasal immunization. METHODS TMC was synthesized by free radical polymerization and blank nanoparticles were prepared by ionic crosslinking of TMC and sodium tripolyphosphate. The model antigen (ovalbumin) was conjugated on the surface of blank nanoparticles (OVA-NP) through thioester bond formation. The cellular uptake of OVA-NP was investigated in Raw 264.7 macrophages and biodistribution of antigens was studied by the radioiodine labeling method. The immunological effects were evaluated by nasal administration of OVA-NP to Balb/C mice. The transport mechanism and nasal toxicity of OVA-NP were studied in rats. RESULTS The cellular uptake of OVA-NP was significantly higher than that of ovalbumin-encapsulated nanoparticles (NPe) after 30 min. Nasally administered OVA-NP showed higher transport of antigens to cervical lymph nodes with higher targeting efficiency than all other groups. Compared with NPe, OVA-NP induced much higher levels of systemic and mucosal immune responses in Balb/C mice after three nasal immunizations. Ex vivo culturing of nasopharynx-associated lymphoid tissue (NALT) confirmed its participation in nasal immunization. The transport mechanism study revealed that OVA-NP can be transported across the nasal epithelium through glands and may be taken up in NALT through M cells. OVA-NP did not induce obvious toxicity to nasal mucosa or hemolysis in animals. CONCLUSION The present study demonstrated that the conjugation of TMC nanoparticles with antigens is an effective strategy for nasal vaccination.
Collapse
Affiliation(s)
- Qingfeng Liu
- Key Laboratory of Smart Drug Delivery (Fudan University) Ministry of Education, Shanghai, People's Republic of China, 201203
| | | | | | | | | | | | | |
Collapse
|
82
|
Sawaengsak C, Mori Y, Yamanishi K, Mitrevej A, Sinchaipanid N. Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech 2014; 15:317-25. [PMID: 24343789 DOI: 10.1208/s12249-013-0058-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022] Open
Abstract
Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripolyphosphate (TPP) at the CS/TPP ratio of 1:0.6 using 2 h mixing time. The CS/TPP nanoparticles were used as delivery vehicle of an intranasal influenza vaccine made of hemagglutinin (HA)-split influenza virus product. Innocuousness, immunogenicity, and protective efficacy of the CS/TPP-HA vaccine were tested in influenza mouse model in comparison with the antigen alone vaccine. The CS/TPP-HA nanoparticles had required characteristics including nano-sizes, positive charges, and high antigen encapsulation efficiency. Mice that received two doses of the CS/TPP-HA vaccine intranasally showed no adverse symptoms indicating the vaccine innocuousness. The animals developed higher systemic and mucosal antibody responses than vaccine made of the HA-split influenza virus alone. The CS/TPP-HA vaccine could induce also a cell-mediated immune response shown as high numbers of IFN-γ-secreting cells in spleens while the HA vaccine alone could not. Besides, the CS nanoparticle encapsulated HA-split vaccine reduced markedly the influenza morbidity and also conferred 100% protective rate to the vaccinated mice against lethal influenza virus challenge. Overall results indicated that the CS nanoparticles invented in this study is an effective and safe delivery vehicle/adjuvant for the influenza vaccine.
Collapse
|
83
|
Liu Q, Zhang C, Zheng X, Shao X, Zhang X, Zhang Q, Jiang X. Preparation and evaluation of antigen/N-trimethylaminoethylmethacrylate chitosan conjugates for nasal immunization. Vaccine 2014; 32:2582-90. [PMID: 24681230 DOI: 10.1016/j.vaccine.2014.03.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/22/2014] [Accepted: 03/13/2014] [Indexed: 11/18/2022]
Abstract
The frequent outbreak of respiratory infectious diseases such as influenza and pulmonary tuberculosis calls for new immunization strategies with high effectiveness. Nasal immunization is one of the most potential methods to prevent the diseases infected through the respiratory tract. In this study, we designed a water-soluble system based on antigen/N-trimethylaminoethylmethacrylate chitosan conjugates for nasal immunization. N-trimethylaminoethylmethacrylate chitosan (TMC) was synthesized by free radical polymerization of chitosan and N-trimethylaminoethylmethacrylate chloride and identified by (1)H NMR and FT-IR. Thiolated ovalbumin (OVA) was covalently conjugated to maleimide modified TMC with high conjugation efficiency. OVA conjugated TMC (OVA-TMC) significantly increased uptake of OVA by Raw 264.7 cells, which was 2.38 times higher than that of OVA/TMC physical mixture (OVA+TMC) at 4h. After nasal administration, OVA-TMC showed higher transport efficiency to superficial and deep cervical lymph nodes than OVA+TMC or OVA alone. Balb/C mice were intranasally given with OVA-TMC three times at 2-week internals to evaluate the immunological effect. The serum IgG, IgG1 and IgG2a levels of the OVA-TMC group were 17.9-87.9 times higher than that of the OVA+TMC group and comparable to that of the intramuscular group. The secretory IgA levels in nasal wash and saliva of the OVA-TMC group were 5.2-7.1 times higher than that of the OVA+TMC group while the secretory IgA levels of the intramuscular alum-precipitated OVA group were not increased. After immunofluorescence staining of nasal cavity, IgA antibody secreting cells were mainly observed in the lamina propria regions and glands of nasal mucosa. OVA-TMC showed little toxicity to the nasal epithelia or cilia of rats after nasal administration for three consecutive days. These results demonstrated that antigen conjugated TMC can induce both systemic and mucosal immune responses after nasal administration and may serve as a convenient, safe and effective vaccine for preventing respiratory infectious diseases.
Collapse
Affiliation(s)
- Qingfeng Liu
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, 826 ZhangHeng Rd., Shanghai 201203, PR China
| | - Chi Zhang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, 826 ZhangHeng Rd., Shanghai 201203, PR China
| | - Xiaoyao Zheng
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, 826 ZhangHeng Rd., Shanghai 201203, PR China
| | - Xiayan Shao
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, 826 ZhangHeng Rd., Shanghai 201203, PR China
| | - Xi Zhang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, 826 ZhangHeng Rd., Shanghai 201203, PR China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, 826 ZhangHeng Rd., Shanghai 201203, PR China.
| | - Xinguo Jiang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, 826 ZhangHeng Rd., Shanghai 201203, PR China
| |
Collapse
|
84
|
Vyas SP, Gupta PN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev Vaccines 2014; 6:401-18. [PMID: 17542755 DOI: 10.1586/14760584.6.3.401] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although polymeric nanoparticles/microparticles are well established for the mucosal administration of conventional drugs, they have not yet been developed commercially for vaccine delivery. The limitation of the mucosal (particularly oral) route of delivery, including low pH, gastric enzymes, rapid transit and poor absorption of large molecules, has made mucosal vaccine delivery challenging. Nevertheless, several polymeric delivery systems for mucosal vaccine delivery are currently being evaluated. The polymer-based approaches are designed to protect the antigen in the gut, to target the antigen to the gut-associated lymphoid tissue or to increase the residence time of the antigen in the gut through bioadhesion. M-cell targeting is a potential approach for mucosal vaccine delivery, which can be achieved using M-cell-specific lectins, microbial adhesins or immunoglobulins. While many hurdles must be overcome before targeted mucosal vaccine delivery becomes a practical reality, this is a potential area of research that has important implications for future vaccine development. This review comprises various aspects that could be decisive in the development of polymer based mucosal vaccine delivery systems.
Collapse
Affiliation(s)
- Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar-470003 (M.P.), India.
| | | |
Collapse
|
85
|
Gebril A, Alsaadi M, Acevedo R, Mullen AB, Ferro VA. Optimizing efficacy of mucosal vaccines. Expert Rev Vaccines 2014; 11:1139-55. [DOI: 10.1586/erv.12.81] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
86
|
Patel GB, Chen W. Archaeal lipid mucosal vaccine adjuvant and delivery system. Expert Rev Vaccines 2014; 9:431-40. [DOI: 10.1586/erv.10.34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
87
|
Giri PK, Khuller GK. Is intranasal vaccination a feasible solution for tuberculosis? Expert Rev Vaccines 2014; 7:1341-56. [DOI: 10.1586/14760584.7.9.1341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
88
|
Jahantigh D, Saadati M, Fasihi Ramandi M, Mousavi M, Zand A. Novel Intranasal Vaccine Delivery System by Chitosan Nanofibrous Membrane Containing N-Terminal Region of Ipad Antigen as a Nasal Shigellosis Vaccine, Studies in Guinea Pigs. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50005-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
89
|
Wong PT, Wang SH, Ciotti S, Makidon PE, Smith DM, Fan Y, Schuler CF, Baker JR. Formulation and characterization of nanoemulsion intranasal adjuvants: effects of surfactant composition on mucoadhesion and immunogenicity. Mol Pharm 2013; 11:531-44. [PMID: 24320221 DOI: 10.1021/mp4005029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of effective intranasal vaccines is of great interest due to their potential to induce both mucosal and systemic immunity. Here we produced oil-in-water nanoemulsion (NE) formulations containing various cationic and nonionic surfactants for use as adjuvants for the intranasal delivery of vaccine antigens. NE induced immunogenicity and antigen delivery are believed to be facilitated through initial contact interactions between the NE droplet and mucosal surfaces which promote prolonged residence of the vaccine at the site of application, and thus cellular uptake. However, the details of this mechanism have yet to be fully characterized experimentally. We have studied the physicochemical properties of the NE droplet surfactant components and demonstrate that properties such as charge and polar headgroup geometry influence the association of the adjuvant with the mucus protein, mucin. Association of NE droplets with mucin in vitro was characterized by various biophysical and imaging methods including dynamic light scattering (DLS), zeta potential (ZP), and surface plasmon resonance (SPR) measurements as well as transmission electron microscopy (TEM). Emulsion surfactant compositions were varied in a systematic manner to evaluate the effects of hydrophobicity and polar group charge/size on the NE-mucin interaction. Several cationic NE formulations were found to facilitate cellular uptake of the model antigen, ovalbumin (OVA), in a nasal epithelial cell line. Furthermore, fluorescent images of tissue sections from mice intranasally immunized with the same NEs containing green fluorescent protein (GFP) antigen demonstrated that these NEs also enhanced mucosal layer penetration and cellular uptake of antigen in vivo. NE-mucin interactions observed through biophysical measurements corresponded with the ability of the NE to enhance cellular uptake. Formulations that enhanced antigen uptake in vitro and in vivo also led to the induction of a more consistent antigen specific immune response in mice immunized with NEs containing OVA, linking NE-facilitated mucosal layer penetration and cellular uptake to enhancement of the immune response. These findings suggest that biophysical measurement of the mucoadhesive properties of emulsion based vaccines constitutes an effective in vitro strategy for selecting NE candidates for further evaluation in vivo as mucosal adjuvants.
Collapse
Affiliation(s)
- Pamela T Wong
- Michigan Nanotechnology Institute for Medicine and Biological Sciences and Department of Internal Medicine, University of Michigan Medical School , 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Pettini E, Prota G, Ciabattini A, Boianelli A, Fiorino F, Pozzi G, Vicino A, Medaglini D. Vaginal immunization to elicit primary T-cell activation and dissemination. PLoS One 2013; 8:e80545. [PMID: 24349003 PMCID: PMC3857820 DOI: 10.1371/journal.pone.0080545] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/14/2013] [Indexed: 01/30/2023] Open
Abstract
Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+) T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+) T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.
Collapse
Affiliation(s)
- Elena Pettini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Gennaro Prota
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Annalisa Ciabattini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Alessandro Boianelli
- Dipartimento di Ingegneria dell'Informazione (DII), Centro per lo Studio dei Sistemi Complessi (CSC), Università di Siena, Siena, Italy
| | - Fabio Fiorino
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Antonio Vicino
- Dipartimento di Ingegneria dell'Informazione (DII), Centro per lo Studio dei Sistemi Complessi (CSC), Università di Siena, Siena, Italy
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
91
|
Carapau D, Mitchell R, Nacer A, Shaw A, Othoro C, Frevert U, Nardin E. Protective humoral immunity elicited by a needle-free malaria vaccine comprised of a chimeric Plasmodium falciparum circumsporozoite protein and a Toll-like receptor 5 agonist, flagellin. Infect Immun 2013; 81:4350-62. [PMID: 24042110 PMCID: PMC3837993 DOI: 10.1128/iai.00263-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 09/05/2013] [Indexed: 12/31/2022] Open
Abstract
Immunization with Plasmodium sporozoites can elicit high levels of sterile immunity, and neutralizing antibodies from protected hosts are known to target the repeat region of the circumsporozoite (CS) protein on the parasite surface. CS-based subunit vaccines have been hampered by suboptimal immunogenicity and the requirement for strong adjuvants to elicit effective humoral immunity. Pathogen-associated molecular patterns (PAMPs) that signal through Toll-like receptors (TLRs) can function as potent adjuvants for innate and adaptive immunity. We examined the immunogenicity of recombinant proteins containing a TLR5 agonist, flagellin, and either full-length or selected epitopes of the Plasmodium falciparum CS protein. Mice immunized with either of the flagellin-modified CS constructs, administered intranasally (i.n.) or subcutaneously (s.c.), developed similar levels of malaria-specific IgG1 antibody and interleukin-5 (IL-5)-producing T cells. Importantly, immunization via the i.n. but not the s.c. route elicited sporozoite neutralizing antibodies capable of inhibiting >90% of sporozoite invasion in vitro and in vivo, as measured using a transgenic rodent parasite expressing P. falciparum CS repeats. These findings demonstrate that functional sporozoite neutralizing antibody can be elicited by i.n. immunization with a flagellin-modified P. falciparum CS protein and raise the potential of a scalable, safe, needle-free vaccine for the 40% of the world's population at risk of malaria.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antibodies, Protozoan/immunology
- Cells, Cultured
- Dendritic Cells/immunology
- Epitopes, T-Lymphocyte/immunology
- Flagellin/immunology
- Humans
- Immunity, Humoral/immunology
- Immunization
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/immunology
- Interleukin-5/biosynthesis
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Plasmodium falciparum/immunology
- Protozoan Proteins/administration & dosage
- Protozoan Proteins/immunology
- Recombinant Proteins/immunology
- Sporozoites/immunology
- Toll-Like Receptor 5/agonists
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Daniel Carapau
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | - Robert Mitchell
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | - Adéla Nacer
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | - Alan Shaw
- Vaxinnate Corporation, Cranbury, New Jersey, USA
| | - Caroline Othoro
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | - Ute Frevert
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | - Elizabeth Nardin
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
92
|
Al-Mahtab M, Akbar SMF, Aguilar JC, Uddin MH, Khan MSI, Rahman S. Therapeutic potential of a combined hepatitis B virus surface and core antigen vaccine in patients with chronic hepatitis B. Hepatol Int 2013. [PMID: 26202028 DOI: 10.1007/s12072-013-9486-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The safety and clinical efficacy of a vaccine containing both hepatitis B surface antigen (HBsAg) and hepatitis B core antigen (HBcAg) (HBsAg/HBcAg) were evaluated in patients with chronic hepatitis B (CHB). METHODS Eighteen patients with CHB were administered a vaccine containing 100 μg of HBsAg and 100 μg of HBcAg. The vaccine was administered ten times at 2-weekly intervals, the first five times via the nasal route only and the subsequent five times via both nasal and subcutaneous routes. The safety and efficacy of this therapeutic approach were assessed by periodic assessment of the patients' general condition, viral kinetics, and biochemical parameters during treatment and 24 and 48 weeks after therapy. The production of cytokines by peripheral blood mononuclear cells (PBMC) and antigen-pulsed dendritic cells (DC) was evaluated to assess the immunomodulatory effects of the HBsAg/HBcAg vaccine in CHB patients. RESULTS The HBsAg/HBcAg vaccine was safe in all patients. No flare of HBV DNA or alanine aminotransferase (ALT) was recorded in any patient. Sustained HBV DNA negativity and persistently normalized ALT were detected in 9 (50 %) and 18 (100 %) patients with CHB, respectively. PBMC and HBsAg/HBcAg-pulsed DCs from HBsAg/HBcAg-vaccinated CHB patients produced significantly higher levels of various cytokines [interleukin 1β (IL-1β), IL-6, IL-8, IL-12, and tumor necrosis factor α (TNF-α)] than those from control unvaccinated CHB patients (p < 0.05) after stimulation with HBsAg/HBcAg in vitro. CONCLUSION HBsAg/HBcAg vaccine seems a safe and efficient therapeutic approach for patients with CHB.
Collapse
Affiliation(s)
- Mamun Al-Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh.
| | | | | | | | | | - Salimur Rahman
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh.
| |
Collapse
|
93
|
Kimoto T, Mizuno D, Takei T, Kunimi T, Ono S, Sakai S, Kido H. Intranasal influenza vaccination using a new synthetic mucosal adjuvant SF-10: induction of potent local and systemic immunity with balanced Th1 and Th2 responses. Influenza Other Respir Viruses 2013; 7:1218-26. [PMID: 23710832 PMCID: PMC3933764 DOI: 10.1111/irv.12124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We found previously that bovine pulmonary Surfacten® used in newborns with acute respiratory distress syndrome is a safe and efficacious antigen vehicle for intranasal vaccination. OBJECTIVES The objective of this study was to industrially produce a synthetic adjuvant mimicking Surfacten® for clinical use without risk of bovine spongiform encephalopathy. METHODS We selected three Surfacten lipids and surfactant protein (SP)-C as essential constituents for adjuvanticity. For replacement of the hydrophobic SP-C, we synthesized SP-related peptides and analyzed their adjuvanticity. We evaluated lyophilization to replace sonication for the binding of influenza virus hemagglutinin (HA) to the synthetic adjuvant. We also added a carboxy vinyl polymer (CVP) to the synthetic adjuvant and named the mixture as SF-10 adjuvant. HA combined with SF-10 was administered intranasally to mice, and induction of nasal-wash HA-specific secretory IgA (s-IgA) and serum IgG with Th1-/Th2-type cytokine responses in nasal cavity and virus challenge test were assessed. RESULTS AND CONCLUSIONS Intranasal immunization with HA-SF-10 induced significantly higher levels of anti-HA-specific nasal-wash s-IgA and serum IgG than those induced by HA-poly(I:C), a reported potent mucosal vaccine, and provided highly efficient protection against lethal doses of virus challenge in mice. Anti-HA-specific serum IgG levels induced by HA-SF-10 were almost equivalent to those induced by subcutaneous immunization of HA twice. Intranasal administration of HA-SF-10 induced balanced anti-HA-specific IgG1 and IgG2a in sera and IFN-γ- and IL-4-producing lymphocytes in nasal cavity without any induction of anti-HA IgE. The results suggest that HA-SF-10 is a promising nasal influenza vaccine and that SF-10 can be supplied in large quantities commercially.
Collapse
Affiliation(s)
- Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
94
|
Sasaki H, Ishikawa H, Kojima K, Itoh M, Matsumoto T, Itoh T, Hosomi O, Kawamoto E. Intranasal immunization with a non-adjuvanted adhesive protein descended from Pasteurella pneumotropica and its preventive efficacy against opportunistic infection in mice. Vaccine 2013; 31:5729-35. [DOI: 10.1016/j.vaccine.2013.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/25/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
|
95
|
Coué G, Hermanns I, Unger RE, Kirkpatrick CJ, Engbersen JFJ. Development and in vitro Evaluation of Antigen-Loaded Poly(amidoamine) Nanoparticles for Respiratory Epithelium Applications. ChemMedChem 2013; 8:1787-94. [DOI: 10.1002/cmdc.201300307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Indexed: 11/10/2022]
|
96
|
Keijzer C, van der Zee R, van Eden W, Broere F. Treg inducing adjuvants for therapeutic vaccination against chronic inflammatory diseases. Front Immunol 2013; 4:245. [PMID: 23970886 PMCID: PMC3747555 DOI: 10.3389/fimmu.2013.00245] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/06/2013] [Indexed: 01/21/2023] Open
Abstract
Many existing therapies in autoimmune diseases are based on systemic suppression of inflammation and the observed side effects of these therapies illustrate the pressing need for more specific interventions. Regulatory T-cells (Treg) are pivotal controllers of (auto-aggressive) immune responses and inflammation, and decreased Treg numbers and/or functioning have been associated with autoimmune disease. Therefore, Treg became frequently studied targets for more specific immunotherapy. Especially antigen-specific targeting of Treg would enable local and tailor made interventions, while obviating the negative side effect of general immuno-suppression. Self-antigens that participate in inflammation, irrespective of the etiology of the different autoimmune diseases, are held to be candidate antigens for antigen-specific interventions. Rather than tolerance induction to disease inciting self-antigens, which are frequently unknown, general self-antigens expressed at sites of inflammation would allow targeting of disease independent, but inflammatory-site specific, regulatory mechanisms. Preferably, such self-antigens should be abundantly expressed and up-regulated at the inflammatory-site. In this perspective heat shock proteins (Hsp) have several characteristics that make them highly attractive targets for antigen-specific Treg inducing therapy. The development of an antigen-specific Treg inducing vaccine is a major novel goal in the field of immunotherapy in autoimmune diseases. However, progress is hampered not only by the lack of effective antigens, but also by the fact that other factors such as dose, route, and the presence or absence of an adjuvant, turned out to be critical unknowns, with respect to the effective induction of Treg. In addition, the use of a Treg inducing adjuvant might be required to achieve an effective regulatory response, in the case of ongoing inflammation. Future goals in clinical trials will be the optimization of natural Treg expansion (or the induction of adaptive Treg) without loss of their suppressive function or the concomitant induction of non-regulatory T-cells. Here, we will discuss the potential use of protein/peptide-based vaccines combined with Treg inducing adjuvants for the development of therapeutic vaccines against chronic inflammatory conditions.
Collapse
Affiliation(s)
- Chantal Keijzer
- Immunology, Infectious Diseases and Immunology, Faculty Veterinary Medicine, University Utrecht , Utrecht , Netherlands
| | | | | | | |
Collapse
|
97
|
Falkeborn T, Bråve A, Larsson M, Åkerlind B, Schröder U, Hinkula J. Endocine™, N3OA and N3OASq; three mucosal adjuvants that enhance the immune response to nasal influenza vaccination. PLoS One 2013; 8:e70527. [PMID: 23950951 PMCID: PMC3738562 DOI: 10.1371/journal.pone.0070527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/19/2013] [Indexed: 12/27/2022] Open
Abstract
Annual outbreaks of seasonal influenza are controlled or prevented through vaccination in many countries. The seasonal vaccines used are either inactivated, currently administered parenterally, or live-attenuated given intranasally. In this study three mucosal adjuvants were examined for the influence on the humoral (mucosal and systemic) and cellular influenza A-specific immune responses induced by a nasally administered vaccine. We investigated in detail how the anionic Endocine™ and the cationic adjuvants N3OA and N3OASq mixed with a split inactivated influenza vaccine induced influenza A-specific immune responses as compared to the vaccine alone after intranasal immunization. The study showed that nasal administration of a split virus vaccine together with Endocine™ or N3OA induced significantly higher humoral and cell-mediated immune responses than the non-adjuvanted vaccine. N3OASq only significantly increased the cell-mediated immune response. Furthermore, nasal administration of the influenza vaccine in combination with any of the adjuvants; Endocine™, N3OA or N3OASq, significantly enhanced the mucosal immunity against influenza HA protein. Thus the addition of these mucosal adjuvants leads to enhanced immunity in the most relevant tissues, the upper respiratory tract and the systemic circulation. Nasal influenza vaccination with an inactivated split vaccine can therefore provide an important mucosal immune response, which is often low or absent after traditional parenteral vaccination.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Female
- Humans
- Immunity, Cellular
- Immunity, Mucosal
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/blood
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Tina Falkeborn
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Andreas Bråve
- Swedish Institute for Communicable Disease Control (SMI), Stockholm, Sweden
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Britt Åkerlind
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ulf Schröder
- Eurocine Vaccines AB, Karolinska Science Park, Solna, Sweden
| | - Jorma Hinkula
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Eurocine Vaccines AB, Karolinska Science Park, Solna, Sweden
- * E-mail:
| |
Collapse
|
98
|
Yao W, Peng Y, Du M, Luo J, Zong L. Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity. Mol Pharm 2013; 10:2904-14. [PMID: 23768205 DOI: 10.1021/mp4000053] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chitosan (CS) has been extensively used as a protein drug and gene delivery carrier, but its delivery efficiency is unsatisfactory. In this study, a mannose ligand was used to modify CS, which could enhance the delivery efficiency of CS via mannose receptor-mediated endocytosis. A preventative anti-GRP DNA vaccine (pCR3.1-VS-HSP65-TP-GRP6-M2, pGRP) was condensed with mannosylated chitosan (MCS) to form MCS/pGRP nanoparticles. Nanoparticles were intranasally administered in a subcutaneous mice prostate carcinoma model to evaluate the efficacy on inhibition of the growth of tumor cells. The titers of anti-GRP IgG that lasted for 11 weeks were significantly higher than that for administration of CS/pGRP nanoparticles (p < 0.01) and intramuscular administration of a pGRP solution (p < 0.05) to mice. In addition, immunization with MCS/pGRP nanoparticles could suppress the growth of tumor cells. The average tumor weight (0.79 ± 0.30 g) was significantly lower than that in the CS/pGRP nanoparticle group (1.69 ± 0.15 g) (p < 0.01) or that in the pGRP group (1.12 ± 0.37 g) (p < 0.05). Cell binding and cellular uptake results indicated that MCS/pGRP nanoparticles bound with C-type lectin receptors on macrophages. MCS was an efficient targeting gene delivery carrier and could be used in antitumor immunotherapy.
Collapse
Affiliation(s)
- Wenjun Yao
- School of Pharmacy, China Pharmaceutical University , TongJiaXiang No. 24, Nanjing 210009, PR China
| | | | | | | | | |
Collapse
|
99
|
Shao X, Liu Q, Zhang C, Zheng X, Chen J, Zha Y, Qian Y, Zhang X, Zhang Q, Jiang X. Concanavalin A-conjugated poly(ethylene glycol)–poly(lactic acid) nanoparticles for intranasal drug delivery to the cervical lymph nodes. J Microencapsul 2013; 30:780-6. [DOI: 10.3109/02652048.2013.788086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
100
|
Tajdini F, Amini MA, Mokarram AR, Taghizadeh M, Azimi SM. Foot and Mouth Disease virus-loaded fungal chitosan nanoparticles for intranasal administration: impact of formulation on physicochemical and immunological characteristics. Pharm Dev Technol 2013; 19:333-41. [DOI: 10.3109/10837450.2013.784335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|