51
|
Copland MJ, Rades T, Davies NM, Baird MA. Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 2005; 83:97-105. [PMID: 15748206 DOI: 10.1111/j.1440-1711.2005.01315.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Particulate adjuvant systems are largely classified according to their functional characteristics, such as the nature of the typical immune response they induce, or their perceived mode of action. From a formulation science perspective, it is practical to classify antigen delivery systems according to the physical nature of the formulations. This article discusses lipid based particulate systems, grouped according to the nature of their predominant lipid constituent.
Collapse
Affiliation(s)
- Melissa J Copland
- Drug Delivery Solutions, School of Pharmacy, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
52
|
Bellocchio S, Gaziano R, Bozza S, Rossi G, Montagnoli C, Perruccio K, Calvitti M, Pitzurra L, Romani L. Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signalling from TLR-2 to TLR-4. J Antimicrob Chemother 2005; 55:214-22. [PMID: 15649994 DOI: 10.1093/jac/dkh542] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Neutrophils play a crucial role in the control of the Aspergillus fumigatus infection and act in concert with antifungal drugs. This study was undertaken to obtain insights into the possible involvement of Toll-like receptors (TLRs) in the interaction of liposomal amphotericin B (L-AmB; AmBisome) with neutrophils in response to A. fumigatus. METHODS For generation of bone marrow-transplanted mice, irradiated C57BL6 mice were infused with T cell-depleted allogeneic donor cells. For infection, mice were injected intranasally with Aspergillus fumigatus conidia and treated with L-Amb and deoxycholate amphotericin B prophylactically or therapeutically. For TLR-dependent antifungal functions, murine neutrophils were preincubated with antifungals or TLR ligands before the addition of Aspergillus conidia. RESULTS The results show that: (a) neutrophil activation by Aspergillus occurs through TLR signalling pathways differently affecting the oxidative and non-oxidative mechanisms of the killing machinery; (b) by diverting signalling from TLR-2 to TLR-4, liposomes of AmBisome activate neutrophils to an antifungal state while attenuating the pro-inflammatory effects of deoxycholate amphotericin B; (c) this translates in vivo to the optimization of the AmBisome therapeutic efficacy in mice with aspergillosis. CONCLUSIONS These results provide a putative molecular basis for the reduced infusion-related toxicity of AmBisome and suggest that TLR manipulation in vivo is amenable to the induction of optimal microbicidal activity in the absence of inflammatory cytotoxicity to host cells.
Collapse
Affiliation(s)
- Silvia Bellocchio
- Microbiology Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005. [DOI: 10.1038/nrd1632 and 3724=3724-- lkhg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
54
|
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005. [DOI: 10.1038/nrd1632 and 4995=5446-- mofb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
55
|
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005. [DOI: 10.1038/nrd1632 and 3724=3724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
56
|
|
57
|
Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005. [DOI: 10.1038/nrd1632 and 8519=9456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
58
|
Abstract
Liposomes - microscopic phospholipid bubbles with a bilayered membrane structure - have received a lot of attention during the past 30 years as pharmaceutical carriers of great potential. More recently, many new developments have been seen in the area of liposomal drugs - from clinically approved products to new experimental applications, with gene delivery and cancer therapy still being the principal areas of interest. For further successful development of this field, promising trends must be identified and exploited, albeit with a clear understanding of the limitations of these approaches.
Collapse
Affiliation(s)
- Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
59
|
|
60
|
Chen WC, Huang L. Non‐Viral Vector as Vaccine Carrier. NON-VIRAL VECTORS FOR GENE THERAPY, SECOND EDITION: PART 2 2005; 54:315-37. [PMID: 16096017 DOI: 10.1016/s0065-2660(05)54013-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Over the last several years, advances in gene-based delivery technology arising from the field of gene therapy have helped revitalize the field of vaccine development. Genetic vaccination encoding antigen from bacteria, virus, and cancer has shown promise in protective humoral and cellular immunity; however, the potential disadvantages of naked DNA vaccine have reduced the value of the approach. To optimize antigen delivery efficiency as well as vaccine efficacy, the non-viral vector as vaccine carrier, for example, the cationic liposome, has shown particular benefits to circumvent the obstacles that both peptide/protein- and gene-based vaccines have encountered. Liposome-mediated vaccine delivery provides greater efficacy and safer vaccine formulation for the development of vaccine for human use. The success of the liposome-based vaccine has been demonstrated in clinical trials and further human trials are also in progress.
Collapse
Affiliation(s)
- Weihsu Claire Chen
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
61
|
Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine 2004; 22:1903-13. [PMID: 15121302 DOI: 10.1016/j.vaccine.2003.11.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 08/18/2003] [Accepted: 11/07/2003] [Indexed: 12/21/2022]
Abstract
Vaccine efficacy might be improved by exploiting the potent antigen presenting properties of dendrite cells (DCs), since their ability to stimulate specific major histocompatibility complex-restricted immune responses has been well documented during the recent years. In that light, we investigated how the interaction of antigen-containing liposomes with DCs was affected by the bilayer composition. Monocyte-derived human DCs and murine bone marrow-derived DCs were analysed and compared upon in vitro incubation with liposomes by flow cytometry and confocal microscopy. Anionic liposomes with a bilayer composition of phosphatidylcholine, cholesterol and phosphatidylglycerol or phosphatidylserine interacted with a limited fraction of the total DC population in case of both DC types. Inclusion of mannosylated phosphatidylethanolamine (Man-PE) for targeting to the mannose receptor (MR) increased the interaction of negatively charged liposomes with both human and murine DCs. This increase could be blocked in human DCs by addition of the polysaccharide mannan indicating that uptake might be mediated by the mannose receptor. Cationic liposomes containing trimethyl ammonium propane interacted with a very high percentage of both DC types and could be detected in high amounts intracellularly. In conclusion, liposome bilayer composition has an important effect on interaction with DCs and might be critical for the vaccination outcome.
Collapse
Affiliation(s)
- Camilla Foged
- Division of Hematology, Centre for Molecular Medicine, Karolinska Hospital and Institute, S-17176 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
62
|
Szebeni J, Baranyi L, Savay S, Milosevits J, Bodo M, Bunger R, Alving CR. The Interaction of Liposomes with the Complement System: In Vitro and In Vivo Assays. Methods Enzymol 2003; 373:136-54. [PMID: 14714402 DOI: 10.1016/s0076-6879(03)73010-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Janos Szebeni
- Department of Membrane Biochemistry, Walter Reed Army Institute of Research, Washington, D.C. 20307, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Rao M, Rothwell SW, Alving CR. Trafficking of Liposomal Antigens to the Trans-Golgi Complex in Macrophages. Methods Enzymol 2003; 373:16-33. [PMID: 14714394 DOI: 10.1016/s0076-6879(03)73002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Mangala Rao
- Department of Membrane Biochemistry, Walter Reed Army Institute of Research, Washington, D.C. 20307, USA
| | | | | |
Collapse
|
64
|
Rao M, Bray M, Alving CR, Jahrling P, Matyas GR. Induction of immune responses in mice and monkeys to Ebola virus after immunization with liposome-encapsulated irradiated Ebola virus: protection in mice requires CD4(+) T cells. J Virol 2002; 76:9176-85. [PMID: 12186901 PMCID: PMC136452 DOI: 10.1128/jvi.76.18.9176-9185.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola Zaire virus (EBO-Z) causes severe hemorrhagic fever in humans, with a high mortality rate. It is thought that a vaccine against EBO-Z may have to induce both humoral and cell-mediated immune responses to successfully confer protection. Because it is known that liposome-encapsulated antigens induce both antibody and cellular responses, we evaluated the protective efficacy of liposome-encapsulated irradiated EBO-Z [L(EV)], which contains all of the native EBO-Z proteins. In a series of experiments, mice immunized intravenously with L(EV) were completely protected (94/94 mice) against illness and death when they were challenged with a uniformly lethal mouse-adapted variant of EBO-Z. In contrast, only 55% of mice immunized intravenously with nonencapsulated irradiated virus (EV) survived challenge, and all became ill. Treatment with anti-CD4 antibodies before or during immunization with L(EV) eliminated protection, while treatment with anti-CD8 antibodies had no effect, thus indicating a requirement for CD4(+) T lymphocytes for successful immunization. On the other hand, treatment with either anti-CD4 or anti-CD8 antibodies after immunization did not abolish the protection. After immunization with L(EV), antigen-specific gamma interferon (IFN gamma)-secreting CD4(+) T lymphocytes were induced as analyzed by enzyme-linked immunospot assay. Anti-CD4 monoclonal antibody treatment abolished IFN gamma production (80 to 90% inhibition compared to that for untreated mice). Mice immunized with L(EV), but not EV, developed cytotoxic T lymphocytes specific to two peptides (amino acids [aa] 161 to 169 and aa 231 to 239) present in the amino-terminal end of the EBO-Z surface glycoprotein. Because of the highly successful results in the mouse model, L(EV) was also tested in three cynomolgus monkeys. Although immunization of the monkeys with L(EV)-induced virus-neutralizing antibodies against EBO-Z caused a slight delay in the onset of illness, it did not prevent death.
Collapse
Affiliation(s)
- Mangala Rao
- Department of Membrane Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | | | |
Collapse
|
65
|
Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 2002; 1:111-8. [PMID: 12908518 DOI: 10.1586/14760584.1.1.111] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of adjuvants will represent a major challenge for this century. Indeed the need for safer vaccines leads to the development of a new generation of antigens like synthetic peptide, recombinant proteins or even vectored DNA. However, this is to the detriment of their immunogenicity. The addition of adjuvant is becomes necessary to enhance immune responses and improve vaccine potency. However, adjuvants can be responsible for the apparition of secondary reactions and they must be adapted according to various criteria such as the route of immunization, the type of the immune response, the duration of immunity, or the quality of the antigen, in order to get the best balance between efficacy and safety.
Collapse
|
66
|
Abstract
The availability of hundreds of different adjuvants has prompted a need for identifying rational standards for selection of adjuvant formulations based on safety and sound immunological principles for human vaccines. Although many of the mechanisms of adjuvants have been elucidated, meaningful comparisons between different adjuvants derived from in vitro studies, or from studies using adjuvants in rodents or other animals, are often not predictive for safety, adjuvant effects, or vaccine efficacy in humans. A highly efficient and cost-effective method for comparison of adjuvants with a new antigen is to conduct multiple small-scale, phase 1, comparative studies in humans with a new antigen, using adjuvants previously found to be safe with other antigens in human trials. Studies in which highly immunogenic and safe adjuvant formulations have been evaluated in comparative adjuvant trials in humans using a single candidate vaccine antigen against malaria, HIV, and prostate cancer with multiple adjuvants are reviewed.
Collapse
Affiliation(s)
- Carl R Alving
- Department of Membrane Biochemistry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
| |
Collapse
|
67
|
Song LY, Ahkong QF, Rong Q, Wang Z, Ansell S, Hope MJ, Mui B. Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:1-13. [PMID: 11750259 DOI: 10.1016/s0005-2736(01)00399-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Poly(ethylene glycol)-lipid (PEG-lipid) conjugates are widely used in the field of liposomal drug delivery to provide a polymer coat that can confer favorable pharmacokinetic characteristics on particles in the circulation. More recently these lipids have been employed as an essential component in the self-assembly of cationic and neutral lipids with polynucleic acids to form small, stable lipid/DNA complexes that exhibit long circulation times in vivo and accumulate at sites of disease. However, the presence of a steric barrier lipid might be expected to inhibit the transfection activity of lipid/DNA complexes by reducing particle-membrane contact. In this study we examine what effect varying the size of the hydrophobic anchor and hydrophilic head group of PEG-lipids has on both gene and antisense delivery into cells in culture. Lipid/DNA complexes were made using unilamellar vesicles composed of 5 mole% PEG-lipids in combination with equimolar dioleoylphosphatidylethanolamine and the cationic lipid dioleyldimethylammonium chloride. Using HeLa and HepG2 cells we show that under the conditions employed PEG-lipids had a minimal effect on the binding and subsequent endocytosis of lipid/DNA complexes but they severely inhibited active gene transfer and the endosomal release of antisense oligodeoxynucleotides into the cytoplasm. Decreasing the size of the hydrophobic anchor or the size of the grafted hydrophilic PEG moiety enhanced DNA transfer by the complexes.
Collapse
Affiliation(s)
- L Y Song
- Inex Pharmaceuticals Corp., 100-8900 Glenlyon Parkway, Glenlyon Business Park, V5J 5J8, Burnaby, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Liposomes are the leading drug delivery systems for the systemic (iv.) administration of drugs. There are now liposomal formulations of conventional drugs that have received clinical approval and many others in clinical trials that bring benefits of reduced toxicity and enhanced efficacy for the treatment of cancer and other life-threatening diseases. The mechanisms giving rise to the therapeutic advantages of liposomes, such as the ability of long-circulating liposomes to preferentially accumulate at disease sites including tumours, sites of infection and sites of inflammation are increasingly well understood. Further, liposome-based formulations of genetic drugs such as antisense oligonucleotides and plasmids for gene therapy that have clear potential for systemic utility are increasingly available. This paper reviews the liposomal drug delivery field, summarises the success of liposomes for the delivery of small molecules and indicates how this success is being built on to design effective carriers for genetic drugs.
Collapse
Affiliation(s)
- N Maurer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
69
|
|
70
|
Abstract
Since the discovery of liposomes or lipid vesicles derived from self-forming enclosed lipid bilayers upon hydration, liposome drug delivery systems have played a significant role in formulation of potent drugs to improve therapeutics. Currently, most of these liposome formulations are designed to reduce toxicity and to some extent increase accumulation at the target site(s) in a number of clinical applications. The current pharmaceutical preparations of liposome-based therapeutics stem from our understanding of lipid-drug interactions and liposome disposition mechanisms including the inhibition of rapid clearance of liposomes by controlling size, charge, and surface hydration. The insight gained from clinical use of liposome drug delivery systems can now be integrated to design liposomes targeted to tissues and cells with or without expression of target recognition molecules on liposome membranes. Enhanced safety and heightened efficacy have been achieved for a wide range of drug classes, including antitumor agents, antivirals, antifungals, antimicrobials, vaccines, and gene therapeutics. Additional refinements of biomembrane sensors and liposome delivery systems that are effective in the presence of other membrane-bound proteins in vivo may permit selective delivery of therapeutic compounds to selected intracellular target areas.
Collapse
Affiliation(s)
- T Lian
- Department of Pharmaceutics, University of Washington, Box 357610 H272, Health Sciences Building, Seattle, Washington 98195, USA
| | | |
Collapse
|
71
|
Weissig V, Torchilin VP. Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev 2001; 49:127-49. [PMID: 11377808 DOI: 10.1016/s0169-409x(01)00131-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since their first discovery during the end of the 1980s, the number of diseases found to be associated with a defect in the mitochondrial genome has grown significantly. However, despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is no satisfactory treatment available for the vast majority of patients. This is largely due to the fact that most of these patients have respiratory chain defects, i.e. defects that involve the final common pathway of oxidative metabolism, making it impossible to bypass the defect by giving alternative metabolic carriers of energy. These objective limitations of conventional biochemical treatment for patients with defects of mtDNA warrant the exploration of gene therapy approaches. However, mitochondrial gene therapy currently appears to be only theoretical and speculative. Any possibility for gene replacement is dependent on the use of a yet unavailable mitochondrial transfection vector. In this review we describe the current state of the development of mitochondrial DNA delivery systems. We also summarize our own efforts in exploring the properties of dequalinium, a cationic bolaamphiphile with delocalized charge centers, for the design of a vector suited for the transport of DNA to mitochondria in living cells.
Collapse
Affiliation(s)
- V Weissig
- Northeastern University, Bouve College of Health Sciences, Department of Pharmaceutical Sciences, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
72
|
Literature alerts. J Microencapsul 2000; 17:789-99. [PMID: 11063426 DOI: 10.1080/02652040050161783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|