51
|
Choi K, Weber JM. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming. Am J Physiol Regul Integr Comp Physiol 2015; 310:R493-501. [PMID: 26719305 DOI: 10.1152/ajpregu.00330.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/29/2015] [Indexed: 11/22/2022]
Abstract
This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise.
Collapse
Affiliation(s)
- Kevin Choi
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
52
|
Chen Y, Kim H, Bok R, Sukumar S, Mu X, Sheldon RA, Barkovich AJ, Ferriero DM, Xu D. Pyruvate to Lactate Metabolic Changes during Neurodevelopment Measured Dynamically Using Hyperpolarized 13C Imaging in Juvenile Murine Brain. Dev Neurosci 2015; 38:34-40. [PMID: 26550989 DOI: 10.1159/000439271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/08/2015] [Indexed: 12/21/2022] Open
Abstract
Hyperpolarized 13C magnetic resonance imaging has recently been used to dynamically image metabolism in vivo. This technique provides the capability to investigate metabolic changes in mouse brain development over multiple time points. In this study, we used 13C magnetic resonance spectroscopic imaging and hyperpolarized 13C-1-labeled pyruvate to analyze its conversion into lactate. We also applied T2-weighted anatomical imaging to examine brain volume changes starting from postnatal day 18 (P18). We combined these results with body weight measurements for a comprehensive interpretation of mouse brain maturation. Both the produced lactate level and pyruvate to lactate conversion rate decreased with increasing age in a linear manner. Total brain volume remained the same after P18, even though body weight continued to grow exponentially. Our results have shown that the rate of metabolism of 13C-1 pyruvate to lactate in brain is high in the young mouse and decreases with age. The brain at P18 is still relatively immature and continues to develop even as the total brain volume remains the same.
Collapse
Affiliation(s)
- Yiran Chen
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, Calif., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Review: can diet influence the selective advantage of mitochondrial DNA haplotypes? Biosci Rep 2015; 35:BSR20150232. [PMID: 26543031 PMCID: PMC4708006 DOI: 10.1042/bsr20150232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023] Open
Abstract
This review explores the potential for changes in dietary macronutrients to differentially influence mitochondrial bioenergetics and thereby the frequency of mtDNA haplotypes in natural populations. Such dietary modification may be seasonal or result from biogeographic or demographic shifts. Mechanistically, mtDNA haplotypes may influence the activity of the electron transport system (ETS), retrograde signalling to the nuclear genome and affect epigenetic modifications. Thus, differential provisioning by macronutrients may lead to selection through changes in the levels of ATP production, modulation of metabolites (including AMP, reactive oxygen species (ROS) and the NAD+/NADH ratio) and potentially complex epigenetic effects. The exquisite complexity of dietary influence on haplotype frequency is further illustrated by the fact that macronutrients may differentially influence the selective advantage of specific mutations in different life-history stages. In Drosophila, complex I mutations may affect larval growth because dietary nutrients are fed through this complex in immaturity. In contrast, the majority of electrons are provided to complex III in adult flies. We conclude the review with a case study that considers specific interactions between diet and complex I of the ETS. Complex I is the first enzyme of the mitochondrial ETS and co-ordinates in the oxidation of NADH and transfer of electrons to ubiquinone. Although the supposition that mtDNA variants may be selected upon by dietary macronutrients could be intuitively consistent to some and counter intuitive to others, it must face a multitude of scientific hurdles before it can be recognized.
Collapse
|
54
|
Mazzola PN, Teixeira BC, Schirmbeck GH, Reischak-Oliveira A, Derks TG, van Spronsen FJ, Dutra-Filho CS, Schwartz IVD. Acute exercise in treated phenylketonuria patients: Physical activity and biochemical response. Mol Genet Metab Rep 2015. [PMID: 28649544 PMCID: PMC5471389 DOI: 10.1016/j.ymgmr.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background In phenylketonuria, dietary treatment prevents most of the severe brain disease. However, patients have to follow a diet restricted in several natural components, what may cause decreased bone density and obesity. Exercise is known to improve both mental functioning and bone density also avoiding obesity, and could optimize aspects of central and peripheral outcome, regardless changes in phenylalanine (Phe) levels. However, the acute effects of exercise on metabolic parameters in phenylketonuria patients are unknown and thereby long-term adaptations are unclear. Therefore, this study aimed to evaluate patients' basal metabolic rate (BMR), and their acute response to an aerobic exercise session on plasma concentrations of Phe, tyrosine (Tyr), and branched-chain amino acids (BCAA), as well as metabolic and hormonal responses. Methods Five early- and four late diagnosed phenylketonuria patients aged 21 ± 4 years and 17 sex-, age-, and BMI-matched controls were evaluated for BMR, peak oxygen consumption (VO2peak) and plasma amino acid, glucose, lipid profile and hormonal levels. At least one week later, participants performed a 30-min aerobic exercise session (intensities individually calculated using the VO2peak results). Blood samples were collected in fasted state (moment 1, M1) and immediately after a small breakfast, which included the metabolic formula for patients but not for controls, and the exercise session (moment 2, M2). Results Phenylketonuria patients and controls showed similar BMR and physical capacities. At M1, patients presented higher Phe concentration and Phe/Tyr ratio; and lower levels of BCAA and total cholesterol than controls. Besides that, poorly controlled patients tended to stay slightly below the prescribed VO2 during exercise. Both patients and controls showed increased levels of total cholesterol and LDL at M2 compared with M1. Only controls showed increased levels of Tyr, lactate, and HDL; and decreased Phe/Tyr ratio and glucose levels at M2 compared to values at M1. Conclusions Acute aerobic exercise followed by a Phe-restricted breakfast did not change Phe concentrations in treated phenylketonuria patients, but it was associated with decreased Phe/Tyr only in controls. Further studies are necessary to confirm our results in a higher number of patients.
Collapse
Key Words
- Aerobic exercise
- BCAA, branched-chain amino acids
- BMI, body mass index
- BMR, basal metabolic rate
- Basal metabolic rate
- CTL, control
- HDL, high-density lipoprotein
- LDL, low-density lipoprotein
- N/A, not applicable
- NS, non-significant
- Natural restricted diet
- PKU
- PKU, phenylketonuria
- Phe, phenylalanine
- Phenylalanine
- Phenylketonuria
- RER, respiratory exchange ratio
- Tyr, tyrosine
- VCO2, carbon dioxide production
- VO2, oxygen consumption
- VO2peak, peak oxygen consumption
Collapse
Affiliation(s)
- Priscila Nicolao Mazzola
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, Brazil
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Bruno Costa Teixeira
- Physical Education School, UFRGS, Rua Felizardo 750, 90690-200, Porto Alegre, Brazil
| | | | | | - Terry G.J. Derks
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Francjan J. van Spronsen
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Carlos Severo Dutra-Filho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, Brazil
- Departamento de Bioquímica, UFRGS, Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-003, Porto Alegre, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, 90035-003, Porto Alegre, Brazil
- Corresponding author at: Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-003, Porto Alegre, Brazil.Medical Genetics ServiceHospital de Clínicas de Porto AlegreRua Ramiro Barcelos 2350Porto Alegre90035-003Brazil
| |
Collapse
|
55
|
Tkatcheva V, Poirier D, Chong-Kit R, Furdui VI, Burr C, Leger R, Parmar J, Switzer T, Maedler S, Reiner EJ, Sherry JP, Simmons DBD. Lithium an emerging contaminant: bioavailability, effects on protein expression, and homeostasis disruption in short-term exposure of rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:85-93. [PMID: 25678467 DOI: 10.1016/j.aquatox.2015.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/29/2015] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
Worldwide production of lithium (Li) has increased dramatically during the past decade, driven by the demand for high charge density batteries. Information about Li in the aquatic environment is limited. The present study was designed to explore the effects of Li in rainbow trout (Oncorhynchus mykiss). Juvenile trout were exposed to a nominal concentration of 1.0mg Li/L in three separate exposures. Major ion concentrations were measured in brain and plasma by ion chromatography. Plasma proteins and fatty acids were measured by HPLC-MS/MS. Lithium accumulated in the brain and plasma. Arachidonic acid was elevated in plasma after 48h. Elevated concentrations of Li in brain were associated with depressed concentrations of sodium, magnesium, potassium and ammonium relative to the control. In plasma, sodium and calcium were also depressed. Several changes occurred to plasma proteins corresponding to Li exposure: inhibition of prostaglandin synthase (Ptgs2), increased expression of copper transporting ATP synthases, and Na(+)/K(+) ATPase. To our knowledge, ours is the first study to demonstrate elevated Li concentrations in fish brain, with associated effects on ion regulation.
Collapse
Affiliation(s)
- Victoria Tkatcheva
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada.
| | - David Poirier
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Richard Chong-Kit
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Vasile I Furdui
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Christopher Burr
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Ray Leger
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Jaspal Parmar
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Teresa Switzer
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada
| | - Stefanie Maedler
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada; University of Toronto, Department of Chemistry, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Eric J Reiner
- Laboratory Service Branch (LaSB), Ontario Ministry of Environment and Climate Change (MOECC), Etobicoke, ON M9P 3V6, Canada; University of Toronto, Department of Chemistry, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - James P Sherry
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON L7R 4A6, Canada
| | - Denina B D Simmons
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON L7R 4A6, Canada
| |
Collapse
|
56
|
Kane DA. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at work. Front Neurosci 2014; 8:366. [PMID: 25505376 PMCID: PMC4243568 DOI: 10.3389/fnins.2014.00366] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/25/2014] [Indexed: 11/30/2022] Open
Abstract
Lactate, the conjugate base of lactic acid occurring in aqueous biological fluids, has been derided as a “dead-end” waste product of anaerobic metabolism. Catalyzed by the near-equilibrium enzyme lactate dehydrogenase (LDH), the reduction of pyruvate to lactate is thought to serve to regenerate the NAD+ necessary for continued glycolytic flux. Reaction kinetics for LDH imply that lactate oxidation is rarely favored in the tissues of its own production. However, a substantial body of research directly contradicts any notion that LDH invariably operates unidirectionally in vivo. In the current Perspective, a model is forwarded in which the continuous formation and oxidation of lactate serves as a mitochondrial electron shuttle, whereby lactate generated in the cytosol of the cell is oxidized at the mitochondria of the same cell. From this perspective, an intracellular lactate shuttle operates much like the malate-aspartate shuttle (MAS); it is also proposed that the two shuttles are necessarily interconnected in a lactate-MAS. Among the requisite features of such a model, significant compartmentalization of LDH, much like the creatine kinase of the phosphocreatine shuttle, would facilitate net cellular lactate oxidation in a variety of cell types.
Collapse
Affiliation(s)
- Daniel A Kane
- Department of Human Kinetics, St. Francis Xavier University Antigonish, NS, Canada
| |
Collapse
|
57
|
Schurr A. Cerebral glycolysis: a century of persistent misunderstanding and misconception. Front Neurosci 2014; 8:360. [PMID: 25477776 PMCID: PMC4237041 DOI: 10.3389/fnins.2014.00360] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022] Open
Abstract
Since its discovery in 1780, lactate (lactic acid) has been blamed for almost any illness outcome in which its levels are elevated. Beginning in the mid-1980s, studies on both muscle and brain tissues, have suggested that lactate plays a role in bioenergetics. However, great skepticism and, at times, outright antagonism has been exhibited by many to any perceived role for this monocarboxylate in energy metabolism. The present review attempts to trace the negative attitudes about lactate to the first four or five decades of research on carbohydrate metabolism and its dogma according to which lactate is a useless anaerobic end-product of glycolysis. The main thrust here is the review of dozens of scientific publications, many by the leading scientists of their times, through the first half of the twentieth century. Consequently, it is concluded that there exists a barrier, described by Howard Margolis as “habit of mind,” that many scientists find impossible to cross. The term suggests “entrenched responses that ordinarily occur without conscious attention and that, even if noticed, are hard to change.” Habit of mind has undoubtedly played a major role in the above mentioned negative attitudes toward lactate. As early as the 1920s, scientists investigating brain carbohydrate metabolism had discovered that lactate can be oxidized by brain tissue preparations, yet their own habit of mind redirected them to believe that such an oxidation is simply a disposal mechanism of this “poisonous” compound. The last section of the review invites the reader to consider a postulated alternative glycolytic pathway in cerebral and, possibly, in most other tissues, where no distinction is being made between aerobic and anaerobic glycolysis; lactate is always the glycolytic end product. Aerobically, lactate is readily shuttled and transported into the mitochondrion, where it is converted to pyruvate via a mitochondrial lactate dehydrogenase (mLDH) and then is entered the tricarboxylic acid (TCA) cycle.
Collapse
Affiliation(s)
- Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine Louisville, KY, USA
| |
Collapse
|
58
|
Effect of coculturing on the myogenic and adipogenic marker gene expression. Appl Biochem Biotechnol 2014; 173:571-8. [PMID: 24691879 DOI: 10.1007/s12010-014-0866-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
Abstract
The present experiment was carried out to evaluate the effect of coculturing on myogenic and adipogenic marker gene expressions with the use of C2C12 and 3 T3-L1 preadipocyte cells under the coculture system. C2C12 and 3 T3-L1 cells were cocultured using transwell inserts with a 0.4-μm porous membrane to separate C2C12 and 3 T3-L1 cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3 T3-L1 cells were transferred to C2C12 plates, and inserts containing C2C12 cells were transferred to 3 T3-L1 plates. After coculture of the C2C12 and 3 T3-L1 cells for 48 and 72 h, the cells in the lower well were harvested for analysis, and this process was carried out for both cells. Myogenic markers such as myogenin, MyoD, Myf5, PAX3, and PAX7 mRNA expressions were analyzed in the cocultured C2C12 cells. Adipogenic markers such as fatty acid-binding protein 4 (FABP4), peroxisome proliferator-activating receptor (PPARγ), CCAAT/enhancer-binding protein (CEBPA), adiponectin, lipoprotein lipase, and fatty acid synthase mRNA expressions were analyzed in the cocultured 3 T3-L1 cells. Myogenic and adipogenic marker gene mRNA expressions were significantly altered in the cocultured C2C12 and 3 T3-L1 cells when compared with the monocultured C2C12 and 3 T3-L1 cells.
Collapse
|
59
|
Martinez-Outschoorn U, Sotgia F, Lisanti MP. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Semin Oncol 2014; 41:195-216. [PMID: 24787293 DOI: 10.1053/j.seminoncol.2014.03.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression.
Collapse
Affiliation(s)
| | - Federica Sotgia
- University of Manchester, Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Manchester, United Kingdom
| | - Michael P Lisanti
- University of Manchester, Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Manchester, United Kingdom
| |
Collapse
|
60
|
Gouspillou G, Bourdel-Marchasson I, Rouland R, Calmettes G, Biran M, Deschodt-Arsac V, Miraux S, Thiaudiere E, Pasdois P, Detaille D, Franconi JM, Babot M, Trézéguet V, Arsac L, Diolez P. Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell 2014; 13:39-48. [PMID: 23919652 PMCID: PMC4326861 DOI: 10.1111/acel.12147] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 12/25/2022] Open
Abstract
With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with 31P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness (‘elasticity’) of mitochondrial oxidative phosphorylation to contraction-induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging-related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon.
Collapse
Affiliation(s)
- Gilles Gouspillou
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- Département de Kinanthropologie; Université du Québec à Montréal; Montreal Quebec Canada
| | - Isabelle Bourdel-Marchasson
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- CHU de Bordeaux; Pôle de gérontologie clinique; Bordeaux France
| | - Richard Rouland
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Guillaume Calmettes
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- Department of Medicine (Cardiology); David Geffen School of Medicine; University of California; Los Angeles CA USA
| | - Marc Biran
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Véronique Deschodt-Arsac
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Sylvain Miraux
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Eric Thiaudiere
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Philippe Pasdois
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Dominique Detaille
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Jean-Michel Franconi
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Marion Babot
- Laboratoire de Physiologie Moléculaire et Cellulaire; Institut de Biochimie et Génétique Cellulaires; UMR 5095; CNRS-Université Bordeaux 2; Bordeaux Cedex France
| | - Véronique Trézéguet
- Laboratoire de Physiologie Moléculaire et Cellulaire; Institut de Biochimie et Génétique Cellulaires; UMR 5095; CNRS-Université Bordeaux 2; Bordeaux Cedex France
| | - Laurent Arsac
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Philippe Diolez
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| |
Collapse
|
61
|
Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 2014; 25:47-60. [PMID: 24486645 DOI: 10.1016/j.semcancer.2014.01.005] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 12/22/2022]
Abstract
Fibroblasts are the most abundant "non-cancerous" cells in tumors. However, it remains largely unknown how these cancer-associated fibroblasts (CAFs) promote tumor growth and metastasis, driving chemotherapy resistance and poor clinical outcome. This review summarizes new findings on CAF signaling pathways and their emerging metabolic phenotypes that promote tumor growth. Although it is well established that altered cancer metabolism enhances tumor growth, little is known about the role of fibroblast metabolism in tumor growth. New studies reveal that metabolic coupling occurs between catabolic fibroblasts and anabolic cancer cells, in many types of human tumors, including breast, prostate, and head & neck cancers, as well as lymphomas. These catabolic phenotypes observed in CAFs are secondary to a ROS-induced metabolic stress response. Mechanistically, this occurs via HIF1-alpha and NFκB signaling, driving oxidative stress, autophagy, glycolysis and senescence in stromal fibroblasts. These catabolic CAFs then create a nutrient-rich microenvironment, to metabolically support tumor growth, via the local stromal generation of mitochondrial fuels (lactate, ketone bodies, fatty acids, glutamine, and other amino acids). New biomarkers of this catabolic CAF phenotype (such as caveolin-1 (Cav-1) and MCT4), which are reversible upon treatment with anti-oxidants, are strong predictors of poor clinical outcome in various types of human cancers. How cancer cells metabolically reprogram fibroblasts can also help us to understand the effects of cancer cells at an organismal level, explaining para-neoplastic phenomena, such as cancer cachexia. In conclusion, cancer should be viewed more as a systemic disease, that engages the host-organism in various forms of energy-transfer and metabolic co-operation, across a whole-body "ecosystem".
Collapse
Affiliation(s)
| | - Michael P Lisanti
- Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM), University of Manchester, UK.
| | - Federica Sotgia
- Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM), University of Manchester, UK.
| |
Collapse
|
62
|
Abstract
Although firmly grounded in metabolic biochemistry, the study of energy metabolism has gone well beyond this discipline and become integrative and comparative as well as ecological and evolutionary in scope. At the cellular level, ATP is hydrolyzed by energy-expending processes and resynthesized by pathways in bioenergetics. A significant development in the study of bioenergetics is the realization that fluxes through pathways as well as metabolic rates in cells, tissues, organs, and whole organisms are "system properties." Therefore, studies of energy metabolism have become, increasingly, experiments in systems biology. A significant challenge continues to be the integration of phenomena over multiple levels of organization. Body mass and temperature are said to account for most of the variation in metabolic rates found in nature. A mechanistic foundation for the understanding of these patterns is outlined. It is emphasized that evolution, leading to adaptation to diverse lifestyles and environments, has resulted in a tremendous amount of deviation from popularly accepted scaling "rules." This is especially so in the deep sea which constitutes most of the biosphere.
Collapse
Affiliation(s)
- Raul K Suarez
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
63
|
De Feo P. Is high-intensity exercise better than moderate-intensity exercise for weight loss? Nutr Metab Cardiovasc Dis 2013; 23:1037-1042. [PMID: 24119988 DOI: 10.1016/j.numecd.2013.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/23/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022]
Abstract
This viewpoint debates the state-of-the-art research focusing on the optimal intensity of the exercise programs for inducing a sustained weight or fat-mass loss in overweight/obese people. In our demanding society, the most attractive messages in the popular press are those promising the best results in a short time. This might explain the emphasis given by media to those scientific articles that report the efficacy on weight loss of exercise programs by their shorter duration and higher intensity. However, in the literature on overweight or obese people, there is little conclusive evidence for more favorable effects with high-intensity training than with continuous moderate-intensity exercise on body weight or fat mass loss. Since both exercise protocols have been demonstrated as useful to reduce body weight, the decision on the intensity of exercise prescription should be individualized and based on outcomes different from fat or weight loss. In this regard, there are pro and contra arguments for the prescription of high-intensity aerobic exercise in obese people. Among the pro arguments, is the demonstration that, in several studies, high-intensity training appears to induce superior improvements in aerobic fitness. Among the contra arguments to prescribe high-intensity exercise is the demonstration that prescribing a higher-intensity exercise decreases adherence and results in the completion of less exercise. Thus, a successful exercise program should be proposed at a moderate intensity and a low perceived effort because obese subjects who have low self-efficacy, poor mood status, and are not familiar with high-intensity workouts could easily drop out.
Collapse
Affiliation(s)
- P De Feo
- Healthy Lifestyle Institute, C.U.R.I.A.MO. (Centro Universitario Ricerca Interdipartimentale Attività Motoria), University of Perugia, Via G. Bambagioni, 19, 06126 Perugia, Italy.
| |
Collapse
|
64
|
Teulier L, Omlin T, Weber JM. Lactate kinetics of rainbow trout during graded exercise: do catheters affect the cost of transport? ACTA ACUST UNITED AC 2013; 216:4549-56. [PMID: 24031058 DOI: 10.1242/jeb.091058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in lactate kinetics as a function of exercise intensity have never been measured in an ectotherm. Continuous infusion of a tracer is necessary to quantify rates of lactate appearance (Ra) and disposal (Rd), but it requires double catheterization, which could interfere with swimming. Using rainbow trout, our goals were to: (1) determine the potential effects of catheters and blood sampling on metabolic rate (O2), total cost of transport (TCOT), net cost of transport (NCOT) and critical swimming speed (Ucrit), and (2) monitor changes in lactate fluxes during prolonged, steady-state swimming or graded swimming from rest to Ucrit. This athletic species maintains high baseline lactate fluxes of 24 μmol kg(-1) min(-1) that are only increased at intensities >2.4 body lengths (BL) s(-1) or 85% Ucrit. As the fish reaches Ucrit, Ra is more strongly stimulated (+67% to 40.4 μmol kg(-1) min(-1)) than Rd (+41% to 34.7 μmol kg(-1) min(-1)), causing a fourfold increase in blood lactate concentration. Without this stimulation of Rd during intense swimming, lactate accumulation would double. By contrast, steady-state exercise at 1.7 BL s(-1) increases lactate fluxes to ~30 μmol kg(-1) min(-1), with a trivial mismatch between Ra and Rd that only affects blood concentration minimally. Results also show that the catheterizations and blood sampling needed to measure metabolite kinetics in exercising fish have no significant impact on O2 or TCOT. However, these experimental procedures affect locomotion energetics by increasing NCOT at high speeds and by decreasing Ucrit.
Collapse
Affiliation(s)
- Loïc Teulier
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | | |
Collapse
|
65
|
Elustondo PA, White AE, Hughes ME, Brebner K, Pavlov E, Kane DA. Physical and functional association of lactate dehydrogenase (LDH) with skeletal muscle mitochondria. J Biol Chem 2013; 288:25309-25317. [PMID: 23873936 PMCID: PMC3757195 DOI: 10.1074/jbc.m113.476648] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Indexed: 11/06/2022] Open
Abstract
The intracellular lactate shuttle hypothesis posits that lactate generated in the cytosol is oxidized by mitochondrial lactate dehydrogenase (LDH) of the same cell. To examine whether skeletal muscle mitochondria oxidize lactate, mitochondrial respiratory oxygen flux (JO2) was measured during the sequential addition of various substrates and cofactors onto permeabilized rat gastrocnemius muscle fibers, as well as isolated mitochondrial subpopulations. Addition of lactate did not alter JO2. However, subsequent addition of NAD(+) significantly increased JO2, and was abolished by the inhibitor of mitochondrial pyruvate transport, α-cyano-4-hydroxycinnamate. In experiments with isolated subsarcolemmal and intermyofibrillar mitochondrial subpopulations, only subsarcolemmal exhibited NAD(+)-dependent lactate oxidation. To further investigate the details of the physical association of LDH with mitochondria in muscle, immunofluorescence/confocal microscopy and immunoblotting approaches were used. LDH clearly colocalized with mitochondria in intact, as well as permeabilized fibers. LDH is likely localized inside the outer mitochondrial membrane, but not in the mitochondrial matrix. Collectively, these results suggest that extra-matrix LDH is strategically positioned within skeletal muscle fibers to functionally interact with mitochondria.
Collapse
Affiliation(s)
- Pia A Elustondo
- From the Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2 and
| | | | | | - Karen Brebner
- Psychology, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Evgeny Pavlov
- From the Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2 and
| | | |
Collapse
|
66
|
Jacobs RA, Meinild AK, Nordsborg NB, Lundby C. Lactate oxidation in human skeletal muscle mitochondria. Am J Physiol Endocrinol Metab 2013; 304:E686-94. [PMID: 23384769 DOI: 10.1152/ajpendo.00476.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lactate is an important intermediate metabolite in human bioenergetics and is oxidized in many different tissues including the heart, brain, kidney, adipose tissue, liver, and skeletal muscle. The mechanism(s) explaining the metabolism of lactate in these tissues, however, remains unclear. Here, we analyze the ability of skeletal muscle to respire lactate by using an in situ mitochondrial preparation that leaves the native tubular reticulum and subcellular interactions of the organelle unaltered. Skeletal muscle biopsies were obtained from vastus lateralis muscle in 16 human subjects. Samples were chemically permeabilized with saponin, which selectively perforates the sarcolemma and facilitates the loss of cytosolic content without altering mitochondrial membranes, structure, and subcellular interactions. High-resolution respirometry was performed on permeabilized muscle biopsy preparations. By use of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P ≤ 0.003). The addition of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within the mitochondrial intermembrane space with the pyruvate subsequently taken into the mitochondrial matrix where it enters the TCA cycle and is ultimately oxidized.
Collapse
Affiliation(s)
- Robert A Jacobs
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland.
| | | | | | | |
Collapse
|
67
|
Omlin T, Weber JM. Exhausting exercise and tissue-specific expression of monocarboxylate transporters in rainbow trout. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1036-43. [PMID: 23535457 DOI: 10.1152/ajpregu.00516.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transmembrane lactate movements are mediated by monocarboxylate transporters (MCTs), but these proteins have never been characterized in rainbow trout. Our goals were to clone potential trout MCTs, determine tissue distribution, and quantify the effects of exhausting exercise on MCT expression. Such information could prove important to understand the mechanisms underlying the classic "lactate retention" seen in trout white muscle after intense exercise. Four isoforms were identified and partially characterized in rainbow trout: MCT1a, MCT1b, MCT2, and MCT4. MCT1b was the most abundant in heart and red muscle but poorly expressed in the gill and brain where MCT1a and MCT2 were prevalent. MCT expression was strongly stimulated by exhausting exercise in brain (MCT2: +260%) and heart (MCT1a: +90% and MCT1b: +50%), possibly to increase capacity for lactate uptake in these highly oxidative tissues. By contrast, the MCTs of gill, liver, and muscle remained unaffected by exercise. This study provides a possible functional explanation for postexercise "lactate retention" in trout white muscle. Rainbow trout may be unable to release large lactate loads rapidly during recovery because: 1) they only poorly express MCT4, the main lactate exporter found in mammalian glycolytic muscles; 2) the combined expression of all trout MCTs is much lower in white muscle than in any other tissue; and 3) exhausting exercise fails to upregulate white muscle MCT expression. In this tissue, carbohydrates act as an "energy spring" that alternates between explosive power release during intense swimming (glycogen to lactate) and recoil during protracted recovery (slow glycogen resynthesis from local lactate).
Collapse
Affiliation(s)
- Teye Omlin
- Biology Department and Center for Advanced Research in Environmental Genomics (CAREG), University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
68
|
Abstract
Preservation of aerobic fitness and skeletal muscle strength through exercise training can ameliorate metabolic dysfunction and prevent chronic disease. These benefits are mediated in part by extensive metabolic and molecular remodeling of skeletal muscle by exercise. Aerobic and resistance exercise represent extremes on the exercise continuum and elicit markedly different training responses that are mediated by a complex interplay between a myriad of signaling pathways coupled to downstream regulators of transcription and translation. Here, we review the metabolic responses and molecular mechanisms that underpin the adaptatation of skeletal muscle to acute exercise and exercise training.
Collapse
Affiliation(s)
- Brendan Egan
- Institute for Sport and Health, School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
69
|
O'Connor E, Fraser JF. The interpretation of perioperative lactate abnormalities in patients undergoing cardiac surgery. Anaesth Intensive Care 2012; 40:598-603. [PMID: 22813486 DOI: 10.1177/0310057x1204000404] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hyperlactataemia and lactic acidosis are commonly encountered during and after cardiac surgery. Perioperative lactate production increases in the myocardium, skeletal muscle, lungs and in the splanchnic circulation during cardiopulmonary bypass. Hyperlactataemia has a bimodal distribution in the perioperative period. An early increase in lactate levels, arising intraoperatively or soon after intensive care unit admission, is a familiar and concerning finding for most clinicians. It is highly suggestive of tissue ischaemia and is associated with a prolonged intensive care unit stay, a prolonged requirement for respiratory and cardiovascular support and increased postoperative mortality. Its presence should prompt a thorough search for potential causes of tissue hypoxia. In contrast, late-onset hyperlactataemia, a less well recognised complication, occurs 4 to 24 hours after completion of surgery and is typically associated with preserved cardiac output and oxygen delivery. Risk factors for late-onset hyperlactataemia include hyperglycaemia, long cardiopulmonary bypass time and elevated endogenous catecholamines. Although patients with this complication may have a longer duration of ventilation and intensive care unit length of stay than those with normolactataemia, an association with increased mortality has not been demonstrated. The discovery of late-onset hyperlactataemia should not delay the postoperative progress of an otherwise stable patient following cardiac surgery.
Collapse
Affiliation(s)
- E O'Connor
- Adult Intensive Care Services, Prince Charles Hospital, Chermside, Queensland, Australia.
| | | |
Collapse
|
70
|
Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition. Biochem J 2012; 444:561-71. [PMID: 22458763 DOI: 10.1042/bj20120294] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies have highlighted the fact that cancer cells have an altered metabolic phenotype, and this metabolic reprogramming is required to drive the biosynthesis pathways necessary for rapid replication and proliferation. Specifically, the importance of citric acid cycle-generated intermediates in the regulation of cancer cell proliferation has been recently appreciated. One function of MCTs (monocarboxylate transporters) is to transport the citric acid cycle substrate pyruvate across the plasma membrane and into mitochondria, and inhibition of MCTs has been proposed as a therapeutic strategy to target metabolic pathways in cancer. In the present paper, we examined the effect of different metabolic substrates (glucose and pyruvate) on mitochondrial function and proliferation in breast cancer cells. We demonstrated that cancer cells proliferate more rapidly in the presence of exogenous pyruvate when compared with lactate. Pyruvate supplementation fuelled mitochondrial oxygen consumption and the reserve respiratory capacity, and this increase in mitochondrial function correlated with proliferative potential. In addition, inhibition of cellular pyruvate uptake using the MCT inhibitor α-cyano-4-hydroxycinnamic acid impaired mitochondrial respiration and decreased cell growth. These data demonstrate the importance of mitochondrial metabolism in proliferative responses and highlight a novel mechanism of action for MCT inhibitors through suppression of pyruvate-fuelled mitochondrial respiration.
Collapse
|
71
|
Abstract
We propose that the well-documented therapeutic actions of repeated physical activities over human lifespan are mediated by the rapidly turning over proto-oncogenic Myc (myelocytomatosis) network of transcription factors. This transcription factor network is unique in utilizing promoter and epigenomic (acetylation/deacetylation, methylation/demethylation) mechanisms for controlling genes that include those encoding intermediary metabolism (the primary source of acetyl groups), mitochondrial functions and biogenesis, and coupling their expression with regulation of cell growth and proliferation. We further propose that remote functioning of the network occurs because there are two arms of this network, which consists of driver cells (e.g., working myocytes) that metabolize carbohydrates, fats, proteins, and oxygen and produce redox-modulating metabolites such as H₂O₂, NAD⁺, and lactate. The exercise-induced products represent autocrine, paracrine, or endocrine signals for target recipient cells (e.g., aortic endothelium, hepatocytes, and pancreatic β-cells) in which the metabolic signals are coupled with genomic networks and interorgan signaling is activated. And finally, we propose that lactate, the major metabolite released from working muscles and transported into recipient cells, links the two arms of the signaling pathway. Recently discovered contributions of the Myc network in stem cell development and maintenance further suggest that regular physical activity may prevent age-related diseases such as cardiovascular pathologies, cancers, diabetes, and neurological functions through prevention of stem cell dysfunctions and depletion with aging. Hence, regular physical activities may attenuate the various deleterious effects of the Myc network on health, the wild side of the Myc-network, through modulating transcription of genes associated with glucose and energy metabolism and maintain a healthy human status.
Collapse
Affiliation(s)
- Kishorchandra Gohil
- Exercise Physiology Laboratory, Dept. of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
72
|
Templeman NM, Schutz H, Garland T, McClelland GB. Do mice bred selectively for high locomotor activity have a greater reliance on lipids to power submaximal aerobic exercise? Am J Physiol Regul Integr Comp Physiol 2012; 303:R101-11. [PMID: 22573104 DOI: 10.1152/ajpregu.00511.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patterns of fuel use during locomotion are determined by exercise intensity and duration, and are remarkably similar across many mammalian taxa. However, as lipids have a high yield of ATP per mole and are stored in large quantities, their use should be favored in endurance-adapted animals. To examine the capacity for alteration or differential regulation of fuel-use patterns, we studied two lines of mice that had been selectively bred for high voluntary wheel running (HR), including one characterized by small hindlimb muscles (HR(mini)) and one without this phenotype (HR(normal)), as well as a nonselected control line. We evaluated: 1) maximal aerobic capacity (Vo(2 max)); 2) whole body fuel use during exercise by indirect calorimetry; 3) cardiac properties; and 4) many factors involved in regulating lipid use. HR mice achieved an increased Vo(2 max) compared with control mice, potentially in part due to HR cardiac capacities for metabolic fuel oxidation and the larger relative heart size of HR(mini) mice. HR mice also exhibited enhanced whole body lipid oxidation rates at 66% Vo(2 max), but HR(mini), HR(normal), and control mice did not differ in the proportional mix of fuels sustaining exercise (% total Vo(2)). However, HR(mini) gastrocnemius muscle had elevated fatty acid translocase (FAT/CD36) sarcolemmal protein and cellular mRNA, fatty acid binding protein (H-FABP) cytosolic protein, peroxisome proliferator-activated receptor (PPAR) α mRNA, and mass-specific activities of citrate synthase, β-hydroxyacyl-CoA dehydrogenase, and hexokinase. Therefore, high-running mouse lines had whole body fuel oxidation rates commensurate with maximal aerobic capacity, despite notable differences in skeletal muscle metabolic phenotypes.
Collapse
|
73
|
Cruz RSDO, de Aguiar RA, Turnes T, Penteado Dos Santos R, Fernandes Mendes de Oliveira M, Caputo F. Intracellular shuttle: the lactate aerobic metabolism. ScientificWorldJournal 2012; 2012:420984. [PMID: 22593684 PMCID: PMC3345575 DOI: 10.1100/2012/420984] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/12/2011] [Indexed: 11/17/2022] Open
Abstract
Lactate is a highly dynamic metabolite that can be used as a fuel by several cells of the human body, particularly during physical exercise. Traditionally, it has been believed that the first step of lactate oxidation occurs in cytosol; however, this idea was recently challenged. A new hypothesis has been presented based on the fact that lactate-to-pyruvate conversion cannot occur in cytosol, because the LDH enzyme characteristics and cytosolic environment do not allow the reaction in this way. Instead, the Intracellular Lactate Shuttle hypothesis states that lactate first enters in mitochondria and only then is metabolized. In several tissues of the human body this idea is well accepted but is quite resistant in skeletal muscle. In this paper, we will present not only the studies which are protagonists in this discussion, but the potential mechanism by which this oxidation occurs and also a link between lactate and mitochondrial proliferation. This new perspective brings some implications and comes to change our understanding of the interaction between the energy systems, because the product of one serves as a substrate for the other.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabrizio Caputo
- Human Performance Research Group, Center of Health and Sport Sciences, Santa Catarina State University, 88080-350 Florianópolis, SC, Brazil
| |
Collapse
|
74
|
Draoui N, Feron O. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech 2012; 4:727-32. [PMID: 22065843 PMCID: PMC3209642 DOI: 10.1242/dmm.007724] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxia and oncogene expression both stimulate glycolytic metabolism in tumors, thereby leading to lactate production. However, lactate is more than merely a by-product of glycolysis: it can be used as a metabolic fuel by oxidative cancer cells. This phenomenon resembles processes that have been described for skeletal muscle and brain that involve what are known as cell-cell and intracellular lactate shuttles. Two control points regulate lactate shuttles: the lactate dehydrogenase (LDH)-dependent conversion of lactate into pyruvate (and back), and the transport of lactate into and out of cells through specific monocarboxylate transporters (MCTs). In tumors, MCT4 is largely involved in hypoxia-driven lactate release, whereas the uptake of lactate into both tumor cells and tumor endothelial cells occurs via MCT1. Translating knowledge of lactate shuttles to the cancer field offers new perspectives to therapeutically target the hypoxic tumor microenvironment and to tackle tumor angiogenesis.
Collapse
Affiliation(s)
- Nihed Draoui
- Université catholique de Louvain, Pole of Pharmacology and Therapeutics, Angiogenesis and Cancer Research Laboratory, Brussels, Belgium
| | | |
Collapse
|
75
|
Schurr A, Gozal E. Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress. Front Pharmacol 2012; 2:96. [PMID: 22275901 PMCID: PMC3257848 DOI: 10.3389/fphar.2011.00096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/23/2011] [Indexed: 12/21/2022] Open
Abstract
Ever since it was shown for the first time that lactate can support neuronal function in vitro as a sole oxidative energy substrate, investigators in the field of neuroenergetics have been debating the role, if any, of this glycolytic product in cerebral energy metabolism. Our experiments employed the rat hippocampal slice preparation with electrophysiological and biochemical methodologies. The data generated by these experiments (a) support the hypothesis that lactate, not pyruvate, is the end-product of cerebral aerobic glycolysis; (b) indicate that lactate plays a major and crucial role in affording neural tissue to respond adequately to glutamate excitation and to recover unscathed post-excitation; (c) suggest that neural tissue activation is accompanied by aerobic lactate and NADH production, the latter being produced when the former is converted to pyruvate by mitochondrial lactate dehydrogenase (mLDH); (d) imply that NADH can be utilized as an endogenous scavenger of reactive oxygen species (ROS) to provide neuroprotection against ROS-induced neuronal damage.
Collapse
Affiliation(s)
- Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Louisville Louisville, KY, USA.
| | | |
Collapse
|
76
|
YAMADA H, IWAKI Y, KITAOKA R, FUJITANI M, SHIBAKUSA T, FUJIKAWA T, MATSUMURA S, FUSHIKI T, INOUE K. Blood Lactate Functions as a Signal for Enhancing Fatty Acid Metabolism during Exercise via TGF-^|^beta; in the Brain. J Nutr Sci Vitaminol (Tokyo) 2012. [DOI: 10.3177/jnsv.58.88] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
77
|
Abstract
Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.
Collapse
Affiliation(s)
- Jean-Michel Weber
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
78
|
Suarez RK, M. LGH, Welch KC. The sugar oxidation cascade: aerial refueling in hummingbirds and nectar bats. J Exp Biol 2011; 214:172-8. [DOI: 10.1242/jeb.047936] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Summary
Most hummingbirds and some species of nectar bats hover while feeding on floral nectar. While doing so, they achieve some of the highest mass-specific values among vertebrates. This is made possible by enhanced functional capacities of various elements of the ‘O2 transport cascade’, the pathway of O2 from the external environment to muscle mitochondria. Fasted hummingbirds and nectar bats fly with respiratory quotients (RQs; ) of ∼0.7, indicating that fat fuels flight in the fasted state. During repeated hover-feeding on dietary sugar, RQ values progressively climb to ∼1.0, indicating a shift from fat to carbohydrate oxidation. Stable carbon isotope experiments reveal that recently ingested sugar directly fuels ∼80 and 95% of energy metabolism in hover-feeding nectar bats and hummingbirds, respectively. We name the pathway of carbon flux from flowers, through digestive and cardiovascular systems, muscle membranes and into mitochondria the ‘sugar oxidation cascade’. O2 and sugar oxidation cascades operate in parallel and converge in muscle mitochondria. Foraging behavior that favours the oxidation of dietary sugar avoids the inefficiency of synthesizing fat from sugar and breaking down fat to fuel foraging. Sugar oxidation yields a higher P/O ratio (ATP made per O atom consumed) than fat oxidation, thus requiring lower hovering per unit mass. We propose that dietary sugar is a premium fuel for flight in nectarivorous, flying animals.
Collapse
Affiliation(s)
- Raul K. Suarez
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - L. Gerardo Herrera M.
- Estación de Biología de Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio, Jalisco 48980, México
| | - Kenneth C. Welch
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
79
|
|
80
|
SEO JH, SUNG YH, KIM KJ, SHIN MS, LEE EK, KIM CJ. Effects of Phellinus linteus Administration on Serotonin Synthesis in the Brain and Expression of Monocarboxylate Transporters in the Muscle during Exhaustive Exercise in Rats. J Nutr Sci Vitaminol (Tokyo) 2011; 57:95-103. [DOI: 10.3177/jnsv.57.95] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jin-Hee SEO
- Department of Physiology, College of Medicine, Kyung Hee University
| | - Yun-Hee SUNG
- Department of Physiology, College of Medicine, Kyung Hee University
| | - Ki-Jeong KIM
- Department of Physiology, College of Medicine, Kyung Hee University
| | - Mal-Soon SHIN
- Department of Physiology, College of Medicine, Kyung Hee University
| | - Eun-Kyu LEE
- Department of Physiology, College of Medicine, Kyung Hee University
- Department of Internal Medicine, Andong Medical Group
| | - Chang-Ju KIM
- Department of Physiology, College of Medicine, Kyung Hee University
| |
Collapse
|
81
|
RAMANATHAN R, MANCINI R, KONDA M. EFFECT OF LACTATE ENHANCEMENT ON MYOGLOBIN OXYGENATION OF BEEF LONGISSIMUS STEAKS OVERWRAPPED IN PVC AND STORED AT 4C. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1745-4573.2010.00212.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
Terrell KA, Wildt DE, Anthony NM, Bavister BD, Leibo SP, Penfold LM, Marker LL, Crosier AE. Evidence for compromised metabolic function and limited glucose uptake in spermatozoa from the teratospermic domestic cat (Felis catus) and cheetah (Acinonyx jubatus). Biol Reprod 2010; 83:833-41. [PMID: 20650882 DOI: 10.1095/biolreprod.110.085639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cheetahs and certain other felids consistently ejaculate high proportions (≥ 60%) of malformed spermatozoa, a condition known as teratospermia, which is prevalent in humans. Even seemingly normal spermatozoa from domestic cat teratospermic ejaculates have reduced fertilizing capacity. To understand the role of sperm metabolism in this phenomenon, we conducted a comparative study in the normospermic domestic cat versus the teratospermic cat and cheetah with the general hypothesis that sperm metabolic function is impaired in males producing predominantly pleiomorphic spermatozoa. Washed ejaculates were incubated in chemically defined medium containing glucose and pyruvate. Uptake of glucose and pyruvate and production of lactate were assessed using enzyme-linked fluorescence assays. Spermatozoa from domestic cats and cheetahs exhibited similar metabolic profiles, with minimal glucose metabolism and approximately equimolar rates of pyruvate uptake and lactate production. Compared to normospermic counterparts, pyruvate and lactate metabolism were reduced in teratospermic cat and cheetah ejaculates, even when controlling for sperm motility. Rates of pyruvate and lactate (but not glucose) metabolism were correlated positively with sperm motility, acrosomal integrity, and normal morphology. Collectively, our findings reveal that pyruvate uptake and lactate production are reliable, quantitative indicators of sperm quality in these two felid species and that metabolic function is impaired in teratospermic ejaculates. Furthermore, patterns of substrate utilization are conserved between these species, including the unexpected lack of exogenous glucose metabolism. Because glycolysis is required to support sperm motility and capacitation in certain other mammals (including dogs), the activity of this pathway in felid spermatozoa is a target for future investigation.
Collapse
Affiliation(s)
- Kimberly A Terrell
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia 22630, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Management of many chronic diseases now includes regular exercise as part of a viable treatment plan. Exercise in the form of prolonged, submaximal, continuous exercise (SUBEX; i.e., approximately 30 min to 1 h, approximately 40-70% of maximal oxygen uptake) is often prescribed due to its relatively low risk, the willingness of patients to undertake, its efficacy, its affordability, and its ease of prescription. Specifically, patients who are insulin resistant or that have type 2 diabetes mellitus may benefit from regular exercise of this type. During this type of exercise, muscles dramatically increase glucose uptake as the liver increases both glycogenolysis and gluco-neogenesis. While a redundancy of mechanisms is at work to maintain blood glucose concentration ([glucose]) during this type of exercise, the major regulator of blood glucose is the insulin/glucagon response. At exercise onset, blood [glucose] transiently rises before beginning to decline after approximately 30 min, causing a subsequent decline in blood [insulin] and rise in blood glucagon. This leads to many downstream effects, including an increase in glucose output from the liver to maintain adequate glucose in the blood to fuel both the muscles and the brain. Finally, when analyzing blood [glucose], consideration should be given to nutritional status (postabsorptive versus postprandial) as well as both what the analyzer measures and the type of sample used (plasma versus whole blood). In view of both prescribing exercise to patients as well as designing studies that perturb glucose homeostasis, it is imperative that clinicians and researchers alike understand the controls of blood glucose homeostasis during SUBEX.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Weill Cornell Medical College, Cornell University, New York, New York 10021 , USA.
| |
Collapse
|
84
|
Abstract
Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. 'Cell-cell' and 'intracellular lactate shuttle' concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell-cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, 5101 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3410, USA.
| |
Collapse
|
85
|
Gomes FR, Rezende EL, Malisch JL, Lee SK, Rivas DA, Kelly SA, Lytle C, Yaspelkis BB, Garland T. Glycogen storage and muscle glucose transporters (GLUT-4) of mice selectively bred for high voluntary wheel running. J Exp Biol 2009; 212:238-48. [PMID: 19112143 PMCID: PMC2721000 DOI: 10.1242/jeb.025296] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2008] [Indexed: 01/09/2023]
Abstract
To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running (;high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran approximately 2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.
Collapse
Affiliation(s)
- Fernando R Gomes
- Department of Biology, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Harley YXR, Kohn TA, St Clair Gibson A, Noakes TD, Collins M. Skeletal muscle monocarboxylate transporter content is not different between black and white runners. Eur J Appl Physiol 2008; 105:623-32. [PMID: 19030869 DOI: 10.1007/s00421-008-0942-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
The superior performance of black African runners has been associated with lower plasma lactate concentrations at sub-maximal intensities compared to white runners. The aim was to investigate the monocarboxylate transporters 1 (MCT1) and MCT4 content in skeletal muscle of black and white runners. Although black runners exhibited lower plasma lactate concentrations after maximum exercise (8.8 +/- 2.0 vs. 12.3 +/- 2.7 mmol l(-1), P < 0.05) and a tendency to be lower at 16 km h(-1) (2.4 +/- 0.7 vs. 3.8 +/- 2.4 mmol l(-1), P = 0.07) than the white runners, there were no differences in MCT1 or MCT4 levels between the two groups. For black and white runners together, MCT4 content correlated significantly with 10 km personal best time (r = -0.74, P < 0.01) and peak treadmill speed (r = 0.88, P < 0.001), but MCT1 content did not. Although whole homogenate MCT content was not different between the groups, more research is required to explain the lower plasma lactate concentrations in black runners.
Collapse
Affiliation(s)
- Yolande X R Harley
- Department of Human Biology, University of Cape Town, UCT/MRC Research Unit for Exercise Science Sports Medicine, PO Box 115, Newlands, Cape Town 7725, South Africa
| | | | | | | | | |
Collapse
|
87
|
Seifert TS, Brassard P, Jørgensen TB, Hamada AJ, Rasmussen P, Quistorff B, Secher NH, Nielsen HB. Cerebral non-oxidative carbohydrate consumption in humans driven by adrenaline. J Physiol 2008; 587:285-93. [PMID: 19015195 DOI: 10.1113/jphysiol.2008.162073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During brain activation, the decrease in the ratio between cerebral oxygen and carbohydrate uptake (6 O(2)/(glucose + (1)/(2) lactate); the oxygen-carbohydrate index, OCI) is attenuated by the non-selective beta-adrenergic receptor antagonist propranolol, whereas OCI remains unaffected by the beta(1)-adrenergic receptor antagonist metroprolol. These observations suggest involvement of a beta(2)-adrenergic mechanism in non-oxidative metabolism for the brain. Therefore, we evaluated the effect of adrenaline (0.08 microg kg(-1) min(-1) i.v. for 15 min) and noradrenaline (0.5, 0.1 and 0.15 microg kg(-1) min(-1) i.v. for 20 min) on the arterial to internal jugular venous concentration differences (a-v diff) of O(2), glucose and lactate in healthy humans. Adrenaline (n = 10) increased the arterial concentrations of O(2), glucose and lactate (P < 0.05) and also increased the a-v diff for glucose from 0.6 +/- 0.1 to 0.8 +/- 0.2 mM (mean +/- s.d.; P < 0.05). The a-v diff for lactate shifted from a net cerebral release to an uptake and OCI was lowered from 5.1 +/- 1.5 to 3.6 +/- 0.4 (P < 0.05) indicating an 8-fold increase in the rate of non-oxidative carbohydrate uptake during adrenaline infusion (P < 0.01). Conversely, noradrenaline (n = 8) did not affect the OCI despite an increase in the a-v diff for glucose (P < 0.05). These results support that non-oxidative carbohydrate consumption for the brain is driven by a beta(2)-adrenergic mechanism, giving neurons an abundant provision of energy when plasma adrenaline increases.
Collapse
Affiliation(s)
- Thomas S Seifert
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Navas CA, Gomes FR, Carvalho JE. Thermal relationships and exercise physiology in anuran amphibians: Integration and evolutionary implications. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:344-362. [PMID: 17703978 DOI: 10.1016/j.cbpa.2007.07.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/02/2007] [Accepted: 07/07/2007] [Indexed: 11/19/2022]
Abstract
Thermal and water balance are coupled in anurans, and species with particularly permeable skin avoid overheating more effectively than minimizing variance of body temperature. In turn, temperature affects muscle performance in several ways, so documenting the mean and variance of body temperature of active frogs can help explain variation in behavioral performance. The two types of activities studied in most detail, jumping and calling, differ markedly in duration and intensity, and there are distinct differences in the metabolic profile and fiber type of the supporting muscles. Characteristics of jumping and calling also vary significantly among species, and these differences have a number of implications that we discuss in some detail throughout this paper. One question that emerges from this topic is whether anuran species exhibit activity temperatures that match the temperature range over which they perform best. Although this seems the case, thermal preferences are variable and may not necessarily reflect typical activity temperatures. The performance versus temperature curves and the thermal limits for anuran activity reflect the thermal ecology of species more than their systematic position. Anuran thermal physiology, therefore, seems to be phenotypically plastic and susceptible to adaptive evolution. Although generalizations regarding the mechanistic basis of such adjustments are not yet possible, recent attempts have been made to reveal the mechanistic basis of acclimation and acclimatization.
Collapse
Affiliation(s)
- Carlos A Navas
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14 No 321, Cidade Universitária, CEP 05508-900, São Paulo, SP Brazil.
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Jr. S/N, CEP, 18628-000, Botucatu, SP Brazil
| | - José Eduardo Carvalho
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24-A, No 1515, Bela Vista, CEP 13506-900, Rio Claro, SP Brazil
| |
Collapse
|
89
|
Abstract
The aetiology of muscle fatigue has yet not been clearly established. Administration of two nucleotides, cytosine monophosphate (CMP) and uridine monophosphate (UMP), has been prescribed for the treatment of neuromuscular affections in humans. Patients treated with CMP/UMP recover from altered neurological functions and experience pain relief, thus the interest to investigate the possible effect of the drug on exhausting exercise. With such aim, we have determined, in exercised rats treated with CMP/UMP, exercise endurance, levels of lactate, glucose and glycogen, and the activity of several metabolic enzymes such as, creatine kinase (CK), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST). Our results show that rats treated with CMP/UMP are able to endure longer periods of exercise (treadmill-run). Before exercise, muscle glucose level is significantly higher in treated rats, suggesting that the administration of CMP/UMP favours the entry of glucose in the muscle. Liver glycogen levels remains unaltered during exercise, suggesting that CMP/UMP may be implicated in maintaining the level of hepatic glycogen constant during exercise. Lactate dehydrogenase and aspartate aminotransferase activity is significantly lower in the liver of treated rats. These results suggest that administration of CMP/UMP enable rats to endure exercise by altering some metabolic parameters.
Collapse
|
90
|
Hashimoto T, Hussien R, Cho HS, Kaufer D, Brooks GA. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS One 2008; 3:e2915. [PMID: 18698340 PMCID: PMC2488371 DOI: 10.1371/journal.pone.0002915] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/07/2008] [Indexed: 11/17/2022] Open
Abstract
To evaluate the presence of components of a putative Intracellular Lactate Shuttle (ILS) in neurons, we attempted to determine if monocarboxylate (e.g. lactate) transporter isoforms (MCT1 and -2) and lactate dehydrogenase (LDH) are coexpressed in neuronal mitochondria of rat brains. Immunohistochemical analyses of rat brain cross-sections showed MCT1, MCT2, and LDH to colocalize with the mitochondrial inner membrane marker cytochrome oxidase (COX) in cortical, hippocampal, and thalamic neurons. Immunoblotting after immunoprecipitation (IP) of mitochondria from brain homogenates supported the histochemical observations by demonstrating that COX coprecipitated MCT1, MCT2, and LDH. Additionally, using primary cultures from rat cortex and hippocampus as well as immunohistochemistry and immunocoprecipitation techniques, we demonstrated that MCT2 and LDH are coexpressed in mitochondria of cultured neurons. These findings can be interpreted to mean that, as in skeletal muscle, neurons contain a mitochondrial lactate oxidation complex (mLOC) that has the potential to facilitate both intracellular and cell-cell lactate shuttles in brain.
Collapse
Affiliation(s)
- Takeshi Hashimoto
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Rajaa Hussien
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Hyung-Sook Cho
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - George A. Brooks
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
91
|
Becker HM, Deitmer JW. Nonenzymatic Proton Handling by Carbonic Anhydrase II during H+-Lactate Cotransport via Monocarboxylate Transporter 1. J Biol Chem 2008; 283:21655-67. [DOI: 10.1074/jbc.m802134200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
92
|
Magnoni L, Vaillancourt E, Weber JM. High resting triacylglycerol turnover of rainbow trout exceeds the energy requirements of endurance swimming. Am J Physiol Regul Integr Comp Physiol 2008; 295:R309-15. [DOI: 10.1152/ajpregu.00882.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fish may use lipoproteins instead of albumin-bound fatty acids to fuel endurance exercise, but lipoprotein kinetics have never been measured in ectotherms. In vivo bolus injections of labeled very-low-density lipoproteins (3H-VLDL labeled in vivo from donor fish) and continuous infusions of Intralipid (3H-labeled artificial emulsion) were used to investigate the effects of prolonged exercise (6 h at 1.5 body length/s) and heparin (600 U/kg) on the turnover rate of circulating triacylglycerol (TAG) in rainbow trout. We hypothesized that swimming would stimulate TAG turnover rate to fuel working muscles and that heparin would reduce flux by releasing lipoprotein lipase (LPL) from endothelial cells. Results from both tracer methods show that the baseline TAG turnover rate of trout ranges from 24 to 49 μmol TAG·kg−1·min−1and exceeds all values measured to date in endotherms. More important, this high resting turnover rate is not stimulated during swimming, because it can already cover several times the energy requirements of locomotion. The fact that heparin causes a 50% decrease in baseline TAG turnover rate suggests that fish LPL must be bound to the endothelium for normal tissue uptake of fatty acids supplied by lipoproteins, as in mammals. We propose that the high resting TAG turnover rate of rainbow trout could be needed by ectotherms for rapid restructuring of membrane phospholipids. The continuous tracer infusion method implemented here could be a versatile tool to investigate the potential role of lipoproteins in providing fatty acids for rapid homeoviscous adaptation.
Collapse
|
93
|
Henderson GC, Fattor JA, Horning MA, Faghihnia N, Johnson ML, Luke-Zeitoun M, Brooks GA. Glucoregulation is more precise in women than in men during postexercise recovery. Am J Clin Nutr 2008; 87:1686-94. [PMID: 18541557 DOI: 10.1093/ajcn/87.6.1686] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The regulation of glycemia is challenged in healthy men and women after exercise bouts of substantial energy expenditure. OBJECTIVE We determined rates of glucose appearance (Ra), disappearance (Rd), and metabolic clearance (MCR) before, during, and after isoenergetic moderate and hard-intensity exercise. DESIGN Ten men and 8 women received primed-continuous infusion of [6,6-(2)H(2)]glucose tracer to measure glucose kinetics. Participants were studied under 3 different conditions with diet unchanged between trials: 1) before, during, and 3 h after 90 min of exercise at 45% of peak oxygen consumption (VO(2)peak; E45); 2) before, during, and 3 h after 60 min of exercise at 65% VO(2)peak (E65), and 3) in a time-matched sedentary control trial. RESULTS In men and women, Ra, Rd, and MCR increased above the control trial during exercise and were higher in E65 than in E45 (P < 0.05). Average Ra, Rd, and MCR remained elevated above the control over 3 h of postexercise recovery in men after exercise in E45 and E65 (P < 0.05), and blood glucose concentrations were depressed below the control during recovery (P < 0.05). Glucose concentrations were not depressed in women during 3 h of postexercise recovery, and in contrast with that in men, average Ra and Rd did not remain significantly elevated during postexercise recovery in women, although MCR did remain elevated in E65 (P < 0.05). CONCLUSIONS After exercise bouts, women are better able to maintain glucose concentrations at sedentary control levels, thus not requiring the counter-regulation of glucose production that is seen in men and requiring less accentuation of lipid metabolism.
Collapse
Affiliation(s)
- Gregory C Henderson
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
The cell-to-cell lactate shuttle was introduced in 1984 and has been repeatedly supported by studies using a variety of experimental approaches. Because of its large mass and metabolic capacity, skeletal muscle is probably the major component of the lactate shuttle in terms of both production and consumption. Muscles exercising in a steady state are avid consumers of lactate, using most of the lactate as an oxidative fuel. Cardiac muscle is highly oxidative and readily uses lactate as a fuel. Lactate is a major gluconeogenic substrate for the liver; the use of lactate to form glucose increases when blood lactate concentration is elevated. Illustrative of the widespread shuttling of lactate, even the brain takes up lactate when the blood level is increased. Recently, an intracellular lactate shuttle has also been proposed. Although disagreements abound, current evidence suggests that lactate is the primary end-product of glycolysis at cellular sites remote from mitochondria. This lactate could subsequently diffuse to areas adjacent to mitochondria. Evidence is against lactate oxidation within the mitochondrial matrix, but a viable hypothesis is that lactate could be converted to pyruvate by a lactate oxidation complex with lactate dehydrogenase located on the outer surface of the inner mitochondrial membrane. In another controversial area, the role of lactic acid in acid-base balance has been hotly debated in recent times. Careful analysis reveals that lactate, not lactic acid, is the substrate/product of metabolic reactions. One view is that lactate formation alleviates acidosis, whereas another is that lactate is a causative factor in acidosis. Surprisingly, there is little direct mechanistic evidence regarding cause and effect in acid-base balance. However, there is insufficient evidence to discard the term "lactic acidosis."
Collapse
Affiliation(s)
- L Bruce Gladden
- Department of Kinesiology, Auburn University, Auburn, AL 36849-5323, USA.
| |
Collapse
|
95
|
HASHIMOTO TAKESHI, BROOKS GEORGEA. Mitochondrial Lactate Oxidation Complex and an Adaptive Role for Lactate Production. Med Sci Sports Exerc 2008; 40:486-94. [PMID: 18379211 DOI: 10.1249/mss.0b013e31815fcb04] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
96
|
Lemire J, Mailloux RJ, Appanna VD. Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1). PLoS One 2008; 3:e1550. [PMID: 18253497 PMCID: PMC2212712 DOI: 10.1371/journal.pone.0001550] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/14/2008] [Indexed: 11/24/2022] Open
Abstract
Lactate has long been regarded as an end product of anaerobic energy production and its fate in cerebral metabolism has not been precisely delineated. In this report, we demonstrate, for the first time, the ability of a human astrocytic cell line (CCF-STTG1) to consume lactate and to generate ATP via oxidative phosphorylation. (13)C-NMR and HPLC analyses aided in the identification of tricarboxylic acid (TCA) cyle metabolites and ATP in the astrocytic mitochondria incubated with lactate. Oxamate, an inhibitor of lactate dehydrogenase (LDH), abolished mitochondrial lactate consumption. Electrophoretic and fluorescence microscopic analyses helped localize LDH in the mitochondria. Taken together, this study implicates lactate as an important contributor to ATP metabolism in the brain, a finding that may significantly change our notion of how this important organ manipulates its energy budget.
Collapse
Affiliation(s)
- Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Ryan J. Mailloux
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Vasu D. Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
97
|
Carvalho JE, Gomes FR, Navas CA. Energy substrate utilization during nightly vocal activity in three species of Scinax (Anura/Hylidae). J Comp Physiol B 2008; 178:447-56. [DOI: 10.1007/s00360-007-0236-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 11/13/2007] [Accepted: 11/30/2007] [Indexed: 11/30/2022]
|
98
|
Wende AR, Schaeffer PJ, Parker GJ, Zechner C, Han DH, Chen MM, Hancock CR, Lehman JJ, Huss JM, McClain DA, Holloszy JO, Kelly DP. A Role for the Transcriptional Coactivator PGC-1α in Muscle Refueling. J Biol Chem 2007; 282:36642-51. [DOI: 10.1074/jbc.m707006200] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
99
|
Duerr JM, Tucker K. Pyruvate transport in isolated cardiac mitochondria from two species of amphibian exhibiting dissimilar aerobic scope: Bufo marinus and Rana catesbeiana. ACTA ACUST UNITED AC 2007; 307:425-38. [PMID: 17583564 DOI: 10.1002/jez.396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiac mitochondria were isolated from Bufo marinus and Rana catesbeiana, two species of amphibian whose cardiovascular systems are adapted to either predominantly aerobic or glycolytic modes of locomotion. Mitochondrial oxidative capacity was compared using VO2 max and respiratory control ratios in the presence of a variety of substrates including pyruvate, lactate, oxaloacetate, beta-hydroxybutyrate, and octanoyl-carnitine. B. marinus cardiac mitochondria exhibited VO2 max values twice that of R. catesbeiana cardiac mitochondria when oxidizing carbohydrate substrates. Pyruvate transport was measured via a radiolabeled-tracer assay in isolated B. marinus and R. catesbeiana cardiac mitochondria. Time-course experiments described both alpha-cyano-4-hydroxycinnamate-sensitive (MCT-like) and phenylsuccinate-sensitive pyruvate uptake mechanisms in both species. Pyruvate uptake by the MCT-like transporter was enhanced in the presence of a pH gradient, whereas the phenylsuccinate-sensitive transporter was inhibited. Notably, anuran cardiac mitochondria exhibited activities of lactate dehydrogenase and pyruvate carboxylase. The presence of both transporters on the inner mitochondrial membrane affords the net uptake of monocarboxylates including pyruvate, beta-hydroxybutyrate, and lactate; the latter potentially indicating the presence of a lactate/pyruvate shuttle allowing oxidation of extramitochondrial NADH. Intramitochondrial lactate dehydrogenase and pyruvate carboxylase enables lactate to be oxidized to pyruvate or converted to anaplerotic oxaloacetate. Kinetics of the MCT-like transporter differed significantly between the two species, suggesting differences in aerobic scope may be in part attributable to differences in mitochondrial carbohydrate utilization.
Collapse
Affiliation(s)
- Jeffrey M Duerr
- Department of Biology and Chemistry, George Fox University, Newberg, Oregon 97132, USA.
| | | |
Collapse
|
100
|
Azevedo JL, Tietz E, Two-Feathers T, Paull J, Chapman K. Lactate, fructose and glucose oxidation profiles in sports drinks and the effect on exercise performance. PLoS One 2007; 2:e927. [PMID: 17895968 PMCID: PMC1976551 DOI: 10.1371/journal.pone.0000927] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 09/05/2007] [Indexed: 01/10/2023] Open
Abstract
Exogenous carbohydrate oxidation was assessed in 6 male Category 1 and 2 cyclists who consumed CytoMax™ (C) or a leading sports drink (G) before and during continuous exercise (CE). C contained lactate-polymer, fructose, glucose and glucose polymer, while G contained fructose and glucose. Peak power output and VO2 on a cycle ergometer were 408±13 W and 67.4±3.2 mlO2·kg−1·min−1. Subjects performed 3 bouts of CE with C, and 2 with G at 62% VO2peak for 90 min, followed by high intensity (HI) exercise (86% VO2peak) to volitional fatigue. Subjects consumed 250 ml fluid immediately before (−2 min) and every 15 min of cycling. Drinks at −2 and 45 min contained 100 mg of [U-13C]-lactate, -glucose or -fructose. Blood, pulmonary gas samples and 13CO2 excretion were taken prior to fluid ingestion and at 5,10,15,30,45,60,75, and 90 min of CE, at the end of HI, and 15 min of recovery. HI after CE was 25% longer with C than G (6.5±0.8 vs. 5.2±1.0 min, P<0.05). 13CO2 from the −2 min lactate tracer was significantly elevated above rest at 5 min of exercise, and peaked at 15 min. 13CO2 from the −2 min glucose tracer peaked at 45 min for C and G. 13CO2 increased rapidly from the 45 min lactate dose, and by 60 min of exercise was 33% greater than glucose in C or G, and 36% greater than fructose in G. 13CO2 production following tracer fructose ingestion was greater than glucose in the first 45 minutes in C and G. Cumulative recoveries of tracer during exercise were: 92%±5.3% for lactate in C and 25±4.0% for glucose in C or G. Recoveries for fructose in C and G were 75±5.9% and 26±6.6%, respectively. Lactate was used more rapidly and to a greater extent than fructose or glucose. CytoMax significantly enhanced HI.
Collapse
Affiliation(s)
- John L Azevedo
- Exercise Biology Laboratory, Department of Kinesiology, California State University Chico, Chico, California, USA.
| | | | | | | | | |
Collapse
|