51
|
Dobbin E, Graham C, Freeburn RW, Unwin RD, Griffiths JR, Pierce A, Whetton AD, Wheadon H. Proteomic analysis reveals a novel mechanism induced by the leukemic oncogene Tel/PDGFRβ in stem cells: activation of the interferon response pathways. Stem Cell Res 2010; 5:226-43. [PMID: 20875954 DOI: 10.1016/j.scr.2010.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/12/2010] [Accepted: 08/19/2010] [Indexed: 11/29/2022] Open
Abstract
Objective proteomic analysis offers opportunities for hypothesis generation on molecular events associated with pathogenesis in stem cells. Relative quantification mass spectrometry was employed to identify pathways affected by Tel/PDGFRβ, an oncogene associated with myeloproliferative neoplasia (MPN). Its effects on over 1800 proteins were quantified with high confidence. Of those up-regulated by Tel/PDGFRβ several were involved in the interferon gamma (IFNγ) response. To validate these observations we employed embryonic and myeloid stem cells models which revealed Tel/PDGFRβ-induced STAT1 up-regulation and activation was responsible for modulating the interferon response. A STAT1 target highly up-regulated was ICSBP, a transcriptional regulator of myeloid and eosinophilic differentiation. ICSBP interacts with CBP/p300 and Ets transcription factors, to promote transcription of additional genes, including the Egr family, key regulators of myelopoiesis. These interferon responses were recapitulated using IFNγ stimulation of stem cells. Thus Tel/PDGFRβ induces aberrant IFN signaling and downstream targets, which may ultimately impact the hematopoietic transcriptional factor network to bias myelomonocytic differentiation in this MPN.
Collapse
Affiliation(s)
- E Dobbin
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, G12 0YN, UK
| | | | | | | | | | | | | | | |
Collapse
|
52
|
De Leo A, Matusali G, Arena G, Di Renzo L, Mattia E. Epstein-Barr virus lytic cycle activation alters proteasome subunit expression in Burkitt's lymphoma cells. Biol Chem 2010; 391:1041-6. [DOI: 10.1515/bc.2010.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractWe have shown that Epstein-Barr virus (EBV) lytic cycle activation in Burkitt's lymphoma (BL) cells down-regulates chymotrypsin- and caspase-like activities of the proteasome. The aim of the present study was to evaluate whether EBV activation might also affect proteasome subunit composition. Our results indicate that, independently of the latency program established in the host cells, induction of the EBV lytic cycle reduces the expression of the proteasomal components β5, β1 and β2i, whereas it increases that of β2, β1i, PA28α and PA28β. The modulation of the composition and enzymatic activities of the proteolytic complex are indicative of a less efficient generation of viral immunoepitopes.
Collapse
|
53
|
Hayashi T, Horiuchi A, Sano K, Hiraoka N, Kanai Y, Shiozawa T, Tonegawa S, Konishi I. Mice-lacking LMP2, immuno-proteasome subunit, as an animal model of spontaneous uterine leiomyosarcoma. Protein Cell 2010; 1:711-7. [PMID: 21203912 DOI: 10.1007/s13238-010-0095-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 07/13/2010] [Indexed: 11/28/2022] Open
Abstract
Uterine tumors are the most common type of gynecologic neoplasm. Uterine leiomyosarcoma (LMS) is rare, accounting for 2% to 5% of tumors of the uterine body. Uterine LMS develops more often in the muscle tissue layer of the uterine body than in the uterine cervix. The development of gynecologic tumors is often correlated with female hormone secretion; however, the development of uterine LMS is not substantially correlated with hormonal conditions, and the risk factors are not yet known. Radiographic evaluation combined with PET/CT can be useless in the diagnosis and surveillance of uterine LMS. Importantly, a diagnostic biomarker, which distinguishes malignant LMS and benign tumor leiomyoma (LMA) is yet to be established. Accordingly, it is necessary to analyze risk factors associated with uterine LMS in order to establish a method of treatment. LMP2-deficient mice spontaneously develop uterine LMS, with a disease prevalence of ∼40% by 14 months of age. It is therefore of interest whether human uterine LMS shows a loss of LMP2 expression. We found LMP2 expression is absent in human LMS, but present in human LMA. Therefore, defective LMP2 expression may be one of the risk factors for LMS. LMP2 is potentially a diagnostic biomarker for uterine LMS, and gene therapy with LMP2-encording DNA may be a new therapeutic approach.
Collapse
Affiliation(s)
- Takuma Hayashi
- Department of Immunology and Infectious Disease, Shinshu University Graduate School of Medicine, Matsumoto, Nagano 390-8621, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Kabashi E, Agar JN, Hong Y, Taylor DM, Minotti S, Figlewicz DA, Durham HD. Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis. J Neurochem 2010; 105:2353-66. [PMID: 18315558 DOI: 10.1111/j.1471-4159.2008.05317.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In amyotrophic lateral sclerosis caused by mutations in Cu/Zn-superoxide dismutase (SOD1), altered solubility and aggregation of the mutant protein implicates failure of pathways for detecting and catabolizing misfolded proteins. Our previous studies demonstrated early reduction of proteasome-mediated proteolytic activity in lumbar spinal cord of SOD1(G93A) transgenic mice, tissue particularly vulnerable to disease. The purpose of this study was to identify any underlying abnormalities in proteasomal structure. In lumbar spinal cord of pre-symptomatic mice [postnatal day 45 (P45) and P75], normal levels of structural 20S alpha subunits were incorporated into 20S/26S proteasomes; however, proteasomal complexes separated by native gel electrophoresis showed decreased immunoreactivity with antibodies to beta3, a structural subunit of the 20S proteasome core, and beta5, the subunit with chymotrypsin-like activity. This occurred prior to increase in beta5i immunoproteasomal subunit. mRNA levels were maintained and no association of mutant SOD1 with proteasomes was identified, implicating post-transcriptional mechanisms. mRNAs also were maintained in laser captured motor neurons at a later stage of disease (P100) in which multiple 20S proteins are reduced relative to the surrounding neuropil. Increase in detergent-insoluble, ubiquitinated proteins at P75 provided further evidence of stress on mechanisms of protein quality control in multiple cell types prior to significant motor neuron death.
Collapse
Affiliation(s)
- Edor Kabashi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
55
|
Basler M, Dajee M, Moll C, Groettrup M, Kirk CJ. Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. THE JOURNAL OF IMMUNOLOGY 2010; 185:634-41. [PMID: 20525886 DOI: 10.4049/jimmunol.0903182] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proteasome, a multicatalytic protease, is responsible for the degradation of intracellular proteins. Stimulation of cells with inflammatory cytokines, such as IFN-gamma, leads to the replacement of the constitutive catalytic proteasome subunits by the inducible subunits low molecular mass polypeptide (LMP)2 (beta1i), multicatalytic endopeptidase complex-like-1 (beta2i), and LMP7 (beta5i), which are required for the production of certain MHC class I-restricted T cell epitopes. In this study, we investigated the effect of immunoproteasomes on the development of dextran sulfate sodium-induced colitis. Colitis induction in LMP2-, LMP7-, and multicatalytic endopeptidase complex-like-1-deficient mice caused reduced weight loss compared with wild-type mice. Although colon lengths were shortened in wild-type mice, no reduction was observed in immunoproteasome-deficient mice. In accordance with this, proinflammatory cytokines, such as TNF-alpha and IL-1beta, were not upregulated in these mice. Blockage of LMP7 by a novel LMP7-selective inhibitor (PR-957) strongly reduced pathological symptoms of dextran sulfate sodium-induced colitis. Production of numerous cytokines in PR-957-treated mice was suppressed, resulting in reduced inflammation and tissue destruction. Taken together, these results demonstrate that an immunoproteasome-specific inhibitor can be used to attenuate autoimmune diseases like colitis.
Collapse
Affiliation(s)
- Michael Basler
- Division of Immunology, Department of Biology, University of Constance, Konstanz, Germany.
| | | | | | | | | |
Collapse
|
56
|
The proteasome inhibitor Velcade enhances rather than reduces disease in mouse hepatitis coronavirus-infected mice. J Virol 2010; 84:7880-5. [PMID: 20484516 DOI: 10.1128/jvi.00486-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many viruses, including coronaviruses (CoVs), depend on a functional cellular proteasome for efficient infection in vitro. Hence, the proteasome inhibitor Velcade (bortezomib), a clinically approved anticancer drug, shown in an accompanying study (M. Raaben et al., J. Virol. 84:7869-7879, 2010) to strongly inhibit mouse hepatitis CoV (MHV) infection in cultured cells, seemed an attractive candidate for testing its antiviral properties in vivo. Surprisingly, however, the drug did not reduce replication of the virus in mice. Rather, inhibition of the proteasome caused enhanced infection with lethal outcome, calling for caution when using this type of drug during infection.
Collapse
|
57
|
Zhou F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol 2009; 28:239-60. [PMID: 19811323 DOI: 10.1080/08830180902978120] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IFN-gamma up-regulates MHC class I expression and antigen processing and presentation on cells, since IFN-gamma can induce multiple gene expressions that are related to MHC class I antigen processing and presentation. MHC class I antigen presentation-associated gene expression is initiated by IRF-1. IRF-1 expression is initiated by phosphorylated STAT1. IFN-gamma binds to IFN receptors, and then activates JAK1/JAK2/STAT1 signal transduction via phosphorylation of JAK and STAT1 in cells. IFN-gamma up-regulates MHC class I antigen presentation via activation of JAK/STAT1 signal transduction pathway. Mechanisms of IFN-gamma to enhance MHC class I antigen processing and presentation were summarized in this literature review.
Collapse
Affiliation(s)
- Fang Zhou
- Diamantina Institute for Cancer Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
58
|
Cross, but not direct, presentation of cell-associated virus antigens by spleen macrophages is influenced by their differentiation state. Immunol Cell Biol 2009; 88:3-12. [PMID: 19935765 DOI: 10.1038/icb.2009.90] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The initiation of T-cell immune responses requires professional antigen-presenting cells. Emerging data point towards an important role for macrophages (Mphi) in the priming of naïve T cells. In this study we analyzed the efficiency and the mechanisms by which Mphi derived from spleen (Sp-Mphi) or bone marrow (BM-Mphi) present Lymphocytic choriomeningitis virus (LCMV) antigens to epitope-specific T cells. We demonstrate that because of phagosomal maturation, Sp-Mphi downregulate their ability to cross-present cell-associated, but not soluble, antigens, as they are further differentiated in culture without altering their capacity to directly present virus antigens after infection. We propose that Sp-Mphi are extremely efficient at direct and cross-presentation. However, if these cells undergo further M-CSF-dependent maturation, they will adapt to be more scavenger and phagocytic and concurrently reduce their cross-presenting capacity. Accordingly, Sp-Mphi can have an important role in regulating T-cell responses through cross-presentation depending on their differentiation state.
Collapse
|
59
|
Basler M, Lauer C, Beck U, Groettrup M. The proteasome inhibitor bortezomib enhances the susceptibility to viral infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:6145-50. [PMID: 19841190 DOI: 10.4049/jimmunol.0901596] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The proteasome, a multicatalytic protease, is responsible for the generation of most MHC class I ligands. Bortezomib, a proteasome inhibitor, is clinically approved for treatment of multiple myeloma and mantle cell myeloma. In the present study, we investigated the effect of bortezomib on viral infection. Infection of bortezomib-treated mice with the lymphocytic choriomeningitis virus (LCMV) led to a decreased cytotoxic T cell response to several LCMV-derived CD8(+) T cell epitopes. Bortezomib treatment caused a reduced expansion of CD8(+) T lymphocytes and increased viral titers in LCMV-infected mice. Administration of bortezomib during expansion of CD8(+) T cells had no influence on the cytotoxic T cell response, suggesting that bortezomib interferes with priming of naive T cells. Indeed, determination of Ag load in spleen 4 days post infection, revealed a reduced presentation of LCMV-derived cytotoxic T cell epitopes on MHC class I molecules. In summary, we show that proteasome inhibition with bortezomib led to an increased susceptibility to viral infection, and demonstrate for the first time, that proteasome inhibitors can alter Ag processing in vivo.
Collapse
Affiliation(s)
- Michael Basler
- Biotechnology Institute Thurgau (BITg) at Constance University, CH-8280 Kreuzlingen, Switzerland.
| | | | | | | |
Collapse
|
60
|
N-terminal-prolonged vinyl ester-based peptides as selective proteasome beta1 subunit inhibitors. Bioorg Med Chem 2009; 17:5535-40. [PMID: 19577931 DOI: 10.1016/j.bmc.2009.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/08/2009] [Accepted: 06/14/2009] [Indexed: 11/24/2022]
Abstract
The synthesis and biological properties of vinyl ester peptide-based molecules bearing linear N-terminal amino acids are reported. Compounds were tested in vitro for their capacity to inhibit the chymotryptic-, tryptic-like, and post-acidic activities of the proteasome. Some analogues showed selective inhibition of post-acidic (PGPH) activity, which is attributed to the beta1 subunit. Interestingly, active compounds demonstrated higher inhibitory activity toward 'standard' proteasomes than toward immunoproteasomes. The inhibitory potency was found to be related to the amino acidic sequence and to the length of the N-terminal residues. The new inhibitors demonstrated resistance to plasmatic proteases and a good capacity to permeate the cell membrane.
Collapse
|
61
|
Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. Catalytic mechanism and assembly of the proteasome. Chem Rev 2009; 109:1509-36. [PMID: 19265443 DOI: 10.1021/cr8004857] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- António J Marques
- Institute for Genetics, University of Cologne, Zulpicher Strasse 47, D-50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
62
|
Rockwell CE, Morrison DC, Qureshi N. Lipid A-mediated tolerance and cancer therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 667:81-99. [PMID: 20665202 DOI: 10.1007/978-1-4419-1603-7_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The term "tolerance" from an immunological perspective, broadly encompasses a number of phenomena, but generally refers to a diminished responsiveness to LPS and/or other microbial products. With the discovery that many of the immunological, physiological and/or pathophysiological effects of LPS can be attributed to the lipid A moiety of the LPS molecule, a number of different lipid A analogs were synthesized with the goal of developing a drug that could be used clinically to treat cancer. In many instances, the development of tolerance to the lipid A congeners confounded the utility of these analogs as cancer therapeutics. In certain circumstances, however, the development of tolerance in patients has been utilized therapeutically to protect immunosuppressed patients from sepsis. Although numerous studies have been designed to investigate the development of tolerance, the underlying molecular mechanism remains unclear. This may be due, in part, to differences in the experimental models used, the sources and types of microbes and microbial products studied, kinetics of responses, and/or other experimental conditions. Nonetheless, a number of different signaling pathways have been identified as potentially modulating and/or triggering the development of tolerance. Though complex and incompletely understood, the capacity of tolerance to impact lipid A-based therapeutics, either positively or negatively, is inarguable, thus underscoring the necessity for further investigation toward elucidating the mechanisms contributing to the development of tolerance to lipid A and its analogs.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Basic Medical Science, School of Medicine, Shock/Trauma Research Center, University of Missouri, 2411 Holmes Street, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
63
|
Dhungana S, Merrick BA, Tomer KB, Fessler MB. Quantitative proteomics analysis of macrophage rafts reveals compartmentalized activation of the proteasome and of proteasome-mediated ERK activation in response to lipopolysaccharide. Mol Cell Proteomics 2009; 8:201-13. [PMID: 18815123 PMCID: PMC2621002 DOI: 10.1074/mcp.m800286-mcp200] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/27/2008] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS), a glycolipid component of the outer membrane of Gram-negative bacteria, is a potent initiator of the innate immune response of the macrophage. LPS triggers downstream signaling by selectively recruiting and activating proteins in cholesterol-rich membrane microdomains called lipid rafts. We applied proteomics analysis to macrophage detergent-resistant membranes (DRMs) during an LPS exposure time course in an effort to identify and validate novel events occurring in macrophage rafts. Following metabolic incorporation in cell culture of heavy isotopes of amino acids arginine and lysine ([(13)C(6)]Arg and [(13)C(6)]Lys) or their light counterparts, a SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative, liquid chromatography-tandem mass spectrometry proteomics approach was used to profile LPS-induced changes in the lipid raft proteome of RAW 264.7 macrophages. Unsupervised network analysis of the proteomics data set revealed a marked representation of the ubiquitin-proteasome system as well as changes in proteasome subunit composition following LPS challenge. Functional analysis of DRMs confirmed that LPS causes selective activation of the proteasome in macrophage rafts and proteasome inactivation outside of rafts. Given previous reports of an essential role for proteasomal degradation of IkappaB kinase-phosphorylated p105 in LPS activation of ERK mitogen-activated protein kinase, we tested for a role of rafts in compartmentalization of these events. Immunoblotting of DRMs revealed proteasome-dependent activation of MEK and ERK specifically occurring in lipid rafts as well as proteasomal activity upon raft-localized p105 that was enhanced by LPS. Cholesterol extraction from the intact macrophage with methyl-beta-cyclodextrin was sufficient to activate ERK, recapitulating the LPS-IkappaB kinase-p105-MEK-ERK cascade, whereas both it and the alternate raft-disrupting agent nystatin blocked subsequent LPS activation of the ERK cascade. Taken together, our findings indicate a critical, selective role for raft compartmentalization and regulation of proteasome activity in activation of the MEK-ERK pathway.
Collapse
Affiliation(s)
- Suraj Dhungana
- Laboratories of Respiratory Biology, NIEHS, National Institutes of Health, United States Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
64
|
Bonfili L, Cecarini V, Amici M, Cuccioloni M, Angeletti M, Keller JN, Eleuteri AM. Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. FEBS J 2008; 275:5512-26. [DOI: 10.1111/j.1742-4658.2008.06696.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
65
|
Huebener N, Fest S, Strandsby A, Michalsky E, Preissner R, Zeng Y, Gaedicke G, Lode HN. A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity. Mol Cancer Ther 2008; 7:2241-51. [DOI: 10.1158/1535-7163.mct-08-0109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
66
|
Mangano EN, Hayley S. Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: Neuroimmune sensitization of neurodegeneration. Neurobiol Aging 2008; 30:1361-78. [PMID: 18187236 DOI: 10.1016/j.neurobiolaging.2007.11.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 10/04/2007] [Accepted: 11/16/2007] [Indexed: 12/21/2022]
Abstract
Activation of microglia along with the release of inflammatory cytokines and oxidative factors often accompanies toxin-induced degeneration of substantia nigra pars compacta (SNc) dopamine (DA) neurons. Multiple toxin exposure may synergistically influence microglial-dependent DA neuronal loss and, in fact, pre-treatment with one toxin may sensitize DA neurons to the impact of subsequent insults. Thus, we assessed whether priming SNc neurons with the inflammatory agent, lipopolysaccharide (LPS), influenced the impact of later exposure to the pesticide, paraquat, which has been reported to provoke DA loss. Indeed, LPS infusion into the SNc sensitized DA neurons to the neurodegenerative effects of a series of paraquat injections commencing 2 days later. In contrast, LPS pre-treatment actually protected against some of neurodegenerative effects of paraquat when the pesticide was administered 7 days after the endotoxin. These sensitization and de-sensitization effects were associated with altered expression of reactive microglia expressing inducible immunoproteasome subunits, as well as variations of fibroblast growth factor and a time-dependent infiltration of peripheral immune cells. Circulating levels of the inflammatory cytokines, interleukin (IL)-6, IL-2, tumor necrosis factor-alpha and interferon-gamma were also time-dependently elevated following intra-SNc LPS infusion. These data suggest that inflammatory priming may influence DA neuronal sensitivity to subsequent environmental toxins by modulating the state of glial and immune factors, and these findings may be important for neurodegenerative conditions, such as Parkinson's disease (PD).
Collapse
Affiliation(s)
- Emily N Mangano
- Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
67
|
Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of proteasomes in cellular regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:59-124. [PMID: 18544497 DOI: 10.1016/s1937-6448(08)00602-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 26S proteasome is the key enzyme of the ubiquitin-dependent pathway of protein degradation. This energy-dependent nanomachine is composed of a 20S catalytic core and associated regulatory complexes. The eukaryotic 20S proteasomes demonstrate besides several kinds of peptidase activities, the endoribonuclease, protein-chaperone and DNA-helicase activities. Ubiquitin-proteasome pathway controls the levels of the key regulatory proteins in the cell and thus is essential for life and is involved in regulation of crucial cellular processes. Proteasome population in the cell is structurally and functionally heterogeneous. These complexes are subjected to tightly organized regulation, particularly, to a variety of posttranslational modifications. In this review we will summarize the current state of knowledge regarding proteasome participation in the control of cell cycle, apoptosis, differentiation, modulation of immune responses, reprogramming of these particles during these processes, their heterogeneity and involvement in the main levels of gene expression.
Collapse
|
68
|
Yao X, Liu J, McCabe JT. Alterations of cerebral cortex and hippocampal proteasome subunit expression and function in a traumatic brain injury rat model. J Neurochem 2007; 104:353-63. [PMID: 17944870 DOI: 10.1111/j.1471-4159.2007.04970.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following cellular stress or tissue injury, the proteasome plays a critical role in protein degradation and signal transduction. The present study examined the beta-subunit expression of constitutive proteasomes (beta1, beta2, and beta5), immunoproteasomes (beta1i, beta2i, and beta5i) and the 11S proteasome activator, PA28alpha, in the rat CNS after traumatic brain injury (TBI). Concomitant measures assessed changes in proteasome activities. Quantitative real time PCR results indicated that beta1 and beta2 mRNA levels were not changed, while beta5 mRNA levels were significantly decreased in injured CNS following TBI. However, beta1i, beta2i, beta5i, and PA28alpha mRNA levels were significantly increased in the injured CNS. Western blotting studies found that beta1, beta2, beta5, beta2i, and beta5i subunit protein levels remained unchanged in the injured CNS, but beta1i and PA28alpha protein levels were significantly elevated in ipsilateral cerebral cortex and hippocampus. Proteasome activity assays found that peptidyl glutamyl peptide hydrolase-like and chymotrypsin-like activity were significantly reduced in the CNS after TBI, and that trypsin-like proteasome activity was increased in the injured cerebral cortex. Our results demonstrated that both proteasome composition and function in the CNS were affected by trauma. Treatments that preserve proteasome function following CNS injury may be beneficial as an approach to cerebral neuroprotection.
Collapse
Affiliation(s)
- Xianglan Yao
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA.
| | | | | |
Collapse
|
69
|
|
70
|
van Swieten PF, Samuel E, Hernández RO, van den Nieuwendijk AMCH, Leeuwenburgh MA, van der Marel GA, Kessler BM, Overkleeft HS, Kisselev AF. A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome. Bioorg Med Chem Lett 2007; 17:3402-5. [PMID: 17442566 DOI: 10.1016/j.bmcl.2007.03.092] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/23/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
The ubiquitin-proteasome pathway degrades the majority of proteins in mammalian cells and plays an essential role in the generation of antigenic peptides presented by major histocompatibility class I molecules. Proteasome inhibitors are of great interest as research tools and drug candidates. Most work on proteasome inhibitors has focused on the inhibition of the chymotryptic-like (beta5) sites; little attention has been paid to the inhibition of two other types of active sites, the trypsin-like (beta2) and the caspase-like (beta1). We report here the development of the first cell-permeable and highly selective inhibitors (4 and 5) of the proteasome's caspase-like site. The selectivity of the compounds is directly and unambiguously established by Staudinger-Bertozzi labeling of proteasome subunits covalently modified with azide-functionalized inhibitor 5. This labeling reveals that the caspase-like site of the immunoproteasome (beta1i) is a preferred target of this compound. These compounds can be used as tools to study roles of beta1 and beta1i sites in generation of specific antigenic peptides and their potential role as co-targets of anti-cancer drugs.
Collapse
Affiliation(s)
- Paul F van Swieten
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Roux CM, Rolán HG, Santos RL, Beremand PD, Thomas TL, Adams LG, Tsolis RM. Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell Microbiol 2007; 9:1851-69. [PMID: 17441987 DOI: 10.1111/j.1462-5822.2007.00922.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The virB operon, encoding a Type IV secretion system (T4SS), is essential for intracellular survival and persistent infection by Brucella spp. To better understand the role of the T4SS in evading host defence mechanisms and establishing chronic infection, we compared transcriptional profiles of the host response to infection with wild-type and virB mutant Brucella strains. Analysis of gene expression profiles in murine splenocytes 3 days after inoculation with wild-type Brucella strains revealed an inflammatory response, with a prominent upregulation of genes induced by both type I and type II interferons. Real-time RT-PCR showed that a group of genes from these pathways were induced by day 3 post infection and declined to baseline levels by day 7. In contrast, neither of the two virB mutant strains elicited a proinflammatory gene expression profile, demonstrating that the T4SS was required to trigger this response. Infection studies using type I interferon receptor knockout mice showed that a lack of type I interferon signalling did not affect Brucella replication during the first 4 weeks of infection. Thus, induction of type I interferons does not appear to be an essential mechanism by which the T4SS promotes persistent infection by Brucella.
Collapse
Affiliation(s)
- Christelle M Roux
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Ren QG, Liao XM, Chen XQ, Liu GP, Wang JZ. Effects of tau phosphorylation on proteasome activity. FEBS Lett 2007; 581:1521-8. [PMID: 17376439 DOI: 10.1016/j.febslet.2007.02.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/23/2007] [Accepted: 02/26/2007] [Indexed: 11/24/2022]
Abstract
Dysfunction of proteasome contributes to the accumulation of the abnormally hyperphosphorylated tau in Alzheimer's disease. However, whether tau hyperphosphorylation and accumulation affect the activity of proteasome is elusive. Here we found that a moderate tau phosphorylation activated the trypsin-like activity of proteasome, whereas further phosphorylation of tau inhibited the activity of the protease in HEK293 cells stably expressing tau441. Furthermore, tau hyperphosphorylation could partially reverse lactacystin-induced inhibition of proteasome. These results suggest that phosphorylation of tau plays a dual role in modulating the activity of proteasome.
Collapse
Affiliation(s)
- Qing-Guo Ren
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | | | | | | | |
Collapse
|
73
|
Fitzpatrick LR, Small JS, Poritz LS, McKenna KJ, Koltun WA. Enhanced intestinal expression of the proteasome subunit low molecular mass polypeptide 2 in patients with inflammatory bowel disease. Dis Colon Rectum 2007; 50:337-48; discussion 348-50. [PMID: 17160513 DOI: 10.1007/s10350-006-0796-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Low molecular mass polypeptide 2 is an inducible immunoproteasome subunit. The expression of low molecular mass polypeptide 2 has not been examined in the intestine of patients with inflammatory bowel disease. This study was designed to determine whether the intestinal expression of low molecular mass polypeptide 2 was enhanced in a group of patients with inflammatory bowel disease compared with a group of control patients without inflammatory bowel disease. Moreover, we examined the association between low molecular mass polypeptide 2 expression and histologic pathology in these patients. METHODS Twenty-one patients participated in the study. These included six control subjects without inflammatory bowel disease, eight patients with ulcerative colitis, and seven patients with Crohn's disease. Intestinal low molecular mass polypeptide 2 expression was evaluated by immunohistochemistry, as well as by Western blot. Histology scores (0-40 severity scale) were determined on the same sections of intestine as those used for low molecular mass polypeptide 2 histochemistry. RESULTS By immunohistochemistry, low molecular mass polypeptide 2 expression was significantly enhanced (P < 0.05 vs. control subjects) throughout visibly diseased areas of colon, rectum, and ileum from patients with inflammatory bowel disease. Low molecular mass polypeptide 2 expression also was increased in macroscopically normal intestine from patients with inflammatory bowel disease compared with normal tissue from control subjects. There was a significant correlation (P < 0.0001) between low molecular mass polypeptide 2 expression and histologic pathology in our patients. Western blot results confirmed that low molecular mass polypeptide 2 expression was enhanced in patients with ulcerative colitis (3.1-fold) and in patients with Crohn's disease (3.5-fold). CONCLUSIONS Intestinal low molecular mass polypeptide 2 expression is significantly increased in inflammatory bowel disease. The association between intestinal low molecular mass polypeptide 2 expression and histologic pathology suggests that this proteasome subunit plays a role in the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Leo R Fitzpatrick
- Department of Surgery, Section of Colon and Rectal Surgery, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
74
|
Shen J, Reis J, Morrison DC, Papasian C, Raghavakaimal S, Kolbert C, Qureshi AA, Vogel SN, Qureshi N. Key inflammatory signaling pathways are regulated by the proteasome. Shock 2006; 25:472-84. [PMID: 16680012 DOI: 10.1097/01.shk.0000209554.46704.64] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipopolysaccharide (LPS) is a major structural component of all Gram-negative organisms and has been implicated in Gram-negative sepsis and septic shock. In the present study, Affymetrix microarray analysis of RNA derived from murine macrophages treated with LPS in the absence or presence of the proteasome inhibitor lactacystin revealed that the vast majority of genes regulated by LPS is under control of the proteasome. Analysis of the data has revealed that the products of these genes participate in 14 distinct signaling pathways. This represents a novel approach to the identification of signaling pathways that are both toll-like receptor 4- and proteasome-dependent and may lead to the development of new drug targets in Gram-negative sepsis and septic shock.
Collapse
Affiliation(s)
- Jing Shen
- Department of Basic Medical Science, School of Medicine, and Shock/Trauma Research Center, University of Missouri, Kansas City, MO 64108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Fitzpatrick LR, Khare V, Small JS, Koltun WA. Dextran sulfate sodium-induced colitis is associated with enhanced low molecular mass polypeptide 2 (LMP2) expression and is attenuated in LMP2 knockout mice. Dig Dis Sci 2006; 51:1269-76. [PMID: 16944024 DOI: 10.1007/s10620-006-8047-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 07/28/2005] [Indexed: 01/17/2023]
Abstract
Low molecular mass polypeptide 2 (LMP2) is an inducible proteasome subunit. Our goals were to examine LMP2 expression in mice with dextran sulfate sodium (DSS)-induced colitis and to evaluate colitis in LMP2 knockout (LMP2-/-) mice. Mice were given 2.5% DSS in the drinking water. On day 0, 2, 4, or 6 after DSS treatment, LMP2 expression was determined in the distal colon by western blot and immunohistochemistry. Parameters of colitis were measured in LMP2-/- mice or wild-type mice. LMP2 expression was enhanced in the colon of DSS-treated mice at all time points. Symptoms of DSS-induced colitis were always lower in LMP2-/- mice. Normalized histology scores and colonic IL-1ss levels increased over the 6-day study period in wild-type mice. These parameters were significantly reduced in LMP2-/- mice that consumed DSS for 6 days. Enhanced LMP2 expression contributes to the pathogenesis of DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Leo R Fitzpatrick
- Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | |
Collapse
|
76
|
Hoefer MM, Boneberg EM, Grotegut S, Kusch J, Illges H. Possible tetramerisation of the proteasome maturation factor POMP/proteassemblin/hUmp1 and its subcellular localisation. Int J Biol Macromol 2006; 38:259-67. [PMID: 16624403 DOI: 10.1016/j.ijbiomac.2006.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/22/2006] [Accepted: 03/06/2006] [Indexed: 11/24/2022]
Abstract
The proteasome is a multisubunit complex with a central role in non-lysosomal proteolysis and the processing of proteins for presentation by the MHC class I pathway. The 16kDa proteasome maturation protein POMP (also named proteassemblin or hUmp1) acts as a chaperone and is essential for the maturation of the 20S proteasome proteolytic core complex. However, the exact mechanism, timing and localisation of mammalian proteasome assembly remains elusive. We sought to investigate the localisation of POMP within the cell and therefore purified the protein and produced a polyclonal antibody. For immunisation, POMP was overexpressed and purified from a bacterial GST-system. Interestingly, after removal of the GST-tag, POMP was hardly detectable by Coomassie blue- and Ponceau red-staining. However, with a reverse zinc-staining, the protein could easily be visualised. POMP was gel-filtrated and eluted from a calibrated chromatography column with an apparent molecular weight of approximately 64kDa, suggesting that it forms tetramers. Moreover, localisation studies by immunofluorescence stainings and confocal microscopy revealed that POMP is present in the cytoplasm as well as in the nucleus.
Collapse
|
77
|
Ding Q, Dimayuga E, Keller JN. Proteasome regulation of oxidative stress in aging and age-related diseases of the CNS. Antioxid Redox Signal 2006; 8:163-72. [PMID: 16487050 DOI: 10.1089/ars.2006.8.163] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Proteasome-mediated protein degradation is responsible for a large percentage of bulk protein turnover, particularly the degradation of short-lived and oxidized proteins. Increasing evidence suggests that proteasome inhibition occurs during the aging of the central nervous system (CNS), and in a variety of age-related disorders of the CNS. The focus of this review is to discuss the role of the proteasome as a regulator of oxidative stress, with preservation of proteasome function playing an important role in preventing oxidative stress, and proteasome inhibition playing an important role as a mediator of oxidative stress. In particular, this review will describe experimental evidence that proteasome inhibition is sufficient to induce mitochondrial dysfunction, increase reactive oxygen species generation, elevate RNA and DNA oxidation, and promote protein oxidation. Taken together, these data indicate that the proteasome is an important regulator of oxidative damage in the CNS, and suggest that proteasome inhibition may serve as an important switch for the induction of oxidative stress in the CNS. Additionally we discuss the likelihood that the 20S proteasome and 26S proteasome may play different roles in regulating oxidative stress and neurotoxicity in the aging CNS, and in age-related disorders of the CNS.
Collapse
Affiliation(s)
- Qunxing Ding
- Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536-0230, USA
| | | | | |
Collapse
|
78
|
Chen DS, Soen Y, Stuge TB, Lee PP, Weber JS, Brown PO, Davis MM. Marked differences in human melanoma antigen-specific T cell responsiveness after vaccination using a functional microarray. PLoS Med 2005; 2:e265. [PMID: 16162034 PMCID: PMC1216330 DOI: 10.1371/journal.pmed.0020265] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 06/30/2005] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In contrast to many animal model studies, immunotherapeutic trials in humans suffering from cancer invariably result in a broad range of outcomes, from long-lasting remissions to no discernable effect. METHODS AND FINDINGS In order to study the T cell responses in patients undergoing a melanoma-associated peptide vaccine trial, we have developed a high-throughput method using arrays of peptide-major histocompatibility complexes (pMHC) together with antibodies against secreted factors. T cells were specifically immobilized and activated by binding to particular pMHCs. The antibodies, spotted together with the pMHC, specifically capture cytokines secreted by the T cells. This technique allows rapid, simultaneous isolation and multiparametric functional characterization of antigen-specific T cells present in clinical samples. Analysis of CD8+ lymphocytes from ten melanoma patients after peptide vaccination revealed a diverse set of patient- and antigen-specific profiles of cytokine secretion, indicating surprising differences in their responsiveness. Four out of four patients who showed moderate or greater secretion of both interferon-gamma (IFNgamma) and tumor necrosis factor-alpha (TNFalpha) in response to a gp100 antigen remained free of melanoma recurrence, whereas only two of six patients who showed discordant secretion of IFNgamma and TNFalpha did so. CONCLUSION Such multiparametric analysis of T cell antigen specificity and function provides a valuable tool with which to dissect the molecular underpinnings of immune responsiveness and how this information correlates with clinical outcome.
Collapse
Affiliation(s)
- Daniel S Chen
- 1Department of Internal Medicine/Division of Oncology, Stanford University, Stanford, California, United States of America
- 2Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Yoav Soen
- 3Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Tor B Stuge
- 4Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Peter P Lee
- 4Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Jeffrey S Weber
- 5Norris Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Patrick O Brown
- 2Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- 3Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Mark M Davis
- 2Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- 6 Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
79
|
Nussbaum AK, Rodriguez-Carreno MP, Benning N, Botten J, Whitton JL. Immunoproteasome-deficient mice mount largely normal CD8+ T cell responses to lymphocytic choriomeningitis virus infection and DNA vaccination. THE JOURNAL OF IMMUNOLOGY 2005; 175:1153-60. [PMID: 16002717 DOI: 10.4049/jimmunol.175.2.1153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During viral infection, constitutive proteasomes are largely replaced by immunoproteasomes, which display distinct cleavage specificities, resulting in different populations of potential CD8(+) T cell epitope peptides. Immunoproteasomes are believed to be important for the generation of many viral CD8(+) T cell epitopes and have been implicated in shaping the immunodominance hierarchies of CD8(+) T cell responses to influenza virus infection. However, it remains unclear whether these conclusions are generally applicable. In this study we investigated the CD8(+) T cell responses to lymphocytic choriomeningitis virus infection and DNA immunization in wild-type mice and in mice lacking the immunoproteasome subunits LMP2 or LMP7. Although the total number of virus-specific cells was lower in LMP2 knockout mice, consistent with their having lower numbers of naive cells before infection, the kinetics of virus clearance were similar in all three mouse strains, and LMP-deficient mice mounted strong primary and secondary lymphocytic choriomeningitis virus-specific CD8(+) T cell responses. Furthermore, the immunodominance hierarchy of the four investigated epitopes (nuclear protein 396 (NP(396)) > gp33 > gp276 > NP(205)) was well maintained. We observed a slight reduction in the NP(205)-specific response in LMP2-deficient mice, but this had no demonstrable biological consequence. DNA vaccination of LMP2- and LMP7-deficient mice induced CD8(+) T cell responses that were slightly lower than, although not significantly different from, those induced in wild-type mice. Taken together, our results challenge the notion that immunoproteasomes are generally needed for effective antiviral CD8(+) T cell responses and for the shaping of immunodominance hierarchies. We conclude that the immunoproteasome may affect T cell responses to only a limited number of viral epitopes, and we propose that its main biological function may lie elsewhere.
Collapse
Affiliation(s)
- Alexander K Nussbaum
- Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
80
|
Hayter JR, Doherty MK, Whitehead C, McCormack H, Gaskell SJ, Beynon RJ. The Subunit Structure and Dynamics of the 20S Proteasome in Chicken Skeletal Muscle. Mol Cell Proteomics 2005; 4:1370-81. [PMID: 15965267 DOI: 10.1074/mcp.m400138-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have succeeded in purifying the 20S core proteasome particle from less than 1 g of skeletal muscle in a rapid process involving two chromatographic steps. The individual subunits were readily resolved by two-dimensional PAGE, and the identities of each of the 14 subunits were assigned by a combination of peptide mass fingerprinting and MS/MS/de novo sequencing. To assess the dynamics of proteasome biogenesis, chicks were fed a diet containing stable isotope-labeled valine, and the rate of incorporation of label into valine-containing peptides derived from each subunit was assessed by mass spectrometric analysis after two-dimensional separation. Peptides containing multiple valine residues from the 20S proteasome and other soluble muscle proteins were analyzed to yield the relative isotope abundance of the precursor pool, a piece of information that is essential for calculation of turnover parameters. The rates of synthesis of each subunit are rather similar, although there is evidence for high turnover subunits in both the alpha (nonproteolytic) and beta (proteolytic) rings. The variability in synthesis rate for the different subunits is consistent with a model in which some subunits are produced in excess, whereas others may be the rate-limiting factor in the concentration of 20S subunits in the cell. The ability to measure turnover rates of proteins on a proteome-wide scale in protein assemblies and in a complex organism provides a new dimension to the understanding of the dynamic proteome.
Collapse
MESH Headings
- Animals
- Chemical Fractionation
- Chickens
- Chromatography, Gel
- Chromatography, Ion Exchange
- Deuterium/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Humans
- Isotope Labeling
- Kinetics
- Mass Spectrometry
- Muscle, Skeletal/enzymology
- Peptide Mapping
- Peptides/analysis
- Peptides/chemistry
- Proteasome Endopeptidase Complex/chemistry
- Proteasome Endopeptidase Complex/isolation & purification
- Proteasome Endopeptidase Complex/metabolism
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- Proteome/metabolism
- Sequence Analysis, Protein
- Solubility
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trypsin/pharmacology
- Valine/metabolism
Collapse
Affiliation(s)
- Julia R Hayter
- Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool L69 7ZJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
81
|
Khu YL, Tan YJ, Lim S, Hong W, Goh PY. Hepatitis C virus non-structural protein NS3 interacts with LMP7, a component of the immunoproteasome, and affects its proteasome activity. Biochem J 2005; 384:401-9. [PMID: 15303969 PMCID: PMC1134124 DOI: 10.1042/bj20040858] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
NS3, a non-structural protein of the HCV (hepatitis C virus), contains a protease and a helicase domain and plays essential roles in the processing of the viral polyprotein, viral RNA replication and translation. LMP7 (low-molecular-mass protein 7), a component of the immunoproteasome, was identified as an NS3-binding protein from yeast two-hybrid screens, and this interaction was confirmed by in vitro binding and co-immunoprecipitation analysis. The minimal domain of interaction was defined to be between the pro-sequence region of LMP7 (amino acids 1-40) and the protease domain of NS3. To elucidate the biological importance of this interaction, we studied the effect of this interaction on NS3 protease activity and on LMP7 immunoproteasome activity. Recombinant LMP7 did not have any effect on NS3 protease activity in vitro. The peptidase activities of LMP7 immunoproteasomes, however, were markedly reduced when tested in a stable cell line containing a HCV subgenomic replicon. The down-regulation of proteasome peptidase activities could interfere with the processing of viral antigens for presentation by MHC class I molecules, and may thus protect HCV from host immune surveillance mechanisms to allow persistent infection by the virus.
Collapse
Affiliation(s)
- Yee-Ling Khu
- *Collaborative Anti-Viral Research Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive (Proteos), Singapore 138673, Singapore
| | - Yee-Joo Tan
- *Collaborative Anti-Viral Research Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive (Proteos), Singapore 138673, Singapore
| | - Seng Gee Lim
- *Collaborative Anti-Viral Research Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive (Proteos), Singapore 138673, Singapore
- †Department of Medicine, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Wanjin Hong
- *Collaborative Anti-Viral Research Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive (Proteos), Singapore 138673, Singapore
| | - Phuay-Yee Goh
- *Collaborative Anti-Viral Research Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive (Proteos), Singapore 138673, Singapore
- To whom correspondence should be addressed (email )
| |
Collapse
|
82
|
Chen DS, Davis MM. Cellular immunotherapy: antigen recognition is just the beginning. ACTA ACUST UNITED AC 2005; 27:119-27. [PMID: 15834723 DOI: 10.1007/s00281-005-0200-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 02/14/2005] [Indexed: 11/26/2022]
Abstract
Advances in molecular and cellular biology have illustrated both the flexibility and complexity involved in host immune responses. Understanding this response is vital to the further development of therapeutic strategies that involve manipulation of the cellular immune response to target tumors. Mobilized, tumor antigen-specific T cells, the core for most immunotherapeutic strategies, are highly regulated, and capable of a wide spectrum of functional responses. Due to differences in murine and human immunity, broad-scale immune monitoring, particularly high-throughput ex vivo analysis of human immune responses, promises to determine what comprises an effective immunotherapy. Such understanding will lead to more sophisticated clinical trials, earlier determination of efficacy and individualized protocols.
Collapse
Affiliation(s)
- Daniel S Chen
- Department of Internal Medicine, Division of Oncology, Stanford University, Stanford, California 94305-5124, USA
| | | |
Collapse
|
83
|
Seifert U, Liermann H, Racanelli V, Halenius A, Wiese M, Wedemeyer H, Ruppert T, Rispeter K, Henklein P, Sijts A, Hengel H, Kloetzel PM, Rehermann B. Hepatitis C virus mutation affects proteasomal epitope processing. J Clin Invest 2004; 114:250-9. [PMID: 15254592 PMCID: PMC449747 DOI: 10.1172/jci20985] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/18/2004] [Indexed: 12/11/2022] Open
Abstract
The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Seifert U, Liermann H, Racanelli V, Halenius A, Wiese M, Wedemeyer H, Ruppert T, Rispeter K, Henklein P, Sijts A, Hengel H, Kloetzel PM, Rehermann B. Hepatitis C virus mutation affects proteasomal epitope processing. J Clin Invest 2004. [PMID: 15254592 DOI: 10.1172/jci200420985] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Casp CB, She JX, McCormack WT. Genes of the LMP/TAP cluster are associated with the human autoimmune disease vitiligo. Genes Immun 2004; 4:492-9. [PMID: 14551602 DOI: 10.1038/sj.gene.6364016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genes within the class II region of the major histocompatibility complex (MHC), including genes involved in antigen processing and presentation, have been reported to be associated with several autoimmune diseases. We report here that the LMP/TAP gene region is significantly associated with vitiligo, a disorder in which biochemical defects and/or autoimmune destruction cause melanocyte loss and resulting skin depigmentation. Case/control analyses revealed genetic association of vitiligo in Caucasian patients with an early age of onset with the transporter associated with antigen processing-1 (TAP1) gene. A family-based association method revealed biased transmission of specific alleles from heterozygous parents to affected offspring for the TAP1 gene, as well as for the closely linked LMP2 and LMP7 genes encoding subunits of the immunoproteasome. No association with vitiligo was found for the MECL1 gene, which encodes a third immunoproteasome subunit and is unlinked to the MHC class II region. These results suggest a possible role for the MHC class I antigen processing and/or presentation pathway in the antimelanocyte autoimmune response involved in vitiligo pathogenesis.
Collapse
Affiliation(s)
- C B Casp
- Department of Pathology, Immunology & Laboratory Medicine, Centers for Mammalian Genetics and Immunology & Transplantation, University of Florida College of Medicine, Gainesville, FL 32610-0275, USA.
| | | | | |
Collapse
|
86
|
Khan S, Zimmermann A, Basler M, Groettrup M, Hengel H. A cytomegalovirus inhibitor of gamma interferon signaling controls immunoproteasome induction. J Virol 2004; 78:1831-42. [PMID: 14747547 PMCID: PMC369451 DOI: 10.1128/jvi.78.4.1831-1842.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both human and mouse cytomegaloviruses (HCMV and MCMV) avoid peptide presentation through the major histocompatibility complex (MHC) class I pathway to CD8(+) T cells. Within the MHC class I pathway, the vast majority of antigenic peptides are generated by the proteasome system, a multicatalytic protease complex consisting of constitutive subunits, three of which can be replaced by enzymatically active gamma interferon (IFN-gamma)-inducible subunits, i.e., LMP2, LMP7, and MECL1, to form the so-called immunoproteasomes. Here, we show that steady-state levels of immunoproteasomes are readily formed in response to MCMV infection in the liver. In contrast, the incorporation of immunoproteasome subunits was prevented in MCMV-infected, as well as HCMV-infected, fibroblasts in vitro. Likewise, the expression of the IFN-gamma-inducible proteasome regulator PA28 alpha beta was also impaired in MCMV-infected cells. Both MCMV and HCMV did not alter the constitutive-subunit composition of proteasomes in infected cells. Quantitative assessment of LMP2, MECL1, and LMP7 transcripts revealed that the inhibition of immunoproteasome formation occurred at a pretranscriptional level. Remarkably, a targeted deletion of the MCMV gene M27, encoding an inhibitor of STAT2 that disrupts IFN-gamma receptor signaling, largely restored transcription and protein expression of immunoproteasome subunits in infected cells. While CMV block peptide transport and MHC class I assembly by posttranslational strategies, immunoproteasome assembly, and thus the repertoire of proteasomal peptides, is controlled by pretranscriptional mechanisms. We hypothesize that the blockade of immunoproteasome formation has considerable consequences for shaping the CD8(+)-T-cell repertoire during the effector phase of the immune response.
Collapse
Affiliation(s)
- Selina Khan
- Research Department, Cantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland
| | | | | | | | | |
Collapse
|
87
|
Barton LF, Runnels HA, Schell TD, Cho Y, Gibbons R, Tevethia SS, Deepe GS, Monaco JJ. Immune Defects in 28-kDa Proteasome Activator γ-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:3948-54. [PMID: 15004203 DOI: 10.4049/jimmunol.172.6.3948] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein complexes of the 28-kDa proteasome activator (PA28) family activate the proteasome and may alter proteasome cleavage specificity. Initial investigations have demonstrated a role for the IFN-gamma-inducible PA28alpha/beta complex in Ag processing. Although the noninducible and predominantly nuclear PA28gamma complex has been implicated in affecting proteasome-dependent signaling pathways, such as control of the mitotic cell cycle, there is no previous evidence demonstrating a role for this structure in Ag processing. We therefore generated PA28gamma-deficient mice and investigated their immune function. PA28gamma(-/-) mice display a slight reduction in CD8+ T cell numbers and do not effectively clear a pulmonary fungal infection. However, T cell responses in two viral infection models appear normal in both magnitude and the hierarchy of antigenic epitopes recognized. We conclude that PA28gamma(-/-) mice, like PA28alpha(-/-)/beta(-/-) mice, are deficient in the processing of only specific Ags.
Collapse
Affiliation(s)
- Lance F Barton
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Husom AD, Peters EA, Kolling EA, Fugere NA, Thompson LV, Ferrington DA. Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys 2004; 421:67-76. [PMID: 14678786 DOI: 10.1016/j.abb.2003.10.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myofibrillar protein degradation is mediated through the ubiquitin-proteasome pathway. To investigate if altered proteasome activity plays a role in age-related muscle atrophy, we examined muscle size and proteasome function in young and aged F344BN rats. Significant age-related muscle atrophy was confirmed by the 38% decrease in cross-sectional area of type 1 fibers in soleus muscle. Determination of proteasome function showed hydrolysis of fluorogenic peptides was equivalent between ages. However, when accounting for the 3-fold increase in content of the 20S catalytic core in aged muscle, the lower specific activity suggests a functional loss in individual proteins with aging. Comparing the composition of the catalytic beta-subunits showed an age-related 4-fold increase in the cytokine-inducible subunits, LMP2 and LMP7. Additionally, the content of the activating complexes, PA28 and PA700, relative to the 20S proteasome was reduced 50%. These results suggest significant alterations in the intrinsic activity, the percentage of immunoproteasome, and the regulation of the 20S proteasome by PA28 and PA700 in aged muscle.
Collapse
Affiliation(s)
- Aimee D Husom
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
89
|
Purcell AW, Gorman JJ. Immunoproteomics: Mass spectrometry-based methods to study the targets of the immune response. Mol Cell Proteomics 2004; 3:193-208. [PMID: 14718575 DOI: 10.1074/mcp.r300013-mcp200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian immune system has evolved to display fragments of protein antigens derived from microbial pathogens to immune effector cells. These fragments are typically peptides liberated from the intact antigens through distinct proteolytic mechanisms that are subsequently transported to the cell surface bound to chaperone-like receptors known as major histocompatibility complex (MHC) molecules. These complexes are then scrutinized by effector T cells that express clonally distributed T cell receptors with specificity for specific MHC-peptide complexes. In normal uninfected cells, this process of antigen processing and presentation occurs continuously, with the resultant array of self-antigen-derived peptides displayed on the surface of these cells. Changes in this peptide landscape of cells act to alert immune effector cells to changes in the intracellular environment that may be associated with infection, malignant transformation, or other abnormal cellular processes, resulting in a cascade of events that result in their elimination. Because peptides play such a crucial role in informing the immune system of infection with viral or microbial pathogens and the transformation of cells in malignancy, the tools of proteomics, in particular mass spectrometry, are ideally suited to study these immune responses at a molecular level. Here we review recent advances in the studies of immune responses that have utilized mass spectrometry and associated technologies, with specific examples from collaboration between our laboratories.
Collapse
Affiliation(s)
- A W Purcell
- Department of Microbiology and Immunology and ImmunoID, The University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
90
|
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2003; 75:163-89. [PMID: 14525967 DOI: 10.1189/jlb.0603252] [Citation(s) in RCA: 2932] [Impact Index Per Article: 139.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon-gamma (IFN-gamma) coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. This article reviews the current understanding of IFN-gamma ligand, receptor, signal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophage function during infection. The current model for IFN-gamma signal transduction is discussed, as well as signal regulation and factors conferring signal specificity. Cellular effects of IFN-gamma are described, including up-regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking. In addition, integration of signaling and response with other cytokines and pathogen-associated molecular patterns, such as tumor necrosis factor-alpha, interleukin-4, type I IFNs, and lipopolysaccharide are discussed.
Collapse
Affiliation(s)
- Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia.
| | | | | | | |
Collapse
|
91
|
Abstract
The Human Genome Project transformed the quest of more than 50 years to understand the major histocompatibility complex (Mhc). The sequence of the Mhc from human and mouse, together with a large amount of sequence and mapping information from several other species, allows us to draw general conclusions about the organization and origin of this crucial part of the immune system. The Mhc is a mosaic of stretches formed by conserved and nonconserved genes. Surprisingly, of the approximately 3.6-Mb Mhc, the stretches that encode the class I and class II genes, which epitomize the Mhc, are the least conserved part, whereas the approximately 1.7-Mb stretches that encode at least 115 other genes are highly conserved. We summarize the available data to answer the questions (a) What is the Mhc? and (b) How can we define it in a general, not species-specific, way? Knowing what is essential and what is incidental helps us understand the fundamentals of the Mhc, and defining the species differences makes the model organisms more useful.
Collapse
Affiliation(s)
- Attila Kumánovics
- Center for Immunology University of Texas Southwestern Medical Center, Dallas 75390-9050, USA.
| | | | | |
Collapse
|
92
|
Dissemond J, Goette P, Moers J, Lindeke A, Goos M, Ferrone S, Wagner SN. Immunoproteasome subunits LMP2 and LMP7 downregulation in primary malignant melanoma lesions: association with lack of spontaneous regression. Melanoma Res 2003; 13:371-7. [PMID: 12883363 DOI: 10.1097/00008390-200308000-00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recently, expression of the immunoproteasome subunits low molecular protein (LMP) 2 or LMP7 was shown to reduce the presentation of certain major histocompatibility complex (MHC) class I-restricted tumour peptide epitopes in renal cell carcinoma and melanoma cells. This may provide the tumour cells with an immune escape mechanism. To test the relevance of this hypothesis, we have taken advantage of the fact that spontaneous regression of human primary melanoma is thought to be the result of a successful peptide-specific cellular immune response in vivo. Immunohistochemical staining with anti-LMP2 and anti-LMP7 xenoantibodies showed a significantly higher expression of these immunoproteasome subunits in primary melanoma lesions exhibiting histological signs of tumour regression than in primary melanoma lesions without regression phenomena. In spontaneously regressing melanoma lesions, LMP2 and LMP7 expression was significantly associated with the presence of tumour-infiltrating lymphocytes. Our results are compatible with the possibility that the expression of the immunoproteasome subunits LMP2 and LMP7 rather than their downregulation in melanoma cells is associated with the presence of a successful anti-melanoma immune response.
Collapse
Affiliation(s)
- Joachim Dissemond
- Department of Dermatology, University School of Medicine, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
93
|
Ding Q, Reinacker K, Dimayuga E, Nukala V, Drake J, Butterfield DA, Dunn JC, Martin S, Bruce-Keller AJ, Keller JN. Role of the proteasome in protein oxidation and neural viability following low-level oxidative stress. FEBS Lett 2003; 546:228-32. [PMID: 12832045 DOI: 10.1016/s0014-5793(03)00582-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous studies suggest that proteasome inhibition may play a causal role in mediating the increased levels of protein oxidation and neuron death observed in conditions associated with oxidative stress. In the present study we demonstrate that administration of non-toxic levels of oxidative stress does not result in impairment of 20S/26S proteasome activity, and actually increases the expression of specific proteasome subunits. Non-toxic levels of oxidative stress were observed to elevate the amount of protein oxidation in the presence of preserved proteasomal function, suggesting that proteasome inhibition may not mediate increases in protein oxidation following low-level oxidative stress. Preserving basal proteasome function appears to be critical to preventing the neurotoxicity of low-level oxidative stress, based on the ability of proteasome inhibitor treatment to exacerbate oxidative stress toxicity. Taken together, these data indicate that maintaining neural proteasome function may be critical to preventing neurotoxicity, but not the increase in protein oxidation, following low-level oxidative stress.
Collapse
Affiliation(s)
- Qunxing Ding
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Haloferax volcanii, a halophilic archaeon, synthesizes three different proteins (alpha1, alpha2, and beta) which are classified in the 20S proteasome superfamily. The alpha1 and beta proteins alone form active 20S proteasomes; the role of alpha2, however, is not clear. To address this, alpha2 was synthesized with an epitope tag and purified by affinity chromatography from recombinant H. volcanii. The alpha2 protein copurified with alpha1 and beta in a complex with an overall structure and peptide-hydrolyzing activity comparable to those of the previously described alpha1-beta proteasome. Supplementing buffers with 10 mM CaCl(2) stabilized the halophilic proteasomes in the absence of salt and enabled them to be separated by native gel electrophoresis. This facilitated the discovery that wild-type H. volcanii synthesizes more than one type of 20S proteasome. Two 20S proteasomes, the alpha1-beta and alpha1-alpha2-beta proteasomes, were identified during stationary phase. Cross-linking of these enzymes, coupled with available structural information, suggested that the alpha1-beta proteasome was a symmetrical cylinder with alpha1 rings on each end. In contrast, the alpha1-alpha2-beta proteasome appeared to be asymmetrical with homo-oligomeric alpha1 and alpha2 rings positioned on separate ends. Inter-alpha-subunit contacts were only detected when the ratio of alpha1 to alpha2 was perturbed in the cell using recombinant technology. These results support a model that the ratio of alpha proteins may modulate the composition and subunit topology of 20S proteasomes in the cell.
Collapse
Affiliation(s)
- Steven J Kaczowka
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | | |
Collapse
|
95
|
Rock KL, York IA, Saric T, Goldberg AL. Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol 2002; 80:1-70. [PMID: 12078479 DOI: 10.1016/s0065-2776(02)80012-8] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the past decade there has been considerable progress in understanding how MHC class I-presented peptides are generated. The emerging theme is that the immune system has not evolved its own specialized proteolytic mechanisms but instead utilizes the phylogenetically ancient catabolic pathways that continually turnover proteins in all cells. Three distinct proteolytic steps have now been defined in MHC class I antigen presentation. The first step is the degradation of proteins by the ubiquitin-proteasome pathway into oligopeptides that either are of the correct size for presentation or are extended on their amino-termini. In the second step, aminopeptidases trim N-extended precursors into peptides of the correct length to be presented on class I molecules. The third step involves the destruction of peptides by endo- and exopeptidases, which limits antigen presentation, but is important for preventing the accumulation of peptides and recycling them back to amino acids for protein synthesis or production of energy. The immune system has evolved several components that modify the activity of these ancient pathways in ways that enhance the generation of class I-presented peptides. These include catalytically active subunits of the proteasome, the PA28 proteasome activator, and leucine aminopeptidase, all of which are upregulated by interferon-gamma. In addition to these pathways that operate in all cells, dendritic cells and macrophages can also generate class I-presented peptides from proteins internalized from the extracellular fluids by degrading them in endocytic compartments or transferring them to the cyotosol for degradation by proteasomes.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
96
|
Kessler BM, Glas R, Ploegh HL. MHC class I antigen processing regulated by cytosolic proteolysis-short cuts that alter peptide generation. Mol Immunol 2002; 39:171-9. [PMID: 12200049 DOI: 10.1016/s0161-5890(02)00100-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytotoxic T lymphocyte (CTL)-mediated immune responses rely on the efficiency of MHC class I ligand generation and presentation by antigen presenting cells (APCs). Whereas the abnormal expression of MHC molecules and transporters associated with antigen processing (TAPs) are commonly discussed as factors that modulate antigen presentation, much less is known about possible regulatory mechanisms at the level of proteolysis responsible for the generation of antigenic peptides. The ubiquitin-proteasome system is recognized as the major component responsible for this process in the cytosol and its activity can be regulated by cytokines, such as IFN-gamma. However, new evidence suggests the involvement of other proteases that can contribute to cytosolic proteolysis and therefore, to the quality and quantity of antigen production. Here, we review recent findings on an increasing number of proteolytic enzymes linked to antigen presentation, and we discuss how regulation of cytosolic protease activities might have implications for immune escape mechanisms that could be used by tumor cells and pathogens.
Collapse
Affiliation(s)
- Benedikt M Kessler
- Department of Pathology, Harvard Medical School, Room 137, Building D2, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
97
|
Abstract
The accumulation of oxidized proteins in cells and tissues is a feature of a number of age-related diseases and may also occur as a result of the aging process itself. In this article we review recent advances in our understanding of the cellular degradation of oxidized proteins directing our attention primarily to information which directly bears on the behavior of intact eukaryotic cells. We summarize new work on the key intracellular degradative machineries, proteasomes and lysosomes and examine evidence implicating an increase in protein hydrophobicity as the primary signal to the proteasome to initiate degradation. The data identifying the proteasome as the main route of degradation of oxidized proteins is examined, as well as recent data investigating changes in proteasome function after exposure of cells to oxidants and the altered catabolism of oxidized proteins in aging cells. Evidence for the cooperation between the lysosomal and proteasomal systems in the degradation of oxidized proteins is discussed. We conclude that the cellular catabolism of oxidized proteins may be a more complex process than it first appeared and suggest key issues that need to be resolved to improve our understanding of this important process.
Collapse
Affiliation(s)
- Rachael A Dunlop
- Cell Biology Unit, The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, NSW, 2050 Australia
| | | | | |
Collapse
|
98
|
Goldberg AL, Cascio P, Saric T, Rock KL. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 2002; 39:147-64. [PMID: 12200047 DOI: 10.1016/s0161-5890(02)00098-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three different proteolytic processes have been shown to be important in the generation of antigenic peptides displayed on MHC-class I molecules. The great majority of these peoptides are derived from oligopeptides produced during the degradation of intracellular proteins by the ubiquitin-proteasome pathway. Novel methods were developed to follow this process in vitro. When pure 26S proteasomes degrade the model substrate, ovalbumin, they produce the immunodominant peptide, SIINFEKL, occasionally, but more often an N-extended form of SIINFEKL. Interferon-gamma stimulates antigen presentation in part by inducing new forms of the proteasome that are more efficient in antigen presentation, and in vitro these immunoproteasomes specifically produce more of the N-extended versions of SIINFEKL. In addition, gamma-interferon induces a novel 26S complex containing the 19S and 20S particles and the proteasome activator, PA28, which we show cleaves proteins in distinct ways. In vivo studies established that proteasomal cleavages produce the C-termini of antigenic peptides, but not their N-termini, which can be formed efficiently by aminopeptidases that trim longer proteasomal products to the presented epitopes. gamma-interferon stimulates this trimming process by inducing in the cytosol leucine aminopeptidase and a novel aminopeptidase in the ER. Peptides released by proteasomes, including antigenic peptides, are labile in cytosolic extracts, and most of the longer proteasome products are rapidly cleaved by the cytosolic enzyme, thymet oligopeptidase (TOP). If cells express large amounts of TOP, class I presentation decreases, and if TOP is inhibited, presentation increases. Thus, peptide degradation in the cytosol appears to limit the efficiency of antigen presentation.
Collapse
Affiliation(s)
- Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
99
|
Singh S, Awasthi N, Egwuagu CE, Wagner BJ. Immunoproteasome expression in a nonimmune tissue, the ocular lens. Arch Biochem Biophys 2002; 405:147-53. [PMID: 12220526 DOI: 10.1016/s0003-9861(02)00341-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interferon gamma (IFN gamma) induces the expression of three catalytic subunits of the 20S proteasome that can replace their constitutive homologues to form the "immunoproteasome," named to reflect its antigen presentation function. However, immunoproteasome levels and their modulation in nonimmune tissues remain unknown. A disrupted lens differentiation program observed in transgenic mice that constitutively express IFN gamma in the immune-privileged lens tissue suggests a role for this cytokine in differentiation. We have developed a competitive RT-PCR assay that demonstrates substantially increased levels of immuno subunits and unchanged levels of constitutive subunits in transgenic compared to wild-type lenses. Similar results were observed with IFN gamma treated alpha TN4-1 lens epithelial cells. A comparison of these subunits in different immune and nonimmune mouse tissues revealed unique expression patterns. The presence of immuno subunits in nonimmune tissues such as lens suggests that the immunoproteasome may also have nonimmune functions, such as that in lens differentiation.
Collapse
Affiliation(s)
- Shaneen Singh
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
100
|
Barton LF, Cruz M, Rangwala R, Deepe GS, Monaco JJ. Regulation of immunoproteasome subunit expression in vivo following pathogenic fungal infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3046-52. [PMID: 12218120 DOI: 10.4049/jimmunol.169.6.3046] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proteasome catalytic beta subunits LMP2, LMP7, and MECL-1 and two proteasome activator proteins, PA28 alpha and beta, are induced following exposure to IFN-gamma in vitro. Induction of these immunosubunits and the PA28 alpha/beta hetero-oligomer alters proteasome catalytic functions and specificity and enhances production of certain MHC class I epitopes. We sought to determine whether and to what extent proteasome subunit composition is regulated in vivo and to elucidate the mechanisms of such regulation. We analyzed basal expression levels of these inducible genes in normal, IFN-gamma-deficient, and Stat-1-deficient mice. Mice of all three genotypes display constitutive expression of the immunosubunits and PA28, demonstrating that basal expression in vivo is independent of endogenous IFN-gamma production. However, basal expression levels are reduced in Stat-1(-/-) mice, demonstrating a role for Stat-1 independent of IFN-gamma signaling. To demonstrate that IFN-gamma can induce these genes in vivo, mice were infected with Histoplasma capsulatum. Elevated expression of these genes followed the same time course as IFN-gamma expression in infected mice. IFN-gamma-deficient mice did not display elevated protein expression following infection, suggesting that other inflammatory cytokines produced in infected mice are unable to influence proteasome expression. Cytokines other than IFN-gamma also failed to influence proteasome gene expression in vitro in cell lines that had no basal expression of LMP2, LMP7, or MECL-1. Thus, both in vitro and in vivo data demonstrate that IFN-gamma is essential for up-regulation, but not constitutive expression, of immunoproteasome subunits in mice.
Collapse
Affiliation(s)
- Lance F Barton
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|